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Abstract

Local Lipschitz continuity of local minimizers of vectorial integrals∫
�
f(x; Du(x)) dx

is proved when f satis/es p − q growth condition and 	 �→ f(x; 	) is convex. The uniform
convexity and the radial structure condition with respect to the last variable are assumed only
at in/nity.
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1. Introduction

In this paper we study the Lipschitz continuity of local minimizers of non-
homogeneous integrals

F(u;�) =
∫
�

f(x; Du(x)) dx; (1.1)

where � ⊂ Rn is a bounded open set, Du denotes the gradient of a vector-valued
function u :� → RN and n; N ¿ 1.
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We say that u∈W 1;1
loc (�;RN ) is a local minimizer of (1.1) if f(x; Du)∈L1

loc(�) and
F(u; spt’)6F(u+ ’; spt’) for any ’∈W 1;1(�;RN ) with spt’ ⊂⊂ �.
Assume that f :�×RnN → [0;+∞) is a Carath@eodory function, convex with respect

to the last variable, satisfying the following conditions

(A1) There exist R¿ 0 and a function f̃ such that for a.e. x∈� and every 	∈
RnN\BR(0)

f(x; 	) = f̃(x; |	|);
(A2) f is p-uniformly convex at in8nity, that is there exist p¿ 1 and �¿ 0 such

that, for a.e. x∈� and for every 	1; 	2 ∈RnN\BR(0) endpoints of a segment
contained in the complement of BR(0),

1
2
[f(x; 	1) + f(x; 	2)]

¿f
(
x;

	1 + 	2
2

)
+ �(1 + |	1|2 + |	2|2)(p−2)=2|	1 − 	2|2; (1.2)

(A3) There exist L¿ 0 and q¿p such that

f(x; 	)6L(1 + |	|)q;
for a.e. x∈� and 	∈RnN ,

(A4) For a.e. x∈� and every 	∈RnN\BR(0) let D+
t f̃(x; |	|) be the right side deriva-

tive of f̃ with respect to t and denote D+
	�i
f(x; 	) = D+

t f̃(x; |	|)	�
i =|	|. Then for

every 	∈RnN\BR(0), the vector /eld x 	→ D+
	 f(x; 	) is weakly diEerentiable

and

|DxD+
	 f(x; 	)|6L(1 + |	|)q−1:

Assumption (A2) was introduced by Fonseca–Fusco–Marcellini [7] in order to study
the existence of minimizers of some non-convex variational problems. This condition,
together with (A3), implies that there exist two positive constants c0; c1 such that

−c0 + c1|	|p6f(x; 	)6L(1 + |	|)q

(see Theorem 2.5 (i) below), thus f satis/es the so called p− q growth condition.
The main result of this paper is the following.

Theorem 1.1. Let u be a local minimizer of (1.1), whose integrand f satis8es the as-
sumptions (A1)–(A4), 1¡p6 q¡p(n+1)=n. Then u is locally Lipschitz continuous
and for all Br(x0) ⊂⊂ �,

sup
Br=4(x0)

|Du|6 c
[ ∫

Br(x0)
(1 + f(x; Du)) dx

]�
; (1.3)

where c = c(n; p; q; L; R; �), and � = �(n; p; q).



G. Cupini et al. / Nonlinear Analysis 54 (2003) 591–616 593

When f is not convex, the previous theorem still holds provided

sc−F(w;�) =
∫
�

f∗∗(x; Dw) dx; (1.4)

where sc−F is the relaxed functional of F and 	 	→ f∗∗(x; 	) is the convex envelope
of f(x; ·). In fact by Theorem 2.5(iv) f∗∗ ful/lls (A1)–(A4) with suitable constants
� and R. We refer to [3] for some cases where (1.4) holds.
The result stated in Theorem 1.1, which obviously implies the non-occurrence of

the Lavrentiev phenomenon, is proved via an approximation procedure, mainly using
assumptions (A1) and (A2). It covers some interesting models in Fuids mechanics
and in nonlinear elasticity, see [12,19] and applies also to weak solutions of nonlinear
elliptic systems in divergence form

n∑
i=1

Dia�
i (x; Du) = 0 for �= 1; : : : ; N;

where a�
i (x; 	)=f	�i (x; 	). Notice that by (A2) a�

i may be degenerate elliptic for small
deformations.
It is well known that, if N ¿ 1, generally only partial regularity of local minimizers

of (1.1) may be achieved. However, starting from the seminal paper by Uhlenbeck
[20], everywhere regularity results were proved under standard growth conditions, p=q,
provided f=f(|	|): in particular Giaquinta–Modica in [11] (p¿ 2) and Acerbi–Fusco
in [1] (1¡p¡ 2) assume that f is of class C2 and

�(1 + |	|2)(p−2)=2|�|26 〈D2f(	)�; �〉6L(1 + |	|2)(p−2)=2|�|2 (1.5)

for all 	; �∈RnN . Using an approximation argument introduced by Fonseca–Fusco [6],
Lipschitz continuity of local minimizers can still be achieved even if f is only contin-
uous, see [8]. The ellipticity condition in (1.5) is replaced by the p-uniform convexity
assumption, that is inequality (1.2) holds for any x∈� and 	1; 	2 ∈RnN .

The non-standard context p¡q is more recent. Firstly studied by Marcellini [14],
various contributions to the subject have been provided in these last years, see [4,15,16]
for an extensive list of references. The vectorial homogeneous framework was consid-
ered by Marcellini [17] when f is smooth, and by Esposito et al. [5] when f is
continuous.
It is well known that in order to get regularity a restriction between p and q need to

be imposed, namely q6 c(n)p, with c(n) close to 1, see [9,13] for counterexamples.
In the non-homogeneous case the bound revealing the sharpness of our result can
be found. Esposito et al. [4] provide an example from which it can be deduced that
Theorem 1.1 does not hold if q¿p(n+ 1)=n, since local minimizers may not belong
to W 1; q

loc (�;RN ).
Also some regularity conditions with respect to x are needed. A functional F exists,

with f only measurable with respect to x, such that its minimizers do not belong to
W 1; q(�) (see [21]). On the other hand, when the same functional satis/es a suitable
continuity assumption with respect to x, the minimizers are regular, see [2]. Recently,
Mascolo and Migliorini [18] proved a Lipschitz continuity result for minimizers of
smooth and strictly convex functionals, with p − q growth and p¿ 2. There, also
functionals with exponential growth are considered.
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Let us brieFy discuss the techniques used to prove Theorem 1.1. We construct
a sequence of regular functions fkh satisfying (A1)–(A4), p-growth condition, with
constants independent of h, and (1.5), with suitable constants depending on h. Fixed
a ball Br(x0) ⊂⊂ �, we consider the following sequence of variational problems:

min
{∫

Br(x0)
fkh(x; Dw) dx :w∈ u+W 1;p

0 (Br(x0);RN )
}

;

where u is a local minimizer of (1.1). For the corresponding minimizers ukh we prove
a uniform (in k and h) estimate for the L∞-norm of the gradient. The passage to the
limit, with respect to h and k, is not inFuenced by the behaviour of f on bounded
subsets of �×RnN . This and a suitable comparison argument, introduced in [7], permit
to transfer the regularity properties of the minimizers ukh to the local minimizer u.
The paper is organized as follows: in Section 2 we study some properties of functions

uniformly convex at in/nity. Section 3 is devoted to the proof of the a priori estimates
for minimizers of regular functionals, while in Section 4 we construct the approximating
variational problems and we prove Theorem 1.1.

2. Uniformly convex functions

In this section we prove some properties satis/ed by functions uniformly convex at
in/nity. For the sake of clarity we /rst consider the case when f :Rm → [0;+∞) is a
continuous function, f = f(	), satisfying the following assumption:

(UC) there exist p¿ 1 and �; R¿ 0 such that for every 	1; 	2 ∈Rm\BR(0), endpoints
of a segment contained in the complement of BR(0),

1
2
[f(	1)+f(	2)]¿f

(
	1 +	2

2

)
+�(1+ |	1|2 + |	2|2)(p−2)=2|	1−	2|2: (2.1)

Some of the results are stated in [7]. Here we give alternative proofs, taking into
account neither the growth of f nor its behavior in BR(0).
When f is smooth, uniform ellipticity and uniform convexity are equivalent condi-

tions (see [7] for the proof).

Lemma 2.1. Let f :Rm → [0;+∞) be of class C2. Then f satis8es (UC) if and only
if there exists c(�)¿ 0 such that for all 	∈Rm\BR(0) and �∈Rm

〈D		f(	)�; �〉¿ c(1 + |	|2)(p−2)=2|�|2: (2.2)

Moreover, (2.1) holds for all 	1; 	2 in Rm if and only if (2.2) holds for all 	 and �
in Rm.

Now, we prove that the p-uniform convexity at in/nity implies that f is p-coercive.

Lemma 2.2. Let f :Rm → [0;+∞) satisfy (UC). Then there exist two positive con-
stants c0(p; �; R;max@BR f) and c1(�) such that

f(	)¿− c0 + c1|	|p: (2.3)
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Proof. For every 	∈Rm\BR(0) de/ne 	0 = R	=|	|. From (UC) it follows

1
2
[f(	) + f(	0)]¿f

(
	+ 	0

2

)
+ �(1 + |	|2 + |	0|2)(p−2)=2|	− 	0|2:

On the other hand, Young inequality yields

(1 + |	|2 + |	0|2)(p−2)=2|	− 	0|2¿ 1
2
|	|p − c(p; R):

Since f¿ 0, we get

f(	)¿
�
2
|	|p − 2c(p; R)�−max

@BR

f

and (2.3) follows.

The next proposition describes the “splitting” property of functions p-uniformly
convex at in/nity.

Proposition 2.3. Let f :Rm → [0;+∞). (UC) is equivalent to

(S) There exist c0 and c1 positive constants and a function g :Rm → [ − c0;+∞)
such that for every 	∈Rm,

f(	) = c1(1 + |	|2)p=2 + g(	)

and for every 	1; 	2 ∈Rm such that [	1; 	2] ⊆ Rm\BR(0)

1
2
[g(	1) + g(	2)]¿ g

(
	1 + 	2

2

)
:

Proof. (UC) ⇒ (S). It is easy to check that there exists c(p)¿ 0 such that for all
	1; 	2 ∈Rm,

(1 + |	1|2)p=2 + (1 + |	2|2)p=2

6 2

(
1 +

∣∣∣∣	1 + 	2
2

∣∣∣∣
2
)p=2

+ c(p) (1 + |	1|2 + |	2|2)(p−2)=2|	1 − 	2|2: (2.4)

Moreover, from Lemma 2.2,

f(	)¿− c0 + c̃1(1 + |	|2)p=2

for some positive constants c0 and c̃1.
Let c1 = min{c̃1; 2�=c(p)}. The function

g(	) := f(	)− c1(1 + |	|2)p=2

is continuous and g¿− c0. (UC) and (2.4) imply

1
2
[g(	1)+g(	2)]¿ g

(
	1 +	2

2

)
+
(
�−c(p)

c1
2

)
(1+ |	1|2 + |	2|2)(p−2)=2|	1−	2|2;

for all 	1; 	2 with [	1; 	2] ⊆ Rm\BR(0).
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(S) ⇒ (UC). From Lemma 2.1, the function (1 + |	|2)p=2 is p-uniformly convex in
Rm, so (S) implies (UC).

The next result was proved in [7] for functions satisfying (UC) and with standard
growth, but the proof seems not to work when f has non-standard growth, e.g. p− q
growth, with q¿p. So we give an alternative proof which does not make use of any
growth assumption on f.

Proposition 2.4. Let f :Rm → [0;+∞) satisfy (UC). Then there exist �0, R0 ¿ 0
depending only on p; �; R and max@BR(0)f, such that for any 	∈Rm\BR0 (0) there
exists q	 ∈Rm, such that

f(%)¿f(	) + 〈q	; %− 	〉+ �0(1 + |	|2 + |%|2)(p−2)=2|	− %|2 (2.5)

for all %∈Rm.
Moreover, if f∗∗ is the convex envelope of f, then f = f∗∗ in Rm\BR0 (0).

Proof. We divide the proof into two steps.
Step 1: Assume that f is a convex function. For 0¡&¡ 1, let us de/ne f&='& ∗f,

with '&(%)= &−m'(%=&), where ' is a positive radially symmetric molli/er with support
in B= B1(0), such that

∫
B '= 1.

Let [	1; 	2] ⊆ Rm\BR+1 and 	0 = (	1 + 	2)=2. Since∫
B
(1 + |	1 + &%|2 + |	2 + &%|2)(p−2)=2 d%¿ c(p)(1 + |	1|2 + |	2|2)(p−2)=2;

then
1
2
[f&(	1) + f&(	2)]¿f&(	0) + c(p; �)(1 + |	1|2 + |	2|2)(p−2)=2|	1 − 	2|2:

Thus, f& is p-uniformly convex at in/nity and, by Lemma 2.1, it follows that for all
|	|¿R+ 1 and �∈Rm,

〈D		f&(	)�; �〉¿ c(p; �)(1 + |	|2)(p−2)=2|�|2: (2.6)

Fix 	∈Rm\BR0 , with R0 = 2(R+ 1).
For all %∈Rm, de/ne A	;%={t : |	+ t(%−	)|¿R+1}. The convexity of f& implies

f&(%) = f&(	) + 〈Df&(	); %− 	〉

+
∫ 1

0
(1− t)〈D2f&(	+ t(%− 	))(%− 	); %− 	〉 dt

¿f&(	) + 〈Df&(	); %− 	〉

+
∫
A	;%

(1− t)〈D2f&(	+ t(%− 	))(%− 	); %− 	〉 dt: (2.7)

Let us prove that (2.5) holds for all %∈Rm such that |	|¿ |%|.
When 0¡t¡ 1

4 ,

|	+ t(%− 	)|¿ (1− t)|	| − t|%|¿ (1− 2t)R0 ¿R+ 1; (2.8)
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moreover there exists c1 ¿ 0 such that

c1(|	|2 + |%|2)6 |	+ t(%− 	)|26 2(|	|2 + |%|2): (2.9)

From (2.8), (0; 14 ) ⊂ A	;% and, by (2.6) and (2.9),∫
A	;%

(1− t)〈D2f&(	+ t(%− 	))(%− 	); %− 	〉 dt

¿ c(p; �)
∫ 1=4

0
(1− t)(1 + |	+ t(%− 	)|2)(p−2)=2|%− 	|2 dt

¿ c(p; �)(1 + |	|2 + |%|2)(p−2)=2|%− 	|2: (2.10)

Collecting (2.7) and (2.10), we get

f&(%)¿f&(	) + 〈Df&(	); %− 	〉+ c(p; �)(1 + |	|2 + |%|2)(p−2)=2|	− %|2: (2.11)

Since f is locally Lipschitz continuous, then for all �∈B1(	),

|f&(�)− f&(	)|6
∫
B
|f(�+ &y)− f(	+ &y)|'(y) dy6 c(	)|�− 	|;

so that (D&f(	))& is bounded with respect to &. Thus, up to a subsequence, Df&(	)
converges to a certain q	 ∈Rm when & → 0. (2.11) implies (2.5) when |	|¿ |%|.
Let now %∈Rm be such that |	|6 |%|.
If t ¿ 3

4 , then |	+ t(%− 	)| is greater than R+ 1. Hence ( 34 ; 1) ⊂ A	;% and∫
A	;%

(1− t)〈D2f&(	+ t(%− 	))(%− 	); %− 	〉 dt

¿ c(p; �)
∫ 1

3=4
(1− t)(1 + |	+ t(%− 	)|2)(p−2)=2|%− 	|2 dt:

Reasoning as above, we get (2.5).
Step 2: Let now f be a continuous function satisfying (UC). Set M =max@BR f and

de/ne

h(	) :=

{
M if |	|6R;

max{M;f(	)} if |	|¿R:

We claim that h is convex, i.e. given 	1; 	2 ∈Rm and 	0 = (	1 + 	2)=2, then

h(	0)6
1
2
[h(	1) + h(	2)]: (2.12)

If 	0 ∈BR, (2.12) is trivial being h¿M . Let |	0|¿R. If [	1; 	2] is subset of Rm\BR,
then (2.12) follows from (UC) and h¿f; if not, either the segment [	0; 	1] ⊂ Rm\BR

or else [	0; 	2] ⊂ Rm\BR. Suppose the last one, the other one being equivalent. Clearly,
there exists +∈ @BR such that 	0 ∈ [+; 	2] ⊂ [	1; 	2]. Let ,∈ (0; 1=2] be such that � =
,++ (1− ,)	2. Being h convex on [+; 	2] and M = h(+) = min[+;	2] h, we get

h(	0)6 h
(
++ 	2

2

)
6

1
2
[M + h(	2)];

so (2.12) follows.
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By Lemma 2.2, there exists R1¿R, depending on p; �; R and M , such that h(	) =
f(	) when |	|¿R1, which implies that h is uniformly convex in Rm\BR1 (0). From
step 1, there exist R2¿R1, �0(p; �)¿ 0 and a vector q	 such that for |	|¿R2 and
%∈Rm,

h(%)¿ h(	) + 〈q	; %− 	〉+ �0(1 + |	|2 + |%|2)(p−2)=2|	− %|2

= f(	) + 〈q	; %− 	〉+ �0(1 + |	|2 + |%|2)(p−2)=2|	− %|2; (2.13)

therefore (2.5) holds, when |%|¿R1.
Let |%|6R1. Since for some c1; c2 ¿ 0,

(1 + |	|2 + |%|2)(p−2)=2|	− %|2¿ c1(p; �)|	|p − c2(p; R1; �); (2.14)

taking into account (2.13), we have

h(%)− c1|	|p + c2¿f(	) + 〈q	; %− 	〉+ �0
2
(1 + |	|2 + |%|2)(p−2)=2|	− %|2:

We choose R0¿R2 such that, when |	|¿R0, for every %∈ OBR1 (0) is h(%)− c1|	|p +
c2 ¡ 0. Since f¿ 0, (2.5) follows.
Fixed 	∈Rm\BR0 (0), for any %∈Rm de/ne

v	(%) := f(	) + 〈q	; %− 	〉:
v	 is convex and, from (2.5), v	(%)6f(%). Then v	(%)6f∗∗(%)6f(%) where f∗∗

denotes the convex envelope of f. Therefore f(	) = f∗∗(	).

The previous results still hold when f is not homogeneous and satis/es (A3). The
proof is straightforward and is left to the reader.

Theorem 2.5. Let f :� × RnN → [0;+∞), f = f(x; 	), be a Carath=eodory function.
Then (A2) and (A3) imply

(i) There exist c0(p; q; �; R; L) and c1(�) such that for a.e. x∈� and every 	∈RnN ,

f(x; 	)¿− c0 + c1|	|p;
(ii) There exist c0(p; q; �; R; L); c1(p; �)¿ 0 and a Carath=eodory function g :� ×

RnN → [− c0;+∞) such that for a.e. x∈� and every 	∈RnN ,

f(x; 	) = c1(1 + |	|2)p=2 + g(x; 	): (2.15)

Moreover, for a.e. x∈� and every 	1; 	2 ∈RnN such that [	1; 	2] ⊆ RnN\BR(0),
1
2
[g(x; 	1) + g(x; 	2)]¿ g

(
x;

	1 + 	2
2

)
;

(iii) There exist R0, �0 ¿ 0 depending only on p; q; �; R and L, such that for a.e. x∈�
and every 	∈RnN\BR0 (0) there exists q	(x)∈RnN , |q	(x)|6 c(q; L)(1 + |	|)q−1,
such that for all %∈RnN ,

f(x; %)¿f(x; 	) + 〈q	(x); %− 	〉+ �0(1 + |	|2 + |%|2)(p−2)=2|	− %|2:
Moreover, if 	 	→ f(x; 	) is C1(RnN\BR(0)), then q	(x) = D	f(x; 	),
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(iv) If 	 	→ f∗∗(x; 	) is the convex envelope of 	 	→ f(x; 	), then f = f∗∗ in � ×
(RnN\BR0 (0)).

Moreover, if f satis8es (ii) for some c0; c1 and R, then (A2) holds, with the same R
and with � depending only on p and c1.

Theorem 2.5 (iii) enables us to compare diEerent local minimizers of functionals
whose densities satisfy the uniform convexity at in/nity. The following proposition is
essentially contained in the proof of Theorem 2.7 in [7]. For the sake of completeness
we give a detailed proof.

Lemma 2.6. Let u be a local minimizer of

F(w;�) =
∫
�

f(x; Dw(x)) dx;

where f :� × RnN → [0;+∞) is a Carath=eodory function, convex with respect to
the last variable, satisfying (A2) and (A3). Suppose that there exist Br(x0) ⊂⊂ �
and v∈ u+W 1;1

0 (Br(x0);RN ) such that F(u;Br(x0))=F(v;Br(x0)). Then there exists
R0(p; q; �; R; L)¿R such that the Lebesgue measure of the set

{x∈Br(x0) : |Du(x) + Dv(x)|¿ 2R0 and |Du(x)− Dv(x)|¿ 0}
is zero.

Proof. From Theorem 2.5 (iii) there exist R0, �0 ¿ 0 such that for a.e. x∈� and every
	∈RnN\BR0 (0)

f(x; %)¿f(x; 	) + 〈q	(x); %− 	〉+ �0(1 + |	|2 + |%|2)(p−2)=2|	− %|2 (2.16)

for some q	(x)∈RnN and for all %∈RnN . Set A= {x∈Br(x0) : |Du+Dv|¿ 2R0}. For
a.e. x∈A consider (2.16) with 	= (Du(x) + Dv(x))=2 and %= Du(x),

f(x; Du)− f
(
x;

Du+ Dv
2

)

¿
〈
q	(x);

Du− Dv
2

〉

+ �0

(
1 +

∣∣∣∣Du+ Dv
2

∣∣∣∣
2

+ |Du|2
)(p−2)=2 ∣∣∣∣Du− Dv

2

∣∣∣∣
2

(2.17)

and (2.16) applied with %= Dv(x),

f(x; Dv)− f
(
x;

Du+ Dv
2

)

¿
〈
q	(x);

Dv− Du
2

〉
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+ �0

(
1 +

∣∣∣∣Du+ Dv
2

∣∣∣∣
2

+ |Dv|2
)(p−2)=2 ∣∣∣∣Du− Dv

2

∣∣∣∣
2

; (2.18)

thus, summing (2.17) and (2.18) and integrating on A, we get∫
A
[f(x; Du) + f(x; Dv)] dx

¿ 2
∫
A
f
(
x;

Du+ Dv
2

)
dx + �0

∫
A

(
1 +

∣∣∣∣Du+ Dv
2

∣∣∣∣
2

+ |Du|2
)(p−2)=2

×
∣∣∣∣Du− Dv

2

∣∣∣∣
2

dx

+ �0

∫
A

(
1 +

∣∣∣∣Du+ Dv
2

∣∣∣∣
2

+ |Dv|2
)(p−2)=2 ∣∣∣∣Du− Dv

2

∣∣∣∣
2

dx: (2.19)

The convexity of f with respect to 	 and (2.19) give

F

(
u+ v
2

;Br

)
− 1

2
F(u;Br)− 1

2
F(v;Br)

6− �0
2

∫
A

(
1 +

∣∣∣∣Du+ Dv
2

∣∣∣∣
2

+ |Du|2
)(p−2)=2 ∣∣∣∣Du− Dv

2

∣∣∣∣
2

dx

−�0
2

∫
A

(
1 +

∣∣∣∣Du+ Dv
2

∣∣∣∣
2

+ |Dv|2
)(p−2)=2 ∣∣∣∣Du− Dv

2

∣∣∣∣
2

dx

and since F(u;Br) =F(v;Br) the thesis follows.

3. A priori estimates

In order to prove Theorem 1.1, we prove some regularity results for minimizers of
functionals with smooth integrands.
Let us consider

F(u;�) =
∫
�

f(x; Du) dx; (3.1)

where f :�×RnN → [0;+∞), f=f(x; 	), is convex with respect to 	, satis/es (A1)
–(A4) and the supplementary assumptions

(H1) f is in C2(� × RnN ),
(H2) There exists K ¿ 0 such that for every (x; 	)∈� × RnN ,

f(x; 	)6K(1 + |	|2)p=2;
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(H3) There exist &0 and 0 positive constants such that for every x∈� and for every
	; �∈RnN ,

&0(1 + |	|2)(p−2)=2|�|26 〈D		f(x; 	)�; �〉60(1 + |	|2)(p−2)=2|�|2;
(H4) For every (x; 	)∈� × RnN .

|D	xf(x; 	)|6K(1 + |	|2)(p−1)=2:

The following result holds:

Proposition 3.1. Let u be a local minimizer of (3.1), where f satis8es (A1), (A2)
and (H1)–(H4). Fixed Br(x0) ⊂⊂ �, there exists C =C(n; p; �; R; K; r)¿ 0 such that

sup
Br=4(x0)

|Du|6C
[ ∫

Br(x0)
(1 + |Du|2)p=2 dx

]1=p
: (3.2)

We postpone the proof of Proposition 3.1 to some preliminary results.
Next lemma can be proved as Lemma 4.3 in [8]. From (A1), we de/ne Of such that,

for a.e. x∈� and for every 	∈RnN\BR(0), f(x; 	) = Of(x; |	|2).

Lemma 3.2. Let f :�×RnN → [0;+∞) be of class C2 and let (A1) and (A2) hold.
Then for all x∈�, 	∈RnN\BR(0) and �∈Rn,∑

�; s; i

4 Of tt(x; |	|2)	�
s 	

�
i �s�i + 2 Of t(x; |	|2)|�|2¿ c(�)(1 + |	|2)(p−2)=2|�|2:

The following result extends to our case some integrability properties for local min-
imizers proved in [11] (p¿ 2) and in [1] (1¡p¡ 2) when f = f(	). We omit the
proof which closely follows that of Lemma 2.5 in [1].

Lemma 3.3. Let u be a local minimizer of (3.1), with f satisfying (H1)–(H4). Then
u∈W 2; a

loc (�), with a=min{2; p}, and (1 + |Du|2)(p−2)=2|D2u|2 ∈L1
loc(�).

Next lemma concerns the validity of Euler systems. It generalizes Lemma 4.1 in [5]
to non-homogeneous energy densities, with a similar proof that we omit.

Lemma 3.4. Let u be a local minimizer of (3.1), with f satisfying (H1)–(H4). Let
Br(x0) ⊂⊂ � and suppose that 2 is a W 1;1(Br(x0);RN ) function with compact support
in Br , such that

D	�i f(x; Du)2�; Di(D	�i f(x; Du))2�; D	�i f(x; Du)Di2�

belong to L1(Br), for all i = 1; : : : ; n, �= 1; : : : ; N .
Then, for all �,∑

i

∫
Br(x0)

D	�i f(x; Du)Di2� dx = 0:
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Proof of Proposition 3.1. We divide it into two steps.
Step 1: Let us consider a cut-oE function %∈C1

c (Br), 06 %6 1. We prove that
there exists c depending on p; �; K such that for all 3¿− 1 there exists∫

Br

(1 + |Du|2)p=2+3−1|D(|Du|2 − R2)+|2%2 dx

6 c
max{1; 1 + 3}
min{1; 1 + 3}

∫
Br

(1 + |Du|2)p=2+3+1(%2 + |D%|2) dx: (3.3)

For any M ¿ 0 let +M ∈C∞([0;+∞); [0; 1]) be such that +M ≡ 1 in [0; M ], +M (t) = 0
if t¿ 2M , |+′M (t)|6 2=M .
Fixed 3¿− 1 let us de/ne 4 : [0;+∞) → [0;+∞),

4(t) := (1 + R2 + t)3t: (3.4)

By a well-known property of summable functions there exists an increasing and diver-
gent sequence (ah) in R+ such that the Lebesgue measure of {x : (|Du(x)|2−R2)+=ah}
is zero.
For every h∈N let us de/ne

4h(t) :=

{
4(t) if t ¡ah;

4(ah) otherwise:

Notice that, for all h, 4h(0) = 0, 4h and 4′
h are non-negative, bounded and that if h

goes to in/nity they monotonically converge to 4 and 4′, respectively.
Recall that the diEerence quotient �s;h in the direction es is de/ned by

�s;hv(x) :=
v(x + hes)− v(x)

h
:

For any h;M , s= 1; : : : ; n, �= 1; : : : ; N and k ¿ 0, small enough, de/ne

6�
h;M;s; k(x) := +M (|Du(x)|+ |Du(x + kes)|)4h((|Du(x)|2 − R2)+)Dsu�(x)

and

2�
h;M;s; k(x) := %2(x)�s;−k 6�

h;M;s; k(x):

By Lemma 3.4, for all �,∑
i

∫
Br

D	�i f(x; Du)Di2�
h;M;s; k(x) dx = 0: (3.5)

For simplicity we shall write +M;k , +M , 4h in place of +M (|Du(x)| + |Du(x + kes)|),
+M (2|Du|) and 4h((|Du(x)|2 − R2)+), respectively. By (3.5), integrating by parts and
summing on � and s we get∑

i;�; s

∫
Br

�s; k [D	�i f(x; Du)%2]Di6�
h;M;s; k dx

=
∑
i;�; s

2
∫
Br

D	�i f(x; Du)%Di%�s;−k 6�
h;M;s; k dx: (3.6)
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From now on, we shall use the Einstein’s convention for repeated indexes. Letting k
go to 0 in (3.6) we get∫

Br

D	�i 	
�
j
f(x; Du)Dsju�%2Di[+M4hDsu�] dx

=−
∫
Br

Dxs	�i f(x; Du)%2Di[+M4hDsu�] dx

− 2
∫
Br

D	�i f(x; Du)%Ds%Di[+M4hDsu�] dx

+2
∫
Br

D	�i f(x; Du)%Di%Ds[+M4hDsu�] dx

so that∫
Br

D	�i 	
�
j
f(x; Du)Dsju�%2+M [4hDisu� + 4′

hDi((|Du|2 − R2)+)Dsu�] dx

=− 2
∫
Br

D	�i 	
�
j
f(x; Du)Dsju�+′MDi(|Du|)4hDsu�%2 dx

− 2
∫
Br

Dxs	�i f(x; Du)4h+′MDi(|Du|)Dsu�%2 dx

−
∫
Br

Dxs	�i f(x; Du)+M%2[4′
hDi((|Du|2 − R2)+)Dsu� + 4hDisu�] dx

− 2
∫
Br

D	�i f(x; Du)+M%Ds%[4hDisu� + 4′
hDi((|Du|2 − R2)+)Dsu�] dx

− 2
∫
Br

D	�i f(x; Du)4h+′MDi(|Du|)Dsu�%Ds% dx

+2
∫
Br

D	�i f(x; Du)+M%Di%[4hDssu� + 4′
hDs((|Du|2 − R2)+)Dsu�] dx

+2
∫
Br

D	�i f(x; Du)4h+′MDsu�Ds(|Du|)%Di% dx: (3.7)

Recalling that 4h stands for 4h((|Du(x)|2−R2)+) and that 4h(0)=0, (A2) and Lemma
2.1 imply∫

Br

D	�i 	
�
j
f(x; Du)Djsu�Disu�4h+M%2 dx

¿ c(�)
∫
Br

(1 + |Du|2)(p−2)=2|D2u|24h+M%2 dx:

On the other hand, since

D	�i 	
�
j
f(x; 	) = 4 Of tt(x; |	|2)	�

i 	
�
j + 2 Of t(x; |	|2)3ij3��;
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by Lemma 3.2 it follows∫
Br

D	�i 	
�
j
f(x; Du)Dsju�Di((|Du|2 − R2)+)Dsu�4′

h+M%2 dx

=2
∫
Br

Of tt(x; |Du|2)Dsu�Diu�Ds(|Du|2)Di(|Du|2 − R2)+4′
h+M%2 dx

+
∫
Br

Of t(x; |Du|2)Di(|Du|2)Di(|Du|2 − R2)+4′
h+M%2 dx

¿ c(�)
∫
Br

(1 + |Du|2)(p−2)=2|D(|Du|2 − R2)+|24′
h+M%2 dx: (3.8)

In the following we denote by c any constant which may take diEerent values from
line to line.
(H2) and the convexity of f with respect to 	 give

|D	f(x; 	)|6 c(K)(1 + |	|)p−1 (3.9)

for all 	 in RnN . (H3), (H4), (3.7)–(3.9) imply∫
Br

(1 + |Du|2)(p−2)=2|D2u|24h+M%2 dx

+
∫
Br

(1 + |Du|2)(p−2)=2|D(|Du|2 − R2)+|24′
h+M%2 dx

6 c(p; �; K; 0)
∫
Br

(1 + |Du|2)(p−1)=2|D2u|24h|+′M |%2 dx

+ c(p; �; K)
∫
Br

(1 + |Du|2)p=2|D(|Du|2 − R2)+|4′
h+M%(%+ |D%|) dx

+ c(p; �; K)
∫
Br

(1 + |Du|2)(p−1)=2|D2u|4h+M%(%+ |D%|) dx

+ c(p; �; K)
∫
Br

(1 + |Du|2)p=2|D2u|4h|+′M |%(%+ |D%|) dx: (3.10)

By Young inequality, it follows∫
Br

(1 + |Du|2)(p−2)=2|D2u|24h%2 dx

+
∫
Br

(1 + |Du|2)(p−2)=2|D(|Du|2 − R2)+|24′
h%

2 dx

6 c(0)
∫
Br

(1 + |Du|2)(p−1)=2|D2u|24h|+′M |%2 dx

+ c
∫
Br

(1 + |Du|2)p=24h+M (%2 + |D%|2) dx
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+ c
∫
Br

(1 + |Du|2)p=2+14′
h+M (%2 + |D%|2) dx

+ c
∫
Br

(1 + |Du|2)p=2|D2u|4h|+′M |%(%+ |D%|) dx: (3.11)

Since Lemma 3.3 implies that (1 + |Du|2)(p−1)=2|D2u| ∈L1
loc, taking into account that

+′M (x) = 0 if |Du(x)|¿ 2M , and that (1 + |Du|2)1=2|+′M |6C, with C independent of
M , then every term containing the derivative of +M in (3.11) tends to zero when
M → +∞. Setting

V (x) := 1 + R2 + (|Du(x)|2 − R2)+; (3.12)

we get∫
Br

V (p−2)=2|D2u|24h((|Du|2 − R2)+)%2 dx

+
∫
Br

V (p−2)=2|D(|Du|2 − R2)+|24′
h((|Du|2 − R2)+)%2 dx

6 c
∫
Br

Vp=2+14′
h((|Du|2 − R2)+)(%2 + |D%|2) dx

+ c
∫
Br

Vp=24h((|Du|2 − R2)+)(%2 + |D%|2) dx: (3.13)

Passing to the limit as h → +∞, by the monotone convergence theorem it follows that
(3.13) holds with 4 and 4′ in place of 4h and 4′

h, respectively:∫
Br

Vp=2+3−1(|Du|2 − R2)+|D2u|2%2 dx

+
∫
Br

Vp=2+3−2(1 + R2 + (1 + 3)(|Du|2 − R2)+)|D(|Du|2 − R2)+|2%2 dx

6 c
∫
Br

Vp=2+3(1 + R2 + (1 + 3)(|Du|2 − R2)+)(%2 + |D%|2) dx

+ c
∫
Br

Vp=2+3(|Du|2 − R2)+(%2 + |D%|2) dx:

Hence (3.3) holds∫
Br

Vp=2+3−1|D(|Du|2 − R2)+|2%2 dx

6 c
max{1; 1 + 3}
min{1; 1 + 3}

∫
Br

Vp=2+3+1(%2 + |D%|2) dx;

with c = c(p; �; K).
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Step 2: Let 3¿− 1 be as in step 1. De/ne += p=4 + (3+ 1)=2. Let 9 be equal to
n=(n− 2) if n¿ 2, or to any number greater than 1 if n= 2, from the above estimate
we have∫

Br

|D(V +%)|2 dx6 c
(
1 + +2

max{1; 2+− p=2}
min{1; 2+− p=2}

) ∫
Br

V 2+(%2 + |D%|2) dx

and by Sobolev inequality we get[ ∫
Br

(V 2+%2)9 dx
]1=9

6 c
(
1 + +2

max{1; 2+− p=2}
min{1; 2+− p=2}

)

×
∫
Br

V 2+(%2 + |D%|2) dx: (3.14)

For any i∈N set ri = r=4 + r=4i. Let %i be a cut-oE function in C1
c (Bri), such that

%i =1 in Bri+1 and %2i + |D%i|26 c(r)42i. Given :¿ 1, to be chosen later, consider the
sequence (+i) de/ned by +i+1 = +i9, where +1 = (p=4):. Then +i goes to +∞ when
i → +∞. From (3.14) it follows that for all i,[∫

Bri+1

V 2+i+1 dx

]1=9
6 c42i

(
1 + +2i

max{1; 2+i − p=2}
min{1; 2+i − p=2}

)∫
Bri

V 2+i dx:

Setting

ci =
[
c42i

(
1 + +2i

max{1; 2+i − p=2}
min{1; 2+i − p=2}

)]1=(2+i)
;

the previous inequality can be rewritten as

‖V‖L2+i+1 (Bri+1 )
6 ci‖V‖L2+i (Bri )

: (3.15)

Iterating (3.15), we get

‖V‖L2+i+1 (Bri+1 )
6

i∏
j=1

cj‖V‖L2+1 (Br1 )
:

Since
∏i

j=1 cj is uniformly bounded in i, passing to the limit with respect to i we get

sup
Br=4

|V |6C

(∫
Br=2

Vp:=2(x) dx

)2=(p:)

;

where C=C(n; p; �; K; :; r). On the other hand, since c(R)V (x)6 1+ |Du(x)|26V (x),
we have

sup
Br=4

|Du|6 c

[∫
Br=2

(1 + |Du|2)p:=2 dx

]1=(p:)

; (3.16)

with c depending also on R.
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By Theorem 2.5 (i), there exist c̃0; c̃1 such that for all (x; 	)∈� × RnN ,

−c̃0 + c̃1|	|p6f(x; 	)6K(1 + |	|)p;
therefore the higher summability property of local minimizers (see [10]), implies that
there exists :0 ¿ 1, depending only on n; p; �; R and K , such that Du is locally in Lp:0

and [∫
Br=2

(1 + |Du|2)p:0=2 dx

]1=(p:0)

6 c
[∫

Br

(1 + |Du|2)p=2 dx
]1=p

: (3.17)

Choosing := :0, (3.16) and (3.17) give (3.2).

Suppose now that u is a local minimizer of (3.1), with f satisfying (A1)–(A4) and
(H1)–(H4). From Proposition 3.1 u is locally Lipschitz continuous. This fact, together
with a suitable iteration argument, allows us to obtain an estimate similar to (3.2),
with constants depending only on the constants in (A2)–(A4). Precisely, the following
proposition holds:

Proposition 3.5. Let u be a local minimizer of (3.1), where f satis8es (A1)–(A4)
and (H1)–(H4), with q¡p(n+ 1)=n. For any Br(x0) ⊂⊂ �, there exist C=C(n; p; q;
�; R; L; r) and � = �(n; p; q) positive constants, such that

sup
Br=4(x0)

|Du|p6C
[ ∫

Br(x0)
(1 + |Du|2)p=2 dx

]�
: (3.18)

Proof. By Proposition 3.1 and Lemma 3.3, u is in W 1;∞
loc (�) ∩W 2;2

loc (�).
Step 1: Given %∈C1

c (Br), 06 %6 1, we will show that if 3¿− 1 then∫
Br

(1 + |Du|2)p=2+3−1|D(|Du|2 − R2)+|2%2 dx

6 c
max{1; 1 + 3}
min{1; 1 + 3}

∫
Br

(1 + |Du|2)q−p=2+3+1(%2 + |D%|2) dx; (3.19)

with c depending on q; � and L. The proof of this claim can be obtained following
closely step 1 of Proposition 3.1, to which we address for formulas and notations.
Since u is locally Lipschitz continuous then the Euler system (3.5) is satis/ed with
4h = 4 and +M = 1. Using assumption (A3) instead of (H2), (3.9) becomes

|D	f(x; 	)|6 c(L)(1 + |	|)q−1

and, using (A4) in place of (H3), we obtain (3.10) with p replaced by q on the
right-hand side, namely∫

Br

(1 + |Du|2)(p−2)=2|D2u|24%2 dx;

+
∫
Br

(1 + |Du|2)(p−2)=2|D(|Du|2 − R2)+|24′%2 dx
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6 c(q; �; L)
∫
Br

(1 + |Du|2)q=2|D(|Du|2 − R2)+|4′%(%+ |D%|) dx

+ c(q; �; L)
∫
Br

(1 + |Du|2)(q−1)=2|D2u|4%(%+ |D%|) dx:

Using the de/nition of 4 and V , see (3.4) and (3.12), Young inequality yields∫
Br

Vp=2+3−1(|Du|2 − R2)+|D2u|2%2 dx

+
∫
Br

Vp=2+3−2(1 + R2 + (1 + 3)(|Du|2 − R2)+)|D(|Du|2 − R2)+|2%2 dx

6 c
∫
Br

V q−p=2+3(1 + R2 + (1 + 3)(|Du|2 − R2)+)(%2 + |D%|2) dx

+ c
∫
Br

V q−p=2+3(|Du|2 − R2)+(%2 + |D%|2) dx

and (3.19) easily follows.
Step 2: De/ne + = p=4 + (3+ 1)=2. Setting , = q − p and 9 = n=(n− 2) if n¿ 2,

or any number greater than p=(p− 2,) if n= 2, from (3.19)∫
Br

|D(V +%)|2 dx6 c(q; �; L)
(
1 + +2

max{1; 2+− p=2}
min{1; 2+− p=2}

)

×
∫
Br

V 2++,(%2 + |D%|2) dx

and the Sobolev inequality yields[ ∫
Br

(V 2+%2)9 dx
]1=9

6 c
(
1 + +2

max{1; 2+− p=2}
min{1; 2+− p=2}

)

×
∫
Br

V 2++,(%2 + |D%|2) dx: (3.20)

For every i∈N let us de/ne ri = r=4 + r=4i. Let %i be a cut-oE function in C1
c (Bri),

such that %i=1 in Bri+1 and %2i + |D%i|26 c(r)42i. Let :¿ 1 and consider the sequence
(+i) de/ned as 2+i+1 = 2+i9 − ,, with +1 = (p=4):.
Since 2,=(p(9 − 1))¡ 1¡: then +i goes to +∞ when i → +∞. From (3.20) it

follows that for all i,[∫
Bri+1

V 2+i9 dx

]1=9
6 c42i

(
1 + +2i

max{1; 2+i − p=2}
min{1; 2+i − p=2}

)∫
Bri

V 2+i−19 dx:

Setting

ci =
[
c42i

(
1 + +2i

max{1; 2+i − p=2}
min{1; 2+i − p=2}

)]1=(2+i)
;



G. Cupini et al. / Nonlinear Analysis 54 (2003) 591–616 609

the previous inequality can be rewritten as

‖V‖L2+i9(Bri+1 )
6 ci‖V‖+i−19=+i

L2+i−19(Bri )
: (3.21)

Iterating (3.21), we get

‖V‖L2+i9(Bri+1 )
6

i−1∏
j=0

c[(+i−j)=+i]9j

i−j ‖V‖(+0=+i)9i

L2+1+,(Br1 )
;

where +0 = (2+1 + ,)=(29). Since
∏i−1

j=0 c
[(+i−j)=+i]9j

i−j is uniformly bounded, passing to the
limit with respect to i we get

sup
Br=4

|V |6 c

(∫
Br=2

V (p=2):+, dx

);

; (3.22)

where c = c(n; p; q; �; L; r) and ; = (9 − 1) (p:(9 − 1)=2− ,)−1.
Step 3: In order to get the result we need to estimate the second term of (3.22). By

an iteration technique we shall show that there exist c¿ 0 and �¿ 1, depending only
on the constants in (A2)–(A4), such that∫

Br=2

V (p=2):+, dx6 c
[ ∫

Br

Vp=2 dx
]�

: (3.23)

Fixed '¡<¡r, let % be a cut-oE function such that %= 1 on B', %= 0 outside B<,
|D%|6 2=(< − '). From (3.20)[∫

B'

V (p=2):9 dx

]1=9
6 c

1
(< − ')2

∫
B<

Vp:=2+, dx; (3.24)

where c= c(n; p; q; �; L). Setting s=1+2,=(p:), 3= 9=s and H =V (p=2):s, (3.24) may
be rewritten as[∫

B'

H3 dx

]1=9
6 c

1
(< − ')2

∫
B<

H dx:

Let t ¿9 to be chosen later. By HSolder inequality∫
B<

H dx6
[ ∫

B<

H3 dx
]1=t [ ∫

B<

H (t−3)=(t−1) dx
](t−1)=t

;

therefore[∫
B'

H3 dx

]1=9
6 c

1
(< − ')2

[ ∫
B<

H3 dx
]1=t [ ∫

Br

H (t−3)=(t−1) dx
](t−1)=t

: (3.25)

For all i∈N, consider the last inequality with < = 'i, ' = 'i−1, where 'i = r − r=2i.
Iterating (3.25) we get∫

Br=2

H36

[∫
B'i+1

H3

](9=t)i i∏
j=1

(c4 j)9(9=t)
j−1
[ ∫

Br

H (t−3)=(t−1)
](t−1)(9=t) j
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6
[ ∫

Br

H3
](9=t)i i∏

j=1

(c4j)9(9=t)
j−1
[ ∫

Br

H (t−3)=(t−1)
](t−1)(9=t) j

: (3.26)

Since u∈W 1;∞
loc (�) the /rst term on the right-hand side of (3.26) tends to 1 when

i → +∞, while

∞∏
j=1

(c4j+1)9(9=t)
j
[ ∫

Br

H (t−3)=(t−1)
](t−1)(9=t) j

6 c
[ ∫

Br

H (t−3)=(t−1)
]9(t−1)=(t−9)

= c
[∫

Br

V (p=2):s(t−3)=(t−1)
]9(t−1)=(t−9)

:

where c = c(n; p; q; t; �; R; L; r).
We choose t in such a way that :ps(t − 3)=(2(t − 1))=p=2, that is :s(t − 3)=(t − 1)=

1. Such a t exists, since by the choice of s, 9 and the bound on q (q¡p((n+ 1)=n))

lim
t→+∞ :s

t − 3
t − 1

= :s¿ 1; :s
9 − 3
9 − 1

¡ 1:

With this choice, since

∫
Br=2

H dx6

[∫
Br=2

H3 dx

]1=3
|Br=2|1−1=3;

(3.23) follows with � = s(t − 1)=(t − 9). Since c(R)V (x)6 1 + |Du(x)|26V (x) we
/nally have (3.18) with � = p;�=2.

Remark 3.6. Obvious changes in the proof of Proposition 3.5 imply that estimate
(3.18) can be rewritten in such a way that for all '¡r there exists c0 depending
on n; p; q; �; R; L; r; ' such that

sup
B'(x0)

|Du|p6 c0

(∫
Br(x0)

(1 + |Du|p) dx
)�

:

4. Approximation and proof of Theorem 1.1

The main tools to prove Theorem 1.1 are two approximation lemmas. In the /rst
lemma we de/ne a sequence of functions (fk) with p-growth, which monotonically
converges to f. The second lemma gives a smooth approximation for each fk , with
functions satisfying (H1)–(H4).

Lemma 4.1. Let f :� × RnN → [0;+∞), f = f(x; 	), be a Carath=eodory function,
convex with respect to 	, which satis8es assumptions (A1)–(A4). Then there exists
a sequence (fk) of Carath=eodory functions fk :� × RnN → [0;+∞), convex with
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respect to the last variable, monotonically convergent to f, such that

(I) For a.e. x∈� and every 	∈RnN\BR(0); fk(x; 	) = f̃ k(x; |	|),
(II) For a.e. x∈�, for every 	∈RnN , and for every k, fk(x; 	)6fk+1(x; 	)6f(x; 	),
(III) fk is p-uniformly convex at in8nity with respect to 	, with O� depending only

on p and �,
(IV) For a.e. x∈� and for every 	∈RnN , there exist L1, independent of k, and OL1,

depending on k, such that

fk(x; 	)6 L1(1 + |	|)q;
fk(x; 	)6 OL1(k)(1 + |	|)p;

(V) Using the same notations as in (A4), for every 	 	→ fk(x; 	) the vector 8eld
x 	→ D+

	 fk(x; 	) is weakly di?erentiable and for a.e. x∈� and for every
	∈RnN\BR(0),

|DxD+
	 fk(x; 	)|6L1(1 + |	|)q−1;

|DxD+
	 f(x; 	)|6 OL1(k)(1 + |	|)p−1:

Proof. From Theorem 2.5(ii) there exist c0 = c0(p; q; �; R; L) and c1 = c1(p; �) positive
constants and a function g :� × RnN → [− c0;+∞) such that

f(x; 	) = c1(1 + |	|2)p=2 + g(x; 	);

with g convex at in/nity, and there exists g̃ :� × [R;+∞) → [ − c0;+∞) such that
g̃(x; |	|) = g(x; 	) for any 	∈RnN\BR(0). Since nN ¿ 1, for a.e. x∈�, t 	→ g̃(x; t) is
convex and increasing. For any k ∈N, k ¿R, using the same notations as in (A4),
de/ne g̃k :� × [R;+∞) → [− c0;+∞) as follows:

g̃k(x; t) = g̃(x; t) ∀(x; t)∈� × [R; k];

g̃k(x; t) = g̃(x; k) + D+
t g̃(x; k)(t − k) ∀(x; t)∈� × (k;+∞):

For a.e. x∈�, t 	→ g̃k(x; t) is convex and increasing in [R;+∞) and g̃k(x; t)6 g̃k+1(x; t)
6 g̃(x; t). (A3) and the de/nition of g̃k(x; t) give

g̃k(x; t)6 L(1 + t)q;

g̃k(x; t)6 c(q; L; k)(1 + t)p:

If t ∈ (k;+∞) Dtg̃k(x; t)=D+
t g̃(x; k) and (A4) implies that |DxD+

t g̃(x; k)|6L(1+k)q−1,
therefore for a.e. x and every t ¿R

|DxD+
t g̃(x; t)|6 c(1 + t)q−1

|DxD+
t g̃(x; t)|6 c(k)(1 + t)p−1:

For any k, de/ne gk :�×RnN → [−c0;+∞), gk(x; 	)=g(x; 	) if |	|¡R and gk(x; 	)=
g̃k(x; |	|) otherwise. Setting fk :� × RnN → [0;+∞)

fk(x; 	) := c1(1 + |	|2)p=2 + gk(x; 	);

the result easily follows.
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Lemma 4.2. Let fk be as in Lemma 4.1. Fixed an open set A ⊂⊂ �, there exists a
sequence of C2-functions fkh :A × RnN → [0;+∞) with the following property. For
any compact set K ∈RnN and for any 3¿ 0 there exists A3 ⊂ A with |A3|¡3 such
that

lim
h→∞

fkh = fk uniformly on (A\A3)× K: (4.1)

Moreover fkh satis8es (A1)–(A4) and (H1)–(H4). More precisely,

(A1) For every x∈A and 	∈RnN\BR+1(0); fkh(x; 	) = f̃ kh(x; |	|),
(A2) There exists �̃ depending on p; � and R, but neither on k nor h, such that

for every x∈A and for every 	1; 	2 ∈RnN\BR+1(0) endpoints of a segment
contained in the complement of BR+1(0),

1
2 [fkh(x; 	1) + fkh(x; 	2)]

¿fkh

(
x;

	1 + 	2
2

)
+ �̃(1 + |	1|2 + |	2|2)(p−2)=2|	1 − 	2|2;

(A3) There exists L2, depending neither on k nor on h, such that for all (x; 	)∈
A× RnN

fkh(x; 	)6L2(1 + |	|)q;
(A4) For every x∈A and 	∈RnN\BR+1(0)

|D	xfkh(x; 	)|6L2(1 + |	|)q−1;

(H1) fkh is in C2(A× RnN ),
(H2) There exists OL2(k), independent of h, such that for all (x; 	)∈A× RnN

fkh(x; 	)6 OL2(k)(1 + |	|)p;
(H3) There exist &h ¿ 0, independent of k, and 01(h) such that for all (x; 	)∈

A× RnN and for all �∈RnN ,

&h(1 + |	|2)(p−2)=2|�|26 〈D		fkh(x; 	)�; �〉601(h)(1 + |	|2)(p−2)=2;

(H4) There exists O01(k), independent of h, such that for every x∈A and 	∈
RnN\BR+1(0),

|D	xfkh(x; 	)|6 O01(k)(1 + |	|2)(p−1)=2:

Proof. Let fk be as in Lemma 4.1, that is

fk(x; 	) = c1(1 + |	|2)p=2 + gk(x; 	): (4.2)

Fixed an open set A ⊂⊂ � and an in/nitesimal positive sequence &h, with h large
enough, consider Bn

1 ⊂ Rn and BnN
1 ⊂ RnN the unit balls centered in 0. Let < :Bn

1 →
[0;+∞) and ' :BnN

1 → [0;+∞) be two radially symmetric molli/ers such that
∫
Bn
1
<=1

and
∫
BnN
1

'= 1. De/ne Fkh :A× RnN → [0;+∞),

Fkh(x; 	) :=
∫
Bn
1

∫
BnN
1

<(y)'(%)fk(x + &hy; 	+ &h%) d% dy:
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Since gk(x; 	)= g̃k(x; |	|) if |	|¿R, then there exists F̃kh :A× [R+1;+∞) → [0;+∞)
such that Fkh(x; 	)= F̃kh(x; |	|) for every x∈A and 	∈RnN\BR+1(0). Moreover, Fkh is
convex with respect to 	 in RnN .
Fixed a compact subset K in RnN , for any m∈N there exists a /nite number of

open balls B1=m(	m
j ) such that K ⊂ ⋃i(m)

j=1 B1=m(	m
j ). For every m and j = 1; : : : ; i(m),

x 	→ ∫
Bn
1
<(y)fk(x + &hy; 	m

j ) dy converges in L1 to x 	→ fk(x; 	m
j ), as h goes to +∞.

By a diagonal argument, eventually passing to subsequences, we have that for every
m∈N, j = 1; : : : ; i(m) and for a.e. x∈A

lim
h→∞

∫
Bn
1

<(y)[fk(x + &hy; 	m
j )− fk(x; 	m

j )] dy = 0:

By Egorov Theorem, for any 3¿ 0 there exists A3 ⊂ A with |A3|¡3 such that for
any m,

lim
h→∞

sup
x∈A\A3

∫
Bn
1

<(y)[fk(x + &hy; 	m
j )− fk(x; 	m

j )] dy = 0; (4.3)

for every j = 1; : : : ; i(m).
We claim that Fkh converges uniformly to fk in (A\A3)× K as h → +∞, that is

lim
h→∞

sup
(x;	)∈(A\A3)×K

|Fkh(x; 	)− fk(x; 	)|= 0: (4.4)

In fact, given 	∈K , for every m there exists j = 1; : : : ; i(m) such that 	∈B1=m(	m
j ).

Consider

Fkh(x; 	)− fk(x; 	)

=
∫
Bn
1

∫
BnN
1

<(y)'(%) [fk(x + &hy; 	+ &h%)− fk(x + &hy; 	)] d% dy

+
∫
Bn
1

<(y)[fk(x + &hy; 	)− fk(x + &hy; 	m
j )] dy

+
∫
Bn
1

<(y) [fk(x + &hy; 	m
j )− fk(x; 	m

j )] dy

+(fk(x; 	m
j )− fk(x; 	))

= I h;m1 (x; 	) + I h;m2 (x; 	) + I h;m3 (x; 	) + I h;m4 (x; 	): (4.5)

The /rst inequality in (IV) of the previous lemma and the convexity of fk imply that
there exists c¿ 0 such that for a.e. x∈� and for every �; %∈RnN ,

|fk(x; �)− fk(x; %)|6 c(1 + |�|+ |%|)q−1|�− %|;
therefore

|I h;m1 (x; 	) + I h;m2 (x; 	) + I h;m4 (x; 	)|6 c
(
&h +

1
m

)
sup
	∈K

(1 + |	|)q−1:

This estimate, together with (4.3), implies (4.4).
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De/ne

fkh(x; 	) := Fkh(x; 	) + &h(1 + |	|2)p=2:

For each h, fkh ∈C2 and fkh is radial with respect to 	 if |	|¿R+ 1.
It is easy to check that Theorem 2.5 gives (A2) and that property (IV) implies

(A3) and (H2). (A4) and (H4) are an easy consequence of (V). The ellipticity
condition in (H3) follows by the convexity of Fkh(x; 	), while the right inequality in
(H3) is a consequence of the de/nition of g̃k .

Now we are ready to prove the main result.

Proof of Theorem 1.1. Let u be a local minimizer of F in (1.1). Fixed A ⊂⊂ �, let
fk; fkh be de/ned as in Lemmas 4.1 and 4.2. From (A2) and Theorem 2.5(i), there
exists c1 ¿ 0 such that

|	|p6 c1(1 + fkh(x; 	)); ∀k; h: (4.6)

Fixed Br(x0) in A, let vkh be the solution of the problem

min
{
Fkh(w;Br(x0)) :=

∫
Br(x0)

fkh(x; Dw) dx :w∈ u+W 1;p
0 (Br(x0))

}
:

From (4.6), the minimality of vkh implies∫
Br(x0)

|Dvkh|p dx6 c1

∫
Br(x0)

(1 + fkh(x; Du)) dx: (4.7)

By (H2), the dominated convergence theorem, recalling that fk(x; 	)6f(x; 	), we
have

lim
h

∫
Br(x0)

fkh(x; Du) dx =
∫
Br(x0)

fk(x; Du) dx6
∫
Br(x0)

f(x; Du) dx: (4.8)

From (4.7) and (4.8)

lim inf
h

∫
Br(x0)

|Dvkh|p dx6 c1

∫
Br(x0)

(1 + f(x; Du)) dx: (4.9)

Therefore, up to subsequences, vkh weakly converges in W 1;p to a function vk ∈ u +
W 1;p

0 (Br(x0)). For any k and h, Fkh satis/es the assumptions of Proposition 3.5 with
R + 1 in place of R. Remark 3.6, the minimality of vkh and (4.8) imply that for any
'¡r there exists � = �(n; p; q) and c2, independent of h and k, such that

lim inf
h

sup
B'(x0)

|Dvkh|p6 c2 lim inf
h

[ ∫
Br(x0)

(1 + fkh(x; Dvkh)) dx
]�

6 c2

[ ∫
Br(x0)

(1 + f(x; Du)) dx
]�

=: M: (4.10)
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Up to a subsequence, vkh converges to vk w∗ −W 1;∞(B'(x0)) for any '¡r and∫
Br(x0)

|Dvk |p dx6 c1

∫
Br(x0)

(1 + f(x; Du)) dx; (4.11)

sup
B'(x0)

|Dvk |p6 c2

[ ∫
Br(x0)

(1 + f(x; Du)) dx
]�

: (4.12)

Therefore, up to subsequences, vk weakly converges in W 1;p and weakly∗ in W 1;∞
loc

(Br(x0)) to a function v∈ u+W 1;p
0 (Br(x0)).

Let us show that v is a minimizer of F(w;Br(x0)). Fix '¡r and k0 ∈N. Since
if k ¿k0, fk(x; 	)¿fk0 (x; 	) for any x and 	, by the lower semicontinuity of w 	→∫
Br

fk0 (x; Dw) dx,∫
B'(x0)

fk0 (x; Dvk) dx6 lim inf
h

∫
B'(x0)

fk0 (x; Dvkh) dx

6 lim inf
h

∫
B'(x0)

fk(x; Dvkh) dx

By Lemma 4.2, /xed K={	∈RnN : |	|6M +1}, for every 3¿ 0 there exists A3 with
|A3|¡3 such that fkh converges to fk uniformly in (A\A3)× K . Thus

lim sup
h

∫
B'(x0)\A3

fk(x; Dvkh) dx = lim sup
h

∫
B'(x0)\A3

fkh(x; Dvkh) dx

and, from (IV) and (4.10), there exists c independent of 3, such that

lim sup
h

∫
B'(x0)∩A3

fk(x; Dvkh) dx6 c3 OL1(k)(1 +M):

Therefore,

lim inf
h

∫
B'(x0)

fk(x; Dvkh) dx6 lim sup
h

∫
Br(x0)

fkh(x; Dvkh) dx + c3 OL1(k)(1 +M):

Letting 3 go to 0, from the previous estimates, the minimality of vkh and (4.8) we
have ∫

B'(x0)
fk0 (x; Dvk) dx6

∫
Br(x0)

f(x; Du) dx

and, by the lower semicontinuity,∫
B'(x0)

fk0 (x; Dv) dx6 lim inf
k

∫
B'(x0)

fk0 (x; Dvk) dx6
∫
Br(x0)

f(x; Du) dx:

Letting k0 → ∞ and ' → r we /nally have∫
Br(x0)

f(x; Dv) dx6
∫
Br(x0)

f(x; Du) dx:

Finally, passing to the limit in (4.12) with respect to k,

sup
Br=4(x0)

|Dv|p6 c
[ ∫

Br(x0)
(1 + f(x; Du)) dx

]�
;
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and from Lemma 2.6 there exists R0 = R0(p; q; �; R; L) such that

sup
Br=4(x0)

|Du|6 sup
Br=4(x0)

|Dv|+ sup
Br=4(x0)

|Du+ Dv|6 3 sup
Br=4(x0)

|Dv|+ 2R0

and the thesis follows.
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