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Abstract. We prove boundedness of minimizers of energy-functionals, for in-
stance of the anisotropic type (1) below, under sharp assumptions on the ex-

ponents pi in terms of p∗: the Sobolev conjugate exponent of p; i.e., p∗ = np

n−p
,

1
p

= 1
n

∑n
i=1

1
pi

. As a consequence, by mean of regularity results due to Lieber-

man [21], we obtain the local Lipschitz-continuity of minimizers under sharp
assumptions on the exponents of anisotropic growth.

1. Introduction. Integrals of the calculus of variations of the form

F(u) =

∫

Ω

n∑

i=1

|uxi(x)|pi(x) dx (1)

for some bounded measurable functions pi (x) may have not smooth, even un-
bounded, minimizers. This happens also in the case of constant exponents pi,
i = 1, . . . , n, if they are spread out; i.e., if the ratio max{pi}/ min{pi} is not close
enough to 1 in dependence on n. In fact integrals as in (1), with constant exponents
pi, may have unbounded minimizers ([18], [22], [23], see also [19]) for instance when
n > 3 and

p1 = . . . = pn−1 = 2, pn = q >
2 (n − 1)

n − 3
. (2)

However a large literature already exists on regularity of solutions under suitable
assumptions on the exponents when these exponents are not spread out; see the
end of this section for details.

Similar regularity questions can be posed for other integral-functionals, for in-
stance of the form ∫

Ω

{|Du|p log(1 + |Du|) + |uxn |
q} dx (3)

for some exponents p, q (1 ≤ p < q), or
∫

Ω

{[g(|Du|)]p + [g(|uxn |)]
q} dx , (4)

where g = g(t) is a convex function satisfying the so-called ∆2-condition, namely
there exists µ > 1 such that g(λt) ≤ λµg(t) for every λ > 1 and for every t
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sufficiently large (see Section 2). An example of such a function, with a, b−growth,
is

g(t) = t[a+b+(b−a) sin log log(e+t)]/2.

The regularity results known in the literature seem not applicable to the integrals
(3), (4) under sharp assumptions on the exponent p and q, as stated below.

Recently Lieberman [21] proved that integrals of the calculus of variations as
in (1) may have Lipschitz continuous local minimizers u, independently of any
condition on the {pi}, if we assume a priori that u itself is bounded. This fact
motivates the research proposed in this article.

To this aim and for the sake of exposition we deal again with integrals as in (1)
and we consider exponents pi, i = 1, . . . , n, and q greater than or equal to 1, such
that

{
pi ≤ pi (x) , a.e. x ∈ Br

q ≥ pi (x) , a.e. x ∈ Br, 1 ≤ i ≤ n,
(5)

where Br is a ball of radius r > 0 contained in Ω. Then let p be the harmonic
average of the {pi}; i.e.,

1

p
:=

1

n

n∑

i=1

1

pi

and let p∗ be the Sobolev conjugate exponent of p; i.e., p∗ = np
n−p if p < n, while p∗

is any fixed real number greater than p, if p ≥ n. The following regularity result
holds.

Theorem 1.1. Let u be a local minimizer of (1) and let q < p∗. Then u is locally
bounded in Ω and the following estimate holds

‖u − ur‖L∞(Br/(2
√

n)(x0)) ≤ c

{

1 +

∫

Br(x0)

n∑

i=1

|uxi(x)|pi(x) dx

} 1+θ
p

,

for some constant c > 0, where ur = 1
|Br(x0)|

∫

Br(x0)
u dx, p = min

1≤i≤n
{pi} and θ =

p∗(q−p)
p(p∗−q) .

Observe that if p1 = . . . = pn−1 = 2 and pn = q ≥ 2 then the assumption q < p∗

gives q < 2 (n − 1) / (n − 3); this inequality is exactly the opposite of condition (2),
apart from the equality which is not achieved, since the borderline case q = p∗ is
not included in Theorem 1.1. Thus, our regularity result is essentially sharp.

As a consequence of the previous theorem and of the quoted result by Lieber-
man [21] we get the following gradient estimate under a sharp assumption on the
exponents of the anisotropic growth.

Corollary 1. Let u be a local minimizer of the integral F in (1) with exponents
pi(x), for i = 1, . . . , n, locally Lipschitz continuous in Ω. Let p(x) be the harmonic
average of the {pi(x)} and let p∗(x) be the Sobolev conjugate exponent of p(x). If
p∗(x0) > pi(x0) for some x0 ∈ Ω and for every i = 1, . . . , n, then u is Lipschitz
continuous in a neighborhood of x0.
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We emphasize that in fact in this paper we consider integrals more general than
(1), (3) and (4). Precisely, we are able to consider general integrals with non-
homogeneous densities of the form

∫

Ω

f(x, |ux1 |, . . . , |uxn |) dx

with f satisfying some non-standard pi-q growth conditions; precise assumptions
and statements are in Section 2. We observe explicitly that, in the case of the
functional in (4), the assumptions involve the exponents p and q, but they are
independent of the function g.

The mathematical literature on the regularity in this context is very rich; energy
functionals with anisotropic, non-standard or general growth have been studied
by many authors and in different settings of applicability. Among the many re-
lated papers we quote, in a not exhaustive way, Marcellini [24], [25], Lieberman
[20], Bhattacharya-Leonetti [5], Moscariello-Nania [27], Mascolo-Papi [26], Fan-
Zhao [13], [14], Dall’Aglio-Mascolo-Papi [12] and, in the vectorial setting, Acerbi-
Mingione [2], Coscia-Mingione [11], Cavaliere-D’Ottavio-Leonetti-Longobardi [8],
Canale-D’Ottavio-Leonetti-Longobardi [7]. Specific regularity results addressed to
the study of functionals with anisotropic growth under the sharp condition on the
exponents p̄∗ > q, have been first obtained by Boccardo-Marcellini-Sbordone [6], see
also a generalization due to Stroffolini [29]. Fusco-Sbordone [16] consider the bor-
derline case p∗ = q and, later, in [17] they study more general anisotropic integrands
f = f(x, u, Du) satisfying a growth of the form

n∑

i=1

|uxi(x)|pi ≤ f(x, u, Du) ≤

(

c +

n∑

i=1

|uxi(x)|pi

)

,

obtaining a boundedness result by mean of De Giorgi’s methods. More general
functionals are considered in Cianchi [10], in which the study of the boundedness of
minimizers is carried out using the optimal Sobolev conjugate of convex functions.

Because of the pi − q growth, we use a different approach based upon a variant
of the classical Moser’s iteration method, which has its starting in an inequality
of Euler’s type, see Theorem 5.1. Moreover, for the anisotropic behavior of the
integrand, we base our estimates on an embedding result for anisotropic Sobolev
spaces due to Troisi [31] (see also Acerbi-Fusco [1] and Fragalà-Gazzola-Kawhol
[15]).

Our paper is organized as follows. In the next section we present the precise
statement of our regularity theorem and few more examples of applicability. In
Section 3 preliminary properties of convex functions are proved. Section 4 is devoted
to higher integrability results for minimizers, Section 5 to the Euler’s inequality and
Section 6 to the proof of Theorem 2.1.

2. Assumptions and statement of the main results. Let us define the integral
functional

F(u) :=

∫

Ω

f(x, Du(x)) dx, (6)

where Ω is an open bounded subset of R
n, n ≥ 2, and u ∈ W 1,1(Ω, R). For the sake

of simplicity, and with a slight abuse of notation, we assume

f = f(x, |ux1 |, . . . , |uxn |).
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A more general case is considered in the last section. Denoting R
n
+ the set [0, +∞)n,

we assume

(H1) f : Ω×R
n
+ → R, f(x, ξ) = f(x, ξ1, ..., ξn), is a Carathéodory function, convex

and of class C1 with respect to ξ and increasing with respect to each ξi,

(H2) there exist µ ≥ 1 and t0 ≥ 0, such that

f(x, λξ) ≤ λµf(x, ξ) (7)

for every λ > 1 and for a.e. x and every ξ, |ξ| ≥ t0.

A growth condition on f is assumed.

(H3) there exist a > 0 and 1 ≤ pi ≤ q, 1 ≤ i ≤ n, such that

n∑

i=1

[g(ξi)]
pi ≤ f(x, ξ) ≤ a

{

1 +

n∑

i=1

[g(ξi)]
q

}

(8)

for a.e. x and every ξ ∈ R
n
+. Here g : R+ → R+ is of class C1, convex,

increasing, non-constant, g(0) = 0 and

g(λt) ≤ λµg(t) for every λ > 1 and every t ≥ t0. (9)

Without loss of generality, we assume t0 large so that g(t) > 0 and f(x, ξ) > 0 for
all t > t0 and all ξ with |ξ| ≥ t0.

We denote W 1,F (Ω) the space W 1,F(Ω) = {u ∈ W 1,1(Ω) : F(u) < +∞} and we

write W 1,F
0 (Ω) in place of W 1,1

0 (Ω) ∩ W 1,F(Ω). A function u ∈ W 1,1(Ω) is a local
minimizer of (6) if u ∈ W 1,F(Ω) and F(u) ≤ F(u + ϕ), for all ϕ ∈ W 1,F(Ω) with
suppϕ ⋐ Ω.

Our aim is to prove the local boundedness of local minimizers of (6). To do
this, we need a restriction on the exponents {pi} and q. We will use the following
notations: we write p in place of min{pi} and, as in the introduction, we denote by p
the harmonic average of {pi}, i.e., 1

p := 1
n

∑n
i=1

1
pi

and by p∗ the Sobolev exponent

of p

p∗ :=

{ np
n−p if p < n,

any µ > p if p ≥ n.
(10)

Theorem 2.1. Assume (H1), (H2) and (H3), and let q < p∗. Then a local min-
imizer u of (6) is locally bounded. Moreover, for every Br(x0) ⋐ Ω the following
estimates hold true:

(1) there exists c > 0, depending on the data, such that

‖g(|u|)‖L∞(Br/2(x0)) ≤ c

{

1 +

∫

Br(x0)

[g(|u|)]q dx

} 1+θ
q

, (11)

(2) there exists c > 0, depending on the data, such that

‖g(|u − ur|)‖L∞(Br/(2
√

n)(x0)) ≤ c

{

1 +

∫

Br(x0)

f(x, |ux1 |, . . . , |uxn |) dx

} 1+θ
p

, (12)

where θ = p∗(q−p)
p(p∗−q) and ur := 1

|Br(x0)|
∫

Br(x0)
u dx.
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For the sake of simplicity we wrote the growth condition (8) in place of

b

{
n∑

i=1

[g(ξi)]
pi

}

− c ≤ f(x, ξ) ≤ a

{

1 +

n∑

i=1

[g(ξi)]
q

}

,

with b > 0, c ∈ R. This is not a loss of generality since u is a local minimizer of
(6) if and only if u is a local minimizer of the functional having the energy density
f replaced by a1f + a2, with some constants a1 > 0 and a2 ∈ R. Taking this into
account, it is not difficult to check that Theorem 2.1 applies to the functionals (1),
(3) and (4) in Section 1. For instance, as far as (1) is concerned, we can take pi and
q as in (5), µ = q, g(t) = t, a = n2q−1, b = 21−q, c = n.

Moreover Theorem 2.1 applies also to functionals F with different energy densi-
ties. We give below some more examples.

We can consider constants γ > 0 and α ≥ 1 such that αγ ≥ 1, a measurable
function β : Ω → [β1, β2], with β1 ≥ 1 and β1γ ≥ 1, and for instance the integrand

f(x, ξ) = (|ξ|α + |ξn|
β(x))γ . (13)

In this case p = pi := γα, if 1 ≤ i ≤ n − 1, pn := γ · max{α, β1} and q :=
γ · max{α, β2}.

An other example can be exhibit through measurable functions ri : Ω → [pi, q]
and

f(x, ξ) = (
n∑

i=1

|ξi|
ri(x))γ , (14)

with p := min{pi} ≥ 1 satisfying 1 ≤ γp ≤ γq < (γp)∗. Here, γp is the harmonic
average of {γp1, . . . , γpn}.

The previous example can be easily generalized to include integrands of the type

f(x, ξ) = F

(
n∑

i=1

[h(|ξi|)]
ri(x)

)

; (15)

or, more in general,

f(x, ξ) = F

(
n∑

i=1

fi (x, |ξi|)

)

. (16)

In particular in (16) we consider a convex function f(x, ξ) of class C1 with respect
to ξ, functions fi (x, |ξi|) increasing with respect to each |ξi| and satisfying (7), F
increasing and satisfying (9). Finally the following growth condition holds

[g(t)]pi ≤ F (fi (x, t)) ≤ a {1 + [g(t)]q} ,

with g as in (H3).

3. Preliminary results. We begin clarifying the role played by (9).

Lemma 3.1. Consider h : R+ → R+ of class C1, convex and increasing, and fix
t0 > 0 and µ ≥ 1. The following two properties hold:

(1) Suppose that for every λ > 1 and t ≥ t0 we have

h(λt) ≤ λµh(t) (17)

for all λ > 1 and t ≥ t0. Then

h(λt) ≤ λµ(h(t) + h(t0)) and h′(t)t ≤ µ(h(t) + h(t0)) for all t ≥ 0. (18)
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(2) Suppose that h(t) > 0 for every t > t0 and

h′(t)t ≤ µh(t) for all t ≥ t0. (19)

Then

h(λt) ≤ λµ(h(t) + h(t0)) for all t ≥ 0. (20)

Moreover, if (17) or (19) hold, then for every (t1, . . . , tk) ∈ R
k
+ we have:

k−1
k∑

i=1

h(ti) ≤ h

(
k∑

i=1

ti

)

≤ kµ

{

h(t0) +

k∑

i=1

h(ti)

}

. (21)

The lemma deals with well known properties of the convex functions (see [28]),
however for the sake of completeness we provide a proof.

Proof. Let us prove (1). The first inequality in (18) is trivial, since, by the mono-
tonicity of h, we have h(λt) ≤ h(λt0) ≤ λµh(t0) for every t < t0.

Let us prove the other inequality in (18). By assumption, for every σ > 0 and
t > t0 we have

h(t + σ) − h(t)

σ
=

h(t(1 + σ
t )) − h(t)

σ
≤
{(

1 +
σ

t

)µ

− 1
} h(t)

σ

and for σ → 0 we get h′(t)t ≤ µh(t) for all t > t0 and, by continuity, for t ≥ t0.
Since h′ is increasing, if t ≤ t0 we have h′(t)t ≤ h′(t0)t0 ≤ µh(t0), which implies
the last inequality in (18).

Now, let us prove (2). By (19), for every t > t0 and λ > 1 we obtain
∫ λt

t

h′(s)

h(s)
ds ≤ µ

∫ λt

t

1

s
ds ,

so that h(λt) ≤ λµh(t). From that, (20) follows.

The first inequality in (21) is implied by the monotonicity of h, since h(tj) ≤

h(
∑k

i=1 ti) for all j. To prove the second inequality, use the monotonicity of h
again and (20), obtaining

h

(
k∑

i=1

ti

)

≤ h

(

k max
1≤i≤k

{ti}

)

≤ kµ

{

h

(

max
1≤i≤k

{ti}

)

+ h(t0)

}

and the conclusion follows.

Now, we consider the case of functions depending on more than one variable.

Lemma 3.2. Let f : Ω×R
n
+ → R+ satisfy (H1), (H2) and (H3). Then there exists

c ≥ 0 such that

(i) f(x, λξ) ≤ cλnµ {1 + f(x, ξ)} for every ξ ∈ R
n
+ and every λ > 1,

(ii) f(x, ξ + ζ) ≤ c {1 + f(x, ξ) + f(x, ζ)} for every ξ, ζ ∈ R
n
+,

(iii) ∂f
∂ξi

(x, ξ)ξi ≤ c {1 + f(x, ξ)} for every ξ ∈ R
n
+.

Proof. Fix i = 1, ..., n. By (H1) for a.e. x ∈ Ω and for every ξ ∈ R
n
+, with ξi ≥ t0,

we have

f(x, ξ1, . . . , ξi−1, λξi, ξi+1, . . . , ξn) ≤ f(x, λξ) ≤ λµf(x, ξ) for every λ > 1.
(22)
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Therefore, by Lemma 3.1 (1), then, for every ξ ∈ R
n
+,

f(x, ξ1, . . . , ξi−1, λξi, ξi+1, . . . , ξn)

≤λµ {f(x, ξ) + f(x, ξ1, . . . , ξi−1, t0, ξi+1, . . . , ξn)} .
(23)

Now, fix ξ = (ξ1, . . . , ξn) ∈ R
n
+ and k ∈ N, 1 ≤ k ≤ n− 1. For each set of indexes

{i1, . . . , ik}, with 1 ≤ i1 < ... < ik ≤ n, we define two vectors a(i1, . . . , ik) and
b(i1, . . . , ik) in R

n with j-th component

a(i1, . . . , ik)j =

{
ξj if j ∈ {i1, . . . , ik}
0 if j 6∈ {i1, . . . , ik}

and, respectively,

b(i1, . . . , ik)j =

{
0 if j ∈ {i1, . . . , ik}
2t0 if j 6∈ {i1, . . . , ik}.

An iterated use of (23) implies that for every λ > 1 and every ξ ∈ R
n
+

f(x, λξ1, . . . , λξn)

≤(2λ)nµ

{

f

(

x,
ξ1

2
, . . . ,

ξn

2

)

+ f (x, t0, . . . , t0)

}

+ (2λ)nµ
n−1∑

k=1

∑

1≤i1<...<ik≤n

f

(

x,
1

2
a(i1, . . . , ik) +

1

2
b(i1, . . . , ik)

)

.

(24)

Notice that by the monotonicity of f with respect to each variable ξj and the
right inequality in (8)

f

(

x,
ξ1

2
, . . . ,

ξn

2

)

+ f (x, t0, . . . , t0) ≤ f(x, ξ) + f(x, 2t0, . . . , 2t0)

≤ c{1 + f(x, ξ)}.

(25)

To estimate the last sum in (24) we use the convexity of f and the monotonicity
properties of f

f

(

x,
1

2
a(i1, . . . , ik) +

1

2
b(i1, . . . , ik)

)

≤
1

2
f (x, a(i1, . . . , ik)) +

1

2
f (x, b(i1, . . . , ik)) ≤

1

2
f(x, ξ) +

1

2
f (x, 2t0, . . . , 2t0)

(26)

and apply (25). Thus, (i) is proved.

Claim (ii) is a trivial consequence of (i): fixed ξ, ζ ∈ R
n
+, by (7)

f(x, ξ + ζ) = f

(

x, 2
ξ + ζ

2

)

≤ c · 2nµ

{

1 + f

(

x,
ξ + ζ

2

)}

and the convexity of f gives the conclusion.
It remains to prove (iii). Fix ξ = (ξ1, . . . , ξn) ∈ R

n
+. By (22) and Lemma 3.1 (1)

∂f

∂ξi
(x, ξ)ξi ≤ µ {f(x, ξ) + f(x, ξ1, . . . , ξi−1, t0, ξi+1, ..., ξn)} .

The last term can be estimated using the monotonicity of f with respect to each
variable ξj and (ii). In fact,

f(x, ξ1, . . . , ξi−1, t0, ξi+1, ..., ξn) ≤ f(x, ξ1 + t0, . . . , ξi + t0, . . . , ξn + t0)

≤ c {1 + f(x, ξ) + f(x, t0, . . . , t0)} .
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The last inequality in (8) implies (iii).

4. The space W 1,F(Ω) and some higher integrability results. Due to the
assumptions on f in Section 2 the space W 1,F (Ω) is a vector space.

Lemma 4.1. Assume (H1), (H2) and (H3). Then W 1,F (Ω) is a vector space.

Proof. By the right inequality of (8), the function u ≡ 0 is in W 1,F(Ω). Let us
assume that u and v are both in W 1,F(Ω) and γ ∈ R. By Lemma 3.2 (ii) we
immediately have that u + v is in W 1,F(Ω).
Let us prove that γu ∈ W 1,F (Ω). If |γ| ≤ 1 the conclusion follows by the mono-
tonicity of f , see (H1). If, instead, |γ| > 1 then the conclusion follows by Lemma
3.2 (i), which implies that there exists c independent of x and u, such that

f(x, |γ||ux1|, . . . , |γ||uxn |) ≤ |γ|nµc {1 + f(x, |ux1 |, . . . , |uxn |)} .

To prove our result we use the following suitable anisotropic Sobolev space

W 1,(p1,...,pn)(Ω) :=
{
u ∈ W 1,1(Ω) : uxi ∈ Lpi(Ω), for all i = 1, . . . , n

}
,

endowed with the norm

‖u‖W 1,(p1,...,pn)(Ω) := ‖u‖L1(Ω) +

n∑

i=1

‖uxi‖Lpi(Ω).

We write W
1,(p1,...,pn)
0 (Ω) in place of W 1,1

0 (Ω) ∩ W 1,(p1,...,pn)(Ω). These spaces are
studied in [31], see also [1]. We remind an embedding theorem for this class of
spaces (see [31]).

Theorem 4.2. Let Ω ⊂ R
n be a bounded open set and consider u ∈ W

1,(p1,...,pn)
0 (Ω),

pi ≥ 1 for all i = 1, . . . , n. Let max{pi} < p∗, with p∗ as in (10). Then u ∈ Lp∗

(Ω).
Moreover, there exists c depending on n, p1, . . . , pn if p < n, and also on Ω if p ≥ n,
such that

‖u‖n
Lp∗ (Ω) ≤ c

n∏

i=1

‖uxi‖Lpi (Ω).

The following embedding result, which holds for the cubes of R
n, is proved in

[1].

Theorem 4.3. Let Q ⊂ R
n be a cube with edges parallel to the coordinate axes and

consider u ∈ W 1,(p1,...,pn)(Q), pi ≥ 1 for all i = 1, . . . , n. Let max{pi} < p∗, with p∗

as in (10). Then u ∈ Lp∗

(Q). Moreover, there exists c depending on n, p1, . . . , pn

if p < n, and also on Q if p ≥ n, such that

‖u‖Lp∗ (Q) ≤ c

{

‖u‖L1(Q) +
n∑

i=1

‖uxi‖Lpi(Q)

}

.

A variant of the above lemma can be proved using Theorem 4.3 and a suitable
Poincaré inequality proved in [3].

Proposition 1. Let u ∈ W 1,1(Ω) and let g : R+ → R+ be of class C1, convex,
increasing, non-constant, g(0) = 0, g(λt) ≤ λµg(t), for some µ ≥ 1 and every λ > 1
and every t ≥ t0. Suppose that g(|uxi|) ∈ Lpi

loc
(Ω) for every i = 1, . . . , n, with pi ≥ 1.
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Let max{pi} < p∗, with p∗ as in (10), then g(|u|) ∈ Lp∗

loc
(Ω). Moreover, if Q ⋐ Ω is

a cube with edges parallel to the coordinate axes, then

‖g(|u|)‖Lp∗ (Q) ≤ c

{

1 + ‖g(|u|)‖L1(Q) +
n∑

i=1

‖g(|uxi|)‖Lpi(Q)

}

. (27)

Proof. We split the proof into steps.

Step 1. We claim that g(|Du|) ∈ L1
loc(Ω). In fact, since |Du| ≤

∑n
i=1 |uxi|, then

by (21)

g(|Du|) ≤ nµ

{

g(t0) +

n∑

i=1

g(|uxi|)

}

. (28)

Step 2. Let us prove that g(|u|) ∈ L1
loc(Ω).

For every convex bounded open set Σ ⋐ Ω, by Lemma 3.2 (ii) we get

g(|u|) ≤ g(|u − uΣ| + |uΣ|) ≤ c {1 + g(|u − uΣ|) + g(|uΣ|)}

where uΣ = |Σ|−1
∫

Σ u dx and c is a positive constant independent of u and Σ. By
Lemma 3.1 (1)
∫

Σ

g (|u(x) − uΣ|) dx ≤ max {[diam(Σ)]µ, 1}

∫

Σ

{

g

(
|u(x) − uΣ|

diam(Σ)

)

+ g(t0)

}

dx

(29)
and a Poincaré inequality proved in [3] implies

∫

Σ

g

(
|u(x) − uΣ|

diam(Σ)

)

dx ≤

{
ωn[diam(Σ)]n

|Σ|

}1− 1
n
∫

Σ

g(|Du(x)|) dx, (30)

where ωn is the volume of the unit ball in R
n. The conclusion follows by Step 1.

Step 3. Let ak be an increasing sequence, ak → +∞ as k goes to +∞, such that
the sets {|u| = ak} have zero measure. Define the increasing sequence of functions
gk defined as gk(t) = g(t) if t < ak and gk(t) = g(ak) if t ≥ ak. We claim that

gk(|u|) ∈ W
1,(p1,...,pn)
loc (Ω).

In fact, let Σ be an open subset, Σ ⋐ Ω. Since gk is bounded then gk(|u|) is
bounded, too. It remains to prove that [gk(|u|)]xi ∈ Lpi(Σ). We notice that the
following inequality holds: given two non-decreasing and non-negative functions h1

and h2, it holds true that

h1(t1)h2(t2) ≤ h1(t1)h2(t1) + h1(t2)h2(t2) for every t1, t2. (31)

Hence, we have that

‖[gk(|u|)]xi‖Lpi(Σ) ≤

{
∫

Σ∩{|u|≤ak}
[g′(|u|)]pi |u|pi dx

} 1
pi

+

{
∫

Σ∩{|u|≤ak}
[g′(|uxi |)]

pi |uxi |
pi dx

} 1
pi

and from Lemma 3.1 (1) we get

‖[gk(|u|)]xi‖Lpi(Σ) ≤ c
{
1 + ‖gk(|u|)‖Lpi (Σ) + ‖g(|uxi |)‖Lpi(Σ)

}
< +∞. (32)

Thus, the claim is proved.
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Step 4. Now, we conclude. Let Q ⋐ Ω be a cube with edges parallel to the
coordinate axes. Since gk(|u|) ∈ W 1,(p1,...,pn)(Q) we can apply Theorem 4.3, so
that, using also (32), there exists c1 > 0 such that

‖gk(|u|)‖Lp∗ (Q) ≤ c1

{
1 + ‖gk(|u|)‖L1(Q)

}

+ c1

{
n∑

i=1

‖gk(|u|)‖Lpi(Q) +
n∑

i=1

‖g(|uxi|)‖Lpi (Q)

}

.
(33)

Notice that if pi > 1 and being max{pi} < p∗, then there exists αi ∈ (0, 1) such
that p−1

i = (1 − αi) + αi/p∗. Hence for every ǫ > 0 and for every i there exists
cǫ,i > 0 such that

‖gk(|u|)‖Lpi(Q) ≤ ‖gk(|u|)‖αi

Lp∗ (Q)
‖gk(|u|)‖1−αi

L1(Q)

≤ ǫ‖gk(|u|)‖Lp∗ (Q) + cǫ,i‖gk(|u|)‖L1(Q).

Of course, if pi = 1 the above inequality is trivial. Choosing ǫ = (2nc1)
−1 the above

inequalities and (33) imply that a constant c2 > 0 exists such that

‖gk(|u|)‖Lp∗ (Q) ≤ c2‖gk(|u|)‖L1(Q) + 2c1

{

1 +

n∑

i=1

‖g(|uxi|)‖Lpi(Q)

}

.

Using the monotone convergence theorem, inequality (27) follows.

A consequence of the above result is the following corollary.

Corollary 2. Assume (H1), (H2) and (H3), with q < p∗. If u ∈ W 1,F(Ω), then

g(|u|) ∈ Lp∗

loc
(Ω).

5. The Euler’s inequality. Since (H1) does not imply the C1-regularity of ξ 7→
f(|ξ1|, . . . , |ξn|), ξ ∈ R

n, in place of the Euler’s equation, we prove an inequality.

Theorem 5.1. Assume that (H1), (H2) and (H3) hold true and let u ∈ W 1,F(Ω)
be a local minimizer of (6). Then

n∑

i=1

∫

Ω∩{|uxi
|>0}

∂f

∂ξi
(x, |ux1 |, ..., |uxn |) sgn (uxi)ϕxi dx

≤
n∑

i=1

∫

Ω∩{|uxi
|=0}

∂f

∂ξi
(x, |ux1 |, ..., |uxn |) |ϕxi | dx,

(34)

for all ϕ ∈ W 1,F(Ω), supp ϕ ⋐ Ω.

Proof. Let ϕ ∈ W 1,F (Ω) be a function with compact support and λ ∈ (−1, 0). For
every i ∈ {1, ..., n} define Hi : Ω × (−1, 0) × R+ → R+,

Hi(x, λ, s) := f(x, |ux1(x) + λϕx1(x)|, ...

..., |uxi−1(x) + λϕxi−1(x)|, s, |uxi+1(x)|, ..., |uxn(x)|).

Notice that if i ≤ n − 1 then

Hi(x, λ, |uxi(x) + λϕxi(x)|) = Hi+1(x, λ, |uxi+1(x)|).
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By the minimality of u and the convexity of f with respect to each variable ξj , we
get

0 ≥
1

λ
{F(u + λϕ) −F(u)}

=
1

λ

∫

Ω

{Hn(x, λ, |uxn + λϕxn |) − H1(x, λ, |ux1 |)} dx

=
1

λ

n∑

i=1

∫

Ω

{Hi(x, λ, |uxi + λϕxi |) − Hi(x, λ, |uxi |)} dx

≥

n∑

i=1

∫

Ω

∂Hi

∂s
(x, λ, |uxi + λϕxi |)

|uxi + λϕxi | − |uxi |

λ
dx.

(35)

Since ∂Hi

∂s = ∂f
∂ξi

, by Lemma 3.2 (iii) we obtain

∣
∣
∣
∣

∂Hi

∂s
(x, λ, |uxi(x) + λϕxi(x)|)

|uxi(x) + λϕxi(x)| − |uxi(x)|

λ

∣
∣
∣
∣

≤
∂Hi

∂s
(x, λ, |uxi(x)| + |ϕxi(x)|)(|uxi (x)| + |ϕxi(x)|)

≤ c{1 + f(x, |ux1(x) + λϕx1(x)|, ...

..., |uxi−1(x) + λϕxi−1(x)|, |uxi(x)| + |ϕxi(x)|, |uxi+1(x)|, ..., |uxn(x)|)}

and, using the monotonicity property in (H1) and Lemma 3.2 (ii),

f(x, |ux1(x) + λϕx1(x)|, ...

..., |uxi−1(x) + λϕxi−1(x)|, |uxi(x)| + |ϕxi(x)|, |uxi+1(x)|, ..., |uxn(x)|)

≤ f (x, |ux1(x)| + |ϕx1(x)|, ..., |uxn(x)| + |ϕxn(x)|)

≤ c {1 + f(x, |ux1(x)|, ..., |uxn(x)|) + f(x, |ϕx1(x)|, ..., |ϕxn(x)|)} .

Now, notice that the right hand side is in L1(Ω), being u, ϕ ∈ W 1,F(Ω). More-
over, by the regularity C1 of f(x, ·),

lim
λ→0−

∂Hi

∂s
(x, λ, |uxi(x) + λϕxi(x)|) =

∂f

∂ξi
(x, |ux1(x)|, ..., |uxn(x)|) .

Thus, by the dominated convergence theorem and (35) we get
n∑

i=1

∫

Ω

∂f

∂ξi
(x, |ux1(x)|, ..., |uxn(x)|) lim

λ→0−

|uxi(x) + λϕxi(x)| − |uxi(x)|

λ
dx ≤ 0.

The conclusion follows.

6. Proof of the boundedness of local minimizers. Fixed i ∈ {1, . . . , n} and
β ≥ 1, let Φ : R → R be the odd function defined as follows

Φ(i,β)(t) :=

∫ t

0

[g(|s|)]pi(β−1) ds. (36)

In a first step, we deal with an approximating sequence of odd functions Φ
(i,β)
k .

Fixed k ∈ N, the function Φ
(i,β)
k : R → R is defined in R+ as

Φ
(i,β)
k (t) :=

{
Φ(i,β)(t) if 0 ≤ t ≤ k
t (Φ(i,β))′(k) + Φ(i,β)(k) − k (Φ(i,β))′(k) if t > k.

(37)
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From now on, we do not write explicitly the dependence on i and β. Notice that
the restriction of Φk to R+ is C1, increasing and convex. Moreover, its first order
derivative is bounded and

|Φk(t)| ≤ Φ′
k(t)|t| for all t ∈ R. (38)

In the following lemma we define ϕk, an admissible test function for the Euler’s
inequality (34).

Lemma 6.1. Assume (H1), (H2) and (H3), with q < p∗. Let u ∈ W 1,F(Ω), fix
a ball BR(x0) ⋐ Ω and let η ∈ C∞

c (BR(x0)) be a cut-off function, satisfying the
following assumptions

0 ≤ η ≤ 1, η ≡ 1 in Bρ(x0) for some ρ < R, |Dη| ≤
2

R − ρ
. (39)

Fixed k ∈ N, define

ϕk(x) := Φk(u(x))[η(x)]α for every x ∈ BR(x0), (40)

with α ≥ 1. Then ϕk is in W 1,F
0 (BR(x0)).

Proof. By Lemma 4.1, Lemma 3.2 and the definition of Φk we get the thesis if we
prove that

A :=

∫

BR∩{|u|<k}
f (x, |[Φ(u)]x1 |, . . . , |[Φ(u)]xn |) dx < +∞

B :=

∫

BR∩{|u|<k}
f (x, |Φ(u)| |ηx1 |, . . . , |Φ(u)| |ηxn |) dx < +∞

C :=

∫

BR∩{|u|≥k}
f
(

x, [g(k)]pi(β−1)|ux1 |, . . . , [g(k)]pi(β−1)|uxn |
)

dx < +∞

D :=

∫

BR∩{|u|≥k}
f (x, |Φk(u)| |ηx1 |, . . . , |Φk(u)| |ηxn |) dx < +∞.

Let us deal with A.
By the monotonicity of g, |[Φ(u)(x)]xj | ≤ [g(k)]pi(β−1)|uxj (x)|, for a.e. x ∈ {|u| <
k}. Then, by (H1) and Lemma 3.2 (ii) we get

A ≤ c
{

max{[g(k)]pi(β−1), 1}
}nµ

·

{

1 +

∫

BR∩{|u|<k}
f (x, |ux1 |, . . . , |uxn |) dx

}

,

which is finite being u ∈ W 1,F (BR). The boundedness of C follows similarly.
As far as B is concerned, from (H1), the assumptions on η and the monotonicity

of g we obtain

B ≤

∫

BR∩{|u|<k}
f

(

x,
2α

R − ρ
k[g(k)]pi(β−1), . . . ,

2α

R − ρ
k[g(k)]pi(β−1)

)

dx,

which is finite because of the growth condition (8).
Let us prove the boundedness of D.

From (38) we obtain |Φk(u(x))| ≤ [g(k)]pi(β−1)|u(x)| for a.e. x in the integration
domain. Thus,

|Φk(u(x))| · |ηxj (x)| ≤
2[g(k)]pi(β−1)

R − ρ
|u(x)|.
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Using the assumptions on f and the right inequality in (8) we get

D ≤ c

{

max

{
2[g(k)]pi(β−1)

R − ρ
, 1

}}nµ

·

{

1 +

∫

BR∩{|u|≥k}
[g(|u|)]q dx

}

. (41)

Since q < p∗, Corollary 2 implies that the last term in (41) is finite.

The lemma below is a simple consequence of the Hölder inequality. We omit the
proof.

Lemma 6.2. Let Ω be a bounded measurable set. Suppose that 1 ≤ p ≤ q, β ≥ 1
and v ∈ Lqβ(Ω). Then

∫

Ω

|v|q+p(β−1) dx ≤

{∫

Ω

(|v| + 1)q dx

}1− p
q

·

{∫

Ω

(|v|β + 1)q dx

} p
q

.

Now, we turn to the proof of our main result.

Proof of Theorem 2.1. Let u be a local minimizer of (6) and consider x0 ∈ Ω and
R0 > 0, such that BR0 := BR0(x0) ⋐ Ω. In particular, by Corollary 2 g(|u|) ∈

Lp∗

(BR0). Fix also 0 < ρ < R ≤ R0. We split the proof into steps.

Step 1. Assume that g(|u|) ∈ Lqβ(BR) for some β ≥ 1. Fixed i ∈ {1, . . . , n} we
prove that if η is a cut-off function satisfying (39), then

∫

BR

{

[g(|u|)](β−1)g′(|uxi |)|uxi |η
µ
}pi

dx

≤
c

(R − ρ)µ

{

‖g(|u|)‖Lq(BR0 ) + 1
}q−p

·

{∫

BR

(
gβ(|u|) + 1

)q
dx

} pi
q

,

(42)

for some c depending on n, µ, p, q, a, g(t0) and R0, but independent of i, β, u, R
and ρ.

We begin using Theorem 5.1 with the test function ϕ
(i,β)
k := Φ

(i,β)
k ηµ with Φ

(i,β)
k

as in (37). From now on, we write ϕk and Φk in place of ϕ
(i,β)
k and Φ

(i,β)
k , respec-

tively. We obtain

n∑

j=1

∫

BR∩{|uxj
|>0}

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) |uxj |Φ

′
k(u)ηµ dx

≤µ

n∑

j=1

∫

BR

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) |Φk(u)|ηµ−1|ηxj | dx.

Thus, using (38),

n∑

j=1

∫

BR

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) |uxj |Φ

′
k(u)ηµ dx

≤
2µ

R − ρ

n∑

j=1

∫

BR

∂f

∂ξj
(x, |ux1 |, ..., |uxn |)Φ′

k(u)|u|ηµ−1 dx.

(43)
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We estimate from below the left hand side using the convexity of f(x, ·), obtaining

n∑

j=1

∫

BR

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) |uxj | Φ′

k(u) ηµ dx

≥

∫

BR

{f (x, |ux1 |, ..., |uxn |) − f (x, 0, ..., 0)}Φ′
k(u) ηµ dx.

(44)

Now, let us estimate from above the right hand side in (43). For a.e. x ∈ Ω and
every s ≥ 0 define

Hj(x, s) := f(x, |ux1(x)|, . . . , |uxj−1(x)|, s, |uxj+1 (x)|, . . . , |uxn(x)|).

Let L > 0 to be chosen later. Since f is convex we have that
∂Hj

∂s (x, ·) is increasing,
then by (31) and Lemma 3.2 (iii), the following chain of inequalities holds true for
a.e. x ∈ {η 6= 0}

∂f

∂ξj
(x, |ux1 |, . . . , |uxn |)

2µ|u|

η(R − ρ)

≤
1

L

∂Hj

∂s

(
x, |uxj |

)
|uxj | +

1

L

∂Hj

∂s

(

x,
2µL|u|

η(R − ρ)

)
2µL|u|

η(R − ρ)

≤
c1

L

{

1 + f (x, |ux1 |, . . . , |uxn |) + Hj

(

x,
2µL|u|

η(R − ρ)

)}

,

with c1 depending only on n, µ, q, a, g(t0).
Now, denote with ej the vector (0, . . . , 0, 1

︸︷︷︸

j

, 0, . . . , 0). Using Lemma 3.2 (ii)

with

ξ := (|ux1 |, . . . , |uxj−1 |, 0
︸︷︷︸

j

, |uxj+1 |, . . . , |uxn |), ζ :=
2µL|u|

η (R − ρ)
ej ,

and the monotonicity property in (H1), we have that there exists c2 such that

Hj

(

x,
2µL|u|

η(R − ρ)

)

≤ c2

{

1 + f(x, |ux1 |, . . . , |uxn |) + f

(

x,
2µL|u|

η(R − ρ)
ej

)}

.

Thus,
n∑

j=1

∂f

∂ξj
(x, |ux1 |, . . . , |uxn |)

2µ|u|

η(R − ρ)

≤
c3

L






1 + f(x, |ux1 |, . . . , |uxn |) +

n∑

j=1

f

(

x,
2µL|u|

η(R − ρ)
ej

)






with c3 depending only on n, µ, q, a, g(t0). Choosing L > max{2c3, (2µ)−1R0},
which implies 2µL > η (R − ρ), and using Lemma 3.1 (1), the above inequality
implies

n∑

j=1

∂f

∂ξj
(x, |ux1 |, . . . , |uxn |)

2µ|u|

η (R − ρ)

≤
1

2
f(x, |ux1 |, . . . , |uxn |) +

c4

ηµ(R − ρ)µ






1 +

n∑

j=1

f(x, |u| ej)







(45)
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for some positive c4. Collecting (43), (44) and (45), we obtain
∫

BR

f(x, |ux1 |, . . . , |uxn |)Φ
′
k(u) ηµ dx

≤2

∫

BR

f(x, 0, . . . , 0)Φ′
k(u) dx

+
2c4

(R − ρ)µ

∫

BR

{1 +

n∑

j=1

f(x, |u| ej)}Φ
′
k(u) dx.

(46)

By (H3) and Lemma 3.1 (1) applied with h = gpi

f(x, |ux1 |, . . . , |uxn |) ≥

n∑

j=1

[g(|uxj |)]
pj ≥ g(|uxi |)]

pi

≥
1

µq
(gpi)′(|uxi |)|uxi | − [g(t0) + 1]q.

(47)

Moreover, by (8)

1 + f(x, 0, . . . , 0) +
n∑

j=1

f(x, |u| ej) ≤ c5 {[g(|u|)]q + 1} . (48)

Inequalities (46), (47) and (48) give
∫

BR

(gpi)′(|uxi |)|uxi | Φ′
k(u) ηµ dx ≤

c6

(R − ρ)µ

∫

BR

{[g(|u|)]q + 1}Φ′
k(u) dx.

We recall that Φk = Φ
(i,β)
k and we explicitly notice that c6 is independent of β, ρ

and R. Using the monotone convergence theorem we let k go to +∞ and by the
definition of Φ we obtain

∫

BR

[g(|u|)]pi(β−1)[g(|uxi|)]
pi−1g′(|uxi |)|uxi | ηµ dx

≤
c6

(R − ρ)µ

∫

BR

{

[g(|u|)]pi(β−1) + [g(|u|)]q+pi(β−1)
}

dx .

Now, by the Hölder inequality there exists c, depending on R0, such that
∫

BR

[g(|u|)]pi(β−1) dx ≤

∫

BR

(
[g(|u|)]β + 1

)pi
dx

≤ c

{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

.

(49)

Moreover, by Lemma 6.2 applied to v = g(|u|), with p replaced by pi, we get the
existence of a positive constant c, independent of β, such that

∫

BR

[g(|u|)]q+pi(β−1) dx ≤ c {κ + 1}q−pi

{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

,

where κ := ‖g(|u|)‖Lq(BR0) is finite by Corollary 2 and the assumption q < p∗. So,
it follows that

∫

BR

[g(|u|)]pi(β−1)[g(|uxi |)]
pi−1g′(|uxi |)|uxi |η

µ dx

≤c7
{κ + 1}q−pi

(R − ρ)µ

{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

.

(50)
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Now, by (9) and by the first step of the proof of Lemma 3.1 (1) we get that for
a.e. x ∈ {|uxi| > t0} the inequality g(|uxi |) ≥

1
µg′(|uxi |)|uxi | holds true. Moreover,

being µ ≥ 1 and pi ≤ q we get µpi−1 ≤ µq−1. Thus, (50) implies
∫

BR∩{|uxi
|>t0}

[g(|u|)]pi(β−1)[g′(|uxi |)]
pi |uxi |

piηµ dx

≤c8
{κ + 1}q−pi

(R − ρ)µ

{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

,

(51)

with c8 independent of i. Filling the hole, that is adding to both sides
∫

BR∩{|uxi
|≤t0}

[g(|u|)]pi(β−1)[g′(|uxi |)]
pi |uxi |

piηµ dx,

and noticing that, due to the convexity of g, (9), the first step of the proof of Lemma
3.1 (1) and (49) imply

∫

BR∩{|uxi
|≤t0}

[g(|u|)]pi(β−1)[g′(|uxi||)|uxi||]
piηµ dx

≤

∫

BR∩{|uxi
|≤t0}

[g(|u|)]pi(β−1)[g′(t0)t0]
piηµ dx

≤µq

∫

BR

[g(|u|)]pi(β−1)[g(t0)]
piηµ dx

≤µq[g(t0) + 1]q
∫

BR

[g(|u|)]pi(β−1)ηµ dx ≤ c9

{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

,

we obtain that
∫

BR

{

[g(|u|)](β−1)g′(|uxi|)|uxi |
}pi

ηµ dx

≤c10
{κ + 1}q−pi

(R − ρ)µ

{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

.

Since ηµpi ≤ ηµ and pi ≥ p we get (42).

Step 2. In this step we prove that if g(|u|) ∈ Lqβ(BR) for some β ≥ 1, then
there exists c, independent of β, R and ρ, such that

∫

BR

∣
∣
∣

[
ηµ([g(|u|)]β + 1)

]

xi

∣
∣
∣

pi

dx

≤
c βγ

(R − ρ)γ

{

‖g(|u|)‖Lq(BR0) + 1
}q−p

·

{∫

BR

([g(|u|)]β + 1)q dx

} pi
q

,

(52)

with γ = max{µ, q}.
We begin noticing that

∫

BR

∣
∣
∣

[
ηµ([g(|u|)β + 1)

]

xi

∣
∣
∣

pi

dx

≤2q−1

∫

BR

{∣
∣[ηµ]xi

∣
∣ ([g(|u|)]β + 1)

}pi
dx

+ 2q−1βq

∫

BR

{
[g(|u|)]β−1g′(|u|)|uxi | ηµ

}pi
dx = I1 + I2.

(53)
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By (39) and the Hölder inequality we have that

I1 ≤
c

(R − ρ)q

{∫

BR

([g(|u|)]β + 1)q dx

} pi
q

. (54)

Let us consider I2. Use (31) with h1 = g′pi , h2 = idpi , t1 = |u(x)| and t2 = |uxi(x)|,
obtaining

[g′(|u(x)|)]pi |uxi(x)|pi ≤ [g′(|uxi(x)|)]pi |uxi(x)|pi + [g′(|u(x)|)]pi |u(x)|pi .

Therefore

I2 ≤ 2q−1βq

∫

BR

{

[g(|u|)](β−1)g′(|uxi |)|uxi | ηµ
}pi

dx

+ 2q−1βq

∫

BR

{
[g(|u|)]β−1g′(|u|)|u| ηµ

}pi
dx.

The first term in the right hand is estimated by (42). To estimate the second term,
use Lemma 3.1 (1), which implies g′(|u|)|u| ≤ c {g(|u|) + 1}, obtaining

∫

BR

{
[g(|u|)]β−1g′(|u|)|u| ηµ

}pi
dx

≤c

∫

BR

[g(|u|)]pi(β−1)([g(|u|)]pi + 1) dx

≤c

∫

BR

(
[g(|u|)]β + 1

)pi
dx ≤ c

{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

.

Thus,

I2 ≤
c βq

(R − ρ)µ

{

‖g(|u|)‖Lq(BR0 ) + 1
}q−p

·

{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

. (55)

The inequalities (53), (54) and (55) imply (52).

Step 3. Now, we prove the boundedness of u and the estimate (1). If g(|u|) ∈
Lqβ(BR) for some β ≥ 1, then Step 2 implies that x 7→ ηµ(x){[g(|u(x)|)]β + 1} is in

W
1,(p1,...,pn)
0 (BR). Multiplying (52) on i and being pi ≥ p, we get

n∏

i=1

{∫

BR

∣
∣Di

(
ηµ([g(|u|)]β + 1)

)∣
∣
pi

dx

} 1
pi

≤c11

{
β

R − ρ

}nγ
p

{‖g(|u|)‖Lq(BR0) + 1}n q−p
p

{∫

BR

([g(|u|)]β + 1)q dx

}n
q

,

with c11 independent of β, R and ρ. By Theorem 4.2 we get

{
∫

Bρ

(
[g(|u|)]β + 1

)p∗

dx

} 1
p∗

≤c12

{
β

R − ρ

} γ
p

{‖g(|u|)‖Lq(BR0 ) + 1}
q−p

p

{∫

BR

([g(|u|)]β + 1)q dx

} 1
q
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and, defining G(x) := max{1, g(|u(x)|)}, we obtain

{
∫

Bρ

[G(x)]βp∗

dx

} 1
p∗

≤2c12

{
β

R − ρ

} γ
p

{‖g(|u|)‖Lq(BR0 ) + 1}
q−p

p

{∫

BR

[G(x)]βq dx

} 1
q

.

(56)

For all h ∈ N define βh =
(

p∗

q

)h−1

, ρh = R0/2+R0/2h+1 and Rh = R0/2+R0/2h.

By (56), replacing β, R and ρ with βh, Rh and ρh, respectively, we have that
G ∈ Lβhq(BRh

) implies G ∈ Lβh+1q(BRh+1
). Precisely,

‖G‖Lβh+1q(BRh+1
)

≤






2c12

{

2h+1

R0

(
p∗

q

)h−1
} γ

p

{‖g(|u|)‖Lq(BR0) + 1}
q−p

p







1
βh

‖G‖Lβhq(BRh
)

(57)

holds true for every h. Corollary 2 and the inequality q < p∗ imply G ∈ Lq(BR0).
An iterated use of (57) implies the existence of a constant c13 such that

‖G‖L∞(BR0/2(x0)) ≤ c13 {‖g(|u|)‖Lq(BR0 ) + 1}
p∗(q−p)
p(p∗−q) ‖G‖Lq(BR0(x0)).

Therefore, by the very definition of G,

‖g(|u|)‖L∞(BR0/2(x0)) ≤ c14

{

‖g(|u|)‖Lq(BR0 (x0)) + 1
} p∗(q−p)

p(p∗−q)
+1

.

From (H3), which implies that g(t) → +∞ as t → +∞, the above inequality implies
that u is in L∞(BR0/2(x0)).

Step 4. Here we prove estimate (12). Fix Br(x0) ⋐ Ω. Notice that if Qs(x0)
denotes the cube with edges parallel to the coordinate axes, centered at x0 and with
side length 2s, then Br/

√
n(x0) ⊆ Qr/

√
n(x0) ⊆ Br(x0).

Let u ∈ W 1,F(Ω) be a local minimizer of F and define ur := −
∫

Br(x0)
u dx. Since

u − ur is a local minimizer, too, then by (11) and the Hölder inequality

‖g(|u − ur|)‖L∞(Br/(2
√

n)(x0)) ≤ c
{

1 + ‖g(|u − ur|)‖Lp∗(Br/
√

n(x0))

} p∗(q−p)
p(p∗−q)

+1

. (58)

By (27) in Proposition 1

‖g(|u − ur|)‖Lp∗ (Br/
√

n(x0))

≤‖g(|u − ur|)‖Lp∗ (Qr/
√

n(x0))

≤c

{

1 + ‖g(|u − ur|)‖L1(Br(x0)) +

n∑

i=1

‖g(|uxi|)‖Lpi (Br(x0))

}

.

(59)

and by the Poincaré inequality proved in [3], (see (28), (29) and (30))

‖g(|u − ur|)‖L1(Br(x0)) ≤ c

{

1 +

n∑

i=1

‖g(|uxi|)‖L1(Br(x0))

}

.
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Therefore, using (59) we get

‖g(|u − ur|)‖Lp∗ (Br/
√

n(x0)) ≤ c

{

1 +

n∑

i=1

‖g(|uxi|)‖Lpi (Br(x0))

}

. (60)

Now, (8) implies

n∑

i=1

‖g(|uxi|)‖Lpi(Br(x0)) ≤ c
{
1 + ‖f(x, |ux1|, . . . , |uxn |)‖L1(Br(x0))

} 1
p . (61)

The final estimate (12) follows collecting (58), (59), (60) and (61).

Remark 1. It is not difficult to see that similar results to those stated in Theorem
2.1 can be proved for functionals (6) with more general Lagrangians f . For instance,
few and straightforward changes in the proof of Theorem 2.1 allow to obtain the
local boundedness of local minimizers of (6), together with estimates similar to (11)
and (12), under the following set of assumptions:

f : Ω × R
n → R+ is a Carathéodory function, convex and of class C1 with respect

to ξ, satisfying the growth assumption

f̄(x, |ξ1|, . . . , |ξn|) ≤ f(x, ξ) ≤ M
{
1 + f̄(x, |ξ1|, . . . , |ξn|)

}
, M > 0,

with f̄ : Ω × R
n
+ → R+, f̄ = f̄(x, z1, ..., zn), satisfying (H1), (H2) and (H3), and

such that, for some Λ > 0,
∣
∣
∣
∣

∂f

∂ξi
(x, ξ)

∣
∣
∣
∣
≤ Λ

∂f̄

∂zi
(x, |ξ1|, . . . , |ξn|) for all ξ ∈ R

n.
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ularity of minimizers of integral functionals with nonstandard growth, Nonlinear Anal., 17

(1991), 833–839.
[4] T. Bhattacharya and F. Leonetti, Some remarks on the regularity of minimizers of integrals

with anisotropic growth, Comment. Math. Univ. Carolin., 34 (1993), 597–611.
[5] T. Bhattacharya and F. Leonetti, W 2,2 regularity for weak solutions of elliptic systems with

nonstandard growth, J. Math. Anal. Appl., 176 (1993), 224–234.
[6] L. Boccardo, P. Marcellini and C. Sbordone, L∞-regularity for variational problems with

sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A, 4 (1990), 219–225.

[7] A. Canale, A. D’Ottavio, F. Leonetti and M. Longobardi, Differentiability for bounded min-

imizers of some anisotropic integrals, J. Math. Anal. Appl., 253 (2001), 640–650.
[8] P. Cavaliere, A. D’Ottavio, F. Leonetti and M. Longobardi, Differentiability for minimizers

of anisotropic integrals, Comment. Math. Univ. Carolinae, 39 (1998), 685–696.
[9] A. Cianchi, Boundedness of solutions to variational problems under general growth conditions,

Comm. Partial Differential Equations, 22 (1997), 1629–1646.
[10] A. Cianchi, Local boundedness of minimizers of anisotropic functionals, Ann. Inst. Henri
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[15] I. Fragalà, F. Gazzola and B. Kawhol, Existence and nonexistence results for anisotropic

quasilinear elliptic equations, Ann. Inst. Henri Poincaré, Analyse non linéaire, 21 (2004),
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