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Abstract. We prove a lower semicontinuity theorem for a polyconvex functional of integral
form, related to maps u W � � Rn ! Rm in W 1;n.�IRm/ with n � m � 2, with respect to
the weak W 1;p-convergence for p > m � 1, without assuming any coercivity condition.
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1 Introduction

Direct methods of calculus of variations are a rigorous framework to treat mathemati-
cally interesting problems arising in science or engineering related to optimality con-
ditions such as the minimization of the energy (or minimization of time, or of space,
etc.), expressed in integral form such as, for instance,Z

�

g.x; u;Du/ dx : (1.1)

The mathematical theory of direct methods, rougly speaking, is based on the lower
semicontinuity of the energy functional in (1.1) in a certain topology and on the rel-
ative compactness of bounded sets of functions u which compete for a minimum.
These two properties are the main ingredients in order to assure the existence of equi-
librium solutions. Compactness has been a main motivation for the introduction of
theory of Functional Analysis in the last century. Lower semicontinuity, either in Lp

or in the weak topology of W 1;p (the Sobolev space of Lp-functions with first partial
derivatives in Lp), classically is based on the convexity of the function g in (1.1) with
respect to the gradient variableDu. However, motivated by the applications to nonlin-
ear elasticity, in 1977 J. Ball pointed out in [4] that convexity is completely unrealistic
in the vectorial case. Indeed, it conflicts, for instance, with the natural requirement
that the elastic energy is frame-indifferent. Hence, it must be replaced by different and
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more general conditions, named quasiconvexity and polyconvexity, properties already
introduced theoretically by Morrey in [25]. These new convexity conditions are now
considered fundamental ones in nonlinear elasticity. In particular, polyconvexity takes
into account a natural constitutive hypothesis which is the invariance of the energy
under the transformation g 7! g C �, for every null Lagrangian �.

The aim of this research is to consider the polyconvexity condition, to achieve new
lower semicontinuity results useful for applications in this field. We describe below in
more details the mathematical problem.

Dealing with vector-valued maps, still it is not completely known a set of minimal
assumptions for lower semicontinuity of integrals of the Calculus of Variations of the
form

I .u/ D

Z
�

g.x; u;Du/ dx ; (1.2)

where u W �! Rm is a vector-valued map defined in an open set � � Rn and Du is
the m � n Jacobian matrix of its partial derivatives

u �
�
u1; u2; : : : ; um

�
; Du D

�
@u˛

@xi

�˛D1;2;:::;m

iD1;2;:::;n
:

On the contrary, in the so-called scalar case (corresponding to m D 1) Serrin in 1961,
in the pioneering paper [27], pointed out the convexity of g D g .x; s; �/ with respect
to the gradient variable � as a main (necessary and) sufficient condition for the lower
semicontinuity of the integral I .u/ in (1.2). Serrin himself pointed out the special
role of the x variable to obtain the lower semicontinuity of I .u/ with respect to the
L1

loc .�/-convergence. In fact, among his assumptions we mention either the coercivity
of g, i.e.,

g .x; s; �/ � c j�j

for some positive constant c and for every .x; s; �/ 2 ��R�Rn, or the continuity of
the partial derivatives

gx .x; s; �/ ; g� .x; s; �/ ; g�x .x; s; �/ : (1.3)

Some extensions of Serrin’s results have been recently obtained by Gori–Marcellini
[19] and by several other authors, also in the context of BV -functions (see [18, 15, 9,
10, 3]).

In the vector-valued case m > 1 either the quasiconvexity or the polyconvexity of
g with respect to the gradient variable � play a role. These convexity conditions are
due to Morrey [25]; a reference paper is Ball [4]. In particular the function g.x; s; �/
is said polyconvex with respect to the gradient variable � if it can be represented under
the form

g .x; s; �/ D f .x; s;M.�// ; (1.4)



Weak lower semicontinuity 3

where f is a convex function with respect to its last variable and, for every m � n
matrix � 2Mm�n, M.�/ denotes the vector

M.�/ D
�
�; adj2�; : : : ; adji�; : : : ; adjminfm;ng�

�
:

Here adji� , for i D 2; : : : ;min fm; ng, stands as the vector of the determinants of the
i � i minors of the matrix � 2Mm�n. Thus M.�/ is a vector in R� , with

� D �.n;m/ D

min.m;n/X
iD1

 
n

i

! 
m

i

!
:

We assume that f W � � Rm � R� ! Œ0;C1/ is a nonnegative function, convex in
R� with respect to the last variable.

The lower semicontinuity for polyconvex integrals have been investigated by sev-
eral authors in the past years, starting from the results by Morrey and Ball cited
above. In the quoted papers the weak topology of W 1;p .�IRm/ is considered, for
some p > min fm; ng. A more recent counterexample by Maly [22] shows that
the semicontinuity in the weak topology of W 1;p .�IRm/ is generically not true
if p < min fm; ng � 1. Marcellini [23, 24] and Dacorogna–Marcellini [7] proved
a lower semicontinuity result when p > n � 1, m D n and f D f .M.�// or
f D f .x;M.�//. The limit case p D n � 1 has been studied in the same context
by Acerbi–Dal Maso [2], Dal Maso–Sbordone [8], Celada–Dal Maso [5] and Fusco–
Hutchinson [16]. See also Acerbi–Buttazzo–Fusco [1] for lower semicontinuity with
respect to the L1-topology.

The situation changes considerably when a dependence on s is also allowed, since
the presence of the .x; s/-variables cannot be treated as a simple perturbation. A result
in this more general context is due to Gangbo [17] under the following structure as-
sumptions: f .x; s;M.�// D a.x; s/h .x;M.�//. More recently Fonseca–Leoni [14],
by using a blow-up argument, proved a semicontinuity result under the coercivity con-
dition

f .x; s;M.�// � c jM.�/j ;

valid for some positive constant c and for every .x; s; �/ 2 � � Rm � Rm�n. They
consider the weak topology of W 1;p .�IRn/ in the limit case p D n � 1 too, with f
depending only on the Jacobian determinant det � D adjn� of the n � n matrix �, i.e.,
f D f .x; s; det �/ and the coercivity condition f .x; s; det �/ � c jdet �j holds.

In the spirit of Serrin’s work, where either the coercivity or the continuity of the par-
tial derivatives in (1.3) were assumed, in this paper we consider the vector-valued case
m > 1 and we study the lower semicontinuity of the integral in (1.2) related to general
polyconvex integrands; the lack of coercivity and the general form of the dependence
on the .x; s/-variables force additional regularity assumptions on the integrand. In
particular we prove the following result (for more general assumptions see Theorems
4.2 and 4.3).
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Theorem. Let us consider the vector-valued case m � 2 and let n � m. Let f be a
nonnegative convex function with respect to the last variable, such that f and fx are
continuous in � � Rm � R� . Then, for every uk; u 2 W 1;m .�;Rm/, such that uk
converges to u in the weak topology of W 1;p .�;Rm/ for some p > m � 1, we have

lim inf
k!C1

Z
�

f .x; uk;M.Duk// dx �

Z
�

f .x; u;M.Du// dx : (1.5)

We explicitly note that the condition uk; u 2 W 1;m .�IRm/ is necessary to make
non ambiguous the definition of the integral functional. The conclusion (1.5) makes
possible to extend the integral functional I .u/ in (1.2), a-priori uniquely defined in
W 1;m .�IRm/, to functions in W 1;p .�IRm/ for p > m� 1. See details for instance
in [24].

We emphasize that in fact in this paper we give some lower semicontinuity results
under more general assumptions than those stated above (see details in Theorems 3.6
and 4.5). Relevant aspects, in particular, are: (i) we deal with integrands f depending
on .x; u/ and on all the minors of the matrix Du; (ii) coercivity of f is not assumed;
(iii) we consider the weak convergence inW 1;p .�;Rm/ for p > m�1; i.e., below the
natural exponent p D m which guarantee a non ambiguous definition of the integrals.
We also notice that our results hold in the limit case p D m � 1 D 1, if m D n D 2
(see Proposition 3.7).

The proof of the theorem stated above is based on an interesting combination of
two principal ingredients, which reflect the basic role respectively of the convexity of
f and the polyconvexity of g in (1.4). The first one is the original approximation ar-
gument for a convex function f .x; s; �/ introduced by De Giorgi in [12]. In these notes
f is approximated from below by a sequence of linear functions whose coefficients,
which depend on .x; s/, are explicitly represented in terms of f , allowing us to deduce
regularity properties of the coefficients from the corresponding ones of f .

The second ingredient is a chain rule formula for determinants (see Lemmas 2.1 and
2.3 in Section 2). In the smooth case, form D n, the chain rule has the following form:
letB D B.x; s/ be a function of classC 1 defined in��Rn, and let u 2 W 1;n.�;Rn/;
under the notations 8̂̂<̂

:̂
v.x/ D B.x; u.x//

b.x; s/ D @B=@s1

DxB.x; s/ D
�
@B
@x1
; @B
@x2
; : : : ; @B

@xn

�
with x � .xi /iD1;:::;n and s � .si /iD1;:::;n, we have

det
�
Dv;Du2; : : : ;Dun

�
D b.x; u/ detDuC det

�
DxB.x; u/;Du

2; : : : ;Dun
�
;

where
�
Dv;Du2; : : : ;Dun

�
represents the n � n matrix whose columns are the n

vectors Dv;Du2; : : : ;Dun and similarly for the other matrix
�
DxB.x; u/;Du

2; : : : ;
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Dun
�
. The role and properties of determinants are crucial here. This formula (which

admits a proper generalization to the case m < n) allows us to represent a term of the
type b.x; u/ detDu as an algebraic sum of Jacobian determinants, which are continu-
ous in the weak topology of W 1;p .�;Rn/ for p > n � 1. This allows us to pass to
the limit as k !C1 in expressions of the type

lim
k!C1

Z
�

b.x; uk/ detDuk dx D
Z
�

b.x; u/ detDudx :

Let us finally mention that some recent lower semicontinuity results have been ob-
tained, in the scalar case, using a chain rule formula for gradients (see [19, 18, 9, 10,
20], see also [21] for convex functionals in the vector-valued case).

2 Chain rule formulas for determinants

In this section we study some chain rule formulas involving determinants. The first
one is a pointwise formula and it is proved in a regular context, from which we derive
an integral form under weaker assumptions.

In the following for a matrix � D
�
�˛i
�˛D1;2;:::;n
iD1;2;:::;n we also use the notation det � D

det
�
�1; �2; : : : ; �n

�
, where, for ˛ D 1; 2; : : : ; n, the vector �˛ D .�˛1 ; �

˛
2 ; : : : ; �

˛
n /.

Lemma 2.1 (Pointwise chain rule). Let B D B.x; s/ be a function belonging to
C1.� � Rn/. Then, for every u 2 W 1;n.�IRn/ \ L1loc.�IR

n/, the function v W
�! R, defined by

v.x/ WD B.x; u.x// for a.e. x 2 �

belongs to W 1;n
loc .�/ and, for almost every x 2 �, we have

Ds1B
�
x; u1.x/; : : : ; un.x/

�
detDu.x/

D det
�
Dv.x/;Du2.x/; : : : ;Dun.x/

�
� det

�
DxB.x; u.x//;Du

2.x/; : : : ;Dun.x/
�
:

(2.1)

Proof. Let �0 �� �. First of all we note that by the usual chain rule formula, for
j D 1; : : : ; n and for almost every x 2 �0, we obtain

Dxj v.x/ D DxjB.x; u.x//C

nX
iD1

DsiB.x; u.x//Dxju
i .x/ :

Hence

Dv.x/ D DxB.x; u.x//C

nX
iD1

DsiB.x; u.x//Du
i .x/ for a.e. x 2 �0 :
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Therefore, by using the multilinearity properties of the determinants, it follows

det
�
Dv.x/;Du2.x/; : : : ;Dun.x/

�
D det

 
DxB.x; u.x//C

nX
iD1

DsiB.x; u.x//Du
i .x/;Du2.x/; : : : ;Dun.x/

!
D det

�
DxB.x; u.x//;Du

2.x/; : : : ;Dun.x/
�

C

nX
iD1

DsiB.x; u.x// det
�
Dui .x/;Du2.x/; : : : ;Dun.x/

�
:

Since det
�
Dui .x/;Du2.x/; : : : ;Dun.x/

�
D 0, for i D 2; : : : ; n, (2.1) follows for

almost every x 2 �0. Letting �0 ! �, the thesis is accomplished.

Remark 2.2. Formula (2.1) can be proved also for a general Borel function B at every
point .x; s/, with s D u.x/, in which B is differentiable.

Moreover, we note that if B D B.x; s/ is a locally Lipschitz continuous function on
��Rn, then equality (2.1) holds provided thatDs1B

�
x; u1.x/; : : : ; un.x/

�
detDu.x/

and det
�
Dv.x/;Du2.x/; : : : ;Dun.x/

�
are interpreted to be zero whenever Du.x/ D

0, irrespective of whether Ds1B
�
x; u1.x/; : : : ; un.x/

�
and Dv.x/ are defined.

Finally, observe that (2.1) holds also with s1 replaced with si , i D 1; : : : ; n:

DsiB
�
x; u1.x/; : : : ; un.x/

�
detDu.x/

D det
�
Du1.x/; : : : ;Dui�1.x/;Dv.x/;DuiC1.x/; : : : ;Dun.x/

�
� det

�
Du1.x/; : : : ;Dui�1.x/;DxB.x; u.x//;Du

iC1.x/; : : : ;Dun.x/
�
:

Lemma 2.3 (Integral chain rule). Let .x; s/ 2 ��Rn and s D .s1; s0/ 2 R�Rn�1. Let
B D B.x; s/ be a continuous function such that, for every compact set K � � � Rn

there exists a proper positive constant CK , depending on K, such that

jB.x; s1; s
0/ � B.y; t1; s

0/j � CK .jx � yj C js1 � t1j/ ; (2.2)

for every .x; s1; s0/; .y; t1; s0/ 2 K. Then, for every u 2 W 1;n.�IRn/ \ L1loc.�IR
n/,

we have Z
�

 Ds1B
�
x; u1; : : : ; un

�
detDudx

D �

Z
�

B
�
x; u

�
det

�
D ;Du2; : : : ;Dun

�
dx

�

Z
�

 det
�
DxB.x; u/;Du

2; : : : ;Dun
�
dx

(2.3)

for every  2 C1
0 .�/.



Weak lower semicontinuity 7

Remark 2.4. We observe that, in the previous lemma, the assumption u 2 L1loc.�IR
n/

can be removed if B.x; s/ D 0 for jsj � L, for some L > 0.

Proof. Let u 2 W 1;n.�IRn/ \ L1loc.�IR
n/, the function defined by

� 3 x 7! B.x; u.x//

belongs to W 1;n
loc .�/. Let �0 �� � and �" D �".s

0/ be a standard C1-mollifier in
Rn�1. In what follows we will use the notation B" to denote the convolution of B with
�", i.e.

B".x; s/ D B".x; s1; s
0/ D

Z
Rn�1

�".s
0
� � 0/ B.x; s1; �

0/ d� 0;

for x 2 �0 and s 2 Rn, where 0 < " < dist.�0; @�/.
The function v".x/ D B".x; u.x// belongs to W 1;n.�0/ and, by multiplying (2.1)

for every  2 C1
0 .�

0/ and integrating by parts, we obtainZ
�

 Ds1B"
�
x; u1; : : : ; un

�
detDudx

D �

Z
�

B"
�
x; u

�
det

�
D ;Du2; : : : ;Dun

�
dx

�

Z
�

 det
�
DxB".x; u/;Du

2; : : : ;Dun
�
dx :

(2.4)

Set kuk1 D kukL1.�0IRm/. We observe that, by assumptions, for a proper com-
pact set K � � � Rn such that �0 � B.0; kuk1 C 1/ � K and .x; s/ 2 supp �
B.0; kuk1/ and for every " > 0 we have

jDs1B".x; s/j �

Z
Rn�1

�".s
0
� � 0/

ˇ̌
Ds1B.x; s1; �

0/
ˇ̌
d� 0 � CK ;

jB".x; s/j �

Z
Rn�1

�".s
0
� � 0/

ˇ̌
B.x; s1; �

0/
ˇ̌
d� 0 � CK ;

jDxB".x; s/j �

Z
Rn�1

�".s
0
� � 0/

ˇ̌
DxB".x; s1; �

0/
ˇ̌
d� 0 � CK ;

where we denote by CK also the positive constant such that jB.x; s/j � CK , for
.x; s/ 2 K.

The previuos estimates and standard properties of convolution imply

Ds1B" *Ds1B weakly� in L1.supp � B.0; kuk1 C 1// ;

B" * B weakly� in L1.supp � B.0; kuk1 C 1// ;

DxB" *DxB weakly� in L1.supp � B.0; kuk1// ;

and hence, since detDu belongs to L1.�/, the thesis follows, once we pass to the
limit for "! 0C in (2.4).
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3 Lower semicontinuity in the model case m D n

In this section we prove the lower semicontinuity result in the model case m D n,
when the function g .x; s; �/ appearing in the integral functional in (1.2) explicitly
depends only on .x; s/ and the determinant det � D adjn � of the n � n matrix �; i.e.,
g can be represented under the form

g .x; s; �/ D f .x; s; det �/ ;

the general case being considered in the next section.
In the following we use two results, which are classical tools in the framework of

lower semicontinuity problems. Firstly, we recall the approximation theorem for con-
vex functions due to De Giorgi (see [12]). This result states that any convex function
f W R� ! R, � � 1, is approximated by mean of a sequence of affine functions
aj C bj � � , aj 2 R and bj 2 R� , where

aj WD

Z
R�
f .�/

�
.� C 1/ j̨ .�/Cr j̨ .�/ � �

�
d� ; (3.1)

bj WD �

Z
R�
f .�/r j̨ .�/d� ; (3.2)

with j̨ 2 C
1
0 .R

�/, j 2 N, a nonnegative function such that
R

R� j̨ .�/d� D 1.

Lemma 3.1. Let f W R� ! R be a convex function and aj , bj be defined as in (3.1)
and (3.2). Then the following property holds:

f .�/ D sup
j2N

�
aj C bj � �

�
8� 2 R� :

Remark 3.2. The main feature of this approximation is that the coefficients aj and bj
depend explicitly on f . In particular, when f depends also on .x; s/ we have that
(3.1) and (3.2) become

aj .x; s/ WD

Z
R�
f .x; s; �/

�
.� C 1/ j̨ .�/Cr j̨ .�/ � �

�
d� ; (3.3)

bj .x; s/ WD �

Z
R�
f .x; s; �/r j̨ .�/d� ; (3.4)

which permit to deduce regularity properties with respect to .x; s/ of the coefficients
aj ; bj from proper hypotheses satisfied by f . Hence, if f satisfies some continuity
or Lipschitz continuity assumptions with respect to .x; s/, then aj and bj inherit the
same properties, too.

Now we recall the following localization lemma proven in [13].
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Lemma 3.3. Let � be a positive Radon measure defined on an open set � � Rn.
Consider a sequence f�j g of Borel positive functions defined on �. Then

Z
�

sup
j2N

�j d� D sup
j2N

 
jX
iD1

Z
Ai

�i d� W Ai �� � open and pairwise disjoint

!
:

In order to approach our lower semicontinuity problem for polyconvex integrals, we
firstly deal with functionals of the following type:

u 2 W 1;n.�IRn/ 7!

Z
�

�
a
�
x; u

�
C b

�
x; u

�
detDu

�C
dx ;

which, in view of the previous Lemma 3.1, will be the affine approximations of the
general polyconvex functionals.

Lemma 3.4. Let a D a.x; s/ and b D b.x; s/ be two continuous functions. Assume
that, for every compact set K � � �Rn and for every .x; s/; .y; s/ 2 K, b satisfies

jb.x; s/ � b.y; s/j � CK jx � yj (3.5)

for a proper positive constant CK , depending on the compact set K. Moreover we
assume that Dxb is a Carathéodory function. Then for every uk; u 2 W 1;n.�IRn/
with uk * u weakly in W 1;p.�IRn/, p > n � 1, we haveZ
�

�
a
�
x; u

�
C b

�
x; u

�
detDu

�C
dx � lim inf

k!C1

Z
�

�
a
�
x; uk

�
C b

�
x; uk

�
detDuk

�C
dx:

Proof. We split the proof in two steps.
Step 1: First we assume that a.x; s/ D 0 and b.x; s/ D 0 for jsj � L for some

L > 0. By Lemma 3.3, it is easy to check that for every u 2 W 1;n.�IRn/ we haveZ
�

 Œa.x; u/C b.x; u/detDu�C dx

D sup
�Z

�

 Œa.x; u/C b.x; u/detDu� dx W  2 C 1
0 .�/; 0 �  � 1

�
:

Fix  2 C 1
0 .�/ with 0 �  � 1 and let K WD supp � Œ�L;L�. By Fatou’s lemma,

since a is locally bounded, we obtain thatZ
�

 a.x; u/ dx � lim inf
k!1

Z
�

 a.x; uk/ dx : (3.6)

Define now

B.x; s/ D B.x; s1; s
0/ WD

Z s1

0
b.x; �; s0/ d� k 2 N ; (3.7)
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so that Ds1B.x; s/ D b.x; s/. By applying Lemma 2.3 and Remark 2.4, it followsZ
�

 b.x; uk/ detDuk dx

D

Z
�

 Ds1B
�
x; u1

k; : : : ; u
n
k

�
detDuk dx

D

Z
�

B.x; uk/ det
�
D ;Du2

k; : : : ;Du
n
k

�
dx

�

Z
�

 det
�
DxB.x; uk/;Du

2
k; : : : ;Du

n
k

�
dx :

Since p > n � 1, for q D p
p�nC1 D

� p
n�1

�0, we have that(
B.x; uk/! B.x; u/

DxB.x; uk/! DxB.x; u/
strongly in Lqloc.�/ ;

and that all minors of order n � 1 of the n � .n � 1/ matrix .Du2
k
; : : : ;Dun

k
/ weakly

converges in L
p
n�1 .�/ (see [26]), therefore we get

lim inf
k!C1

Z
�

 b.x; uk/ detDuk dx

D �

Z
�

B.x; u/ det
�
D ;Du2; : : : ;Dun

�
dx

�

Z
�

 det
�
DxB.x; u/;Du

2; : : : ;Dun
�
dx

D

Z
�

 Ds1B
�
x; u1; : : : ; un

�
detDudx

D

Z
�

 b.x; u/ detDudx :

(3.8)

By collecting (3.6) and (3.8) we obtain

lim inf
n!1

Z
�

 Œa.x; uk/C b.x; uk/detDuk� dx

�

Z
�

 Œa.x; u/C b.x; u/detDu� dx
(3.9)

and by taking the supremum over all  , we get the desired result.
Step 2: We now remove the extra assumption that a .x; u/ D 0 and b.x; u/ D 0 for
juj � L:
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For every j 2 N define

�j .s/ WD

8̂<̂
:

1 jsj � j � 1;
�jsj C j j � 1 < jsj � j;
0 jsj > j:

(3.10)

Then, for every fixed j 2 N, we have

lim inf
k!1

Z
�

Œa.x; uk/C b.x; uk/detDuk�
C dx

� lim inf
k!1

Z
�

�j .uk/ Œa.x; uk/C b.x; uk/detDuk�
C dx:

(3.11)

Since the functions

aj .x; s/ WD �j .s/ a.x; s/; bj .x; s/ WD �j .s/ b.x; s/

satisfy the hypotheses of Step 1, (3.9) and (3.11) imply

lim inf
k!1

Z
�

Œa.x; uk/C b.x; uk/detDuk�
C dx

�

Z
�

�j .u/ Œa.x; u/C b.x; u/detDu�C dx

�

Z
fx2�W ju.x/j�j�1g

Œa.x; u/C b.x; u/detDu�C dx:

Letting j !1, the conclusion follows by Beppo Levi’s lemma.

Remark 3.5. Note that, if n D 2, the previous result continues to hold also in the limit
case p D n � 1 D 1. Indeed, following the idea of Dacorogna and Marcellini [7,
Lemma 2], we have the equality

lim
k!C1

�Z
�

B.x; uk/ det
�
D ;Du2

k

�
dx C

Z
�

 det
�
DxB.x; uk/;Du

2
k

�
dx

�
D

Z
�

B.x; u/ det
�
D ;Du2� dx C Z

�

 det
�
DxB.x; u/;Du

2� dx ;
and then (3.8) still holds true for uk converging to u weakly in W 1;1.�IR2/.

Now we are in the position to prove a lower semicontinuity inequality for polycon-
vex integrals of the form Z

�

f
�
x; u; detDu

�
dx

along sequences fukg � W 1;n.�IRn/ weakly converging in W 1;p.�IRn/, for p >
n � 1, without requiring any growth conditions on the integrand f .
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Theorem 3.6. Let f W � �Rn �R! Œ0;C1/ be a continuous function such that

for a.e. x 2 � and for all s 2 Rn f .x; s; �/ is convex I (3.12)(
8K �� � �Rn �R 9CK > 0 such that

jf .x; s; t/ � f .y; s; t/j � CK jx � yj 8.x; s; t/; .y; s; t/ 2 K I
(3.13)

for every .x; t/ 2 � �R Dxf .x; �; t / is a continuous function : (3.14)

Then for every uk; u 2 W 1;n.�IRn/with uk * uweakly inW 1;p.�IRn/, p > n�1,
we have Z

�

f
�
x; u; detDu

�
dx � lim inf

k!1

Z
�

f
�
x; uk; detDuk

�
dx :

Proof. Let fukg be a sequence inW 1;n.�IRn/ converging to u 2 W 1;n.�IRn/, with
respect to the w � W 1;p convergence, with p > n � 1. Since by Lemma 3.1 and
Remark 3.2

f .x; s; t/ D sup
j2N

Œaj .x; s/C bj .x; s/t �
C ;

where aj and bj are defined as in (3.3) and (3.4), for every fixed j 2 N, we have

lim inf
k!C1

Z
�

f
�
x; uk; detDuk

�
dx � lim inf

k!C1

Z
�

�
aj .x; uk/C bj .x; uk/detDuk

�C
dx :

By our assumptions, for every j 2 N the functions aj and bj satisfy all the assump-
tions of Lemma 3.4. Therefore, we obtain

lim inf
k!C1

Z
�

f
�
x; uk; detDuk

�
dx �

Z
�

�
aj .x; u/C bj

�
x; u

�
detDu/

�C
dx :

Hence

lim inf
k!C1

Z
�

f
�
x; uk; detDuk

�
dx � sup

j2N

Z
�

�
aj .x; u/C bj

�
x; u

�
detDu

�C
dx :

The thesis follows by the localization Lemma 3.3.

We note that, as in [7], in the special case n D 2 the previous result holds also in the
limit case p D n� 1 D 1, as stated in the following proposition, which can be proved
by using Remark 3.5.

Theorem 3.7. Let n D 2 and p D 1. Assume that � � R2 is an open set and
f W � � R2 � R ! Œ0;C1/ is a continuous function satisfying (3.12), (3.13) and
(3.14). Then for every uk; u 2 W 1;2.�IR2/ with uk * u weakly in W 1;1.�IR2/, we
have Z

�

f
�
x; u; detDu

�
dx � lim inf

k!C1

Z
�

f
�
x; uk; detDuk

�
dx :



Weak lower semicontinuity 13

4 Lower semicontinuity in more general cases

In this section we extend Theorem 3.6 to more general contexts.

4.1 Dependence on all minors: the case m D n

In this section we extend Theorem 3.6 to the case generally considered in the literature,
where f depends on all the minors of the Jacobian matrix Du.

Let

� D

n�1X
kD1

 
n

k

!2

and for any matrix � 2 MIn�n, we denote by M n�1
�
�
�

the vector in R� , whose
components are given by the determinants of all minors of � up to the order n� 1; i.e.,

M
�
�
�
D .�; adj2 �; : : : ; adji �; : : : ; adjn �/ D .M

n�1���; det �/ :

As above, we firstly deal with functionals of the form:

u 2 W 1;n.�IRn/ 7!

Z
�

�
a
�
x; u

�
C b0

�
x; u

�
�M n�1�Du�C b�C1

�
x; u

�
detDu

�C
dx ;

where a W � �Rn ! R and b D .b0; b�C1/ W � �Rn ! R� �R.

Lemma 4.1. Let a W � � Rn ! R and b D .b0; b�C1/ W � � Rn ! R� � R be
continuous functions. Assume that, for every compact set K � � � Rn and for every
.x; s/; .y; s/ 2 K, b�C1 satisfy

jb�C1.x; s/ � b�C1.y; s/j � CK jx � yj (4.1)

for a proper positive constant CK , depending on the compact set K. Moreover we as-
sume that Dxb�C1 is a Carathéodory function. Then for every uk; u 2 W 1;n.�IRn/
with uk * u weakly in W 1;p.�IRn/, p > n � 1, we haveZ

�

�
a
�
x; u

�
C b0

�
x; u

�
�M n�1�Du�C b�C1

�
x; u

�
detDu

�C
dx

� lim inf
k!C1

Z
�

�
a
�
x; uk

�
C b0

�
x; uk

�
�M n�1�Duk�

C b�C1
�
x; uk

�
detDuk

�C
dx :

(4.2)

Proof. We can assume that a.x; s/ D 0 and b.x; s/ D 0 for jsj � L for some L > 0,
since the general case follows by using the same truncation arguments as in the proof
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of Lemma 3.4. Recalling that for every u 2 W 1;n.�IRn/ we haveZ
�

�
a.x; u/C b0.x; u/ �M n�1�Du�C b�C1.x; u/detDu

�C
dx

D sup
�Z

�

 Œa.x; u/C b0.x; u/ �M n�1�Du�C b�C1.x; u/detDu� dx W

 2 C 1
0 .�/; 0 �  � 1

�
;

and taking into account the localization Lemma 3.3, in order to achieve the conclusion,
it is enough to prove that for all  2 C1

0 .�/:Z
�

 Œa.x; u/C b0.x; u/ �M n�1�Du�C b�C1.x; u/detDu� dx

� lim inf
k!C1

Z
�

 Œa.x; uk/C b
0.x; uk/ �M

n�1�Duk�C b�C1.x; uk/detDuk� dx

for uk; u 2 W 1;n.�IRn/ with uk * u weakly in W 1;p.�IRn/.
By proceeding as in the proof of Lemma 3.4, since (3.9) holds with b replaced by

b�C1, we have only to check that

lim
k!C1

Z
�

 b0.x; uk/ �M
n�1�Duk� dx D Z

�

 b0.x; u/ �M n�1�Du� dx : (4.3)

Formula (4.3) is a direct consequence of the fact that b0.x; uk/! b0.x; u/ strongly in
Lq.�;R� /, for q D p

p�nC1 D
� p
n�1

�0 and all minors up to order n � 1 of the n � n

matrix Duk weakly converges in L
p
n�1 .�/ (see [26]).

Theorem 4.2. Let f W � � Rn � R� � R ! Œ0;C1/ be a continuous function such
that

for a.e. x 2 � and for all s 2 Rn f .x; s; �; �/ is convex I (4.4)(
8K �� � �Rn �R� �R 9CK > 0 such that

jf .x; s; �; t/ � f .y; s; �; t/j � CK jx � yj 8.x; s; �; t/; .y; s; �; t/ 2 K I
(4.5)

8.x; �; t/ 2 � �R� �R Dxf .x; �; �; t/ is a continuous function : (4.6)

Then for every uk; u 2 W 1;n.�IRn/with uk * uweakly inW 1;p.�IRn/, p > n�1,
we have Z

�

f
�
x; u;M n�1�Du�; detDu

�
dx

� lim inf
k!C1

Z
�

f
�
x; uk;M

n�1�Duk�; detDuk
�
dx :
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Proof. Let fukg be a sequence inW 1;n.�IRn/ converging to u 2 W 1;n.�IRn/, with
respect to the w �W 1;p convergence. By Lemma 3.1 with � D � C 1 and � D .�; t/,
we have

f .x; s; �; t/ D sup
j2N

Œaj .x; s/C .b
0/j .x; s/ � �C .b�C1/j .x; s/t �

C

where, for every j 2 N, aj and bj D ..b0/j ; .b�C1/j / 2 R� � R are defined as in
(3.3) and (3.4). Hence, for every j 2 N, we have

lim inf
k!C1

Z
�

f
�
x; uk;M

n�1�Duk�; detDuk
�
dx

� lim inf
k!C1

Z
�

�
aj .x; uk/C .b

0/j
�
x; uk

�
�M n�1�Duk�

C .b�C1/j
�
x; uk

�
detDuk

�C
dx :

Since for every fixed j 2 N the functions aj and bj satisfy the assumptions of Lemma
4.1, we get that inequality (4.2) holds and the conclusion follows by proceeding as in
the proof of Theorem 3.6.

4.2 Dependence on all minors: the case m < n

In this subsection we assume u W � � Rn ! Rm with m < n and set

� 0 D

m�1X
jD1

 
n

j

! 
m

j

!
and d D

 
n

m

!
:

For any matrix � 2 MIm�n, we denote by Mm�1
�
�
�

the vector in R�
0

, whose com-
ponents are given by the determinants of all minors of � up to the order m � 1 and by
adjm� the vector in Rd , whose components are given by the determinants of all minors
of � of the maximum order m.

Theorem 4.3. Let f W ��Rm�R�
0

�Rd ! Œ0;C1/ be a continuous function such
that

for a.e. x 2 � and for all s 2 Rm f .x; s; �; �/ is convex I (4.7)(
8K �� � �Rm �R�

0

�Rd 9CK > 0 such that

jf .x; s; �; �/ � f .y; s; �; �/j � CK jx � yj 8.x; s; �; �/; .y; s; �; �/ 2 K I
(4.8)

8.x; �; �/ 2 ��R�
0

�Rd ; Dxf .x; �; �; �/ is a continuous function : (4.9)
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Then for every uk; u 2 W 1;m.�IRm/ with uk * u weakly in W 1;p.�IRm/, p >

m � 1, we haveZ
�

f
�
x; u;Mm�1�Du�; adjmDu

�
dx

� lim inf
k!C1

Z
�

f
�
x; uk;M

m�1�Duk�; adjmDuk
�
dx :

Proof. Let fukg be a sequence in W 1;m.�IRm/ converging to u 2 W 1;m.�IRm/,
with respect to thew�W 1;p convergence, p > m�1. By Lemma 3.1, here � D � 0Cd
and � D .�; �/, we have that

f .x; s; �; �/ D sup
j2N

Œaj .x; s/C b
0
j .x; s/ � �C

Nbj .x; s/ � ��
C

where, for every j 2 N, aj and bj D .b0j ; .b�C1/j ; : : : ; .b�Cd /j / D .b0j ;
Nbj / 2

R�
0

�Rd are defined in (3.3) and (3.4). Hence, for every fixed j 2 N, we have

lim inf
k!C1

Z
�

f
�
x; uk;M

m�1�Duk�; adjmDuk
�
dx

� lim inf
k!C1

Z
�

�
aj .x; uk/C b

0

j

�
x; uk

�
�Mm�1�Duk�C Nbj �x; uk� � adjmDuk

�C
dx :

As in Lemma 3.4 we can assume that aj .x; s/ D 0 and bj .x; s/ D 0 for jsj � L

for some L > 0, since the general case follows by the same truncation argument.
Moreover, we recall that for every j 2 N and every u 2 W 1;m.�IRm/ we haveZ

�

h
aj .x; u/C b

0
j .x; u/ �M

m�1�Du�C Nbj .x; u/ � adjmDu
iC

dx

D sup
�Z

�

 Œaj .x; u/C b
0
j .x; u/ �M

m�1�Du�C Nbj .x; u/ � adjmDu� dx W

 2 C 1
0 .�/; 0 �  � 1

�
:

Taking into account the localization Lemma 3.3, in order to achieve the thesis, it
is enough to prove that for every uk; u 2 W 1;m.�IRm/ with uk * u weakly in
W 1;p.�IRm/,Z
�

 Œa.x; u/C b0.x; u/ �Mm�1�Du�C Nb.x; u/ � adjmDu� dx

� lim inf
k!C1

Z
�

 Œa.x; uk/C b
0.x; uk/ �M

m�1�Duk�C Nb.x; uk/ � adjmDuk� dx
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where for the sake of simplicity we omitted the subscript index j . By proceeding as in
Lemmas 3.4 and 4.1 we get that (3.6) holds and it is easy to check that (4.3) continues
to be true with M n�1 replaced by Mm�1. Hence, we have only to check that

lim
k!C1

Z
�

 Nb.x; uk/ � adjmDuk dx

D

dX
iD1

�
lim

k!C1

Z
�

 b�Ci .x; uk/ .adjmDuk/i dx
�

D

dX
iD1

Z
�

 b�Ci .x; u/ .adjmDu/i dx

D

Z
�

 Nb.x; u/ � adjmDudx ;

(4.10)

where Nb D .b�C1; : : : ; b�Cd / 2 Rd . Formula (4.10) is a consequence of the chain rule
formula applied to

�
adjmDu

�
i
, for every i D 1; : : : ; d . Indeed, fixed i D 1; : : : ; d

and define the C1-function

NBi .x; s/ D NBi .x; s1; s
0/ D

Z s1

0
b�Ci .x; �; s

0/ d�

(here s0 2 Rm�1) and for u 2 W 1;m.�IRm/ let Nvi .x/ D NBi .x; u.x//. Taking into
account that m < n, with a proof similar to that of Lemma 2.1, we obtain:

b�Ci .x; u
1; : : : ; um/

�
adjmDu

�
i
D Ds1

NBi
�
x; u1; : : : ; um

� �
adjmDu

�
i

D
�
adjm .D Nvi ;Du

2; : : : ;Dum/
�
i

�
�
adjm .Dx NBi .x; u/;Du

2; : : : ;Dum/
�
i
:

(4.11)

The corresponding integral formulation is given byZ
�

 Ds1
NBi
�
x; u1; : : : ; un

� �
adjmDu

�
i
dx

D�

Z
�

NBi
�
x; u

� �
adjm .D ;Du

2; : : : ;Dun/
�
i
dx

�

Z
�

 
�
adjm .Dx NBi .x; u/;Du

2; : : : ;Dun/
�
i
dx ;

(4.12)

for every  2 C1
0 .�/. Finally, taking into account (4.12) and the fact that p >

m�1, (4.10) can be obtained reasoning as in the proof of Lemma 3.4 (see in particular
(3.8)).
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4.3 Weakening of the regularity of the integrand

In this subsection we consider the case where the integrand admits a Sobolev depen-
dence (with an exponent q � 1) with respect to the x-variable instead of the Lipschitz
continuity condition. To this purpose, we firstly need a proper new chain rule, under a
Sobolev type dependence. For the sake of simplicity, we consider only the model case
m D n and g.x; s; �/ D f .x; s; det �/.

Lemma 4.4. Let p > n � 1, q D p
p�nC1 D

� p
n�1

�0 and B D B.x; s/ be a function
such that

B is a Carathéodory function s.t. B 2 L1loc.� �Rn/ I (4.13)8̂̂<̂
:̂
8s 2 Rn B.�; s/ 2 W 1;q.�/ ; DxB is a Carathéodory function and

8K �� � �Rn 9 aK 2 L
q.�/ s.t. for every s 2 Rn and a.e. x 2 �

jDxB.x; s/j � aK.x/ I

(4.14)

for a.e. x 2 � B.x; �/ 2 C0.Rn/ I (4.15)(
B.x; �; s0/ 2 C1.R/ for a.e. x 2 � and for every s0 2 Rn�1

and Ds1B is a Carathéodory function s.t. Ds1B 2 L
1
loc.� �Rn/ :

(4.16)

Then, the same conclusions of Lemma 2.3 hold.

Proof. It is sufficient to follows the arguments in the proof of Lemma 2.3, by remark-
ing that assumption (4.14) permits to pass to the limit, as "! 0C, in (2.4).

By using previous lemma we obtain the following lower semicontinuity theorem.

Theorem 4.5. Let p > n� 1, q D p
p�nC1 D

� p
n�1

�0 and f W ��Rn�R! Œ0;C1/
be a Borel function belonging to L1loc.� �Rn �R/ such that

for a.e. x 2 � and for all s 2 Rn f .x; s; �/ is convex I (4.17)

for a.e. x 2 � and for all t 2 R f .x; �; t / 2 C0.Rn/ I (4.18)8̂̂<̂
:̂
8.s; t/ 2 Rn �R f .�; s; t/ 2 W 1;q.�/ and

8K �� � �Rn �R 9 aK 2 L
q.�/ s.t.

for a.e. x 2 � and for every .s; t/ 2 Rn �R jDxf .x; s; t/j � aK.x/ I

(4.19)

for a.e. x 2 � and for every t 2 R Dxf .x; �; t / is a continuous function : (4.20)

Then for every uk; u 2 W 1;n.�IRn/ with uk ! u weakly in W 1;p.�IRn/, we haveZ
�

f
�
x; u; detDu

�
dx � lim inf

k!C1

Z
�

f
�
x; uk; detDuk

�
dx :
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Remark 4.6. Under the same assumptions of Theorem 4.5, when n D 2, the result
still holds in the limit case p D 1, by proceeding as in Theorem 3.7.

Moreover, condition (4.20) can be dropped if

f .x; s; t/ D g.x; s1; t /h.s2; : : : ; sn/ ;

with h continuous and g satisfying (4.17)–(4.19).
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