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ABSTRACT. We prove boundedness of minimizers of energy-functionals, for in-

stance of the anisotropic type (1) below, under sharp assumptions on the ex-
ponents p; in terms of p*: the Sobolev conjugate exponent of p; i.e., p* = nnf%,

1_ 1y 1

P n L«i=1 p;
man [21], we obtain the local Lipschitz-continuity of minimizers under sharp
assumptions on the exponents of anisotropic growth.

. As a consequence, by mean of regularity results due to Lieber-

1. Introduction. Integrals of the calculus of variations of the form

F = [ 3l (@)

for some bounded measurable functions p; (z) may have not smooth, even un-
bounded, minimizers. This happens also in the case of constant exponents p;,
i=1,...,n, if they are spread out; i.e., if the ratio max{p;}/ min{p;} is not close
enough to 1 in dependence on n. In fact integrals as in (1), with constant exponents
pi, may have unbounded minimizers ([18], [22], [23], see also [19]) for instance when
n > 3 and

Pil@) g (1)

2(n—1) 5
3 (2)
However a large literature already exists on regularity of solutions under suitable
assumptions on the exponents when these exponents are not spread out; see the
end of this section for details.
Similar regularity questions can be posed for other integral-functionals, for in-
stance of the form

P1=...=Pn-1=2, DPp=¢q>

/Q {IDullog(1 + | Dul) + [ug, |} dx 3)

for some exponents p,q (1 < p < q), or

/Q (DU + [g(lus, )7} de, (4)

where g = ¢(t) is a convex function satisfying the so-called Ag-condition, namely
there exists p > 1 such that g(At) < Mg(t) for every A > 1 and for every t
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sufficiently large (see Section 2). An example of such a function, with a, b—growth,
is
g(t) — t[a+b+(b7a) sin log log(e+t)]/2.

The regularity results known in the literature seem not applicable to the integrals
(3), (4) under sharp assumptions on the exponent p and ¢, as stated below.

Recently Lieberman [21] proved that integrals of the calculus of variations as
in (1) may have Lipschitz continuous local minimizers u, independently of any
condition on the {p;}, if we assume a priori that u itself is bounded. This fact
motivates the research proposed in this article.

To this aim and for the sake of exposition we deal again with integrals as in (1)
and we consider exponents p;, ¢ = 1,...,n, and g greater than or equal to 1, such
that

{ pi <pi(z), ae z€bB, (5)
q>pi(z), ae. r€B,, 1<i<n,

where B, is a ball of radius 7 > 0 contained in 2. Then let p be the harmonic
average of the {p;}; i.e.,

and let p* be the Sobolev conjugate exponent of p; i.e., p* = n”—fp if p < n, while p*
is any fixed real number greater than p, if p > n. The following regularity result
holds.

Theorem 1.1. Let u be a local minimizer of (1) and let ¢ < P*. Then u is locally
bounded in Q and the following estimate holds

146
n p
||u—uTHLoo(Br/(2ﬁ)(zo)) §c{1—|—/ ZW%(@ pi () dx s
BT(:E()) i=1
_ 1 — , _
for some constant ¢ > 0, where u, = BTl fBT(zo) wdzr, p = 11<nil£n{p1} and 0 =
P (a—p)
p(P*—a)’
Observe that if py = ... =p,—1 =2 and p, = ¢ > 2 then the assumption ¢ < p*

gives ¢ < 2(n — 1)/ (n — 3); this inequality is exactly the opposite of condition (2),
apart from the equality which is not achieved, since the borderline case ¢ = p* is
not included in Theorem 1.1. Thus, our regularity result is essentially sharp.

As a consequence of the previous theorem and of the quoted result by Lieber-
man [21] we get the following gradient estimate under a sharp assumption on the
exponents of the anisotropic growth.

Corollary 1. Let u be a local minimizer of the integral F in (1) with exponents
pi(x), fori=1,...,n, locally Lipschitz continuous in ). Let p(x) be the harmonic
average of the {p;(x)} and let p*(x) be the Sobolev conjugate exponent of p(x). If
P (x0) > pi(xg) for some xg € Q and for every i = 1,...,n, then u is Lipschitz
continuous in a neighborhood of .
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We emphasize that in fact in this paper we consider integrals more general than
(1), (3) and (4). Precisely, we are able to consider general integrals with non-
homogeneous densities of the form

/ flx, Jug, |, -, Jug, |) de
Q

with f satisfying some non-standard p;-g growth conditions; precise assumptions
and statements are in Section 2. We observe explicitly that, in the case of the
functional in (4), the assumptions involve the exponents p and ¢, but they are
independent of the function g¢.

The mathematical literature on the regularity in this context is very rich; energy
functionals with anisotropic, non-standard or general growth have been studied
by many authors and in different settings of applicability. Among the many re-
lated papers we quote, in a not exhaustive way, Marcellini [24], [25], Lieberman
[20], Bhattacharya-Leonetti [5], Moscariello-Nania [27], Mascolo-Papi [26], Fan-
Zhao [13], [14], Dall’Aglio-Mascolo-Papi [12] and, in the vectorial setting, Acerbi-
Mingione [2], Coscia-Mingione [11], Cavaliere-D’Ottavio-Leonetti-Longobardi [§],
Canale-D’Ottavio-Leonetti-Longobardi [7]. Specific regularity results addressed to
the study of functionals with anisotropic growth under the sharp condition on the
exponents p* > ¢, have been first obtained by Boccardo-Marcellini-Sbordone [6], see
also a generalization due to Stroffolini [29]. Fusco-Sbordone [16] consider the bor-
derline case p* = ¢ and, later, in [17] they study more general anisotropic integrands
f = f(z,u, Du) satisfying a growth of the form

Pi) ,

obtaining a boundedness result by mean of De Giorgi’s methods. More general
functionals are considered in Cianchi [10], in which the study of the boundedness of
minimizers is carried out using the optimal Sobolev conjugate of convex functions.

n

i=1

Pi < f(x,u, Du) < (C-i- i v, ()
i=1

Because of the p; — ¢ growth, we use a different approach based upon a variant
of the classical Moser’s iteration method, which has its starting in an inequality
of Euler’s type, see Theorem 5.1. Moreover, for the anisotropic behavior of the
integrand, we base our estimates on an embedding result for anisotropic Sobolev
spaces due to Troisi [31] (see also Acerbi-Fusco [1] and Fragala-Gazzola-Kawhol
[15]).

Our paper is organized as follows. In the next section we present the precise
statement of our regularity theorem and few more examples of applicability. In
Section 3 preliminary properties of convex functions are proved. Section 4 is devoted
to higher integrability results for minimizers, Section 5 to the Fuler’s inequality and
Section 6 to the proof of Theorem 2.1.

2. Assumptions and statement of the main results. Let us define the integral
functional

F(u) ::/Qf(x,Du(:z:)) dz, (6)

where ) is an open bounded subset of R", n > 2, and v € W11(£2,R). For the sake
of simplicity, and with a slight abuse of notation, we assume

f= 1 lua - lug, ).
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A more general case is considered in the last section. Denoting R”} the set [0, +-00)™,
we assume

(H1) f:QxR} =R, f(x,§) = f(x,&,..-,&n), is a Carathéodory function, convex
and of class C' with respect to & and increasing with respect to each &;,

(H2) there exist g > 1 and ¢y > 0, such that
fl@,X8) < N f(z,€) (7)

for every A > 1 and for a.e. « and every &, |£| > to.
A growth condition on f is assumed.

(H3) there exist a > 0 and 1 < p; < ¢, 1 <i < n, such that

> g€ < f(a,6) <a {1 + Z[g(&)]q} (8)

i=1 1=1
for a.e. z and every £ € R’. Here g : Ry — R, is of class C1, convex,
increasing, non-constant, g(0) = 0 and

g(At) < Mg(t) for every A>1 andevery ¢ > t. 9)

Without loss of generality, we assume tg large so that g(¢t) > 0 and f(x,&) > 0 for
all t > to and all £ with |£| > 1.

We denote W17 (Q) the space W7 (Q) = {u € WH(Q) : F(u) < +o0} and we
write Wol’}—(Q) in place of W, "' () N WL (Q). A function u € WH1(Q) is a local
minimizer of (6) if u € WHF(Q) and F(u) < F(u + ¢), for all ¢ € W (Q) with
supp ¢ € (.

Our aim is to prove the local boundedness of local minimizers of (6). To do
this, we need a restriction on the exponents {p;} and g. We will use the following
notations: we write p in place of min{p;} and, as in the introduction, we denote by p

the harmonic average of {p;}, i.e., % =130, p%- and by p* the Sobolev exponent
of p
n_E .f —
pri=q nr 2P (10)
any p>p ifp>n.

Theorem 2.1. Assume (H1), (H2) and (H3), and let ¢ < p*. Then a local min-
imizer uw of (6) is locally bounded. Moreover, for every B,(xg) € § the following
estimates hold true:

(1) there exists ¢ > 0, depending on the data, such that

146

q

||9(|u|>|Lw<Br/2<mo>>SC{H/B( )[g(luqu:c} : (11)

(2) there exists ¢ > 0, depending on the data, such that

lg(le = wrDllL=(B,, @ ym @o) SC{H/B f(z, Iumlla---alumnl)dw} , (12)

T(:EU)

_ p'(a—p) 1
where § = P =0 and w, := Bzl fBT(mo) udz.



SHARP ANISOTROPIC GROWTH CONDITIONS 71

For the sake of simplicity we wrote the growth condition (8) in place of

n n
b {Z[Q(&)]pi} —e< f@8<a {1 + Z[Q@P} ,
i=1 i=1
with b > 0, ¢ € R. This is not a loss of generality since u is a local minimizer of
(6) if and only if u is a local minimizer of the functional having the energy density
f replaced by a; f + a2, with some constants a; > 0 and as € R. Taking this into
account, it is not difficult to check that Theorem 2.1 applies to the functionals (1),
(3) and (4) in Section 1. For instance, as far as (1) is concerned, we can take p; and
qasin (5), p=q,g(t) =t,a=n29"1 b=21"9 c=n.

Moreover Theorem 2.1 applies also to functionals F with different energy densi-
ties. We give below some more examples.

We can consider constants v > 0 and o > 1 such that ay > 1, a measurable
function 8 : Q — [B1, 2], with 81 > 1 and 1y > 1, and for instance the integrand

F(@,€) = (I + [€a] @) (13)
In this case p = p; == v, f 1 < i < n-—1, p, := v max{a,01} and ¢ :=
v -max{«, Ba}.
An other example can be exhibit through measurable functions r; : Q — [p;, ¢]
and

m(z))'v, (14)

f(z,€) = (Z &

with p := min{p;} > 1 satisfying 1 < vp < v¢ < (7p)*. Here, 7p is the harmonic

average of {yp1,...,vpn}
The previous example can be easily generalized to include integrands of the type

f@,&)=F (Z[hum)r*z)) ; (15)

=1

or, more in general,

f(z,6) =F (Z fi (z, |@-|>> : (16)

In particular in (16) we consider a convex function f(z,&) of class C* with respect
to &, functions f; (x,|&;]) increasing with respect to each |§;| and satisfying (7), F
increasing and satisfying (9). Finally the following growth condition holds

lg(®)" < F(fi (z,1)) < a{l +[g(®)]"},
with g as in (H3).

3. Preliminary results. We begin clarifying the role played by (9).

Lemma 3.1. Consider h : Ry — R, of class Ct, convex and increasing, and fix
to >0 and p > 1. The following two properties hold:

(1) Suppose that for every A > 1 and t >ty we have
h(At) < Mh(t) (17)
for all A\ >1 and t > ty. Then
h(At) < M(h(t) + h(te)) and K ()t < p(h(t) + h(to)) forallt >0. (18)
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(2) Suppose that h(t) > 0 for every t >ty and
R'(t)t < uh(t)  for allt > t. (19)

Then
h(At) < M (h(t) + h(to)) for allt > 0. (20)

Moreover, if (17) or (19) hold, then for every (t1,...,t;) € RY we have:

k k k
k1Y h(ti) < h (Z ti> < kM {h(to) +y h(ti)} : (21)

=1 i=

The lemma deals with well known properties of the convex functions (see [28]),
however for the sake of completeness we provide a proof.

Proof. Let us prove (1). The first inequality in (18) is trivial, since, by the mono-
tonicity of h, we have h(At) < h(Atg) < M h(ty) for every ¢ < to.

Let us prove the other inequality in (18). By assumption, for every o > 0 and
t >ty we have

h(t+o) —h(t) _ h(tA+ ) —h(t) _ {(1+g)# —1} ht)
= ¢

g (o2 g

and for o — 0 we get h/(t)t < ph(t) for all t > ¢y and, by continuity, for ¢ > ¢,.
Since h' is increasing, if ¢t < to we have h/(t)t < h'(to)to < ph(to), which implies
the last inequality in (18).

Now, let us prove (2). By (19), for every t > to and A > 1 we obtain

At 17 At
K (s) / 1
ds < —ds,
/t h(s) — — : t S

so that h(At) < Mh(t). From that, (20) follows.

The first inequality in (21) is implied by the monotonicity of h, since h(t;) <
h(ZfZl t;) for all j. To prove the second inequality, use the monotonicity of h
again and (20), obtaining

h (g ti) <n (ks e) <10 {n (s 0) 00

and the conclusion follows. O

Now, we consider the case of functions depending on more than one variable.

Lemma 3.2. Let f : Q xR} — Ry satisfy (H1), (H2) and (H3). Then there exists
c >0 such that

(1) f(x, ) < cA™ {14 f(x,8)} for every £ € R}y and every A > 1,

(ii) f(@,§+C) < c{l+ f(z,8) + f(2,0)} for every & ¢ € RY,
(iii) g—gi(w,é)fi <c{l+ f(z,8)} for every & € R7..

Proof. Fix i =1,...,n. By (H1) for a.e. x € Q and for every £ € R, with & > to,
we have

f(‘rué-lu e 7€i—17 Agiagi-‘rlu e 7€n) S f((E, Ag) S )‘Hf(x7§) for every A> 1
(22)
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Therefore, by Lemma 3.1 (1), then, for every ¢ € R},

f(xaglu' "7€i—17)‘§i7§i+17' 7571)
S)\# {f(xvg) +f(:175€15' "afi*lat055i+17" afn)}

Now, fix { = (&1,...,&) € R} and k € N, 1 <k <n— 1. For each set of indexes
{i1,... ik}, with 1 < 43 < ... < i < n, we define two vectors a(iy,...,ix) and
b(i1,...,i) in R™ with j-th component

. g e {in,. i)
@(11,--~alk)y—{o if & {iv,... ik}

(23)

and, respectively,

_ [0 ifje {in ..k}
b(ll""’lk)J_{ 2t0 lf]€{217alk}

An iterated use of (23) implies that for every A > 1 and every { € R
f(xa)‘glu .. 7)‘571)

<(2A)™ {f (w%%) —l—f(:c,to,...,to)}

n—1
+(2A)nﬂz Z f<$7 %a(ll,,lk)—F%b(Zl,,Zk)) .

k=11<i1<...<ip<n

(24)

Notice that by the monotonicity of f with respect to each variable £; and the
right inequality in (8)

f (z,§—1 .. 5") + f(z to,... to) < f(x, &) + f(x,2to,...,2t)

)
< e+ f(@.©)}.

To estimate the last sum in (24) we use the convexity of f and the monotonicity
properties of f

(25)

1 . . 1 . .
f (w, 506(21,--.,219) + §b(21,...,zk)) 26)

flz, &)+ %f(w,2t0,...,2t0)

N | =

S%f(:v,a(il,...,ik)) + %f($,b(i1,...7ik)) <

and apply (25). Thus, (i) is proved.
Claim (ii) is a trivial consequence of (i): fixed &, ¢ € R}, by (7)
faerq =1 (0255 ) sernfiag (2550

and the convexity of f gives the conclusion.
It remains to prove (iii). Fix { = (&1,...,&) € R}. By (22) and Lemma 3.1 (1)

of
%((E,é—)gl S /,L{f(l',f) + f(xaglu .. '7€i—17t07§i+17 7€n)} .
The last term can be estimated using the monotonicity of f with respect to each
variable &; and (ii). In fact,
f(xvgla' -~a€i715t055i+17---7§n) < f(xvgl +t07" 'afi +t05' -~7§n +t0)

Scfl+f(@,8) + fz,to, .., to)}-
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The last inequality in (8) implies (iii). O

4. The space W7 (Q) and some higher integrability results. Due to the
assumptions on f in Section 2 the space W17 (Q) is a vector space.

Lemma 4.1. Assume (H1), (H2) and (H3). Then W7 (Q) is a vector space.

Proof. By the right inequality of (8), the function v = 0 is in Wh%(Q). Let us
assume that u and v are both in W17 (Q) and v € R. By Lemma 3.2 (ii) we
immediately have that u + v is in W17 ().

Let us prove that yu € W7 (Q). If |y| < 1 the conclusion follows by the mono-
tonicity of f, see (H1). If, instead, |y| > 1 then the conclusion follows by Lemma
3.2 (i), which implies that there exists ¢ independent of z and wu, such that

f(xv |’Y||u11|7 et |’Y||u1n|) S |7|n#0{1 + f('rv |u11|a R |u1‘n|)} .

To prove our result we use the following suitable anisotropic Sobolev space
Wherr)(Q) o= fu € WHH(Q) © uy, € LPI(Q), foralli=1,...,n},

endowed with the norm

i=1

We write V[/Ol’(p1 """ p")(Q) in place of Wy ' (Q) N W FLPr)(Q). These spaces are
studied in [31], see also [1]. We remind an embedding theorem for this class of
spaces (see [31]).

Theorem 4.2. Let Q) C R™ be a bounded open set and consider u € Wol’(p1 """ p")(Q ,
pi > 1 foralli=1,...,n. Let max{p;} <P*, with 7" as in (10). Then u € L7 (Q).
Moreover, there exists ¢ depending on n,p1,...,pn tf D < n, and also on Q if p > n,
such that

HU‘HZF‘(Q) < CH ||u1iHLPi(Q)'
i=1
The following embedding result, which holds for the cubes of R", is proved in

[1].

Theorem 4.3. Let Q C R" be a cube with edges parallel to the coordinate azes and
consider u € WHPLP)(Q), p; > 1 for alli =1,...,n. Let max{p;} < p*, with 5"
as in (10). Then u € LP (Q). Moreover, there exists ¢ depending on n,pi,...,pn
if p < n, and also on Q if p > n, such that

[ull e (@) < ¢ {|U|L1(Q) + > lu, w(Q)}-
i=1

A variant of the above lemma can be proved using Theorem 4.3 and a suitable
Poincaré inequality proved in [3].

Proposition 1. Let u € WH1(Q) and let g : Ry — Ry be of class Ct, convex,
increasing, non-constant, g(0) = 0, g(At) < Ag(t), for some p > 1 and every A > 1
and every t > to. Suppose that g(|us,|) € LY (Q) for everyi=1,...,n, withp; > 1.

loc
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Let max{p;} < P*, with p* as in (10), then g(Ju|) € r

loc
a cube with edges parallel to the coordinate axes, then

(Q). Moreover, if Q € Q is

lg(lullze (@) < ¢ {1 + gl @) + Y lg(ue, )le(Q)} : (27)

i=1
Proof. We split the proof into steps.

Step 1. We claim that g(|Dul) € L{ .(€2). In fact, since [Du| < 37 | |ug,|, then
by (21)

9(|Duf) < n* {g(to) +> 9(ua, )} : (28)

=1

Step 2. Let us prove that g(|u|) € L ().

loc
For every convex bounded open set ¥ € 2, by Lemma 3.2 (ii) we get

g(jul) < g(Ju —us| + |us]) < ¢ {1+ g(lu - us|) + g(lus])}

where uy = 2|71 fz wdx and c is a positive constant independent of v and ¥. By
Lemma 3.1 (1)

: lu(z) — us|
_ < 1 ) — =l
/Eg (Jlu(x) — us|) dr < max {[diam(X)] ,1}/E {g ( dam(®) +g(to) ¢ dx
(29)
and a Poincaré inequality proved in [3] implies

/Eg (7|“£)m_(§)2|) dz < {wi"[di?;@)]n}l_i/Eg(IDu(x)l)dx, (30)

where w,, is the volume of the unit ball in R”. The conclusion follows by Step 1.

Step 3. Let aj be an increasing sequence, a — 400 as k goes to 400, such that
the sets {|u| = ax} have zero measure. Define the increasing sequence of functions
g defined as gi(t) = g(t) if ¢ < ax and gi(t) = g(ax) if t > ar. We claim that

1) EARREY 2]
gr([ul) € Wl "(9).

In fact, let ¥ be an open subset, ¥ € . Since gi is bounded then g (|ul) is
bounded, too. It remains to prove that [gi(Ju|)]s, € LP*(X). We notice that the
following inequality holds: given two non-decreasing and non-negative functions hq
and hg, it holds true that

hai(ti)ha(t2) < ha(ti)ha(t1) + hi(t2)ha(t2)  for every t1,ta. (31)

Hence, we have that

1

p < [ Pl ds
E{lul<ar}
1

P_i
+{/ wﬂ%mwwmmm}
En{lul<ar}

and from Lemma 3.1 (1) we get

gk ([ul)le; lLei sy < e {1+ llgre(luDll i ) + Ng(ue, ey } < +o0. (32)

Thus, the claim is proved.

g ([u)]e:

u
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Step 4. Now, we conclude. Let @ € Q be a cube with edges parallel to the
coordinate axes. Since gx(|u|) € WHEPL+-Pr)(Q) we can apply Theorem 4.3, so
that, using also (32), there exists ¢; > 0 such that

lge([ul)llzo @) < e {1+ llgr(luDllzr @) }

+a {Z lgr(ful)llri @) + D llg(lue,
i=1

i=1

)||WQ>}. (33)

Notice that if p; > 1 and being max{p;} < p*, then there exists «; € (0,1) such
that pl-_1 = (1 — «;) + «;/P*. Hence for every ¢ > 0 and for every ¢ there exists
Ce,i > 0 such that

lgr(lullze: @) < lgu(uDl e o) lge(luDl i,
<€H9k(|u|)HLP +cmllgk(IUI)llL1

Of course, if p; = 1 the above inequality is trivial. Choosing e = (2ncl)_1 the above
inequalities and (33) imply that a constant ¢y > 0 exists such that

lgr([uDll 7= (@) < c2llgr(lu)llLr (@) +2¢1 {1 +y Ig(luml)Im@)} :
i=1
Using the monotone convergence theorem, inequality (27) follows. O

A consequence of the above result is the following corollary.

Corollary 2. Assume (H1), (H2) and (HS3), with ¢ < p*. If u € W7 (Q), then
g(Jul) € L}, (2).

5. The Euler’s inequality. Since (H1) does not imply the C!-regularity of ¢ —
fU&l -, 1€nl), € € R™, in place of the Euler’s equation, we prove an inequality.

Theorem 5.1. Assume that (H1), (H2) and (H3) hold true and let u € WH7 ()
be a local minimizer of (6). Then

() |z, |5 oy |Uz, ) 897 (Ua,;) o, do
Zw/ﬂﬂ{|uzl>0} 3 !

<Z/

for all o € WHF(Q), suppp € .

(34)

( Ny ] o U, |) (00, | de,
n{|us, =0} 3& '

Proof. Let o € W7 (Q) be a function with compact support and A € (—1,0). For
every i € {1,...,n} define H; : Q x (=1,0) x Ry — Ry,

Hi(xz, N\, s) = f(x, |ug, () + Aoz, ()], ...
o Uz, (2) + Apa,_, (2)] 8, |“wi+1 (@) ey [z, (2)])-
Notice that if i <n — 1 then

Hi(xv A, |uwz (CL‘) + Apa, (.’L‘)D = Hi-‘rl(‘rv A, |u$i+1 (.’L‘)D
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By the minimality of u and the convexity of f with respect to each variable £;, we
get

0> % (Flu+ o) — Flu)}

1
= X {Hn(IaAv |u1n +)\<Pmn|) _Hl(xv)‘a |u$1|)} dx
Q

1 n
=5 Z/ {H;(x,\, |ue, + Ao,
i=1 79

> A g, + Ao, s - — dx.
23 [ Gy @b+ ) : .

(35)

) - Hi(xv )‘a |u$1|)} dz

Since % = g—é, by Lemma 3.2 (iii) we obtain

OH; Uz, (z) + Apa, ()] — [ua, (2)]
Ds (@, A ug, () + A, (7)) b\
< Ot (@, A, |ua, (2)] + 0o, (@)]) (Jue, ()] + |@a, (2)])

~ Os
<ol + f(z, Juz, (2) + Apa, (@), ...
ooy [ty () + Apa, (@), [ua, (@)] + [z, ()], (Ui ()], oo [z, (2)]) }

and, using the monotonicity property in (H1) and Lemma 3.2 (ii),

fyug, () + Apa, (2)], ...
o [ty (@) + Ao,y (@), [ue, (@) + |@e, (@) |ua,y, (@), -0 U, (2)])
< (@ uay (2)] + |@e, ()], s [Ua, (2)] + |0, (2)])
< c{l+ (@, |ua, (2)], s Jua, (2)]) + f (@, [0, (2)]; s |02, (@)])} -

Now, notice that the right hand side is in L(Q), being u,» € W7 (Q). More-
over, by the regularity C' of f(z,-),
0H; 0
Jim S i (0) + X () = 5 (0 ()] i, ().

Thus, by the dominated convergence theorem and (35) we get

= of U (@) + A, ()] = ug, (2)]
;/Q—(x, lug, ()], ... [ug, (x)]) lim dz < 0.

o&; A—0- A
The conclusion follows. O
6. Proof of the boundedness of local minimizers. Fixed i € {1,...,n} and
B8 >1,let ®: R — R be the odd function defined as follows
t
2020 i= [ lg(ls) D ds. (30)
0

In a first step, we deal with an approximating sequence of odd functions @;ﬂi’ﬁ ),

Fixed k € N, the function ®"? : R — R is defined in Ry as

W8 ._ [ 2P () ifo<t<k
o, (t) := { " ((I)(i,ﬁ))/(k) + (I)(i,ﬁ)(k) _k (q)(i,ﬁ))/(k) ift> k. (37)
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From now on, we do not write explicitly the dependence on 7 and 3. Notice that
the restriction of ®; to R, is C!, increasing and convex. Moreover, its first order
derivative is bounded and

[P (1) < P(1)|¢] for all t € R. (38)

In the following lemma we define ¢, an admissible test function for the Euler’s
inequality (34).

Lemma 6.1. Assume (H1), (H2) and (HS3), with ¢ < p*. Let u € W17 (Q), fix
a ball Br(zg) € Q and let n € C(Br(zo)) be a cut-off function, satisfying the
following assumptions

0<n<1, n=11in B,(xg) for somep < R, |Dn| <

- (39)

Fized k € N, define
or(x) = P (u(z)) ()] for every x € Br(xo), (40)
with a > 1. Then ¢y, is in Wol’]:(BR(:zro)).

Proof. By Lemma 4.1, Lemma 3.2 and the definition of ®; we get the thesis if we
prove that

A= f @ 1@ ], - [[@(w)]e, [) do < +oo
BrO{|u|<k}

B = [ (@ @) [ne, ], - [@(w)] [0, ]) do < 400
Brn{|u|<k}

O = / f (Iv [g(k)]pl(ﬁ_l)|u11|a ER ] [g(k)]pl(ﬁ_l)|u1n|) dCC < +OO
BrN{|u|>k}

D= f (@, 1@ ()] s [, - - [@n (w)] |11, ]) d < +oc.
BrO{|u|=k}
Let us deal with A.
By the monotonicity of g, |[®(u)(2)]s,| < [9(k)]P' P~ Dl]u,, ()], for ae. z € {|u| <
k}. Then, by (H1) and Lemma 3.2 (ii) we get

A< efmax{lg(k) 0, 13} {1 + [

which is finite being u € W% (Bg). The boundedness of C follows similarly.
As far as B is concerned, from (H1), the assumptions on 7 and the monotonicity
of g we obtain

2c
B < / f (:17, k[g(k Pi(ﬁ*l), e ——k[g(k pi(ﬁ1)> da,

which is finite because of the growth condition (8).

Let us prove the boundedness of D.
From (38) we obtain |®(u(x))| < [g(k)]P*®~D|u(z)| for a.e. x in the integration
domain. Thus,

rO{[ul<k}

f(I, |u$1|57|u1n|) dI},

pi(B—1)
Bu))] - e, @] < 2 o).
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Using the assumptions on f and the right inequality in (8) we get

Since ¢ < p*, Corollary 2 implies that the last term in (41) is finite. O

The lemma below is a simple consequence of the Holder inequality. We omit the
proof.

Lemma 6.2. Let 2 be a bounded measurable set. Suppose that 1 < p <gq, > 1

and v € L95(Q). Then
1— L
[o|atPB=D) g < {/(|v| +1)‘1da:} -{/(|v|ﬁ+1)qd:c} .
Q Q Q
Now, we turn to the proof of our main result.

Proof of Theorem 2.1. Let u be a local minimizer of (6) and consider xy € Q and
Ry > 0, such that Br, := Bgr,(x0) € Q. In particular, by Corollary 2 g(|u|) €
LP (Bp,). Fix also 0 < p < R < Ry. We split the proof into steps.

P
q

Step 1. Assume that g(|Ju|) € L9%(Bg) for some 3 > 1. Fixed i € {1,...,n} we
prove that if 7 is a cut-off function satisfying (39), then

| {latthe g,
<t (ol +1} " { [

for some ¢ depending on n, u, p, ¢, a,g(ty) and Ry, but independent of i, 3, u, R
and p.

77'“ }Pz‘ do
(42)

(¢ (ful) +1)° dx} "

R

We begin using Theorem 5.1 with the test function cp,(:’ﬁ) = @,(ci’ﬁ)n“ with @,(ci’ﬁ)

as in (37). From now on, we write ¢ and ®; in place of go,(f’ﬁ) and @,(Ci’ﬁ), respec-

tively. We obtain

>/ O ot )t | )
J:1 Brn{jus, >0} 9&;

<u / T (. Yt |, ot ) 1B 20) [ 1, | iz
j; Br 8§j '
Thus, using (38),

g Ugsy |y oeey | Uz, |) | U, @ (u)nt dx
N 95] | 1| | |)| j| k( )77
(43)
E Ugy |y oeey | Uz, @ (uw)|u|n*t dz.
_R p /R 95] | 1| | |) k( )| |77
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We estimate from below the left hand side using the convexity of f(x,-), obtaining

Z T, (g, |, oy [, |) [ ] P (u) " do
Br 8§J
(44)

2‘/ {f (z, |uw1|7 e |uwn|) —f (‘Ta 0,...s 0)} @;ﬂ(u) n* dzx.
Br

Now, let us estimate from above the right hand side in (43). For a.e. €  and
every s > 0 define

Hj(x,8) i= [, |ugy ()], [ug; o (0)]s 8 [ (@), fug,, (2)])-

Let L > 0 to be chosen later. Since f is convex we have that %(m, -) is increasing,
then by (31) and Lemma 3.2 (iii), the following chain of inequalities holds true for

a.e. z € {n#0}

O (], ) L

9¢; n(R —p)

1 0H; 1 0H; 2L |ul ) 2uL|ul
S_ J T, |ty Uy, | + — (I

L 0s (2 s ) |+ s nkR—p)) n(R—p)

c1 2uL|ul >}
S_ 1+ Ty |Ugy|s- - Uy +H(I57 ’

L F @il )+ 8y (o 22

with ¢; depending only on n, i, g, a, g(to).
Now, denote with e; the vector (0,...,0, 1 ,0,...,0). Using Lemma 3.2 (ii)
J
with
2uL|ul
= EAE RN 2 N B Oa T seeey U ) =N 8
£ = (|ua,l, -, [ta, 1|\j o Uyl g, ]) ¢ TR-p) ¥

and the monotonicity property in (H1), we have that there exists ¢o such that

Hj (wv%> <o {1+f(.%‘, |uw1|7"'7|uwn|)+f (%% ej)}'

Thus,

2uLfu|
ST 1@ lual, o fua, ) +Zf( n(R—p) &

with ¢z depending only on n,u,q,a, g(to). Choosing L > max{2cs, (2u) ' Ro},
which implies 2uL > 1 (R — p), and using Lemma 3.1 (1), the above inequality
implies

i—f s, |) 2L
= 0 n(R—p)

cs
f($=|uw1|a---7|uwn|)+m 1+Zf |l &)

N | =
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for some positive ¢4. Collecting (43), (44) and (45), we obtain

f(I, |u$1|7 et |u1n|)(1);c(u) 77# dCC

<2 - f(x,0,...,0)®) (u) dzx (46)

264 n 4 ,
- (R—p) /BR{l + ; f(z, |u] ;) } @ (u) dz

By (H3) and Lemma 3.1 (1) applied with h = gPi

f('rv |u11|a ct |u$n Z |U’I] pJ Z g(|u11 )]pl
i=1 (47)
1
> u_( ) (Jtw, Dz, = [g(to) +1]7.
Moreover, by (8)
Lt f(2,0,.,0) + Y fla[ul &) < es {[g(|ul)]? + 1} (48)
j=1

Inequalities (46), (47) and (48) give
pi)/ ! K __ % q ’
/B ) e Dl | () e < /B o)+ 1) #}0) de

We recall that &5 = @;ﬂi’ﬁ ) and we explicitly notice that ¢4 is independent of 3, p
and R. Using the monotone convergence theorem we let k& go to +00 and by the
definition of ® we obtain

/B [g(lu)* P~V [g(jua D~ (Jua, s, | 0" de

SW/B {lo(un) =D + [g(ul))?7 =D} da

Now, by the Holder inequality there exists ¢, depending on Ry, such that

/ (o) D dz < / (lg(ul))? +1)™ da
BR BR
(49)

< C{/BR (lg(tul))? +1)° d:v}q |

Moreover, by Lemma 6.2 applied to v = g(|u|), with p replaced by p;, we get the
existence of a positive constant ¢, independent of 3, such that

/BR[9(|u|)]‘1+Pi(ﬁ1> de < c{r+1}97Pi {/BR (o) + 1)° dg;}% |

where r := [|g(|u|)|| La(By,) is finite by Corollary 2 and the assumption ¢ < p*. So,
it follows that

/[g(IUI)]’”(ﬁ‘”[Q(IumI)]pi‘lg’(luwil)lumiln“d:v
o (50)

<ol L (atub? )" e}
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Now, by (9) and by the first step of the proof of Lemma 3.1 (1) we get that for
a.e. © € {|ug,| > to} the inequality g(|ug,|) > %g’(|uml|)|uml| holds true. Moreover,
being 1 > 1 and p; < g we get pPi~1 < =1, Thus, (50) implies

/B o D O D e
N Uz, [>
R 0 N (51>

g% { / (o) + 1) dx}q ,

with cg independent of 7. Filling the hole, that is adding to both sides
/ o) =Dl s, )
BrN{|uq,; |<to}

and noticing that, due to the convexity of g, (9), the first step of the proof of Lemma
3.1 (1) and (49) imply

/ ()Pl (e,
BrO{|us; [<to}

</ ()P Oy o)t d
BrN{|uq,; |<to}

Uy

Pi ,,7# dCC,

7

), [P0 die

<ut / g (Jul) POV (g to)P " dx

Br
<l + 11 [ ol OO ds <o [ Qo 40 a
we obtain that
[ {0 G Dl | o
Br

s

i3

Sclo% {/BR (lg(Ju))? + 1)* dfc}q :

Since n#Pi < p* and p; > p we get (42).

Step 2. In this step we prove that if g(|u|) € L% (Bg) for some 3 > 1, then
there exists ¢, independent of 3, R and p, such that

[y + 1),

< (ol +1} " { [

with v = max{u, ¢}.
We begin noticing that

| |t otten® + 1),
Br

<24~ /BR{HW“]M
o010 /B {g(uDlP g’ (ul) s,

Dpi
dx

B (52)
(oClul)® + 1>qu} ,

R

Dpi
dx

(lg(uD)” + 1)} da (53)

'} de =1 + 1.
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By (39) and the Holder inequality we have that

P4

negt=A/f () + 1" wf” (54)

Let us consider 5. Use (31) with hy = ¢/*", hg = id"*, t; = |u(z)| and t2 = |u, (z)],
obtaining

9" (u(2)])]""

Therefore

Pi

7 g (Ju(@) D] u(z)

< g (Jua, ()]

f< 2 [ () D)
Br

Lorige /B {o(uDlP~ g (ul)lu] 7)™ de.

The first term in the right hand is estimated by (42). To estimate the second term,
use Lemma 3.1 (1), which implies ¢'(Ju|)|u| < ¢{g(Ju|) + 1}, obtaining

{lo(uDl?g' (fuDlu] 7}"" da

<c /B ([P D (g(ju))? + 1) de

bi

<e [ (ath)? + )" do < 2 (o) + 1) w)’

Pi

b= s (oo + 1} { [ (o 40" asf T )

The inequalities (53), (54) and (55) imply (52).

Thus,

Step 3. Now, we prove the boundedness of u and the estimate (1). If g(Ju|) €
L% (Bg) for some 3 > 1, then Step 2 implies that x — n*(z){[g(Ju(x)])]® + 1} is in
Wol’(p1 """ p")(BR). Multiplying (52) on ¢ and being p; > p, we get

.ﬁ {/B 1D: (" ([g(lul)? + 1)) [* d:v}pli

<en {Ri_p}_ laulzrcany + 11" { (ot + 1y ol

n

with ¢17 independent of 3, R and p. By Theorem 4.2 we get

=
-

(lg(luD)? + 1) dw}

<ero {Ri_p} (lotublsinny + 137 { [ (thuD)? + 1

Q=
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and, defining G(x) := max{1, g(|u(z)|)}, we obtain

{ |

<201, {Ri_p} UgQul)llzasny) + 117 { / Gl ‘“}q

(G(a)] 7 dw} p

P

(56)

_.\h-1
For all h € N define 8, = (%) . pn = Ro/2+ Ro/2"*" and Ry = Ro/2+ Ro/2".
By (56), replacing 8, R and p with £, R, and pp, respectively, we have that

G € LP»9(Bp, ) implies G € LP»+19(Bg, , ). Precisely,

||GHLBh+1q(BRh+1)

1
2h+1 p* h—1 % a—p Ph (57)
Q2 T (T) b ol + 17§ 1Gmecs,)

holds true for every h. Corollary 2 and the inequality ¢ < p* imply G € LY(Bg,).
An iterated use of (57) implies the existence of a constant ¢;3 such that

F*ﬁ(;ﬁp)
Gl Lo (Bry ja(z0)) < €13 {g(uDlLa(Bry) + 1377 =2 [|GllLa(Br, (20))-
Therefore, by the very definition of G,

P*(a—p)
p(P*—q) +1

gDl 5y ooy < €1 { gDl (g o +1}

From (H3), which implies that g(t) — +o00 as t — +o00, the above inequality implies
that u is in L>(Bg,2(z0)).

Step 4. Here we prove estimate (12). Fix B,(xo) € Q. Notice that if Q(xo)
denotes the cube with edges parallel to the coordinate axes, centered at zy and with
side length 2s, then B,/ (7o) C Q. /m(70) C By (z0).

Let u € WH%(Q) be a local minimizer of F and define u, := JCBT(%) wdx. Since
u — u, is a local minimizer, too, then by (11) and the Holder inequality

f*jq*p)+1
p(P*—q)
gl = el (5, am e < €1+ gl = w7 (5, mtoon } . (58)

By (27) in Proposition 1
llg(lu— uT')HLf*(BT/ﬁ(zo))

<llg(lu — ur|)|| o= (Qr)ym(z0))

<c {1 + g = wr)llLa (s, oy + Y l9(us,
i=1

(59)

)HLPi (Br(z0)) } .

and by the Poincaré inequality proved in [3], (see (28), (29) and (30))

)”LI(BT(LEO))} .

i=1

lg(lu = urDllLr (B, @) < ¢ {1 + 3 lg(lue,
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Therefore, using (59) we get

lg(luw —urll7* (B, (o)) S €q1+ Z 9(|uz,

e (B, (20)) - (60)
i=1
Now, (8) implies
Y MguaDllori s, @oy < e {1+ 1f (@, [uz,],- - fta, Dt (8, oo } - (61)
i=1
The final estimate (12) follows collecting (58), (59), (60) and (61). O

Remark 1. It is not difficult to see that similar results to those stated in Theorem
2.1 can be proved for functionals (6) with more general Lagrangians f. For instance,
few and straightforward changes in the proof of Theorem 2.1 allow to obtain the
local boundedness of local minimizers of (6), together with estimates similar to (11)
and (12), under the following set of assumptions:

f:QxR" — Ry is a Carathéodory function, convex and of class C'* with respect
to &, satisfying the growth assumption

f_(ZE, |§1|7a|§n|) Sf(xvg) SM{1+.]F(:E7 |€1|aa|§n|)}7 M>0,

with f: Q xR? — Ry, f = f(z,21, ..., z,), satisfying (H1), (H2) and (H3), and
such that, for some A > 0,

g_é{(x’g)‘ SAg—i($,|§1|,,|fn|) for allé‘eRn
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