EXISTENCE OF MINIMIZERS FOR POLYCONVEX AND NONPOLYCONVEX PROBLEMS*

GIOVANNI CUPINI† AND ELVIRA MASCOLO†

Abstract. We study the existence of Lipschitz minimizers of integral functionals

$$\mathcal{I}(u) = \int_{\Omega} \varphi(x, \det Du(x)) dx,$$

where Ω is an open subset of \mathbb{R}^N with Lipschitz boundary, $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ is a continuous function, and $u \in W^{1,N}(\Omega, \mathbb{R}^N)$, u(x) = x on $\partial\Omega$. We consider both the cases of φ convex and nonconvex with respect to the last variable. The attainment results are obtained passing through the minimization of an auxiliary functional and the solution of a prescribed Jacobian equation.

Key words. nonpolyconvex functional, existence of minimizers, Lipschitz regularity, prescribed Jacobian equation

AMS subject classifications. 49J10, 35J60

DOI. 10.1137/040611999

1. Introduction. In this paper we consider integral functionals

(1.1)
$$\mathcal{I}(u) = \int_{\Omega} \varphi(x, \det Du(x)) dx,$$

where Ω is a bounded open subset of \mathbb{R}^N with a Lipschitz boundary, $N \geq 2$, $\varphi : \Omega \times (0, +\infty) \to [0, +\infty)$ is a continuous function, and $u \in W^{1,N}(\Omega, \mathbb{R}^N)$.

We aim at proving the existence of Lipschitz solutions to the variational problem

$$(1.2) \quad \min\left\{\mathcal{I}(u) \,:\, u\in W^{1,N}(\Omega,\mathbb{R}^N), \quad \det Du>0 \text{ a.e.,} \quad u(x)=x \text{ on } \partial\Omega\right\}.$$

Notice that even if a growth condition from below of the type $t^p \leq \varphi(x,t)$ (which is common in the theory of calculus of variations) is assumed, no coercivity of \mathcal{I} follows in any Sobolev space, preventing us from establishing the existence of minimizers via the direct method. Nevertheless many problems of this type have a solution, and the question of fixing which conditions on φ ensure the existence of solutions is worthy of interest, as is its applications in physics, mainly in elasticity theory and in the problem of the equilibrium of gases (see [17], [5], [6], and [12]). For instance, (1.2) is the variational problem corresponding to a nonhomogeneous elastic material with reference configuration Ω whose stored energy φ is a nonnegative, continuous function depending on the position x in the reference configuration and the size of the deformation of the volume element det Du(x) > 0.

It is well known that an important role is played by the convexity of φ with respect to the last variable: when φ is convex, then \mathcal{I} is said to be a polyconvex functional; if not, then \mathcal{I} is nonpolyconvex. The polyconvex case $\varphi = \varphi(t)$ has been studied by Dacorogna [5] and the nonpolyconvex case by Mascolo and Schianchi [14] and Cellina and Zagatti [4].

^{*}Received by the editors July 20, 2004; accepted for publication (in revised form) April 14, 2005; published electronically October 21, 2005.

http://www.siam.org/journals/sicon/44-4/61199.html

[†]Dipartimento di Matematica "U. Dini," Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy (cupini@math.unifi.it, mascolo@math.unifi.it).

In order to solve (1.2) our strategy is the following: The first step is to look for solutions to the following problem (from now on referred to as the *auxiliary* problem)

(1.3)
$$\min \left\{ \mathcal{J}(v) = \int_{\Omega} \varphi(x, v(x)) \, dx : v \in L^1(\Omega), \quad v > 0 \text{ a.e., } \int_{\Omega} v(x) \, dx = |\Omega| \right\},$$

where $|\Omega|$ stands for the N-dimensional Lebesgue measure of Ω . Then, if v is a solution to (1.3), the second step is to solve in $W^{1,N}(\Omega)$ the boundary value problem

(1.4)
$$\begin{cases} \det Du(x) = v(x) & \text{for a.e. } x \text{ in } \Omega, \\ u(x) = x & \text{on } \partial \Omega. \end{cases}$$

A solution u to (1.4) is a solution to (1.2), too. In fact, if $w \in W^{1,N}(\Omega)$, w(x) = x on $\partial\Omega$, then $\det Dw \in L^1(\Omega)$ and $\int_{\Omega} \det Dw(x) \, dx = |\Omega|$; therefore, if $\det Dw > 0$ a.e., then

$$\mathcal{I}(u) = \mathcal{J}(v) \le \mathcal{J}(\det Dw) = \mathcal{I}(w)$$
.

Following the above scheme, Mascolo in [13] proves the existence of minimizers of (1.2) for smooth domains Ω and $\varphi \in C^2(\overline{\Omega} \times (0, +\infty))$ strictly convex in the last variable.

As far as problem (1.3) is concerned, Ekeland and Temam in [8] prove a relaxation result and Ball and Knowles in [1] obtain an attainment result with the tool of the Young measures; see also Friesecke [10] for related results. The boundary value problem (1.4) may have no solution unless v is sufficiently regular. For instance, the simple continuity of v is not a sufficient condition to get Lipschitz solutions; see the counterexamples independently given by Burago and Kleiner [2] and McMullen [15]. Thus, also the regularity properties of minimizers of the auxiliary problem have to be studied. The pioneering papers on (1.4) are due to Moser [16] and Dacorogna and Moser [7]. In particular, in [7] the authors prove that if v is in $C^{k,\alpha}(\overline{\Omega})$, $k \geq 0$, and $\partial\Omega \in C^{k+3,\alpha}$, then there exists a diffeomorphism of class $C^{k+1,\alpha}(\overline{\Omega})$ solution to (1.4). Later results are due to Rivière and Ye, who prove in [18, Theorem 4] the existence of a bi-Lipschitz homeomorphism u solution to (1.4) under less restrictive assumptions on Ω with v satisfying a Dini-type continuity property. In [19] Ye proves existence results in the framework of the Sobolev spaces.

The plan of the paper is the following. In section 2 we introduce a class of open sets, invariant under bi-Lipschitz homeomorphisms, which is slightly larger than that of open sets with Lipschitz boundaries; see Definition 2.1. In Theorem 2.4 we state the existence of Lipschitz solutions to (1.4) with Ω in this class of open sets and Hölder continuous datum v. It is a variant of the above-cited Theorem 4 in [18], and in the appendix we give the details of the proof. In section 3 we deal with polyconvex functionals. We consider the class of functions φ strictly convex in the last variable satisfying, as a substitute for the growth conditions,

(1.5)
$$\lim_{t \to 0^+} D_t \varphi(x, t) = \lambda_0 \text{ with } \lambda_0 \in \mathbb{R} \cup \{-\infty\}, \qquad \lim_{t \to +\infty} D_t \varphi(x, t) = +\infty,$$

uniformly with respect to x. In Proposition 3.1 we prove that a unique solution v to (1.3) exists and that v is in $L^{\infty}(\Omega)$. In Proposition 3.5, under more regularity assumptions on φ , we prove that v is Hölder continuous. Therefore, the Lipschitz solution u to (1.4), which exists by Theorem 2.4, is a minimizer of (1.2); see Theorem 3.6. In section 4 we deal with a function φ nonconvex with respect to t, satisfying (1.5).

Denoting φ^{**} the convex envelope of φ with respect to t, we assume that there exist $\alpha, \beta \in L^{\infty}(\Omega), \beta(x) > \alpha(x), \text{ inf } \alpha > 0 \text{ such that for every } x \in \Omega,$

$$t \mapsto \varphi^{**}(x,t)$$
 is affine in $[\alpha(x),\beta(x)]$

and

$$\varphi(x,\cdot) \equiv \varphi^{**}(x,\cdot)$$
 and $\varphi(x,\cdot)$ is strictly convex in $(0,\alpha(x)]$ and $[\beta(x),+\infty)$.

Under these assumptions in Theorem 4.1 we prove the existence of a bounded solution v to the auxiliary problem (1.3). In section 5 under regularity assumptions on φ we get that v is piecewise Hölder continuous; see Theorem 5.2. In section 6 first we prove that if in (1.4) the datum v is piecewise Hölder continuous, there exists a Lipschitz solution; see Proposition 6.2. Then, solving (1.4) with v the piecewise Hölder continuous solution to the auxiliary problem, in Theorems 6.3 and 6.4 we get a Lipschitz continuous minimizer of functional (1.1). In section 7 we consider special classes of nonpolyconvex functionals. First we consider the class of functionals with a nonconvex φ satisfying $\varphi(x,\alpha(x)) = \varphi(x,\beta(x)) = 0$. This class has been considered by Zagatti [20] (see also Celada and Perrotta [3] for the case $\varphi(x, u, t)$) with the assumption $\int_{\Omega} \alpha(x) dx < |\Omega| < \int_{\Omega} \beta(x) dx$. In [20] and [3] the attainment result is proved using different arguments: the Baire category method and the convex integration method, respectively. Theorems 7.1 and 7.2 are attainment results including the cases $\int_{\Omega} \alpha dx \ge |\Omega|$ and $\int_{\Omega} \beta(x) dx \le |\Omega|$. Theorem 7.4 deals with a perturbation of these functionals; see problem (7.2). We conclude the section considering functionals with φ satisfying the structure condition $\varphi(x,t) = \tilde{\varphi}(|x|,t)$. In this case the existence of bounded radial solutions to (1.3) directly implies the existence of Lipschitz solutions to (1.4).

2. Notation and preliminary results. In the following if Ω is a measurable subset of \mathbb{R}^N , then $|\Omega|$ stands for its N-dimensional Lebesgue measure. We write Q in place of $(0,1)^N$ and $B_r(x)$ denotes the ball in \mathbb{R}^N with center at x and radius r. If $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$, then φ^{**} is the convex envelope of φ with respect to the second variable, i.e., $t \mapsto \varphi^{**}(x,t)$ is the greatest convex function lower than $t\mapsto \varphi(x,t)$. For the sake of simplicity we write $\varphi(x,\cdot)$ instead of $t\mapsto \varphi(x,t)$,

$$D_t^-\varphi(x,s):=\lim_{t\to s^-}\frac{\varphi(x,t)-\varphi(x,s)}{t-s},\qquad D_t^+\varphi(x,s):=\lim_{t\to s^+}\frac{\varphi(x,t)-\varphi(x,s)}{t-s},$$

and $\partial \varphi(x,s) := \{ d \in \mathbb{R} : \varphi(x,t) \ge \varphi(x,s) + d(t-s) \text{ for every } t \in (0,+\infty) \}.$

We define a class of bounded open subsets of \mathbb{R}^N .

Definition 2.1. We say that a bounded open set Ω of \mathbb{R}^N is of class (L) if $\overline{\Omega}$ has a covering of finitely many open sets Ω_i such that for every j there exists a bi-Lipschitz homeomorphism $\psi_j: \Omega_j \cap \overline{\Omega} \to \overline{Q}$ satisfying

(a) $\psi_j(\overline{\Omega}_j \cap \partial \Omega) = \{0\} \times [0,1]^{N-1}$, whenever $\overline{\Omega}_j \cap \partial \Omega$ is not empty;

(b) $\det D\psi_j$ is Lipschitz continuous and there exists $A \geq 1$ such that $\frac{1}{A} \leq \det D\psi_j$

The above definition describes a larger class than that of open sets with Lipschitz boundary, i.e., with the boundary which locally is the graph of a Lipschitz function. This result can be proved in a way similar to that of Proposition A.1 in [7].

LEMMA 2.2. If a bounded open set Ω of \mathbb{R}^N has a Lipschitz boundary, then it is of class (L).

An easy consequence of the chain rule for Lipschitz functions is that Definition 2.1 is invariant under bi-Lipschitz homeomorphisms.

LEMMA 2.3. Let $u_0: \mathbb{R}^N \to \mathbb{R}^N$ be a bi-Lipschitz homeomorphism, with $\det Du_0$ Lipschitz continuous, $\frac{1}{A} \leq \det Du_0 \leq A$ for some A. If Ω is of class (L), then $u_0(\Omega)$ is of class (L), too.

On the contrary, there are examples of bounded open sets of \mathbb{R}^N with Lipschitz boundary which are mapped by a bi-Lipschitz homeomorphism $u: \mathbb{R}^N \to \mathbb{R}^N$ onto sets with a not (Lipschitz) continuous boundary; see, e.g., [11, pp. 8–9]. Therefore, the converse of Lemma 2.2 is not true.

Now, we state an existence result of Lipschitz solutions to

(2.1)
$$\begin{cases} \det Du = f & \text{in } \Omega, \\ u(x) = x & \text{on } \partial \Omega \end{cases}$$

with f Hölder continuous.

THEOREM 2.4. Let $\Omega \subset \mathbb{R}^N$ be a bounded connected open set of class (L). Let f be a Hölder continuous function, $\inf f > 0$, $\int_{\Omega} f(x) dx = |\Omega|$. Then there exists a bi-Lipschitz homeomorphism $u : \overline{\Omega} \to \overline{\Omega}$ solution to (2.1).

A similar result is proved in [18, Theorem 4], with a weaker assumption on v, which is assumed to satisfy a Dini-type continuity property, and a regular domain Ω . In [18] the proof is given for cubes only. The proof of Theorem 2.4, based upon the application to open sets of class (L) of the partition method due to Moser [16], is in the appendix.

3. Polyconvex problems: An attainment result. In this section we consider the variational problem

$$(3.1) \quad \min \left\{ \int_{\Omega} \psi(x, \det Du(x)) \, dx \, : \, u \in W^{1,N}(\Omega, \mathbb{R}^N), \quad \det Du > 0 \text{ a.e.,} \quad u(x) = x \text{ on } \partial \Omega \right\},$$

where Ω is a bounded open subset of \mathbb{R}^N with a Lipschitz boundary and $\psi: \Omega \times (0,+\infty) \to [0,+\infty)$ is a continuous function.

To get solutions to (3.1), we first consider the following variational problem:

$$(3.2) \quad \min\left\{\int_{\Omega}\psi(x,v(x))\,dx\,:\,v\in L^1(\Omega),\quad v>0\text{ a.e.},\quad \int_{\Omega}v(x)\,dx=a\right\},\quad a>0.$$

As far as the problem (3.2) is concerned, the Lipschitz regularity of the boundary of Ω can be dropped.

We prove that there exists a (unique) bounded solution to (3.2) if

- (H1) $t \mapsto \psi(x,t)$ is strictly convex for all $x \in \Omega$;
- (H2) there exists $\lambda_0 \in \mathbb{R} \cup \{-\infty\}$ such that

$$\lim_{t \to 0^+} D_t^+ \psi(x, t) = \lambda_0, \quad \lim_{t \to +\infty} D_t^- \psi(x, t) = +\infty, \quad \text{uniformly in } x.$$

PROPOSITION 3.1. Assume that $\psi: \Omega \times (0, +\infty) \to [0, +\infty)$ is a continuous function satisfying (H1) and (H2). Then for every $\lambda > \lambda_0$ there exists a unique $u_{\lambda} \in L^{\infty}(\Omega)$, inf $u_{\lambda} > 0$ such that

$$(3.3) \lambda \in \partial \psi(x, u_{\lambda}(x)) \quad \forall x \in \Omega.$$

Moreover, there exists $\lambda_a > \lambda_0$ such that u_{λ_a} is the unique solution to (3.2).

Proof. We proceed as follows: At first we prove that for every $\lambda > \lambda_0$ there exists a function u_{λ} such that (3.3) holds. Then, we prove that u_{λ} is in $L^{\infty}(\Omega)$, inf $u_{\lambda} > 0$, and there exists λ_a such that $\int_{\Omega} u_{\lambda_a} dx = a$. Thus, it turns out that u_{λ_a} is a solution to (3.2) and it is unique, because of the strict convexity of the functional.

Step 1. The definition of u_{λ} . Fixing $x \in \Omega$, we define the sets

$$C(x) := \left\{ s \in (0, +\infty) : D_t^- \psi(x, s) < D_t^+ \psi(x, s) \right\}, \quad \Omega_C := \left\{ x \in \Omega : C(x) \neq \emptyset \right\}.$$

Notice that $\partial \psi(x,s) = [D_t^- \psi(x,s), D_t^+ \psi(x,s)]$ for all $(x,s) \in \Omega \times (0,+\infty)$.

Suppose that $x \in \Omega \setminus \Omega_C$. From (H1) and the definition of Ω_C , the function $D_t \psi(x,\cdot) : (0,+\infty) \to (\lambda_0,+\infty)$ is well defined, continuous, and strictly increasing. Moreover, it is a surjective function because of (H2). Let $u(x,\cdot)$ be its inverse function, i.e., $u(x,\cdot) : (\lambda_0,+\infty) \to (0,+\infty)$ is such that $u(x,\lambda)$ (from now on denoted by $u_\lambda(x)$) is the unique positive number such that $\lambda = D_t \psi(x,u_\lambda(x))$. $u(x,\cdot)$ is a well defined, strictly increasing, and continuous function.

Now let us consider $x \in \Omega_C$. From (H1), C(x) is (at most) a countable set, so that we denote $C(x) = \{t_n(x)\}_{n \in J(x)}$, where $J(x) \subseteq \mathbb{N}$. As in the above case, if $\lambda \notin \bigcup_{n \in J(x)} \partial \psi(x, t_n(x))$, we define $u_{\lambda}(x)$ as the unique positive number such that $D_t \psi(x, u_{\lambda}(x)) = \lambda$. If instead $\lambda \in \partial \psi(x, t_n(x))$ for some $n \in J(x)$, then we set $u_{\lambda}(x) = t_n(x)$. Notice that if $u_{\lambda}(x)$ is chosen greater (less) than $t_n(x)$, then $\lambda < D_t^- \psi(x, u_{\lambda}(x))$ ($\lambda > D_t^+ \psi(x, u_{\lambda}(x))$). It is easy to prove that for each $x \in \Omega_C$ the function $u(x, \cdot) : (\lambda_0, +\infty) \to (0, +\infty)$ is well defined, increasing, and continuous.

Thus, $u_{\lambda}: \Omega \to (0, +\infty)$ is the unique function satisfying (3.3) and it is measurable, since

$$\left\{ x \in \Omega \, : \, u_{\lambda}(x) < t \right\} = \left\{ x \in \Omega \, : \, D_t^- \psi(x,t) > \lambda \right\}$$

and $D_t^-\psi(x,t)=\sup_{h<0}(\psi(x,t+h)-\psi(x,t))/h$. By the second limit in (H2) for every $\lambda>\lambda_0$ there exists R>0 such that $D_t^-\psi(x,R)>\lambda$ for every $x\in\Omega$, which implies $u_\lambda(x)< R$ for every $x\in\Omega$. In fact, if $u_\lambda(x)\geq R$ for some x, then by the convexity of ψ with respect to the second variable it would be $D_t^-\psi(x,R)\leq D_t^-\psi(x,u_\lambda(x))$ and by (3.3) we would obtain $D_t^-\psi(x,R)\leq\lambda$, which is a contradiction. Thus, u_λ is in $L^\infty(\Omega)$. The first limit in (H2) implies that for each $\lambda>\lambda_0$ there exists $c(\lambda)>0$ such that $\sup_{y\in\Omega}D_t^+\psi(y,t)<\lambda$ for every $t< c(\lambda)$. Therefore, it cannot be $u_\lambda(x)< c(\lambda)$, because $\lambda\leq D_t^+\psi(x,u_\lambda(x))$, so that $\inf u_\lambda>0$.

Step 2. The definition of λ_a . Define $\Psi: (\lambda_0, +\infty) \to (0, +\infty)$, $\Psi(\lambda) := \int_{\Omega} u_{\lambda}(x) \, dx$, where $u_{\lambda}(x) = u(x, \lambda)$ is defined as in Step 1. By the monotonicity of u with respect to λ , Ψ is increasing. It holds true that $\lim_{\lambda \to \lambda_0^+} u_{\lambda}(x) = 0$. In fact, suppose that $\lim_{\lambda \to \lambda_0^+} u_{\lambda}(x) = \delta(x) > 0$. By (H1), the first limit in (H2), and (3.3), we get

$$\lambda_0 < D_t^- \psi(x, \delta(x)) \le D_t^- \psi(x, u_\lambda(x)) \le \lambda$$
.

Therefore, letting λ go to λ_0^+ we get a contradiction. Analogously it can be proved that $\lim_{\lambda \to +\infty} u_{\lambda}(x) = +\infty$. Hence,

(3.4)
$$\lim_{\lambda \to \lambda_0^+} \Psi(\lambda) = 0, \quad \lim_{\lambda \to +\infty} \Psi(\lambda) = +\infty.$$

From the previous step $\lambda \mapsto u_{\lambda}(x)$ is continuous and increasing for all x and $u_{\lambda} \in L^{\infty}(\Omega)$ for all λ , and therefore Ψ is a continuous function. Thus, there exists $\lambda_a > \lambda_0$

such that $\Psi(\lambda_a) = a$. We claim that u_{λ_a} is a solution to (3.2). In fact, from (H1) and (3.3) for every $w \in L^1(\Omega)$ such that w > 0 and $\int_{\Omega} w(x) dx = a$, we have that

$$\psi(x, w(x)) \ge \psi(x, u_{\lambda_a}(x)) + \lambda_a (w(x) - u_{\lambda_a}(x)) \quad \forall x \in \Omega.$$

Thus,

$$\int_{\Omega} \psi(x, w(x)) dx \ge \int_{\Omega} \psi(x, u_{\lambda_a}(x)) dx + \lambda_a \int_{\Omega} (w(x) - u_{\lambda_a}(x)) dx$$
$$= \int_{\Omega} \psi(x, u_{\lambda_a}(x)) dx. \quad \Box$$

Remark 3.2. The growth conditions

$$\lim_{t\to 0^+}\inf_{y\in\Omega}\psi(y,t)=+\infty\,,\quad \lim_{t\to +\infty}\inf_{y\in\Omega}\frac{\psi(y,t)}{t}=+\infty$$

imply (H2). If the first limit in (H2) is not uniform with respect to x, then maybe $\inf u_{\lambda} = 0$. Moreover, the proof of Proposition 3.1 works also if we replace $\lim_{t\to +\infty} D_t^- \psi(x,t) = +\infty$ with the more general

$$\lim_{t \to +\infty} D_t^- \psi(x,t) = \lambda_{\infty}, \qquad \lambda_{\infty} \in \mathbb{R} \cup \{+\infty\}.$$

It is easy to prove the following refinement of Proposition 3.1.

PROPOSITION 3.3. Let $\psi: \Omega \times (0, +\infty) \to [0, +\infty)$ be a continuous function, differentiable with respect to the last variable, $D_t \psi \in C(\Omega \times (0, +\infty))$. If (H1) and (H2) hold, then the functions u_{λ} in Proposition 3.1 are continuous for every $\lambda > \lambda_0$.

Proof. For every $\lambda > \lambda_0$ let $u_{\lambda} \in L^{\infty}(\Omega)$ be as in Proposition 3.1. u_{λ} is lower semicontinuous. In fact, if

$$\liminf_{x \to x_0} u_{\lambda}(x) < \alpha < u_{\lambda}(x_0),$$

then (H1) and (3.3) imply $D_t \psi(x_0, \alpha) < \lambda$. By continuity of $D_t \psi$ there exists $\delta > 0$ such that $D_t \psi(x, \alpha) < \lambda$ for every $x \in (x_0 - \delta, x_0 + \delta)$. Then, from (3.3) again we have that $D_t \psi(x, \alpha) < D_t \psi(x, u_{\lambda}(x))$ for every $x \in (x_0 - \delta, x_0 + \delta)$, which implies $\alpha < u_{\lambda}(x)$, in contradiction with (3.5). Analogously the upper semicontinuity of u_{λ} can be proved. \square

To get Hölder continuous solutions to (3.2) we require more regularity on ψ :

- (H3) there exists $0 < \sigma \le 1$ such that for every compact $K \subset (0, +\infty)$ and for every $t \in K$ the function $x \mapsto D_t \psi(x, t)$ is of class $C^{0,\sigma}(\Omega)$ with $[D_t \psi(\cdot, t)]_{0,\sigma} \le k_K$;
- (H4) for every m > 0 there exists $c_m > 0$ such that

$$\psi(x,t) \ge \psi(x,s) + D_t \psi(x,s)(t-s) + c_m |t-s|^{2+\varepsilon}$$

for every $t > s \ge m$, for every $x \in \Omega$, and for some $\varepsilon \ge 0$.

Remark 3.4. Assumption (H4) is equivalent to assuming that for every m > 0 there exists $\tilde{c}_m > 0$ such that

$$(3.6) D_t \psi(x,t) - D_t \psi(x,s) \ge \tilde{c}_m |t-s|^{1+\varepsilon} \quad \forall t > s \ge m \quad \forall x \in \Omega.$$

Roughly speaking, if $\psi \in C^2$ satisfies (H4), then $D_{tt}\psi$ may vanish provided that a suitable growth near the zeros is satisfied; see (3)(a) below.

Notice that if ψ_0 satisfies (H4) and $\psi_1 = \psi_1(x,t)$ is such that $\psi_1(x,\cdot)$ is convex and C^1 , then $\psi = \psi_0 + \psi_1$ satisfies (H4), too. Examples of functions ψ_0 satisfying (H4) are as follows.

- (1) $\psi_0(t) := (1+t^2)^{p/2}, p \ge 2$. See [9] for details.
- (2) $\psi_0(x,t) := |t-a(x)|^p$ with $a: \Omega \to \mathbb{R}$ and $p \ge 2$.
- (3) $\psi_0: \overline{\Omega} \times (0,+\infty) \to [0,+\infty)$ of class C^2 , strictly convex with respect to t such that for every x there exist at most finitely many positive numbers $\{s_i(x)\}$ such that $D_{tt}\psi_0(x,s_i(x))=0$ and the following hold:
 - (a) there exist $\varepsilon, c > 0$ such that $D_{tt}\psi_0(x,t) \geq c|t-s_i(x)|^{\varepsilon}$ for every t in a neighborhood of $s_i(x)$;
 - (b) there exists M > 0 such that $\inf\{D_{tt}\psi_0(x,t) : (x,t) \in \Omega \times [M,+\infty)\} >$

PROPOSITION 3.5. Let $\psi: \Omega \times (0,+\infty) \to [0,+\infty)$ be a continuous function, differentiable with respect to the last variable, satisfying (H1)-(H4). Then for each $\lambda > \lambda_0$, the function u_{λ} in Proposition 3.1 is in $C^{0,\sigma/(1+\varepsilon)}(\Omega)$. In particular, for every a > 0 the unique solution u_{λ_a} to (3.2) is Hölder continuous.

Proof. Fix λ and let u_{λ} , from now on referred to as u, be the correspondent function as described in Proposition 3.1. From the strict convexity of ψ with respect to the last variable and since $\lambda = D_t \psi(x, u(x))$ for every $x \in \Omega$ it is easy to check that u is γ -Hölder continuous with Hölder constant $[u]_{\gamma}$ if and only if

$$(3.7) D_t \psi(y, u(x) + [u]_{0,\gamma} |x - y|^{\gamma}) - D_t \psi(x, u(x)) \ge 0 \quad \forall x, y \in \Omega.$$

Fix $x, y \in \Omega$. By (H4) and (3.6) there exist $\varepsilon \geq 0$ and $\tilde{c} > 0$ such that

$$(3.8) D_t \psi(x,t) - D_t \psi(x,s) \ge \tilde{c}(t-s)^{1+\varepsilon} \quad \forall t > s \ge \inf u > 0 \quad \forall x \in \Omega.$$

Consider the compact interval $K = [\inf u, ||u||_{\infty}]$ and let s and t be equal to u(x) and $u(x) + (\frac{k}{\varepsilon}|x-y|^{\sigma})^{1/(1+\varepsilon)}$, respectively, with σ and k_K as in (H3). Using (3.8) and (H3) to estimate $D_t\psi(y,t) - D_t\psi(y,s)$ and $D_t\psi(y,s) - D_t\psi(x,s)$, respectively, we get

$$D_t \psi(y,t) - D_t \psi(x,s) = D_t \psi(y,t) - D_t \psi(y,s) + D_t \psi(y,s) - D_t \psi(x,s) \ge 0.$$

Then u is γ -Hölder continuous with $\gamma = \frac{\sigma}{1+\varepsilon}$. Thus, for fixed a > 0, the solution u_{λ_a} to (3.2), which exists by Proposition 3.1, is Hölder continuous.

Now we are ready to state an existence result of Lipschitz solutions to the polyconvex problem (3.1).

Theorem 3.6. Suppose that Ω is a bounded open subset of \mathbb{R}^N with Lipschitz boundary and let $\psi: \Omega \times (0,+\infty) \to [0,+\infty)$ be a continuous function, differentiable with respect to the last variable, satisfying (H1)-(H4). Then there exists a Lipschitz continuous solution to (3.1).

Proof. Set $a = |\Omega|$ and consider the variational problem (3.2). From Propositions 3.1 and 3.5 such a problem has a (unique) solution $u_{\lambda_a} \in C^{0,\gamma}(\Omega), \gamma > 0$, and $\inf u_{\lambda_a} > 0$. Hence, from Theorem 2.4 there exists a bi-Lipschitz homeomorphism u solving

$$\begin{cases} \det Du = u_{\lambda_a} & \text{in } \Omega, \\ u(x) = x & \text{on } \partial\Omega, \end{cases}$$

and u is a solution to (3.1), too.

4. Nonpolyconvex problems: Attainment result for the auxiliary prob**lem.** In this section we consider the variational problem

$$(4.1) \min \left\{ \int_{\Omega} \varphi(x, v(x)) \, dx : v \in L^1(\Omega), \, v > 0 \text{ a.e., } \int_{\Omega} v(x) \, dx = a \right\}, \quad a > 0,$$

where Ω is a bounded open subset of \mathbb{R}^N , and $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ is a continuous function, nonconvex with respect to the last variable t.

Let φ^{**} be the convex envelope of φ with respect to the second variable and define

$$\Omega_A := \{ x \in \Omega : t \to \varphi(x, t) \text{ is not strictly convex} \}.$$

We assume that the following assumptions hold:

- (K1) Ω_A is a (not empty) measurable set and there exist $\alpha, \beta \in L^{\infty}(\Omega_A)$, $\beta(x) > \alpha(x)$ for all x, inf $\alpha > 0$, such that $\varphi(x, \cdot)$ and $\varphi^{**}(x, \cdot)$ both coincide and are strictly convex in $(0, \alpha(x)]$ and $[\beta(x), +\infty)$ for every $x \in \Omega_A$;
- (K2) $\varphi^{**}(x,\cdot)$ is affine in $[\alpha(x),\beta(x)]$ for all $x\in\Omega_A$, i.e., for every $\alpha(x)\leq t\leq\beta(x)$,

$$\varphi^{**}(x,t) = h(x)t + q(x) \text{ with } h(x) = \frac{\varphi(x,\beta(x)) - \varphi(x,\alpha(x))}{\beta(x) - \alpha(x)};$$

(K3) there exists $\lambda_0 \in \mathbb{R} \cup \{-\infty\}$ such that

$$\lim_{t \to 0^+} D_t^+ \varphi(x, t) = \lambda_0, \quad \lim_{t \to +\infty} D_t^- \varphi(x, t) = +\infty, \quad \text{uniformly in } x.$$

THEOREM 4.1. Assume (K1), (K2), and (K3). Then there exist $\lambda_a > \lambda_0$ and $v_{\lambda_a} \in L^{\infty}(\Omega)$, inf $v_{\lambda_a} > 0$ such that

- (i) $v_{\lambda_a}(x) \notin (\alpha(x), \beta(x))$ for every $x \in \Omega_A$;
- (ii) $\lambda_a \in \partial \varphi^{**}(x, v_{\lambda_a}(x))$ for every $x \in \Omega$;
- (iii) $\int_{\Omega} v_{\lambda_a}(x) dx = a$.

In particular, v_{λ_a} is a solution to (4.1). Moreover, if $\Omega = B_1(0)$ and $\varphi(x,t) = \tilde{\varphi}(|x|,t)$, then v_{λ_a} is a radial function.

We postpone the proof of Theorem 4.1 to the following lemma.

LEMMA 4.2. Let O be a bounded measurable subset of \mathbb{R}^N . Let $\alpha, \beta \in L^1(O)$ be such that $\alpha(x) \leq \beta(x)$ for a.e. x and suppose

(4.2)
$$\int_{O} \alpha(x) dx < \kappa < \int_{O} \beta(x) dx.$$

Then there exists r > 0 such that $\Theta : O \to \mathbb{R}$, $\Theta(x) := \alpha(x)$ if $x \in O \cap B_r(0)$ and $\Theta(x) := \beta(x)$ else, satisfying $\int_O \Theta(x) dx = \kappa$.

Proof. Let R be such that $O \subset B_R(0)$. Consider the functions $\theta_\rho: O \to \mathbb{R}$, $0 \le \rho \le R$, defined as follows: $\theta_0 := \beta$ and if $\rho \ne 0$, then $\theta_\rho(x) := \alpha(x)$, if $x \in O \cap B_r(0)$ and $\theta_\rho(x) := \beta(x)$ else. The continuity of $\rho \to \int_O \theta_\rho(x) \, dx$ and (4.2) imply that there exists 0 < r < R such that $\int_O \theta_r(x) \, dx = \kappa$.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We divide the proof into three steps. In Step 1 we define a family of functions $v_{\lambda}^-: \Omega \to (0, +\infty), \ \lambda > \lambda_0$, such that

$$(4.3) v_{\lambda}^{-}(x) \notin (\alpha(x), \beta(x)) \quad \forall x \in \Omega_{A} \quad \forall \lambda > \lambda_{0}$$

and

(4.4)
$$\lambda \in \partial \varphi^{**}(x, v_{\lambda}^{-}(x)) \quad \forall x \in \Omega \quad \forall \lambda > \lambda_{0}.$$

In Step 2 we define a function v_{λ_a} satisfying (i), (ii), and (iii). Finally, in Step 3 we consider the case $\varphi(x,t) = \tilde{\varphi}(|x|,t)$.

Step 1. The definition of v_{λ}^- . Let us define the function $\psi : \Omega \times (0, +\infty) \to [0, +\infty)$ such that $\psi \equiv \varphi$ in $(\Omega \setminus \Omega_A) \times (0, +\infty)$ and

$$(4.5) \psi(x,t) := \begin{cases} \varphi(x,t) & \text{if } x \in \Omega_A, \ 0 < t \le \alpha(x), \\ \varphi(x,t+\beta(x)-\alpha(x)), \\ -\varphi(x,\beta(x))+\varphi(x,\alpha(x)) & \text{if } x \in \Omega_A, \ t > \alpha(x). \end{cases}$$

(K1) and (K2) imply that for every $x \in \Omega_A$

$$(4.6) D_t^- \varphi(x, \alpha(x)) \le h(x) = \frac{\varphi(x, \beta(x)) - \varphi(x, \alpha(x))}{\beta(x) - \alpha(x)} \le D_t^+ \varphi(x, \beta(x))$$

and that ψ satisfies (H1). Moreover, for every $x \notin \Omega_A$ and every t > 0 we have $\partial \psi(x,t) = \partial \varphi(x,t) = \partial \varphi^{**}(x,t)$. If instead $x \in \Omega_A$, then

$$(4.7) \qquad \partial \psi(x,t) = \begin{cases} \partial \varphi(x,t) & \text{if } 0 < t < \alpha(x), \\ \partial \varphi^{**}(x,\alpha(x)) \cup \partial \varphi^{**}(x,\beta(x)) & \text{if } t = \alpha(x), \\ \partial \varphi(x,t+\beta(x)-\alpha(x)) & \text{if } t > \alpha(x). \end{cases}$$

We claim that (K3) implies that ψ satisfies (H2).

The first limit in (K3) and the assumption inf $\alpha > 0$ imply $\lim_{t\to 0^+} D_t^+ \psi(x,t) = \lambda_0$, uniformly. Let us prove that ψ satisfies the property on the second limit in (H2). Since $\alpha, \beta \in L^{\infty}(\Omega_A)$, then for every $x \in \Omega$ and $t > \|\alpha\|_{L^{\infty}(\Omega_A)}$,

$$\begin{split} &\inf_{y \in \Omega} D_t^- \varphi(y,t) \leq \min \Big\{ \inf_{y \in \Omega_A} D_t^- \varphi(y,t+\beta(y)-\alpha(y)), \inf_{y \in \Omega \backslash \Omega_A} D_t^- \varphi(y,t) \Big\} \\ &= \inf_{y \in \Omega} D_t^- \psi(y,t) \leq D_t^- \psi(x,t) \leq D_t^- \varphi(x,t+\|\beta-\alpha\|_{L^\infty(\Omega_A)}) \end{split}$$

so that by (K3) as t goes to $+\infty$, we get

$$\lim_{t \to +\infty} \inf_{y \in \Omega} D_t^- \psi(y,t) = \lim_{t \to +\infty} D_t^- \psi(x,t) = +\infty \quad \forall x \in \Omega.$$

Since ψ satisfies the assumptions of Proposition 3.1, then for every $\lambda > \lambda_0$ there exists $u_{\lambda} \in L^{\infty}(\Omega)$, inf $u_{\lambda} > 0$, satisfying (3.3). Moreover, for every $x \in \Omega_A$,

$$(4.8) \qquad \begin{array}{ll} u_{\lambda}(x) < \alpha(x) & \text{if} \quad \lambda < D_t^- \varphi(x,\alpha(x)), \\ u_{\lambda}(x) = \alpha(x) & \text{if} \quad \lambda \in [D_t^- \varphi(x,\alpha(x)), D_t^+ \varphi(x,\beta(x))], \\ u_{\lambda}(x) > \alpha(x) & \text{if} \quad \lambda > D_t^+ \varphi(x,\beta(x)). \end{array}$$

Let us define $v_{\lambda}^{-}:\Omega\to(0,+\infty)$,

$$v_{\lambda}^-(x) := u_{\lambda}(x) + (\beta(x) - \alpha(x)) \chi_{\{y \in \Omega_A : h(y) < \lambda\}}(x).$$

Since $u_{\lambda} \in L^{\infty}(\Omega)$ and $\alpha, \beta \in L^{\infty}(\Omega_A)$, then $v_{\lambda}^- \in L^{\infty}(\Omega)$. From (3.3), (4.6), (4.7), and (4.8) if $x \in \Omega_A$, the following implications hold:

- if $\lambda < D_t^- \varphi(x, \alpha(x))$, then $v_{\lambda}^-(x) = u_{\lambda}(x) < \alpha(x)$ and $\lambda \in \partial \psi(x, u_{\lambda}(x)) = \partial \varphi(x, v_{\lambda}^-(x))$;
- if $\lambda \in [D_t^- \varphi(x, \alpha(x)), h(x)]$, then $v_{\lambda}^-(x) = u_{\lambda}(x) = \alpha(x)$ and $\lambda \in \partial \varphi^{**}(x, \alpha(x))$;
- if $\lambda \in (h(x), D_t^+ \varphi(x, \beta(x))]$, then $v_{\lambda}^-(x) = \beta(x)$ and $\lambda \in \partial \varphi^{**}(x, \beta(x))$;
- if $\lambda > D_t^+ \varphi(x, \beta(x))$, then $v_{\lambda}^-(x) = u_{\lambda}(x) + \beta(x) \alpha(x) > \beta(x)$ and $\lambda \in \partial \psi(x, u_{\lambda}(x)) = \partial \varphi(x, v_{\lambda}^-(x))$.

Thus (4.3) holds and

$$\lambda \in \partial \varphi^{**} (x, v_{\lambda}^{-}(x))$$

for every $x \in \Omega_A$ and $\lambda > \lambda_0$. When $x \notin \Omega_A$, the equality $v_{\lambda}^-(x) = u_{\lambda}(x)$ and (3.3) imply (4.9). Therefore, (4.4) holds true.

Step 2. The definition of λ_a and v_{λ_a} . Let us define $\Phi: (\lambda_0, +\infty) \to (0, +\infty)$,

$$\Phi(\lambda) := \int_{\Omega} v_{\lambda}^{-}(x) dx = \int_{\Omega} \left(u_{\lambda}(x) + (\beta(x) - \alpha(x)) \chi_{\{y \in \Omega_A : h(y) < \lambda\}}(x) \right) dx.$$

As in the proof of (3.4) we have that $\lim_{\lambda \to \lambda_0^+} \Phi(\lambda) = 0$ and $\lim_{\lambda \to +\infty} \Phi(\lambda) = +\infty$.

For each $\lambda > \lambda_0$, define $v_{\lambda}^+: \Omega \to (0, +\infty)$,

$$v_{\lambda}^{+}(x) := u_{\lambda}(x) + (\beta(x) - \alpha(x))\chi_{\{y \in \Omega_A : h(y) \le \lambda\}}(x).$$

For every $\mu > \lambda_0$,

$$\lim_{\lambda \to \mu^-} \Phi(\lambda) = \Phi(\mu), \quad \lim_{\lambda \to \mu^+} \Phi(\lambda) = \int_{\Omega} v_{\mu}^+(x) \, dx.$$

Thus, Φ is discontinuous at μ if and only if $|\{y \in \Omega_A : h(y) = \mu\}| > 0$.

Only one of the following cases is possible:

- 1. there exists $\lambda_a > \lambda_0$ such that $\Phi(\lambda_a) = a$;
- 2. there exists $\lambda_a > \lambda_0$ such that $\Phi(\lambda_a) < a = \lim_{\lambda \to \lambda^+} \Phi(\lambda)$;
- 3. there exists $\lambda_a > \lambda_0$ such that $\Phi(\lambda_a) < a < \lim_{\lambda \to \lambda_a^+} \Phi(\lambda)$.

Case 1. As proved in Step 1, $v_{\lambda_a}^-$ satisfies (i), (ii), and $\inf v_{\lambda_a}^- \ge \inf u_{\lambda_a} > 0$. Moreover, by definition of λ_a , (iii) holds. Thus, define $v_{\lambda_a} = v_{\lambda_a}^-$.

Case 2. As above, $v_{\lambda_a}^-$ satisfies (i), (ii), and $\inf v_{\lambda_a}^- \ge \inf u_{\lambda_a} > 0$. It is easy to check that a property analogous to (i) is satisfied by $v_{\lambda_a}^+$ and that $\inf v_{\lambda_a}^+ \ge \inf v_{\lambda_a}^- > 0$. By the very definition of $v_{\lambda_a}^+$ we have also $\int_{\Omega} v_{\lambda_a}^+ dx = a$.

Let us prove that $\lambda_a \in \partial \varphi^{**}(x, v_{\lambda_a}^+(x))$ for every x. If $x \notin \Omega_A$ or if $x \in \Omega_A$ and $h(x) \neq \lambda_a$, then $v_{\lambda_a}^-(x) = v_{\lambda_a}^+(x)$ and the above inclusion follows. Suppose that $x \in \Omega_A$ and $h(x) = \lambda_a$. Then $v_{\lambda_a}^-(x) = \alpha(x) < \beta(x) = v_{\lambda_a}^+(x)$ and (K2) implies $\lambda_a \in \partial \varphi^{**}(x, \beta(x)) = \partial \varphi^{**}(x, v_{\lambda_a}^+(x))$.

We have so proved that $\lambda_a \in \partial \varphi^{**}(x, v_{\lambda_a}^+(x))$ for every $x \in \Omega$. Thus, define $v_{\lambda_a} := v_{\lambda_a}^+$.

Case 3. Define $O := \{x \in \Omega_A : \lambda_a = h(x)\}$ and $\kappa := a - \int_{\Omega \setminus O} v_{\lambda_a}^-(x) dx$. The assumption $\Phi(\lambda_a) < a < \lim_{\lambda \to \lambda_a^+} \Phi(\lambda)$ implies

$$\int_O \alpha(x)\,dx = \int_O v_{\lambda_a}^-(x)\,dx < \kappa < \int_\Omega v_{\lambda_a}^+(x)\,dx - \int_{\Omega \backslash O} v_{\lambda_a}^-(x)\,dx = \int_O \beta(x)\,dx.$$

From Lemma 4.2, there exists $\Theta: O \to \mathbb{R}$, $\Theta(x) \in \{\alpha(x), \beta(x)\}$ such that $\int_O \Theta(x) dx = \kappa$. Define $v_{\lambda_a}: \Omega \to \mathbb{R}$, $v_{\lambda_a}(x) = v_{\lambda_a}^-(x)$ if $x \notin O$ and $v_{\lambda_a}(x) = \Theta(x)$ else.

It is easy to prove that v_{λ_a} satisfies (i), (ii), (iii), and inf $v_{\lambda_a} > 0$.

Since $\varphi \geq \varphi^{**}$, then for every $v \in L^1(\Omega)$ such that v > 0 a.e. and $\int_{\Omega} v \, dx = a$, we have that

$$(4.10) \quad \int_{\Omega} \varphi(x, v(x)) \, dx \ge \int_{\Omega} \varphi^{**}(x, v(x)) \, dx$$

$$\ge \int_{\Omega} \varphi^{**}(x, v_{\lambda_a}(x)) \, dx + \lambda_a \int_{\Omega} (v(x) - v_{\lambda_a}(x)) \, dx = \int_{\Omega} \varphi(x, v_{\lambda_a}(x)) \, dx.$$

Thus, v_{λ_a} is a solution to (4.1).

Step 3. The case $\varphi(x,t) = \tilde{\varphi}(|x|,t)$. Assume that Ω is the unit ball $B_1(0)$ and that φ has the radial structure $\varphi(x,t) = \tilde{\varphi}(|x|,t)$. It is easy to prove that $\varphi^{**}(x,t) = (\tilde{\varphi})^{**}(|x|,t)$ and that α , β , h are radial functions. Moreover, the sets Ω_A , $\{y \in \Omega_A : h(y) < \lambda\}$ and $\{y \in \Omega_A : h(y) = \lambda\}$ are symmetric sets with respect to the origin. If ψ is defined as in Step 1 above, then it immediately follows that $\psi(x,t) = \tilde{\psi}(|x|,t)$. Looking at the first step of the proof of Proposition 3.1, it turns out that u_λ , satisfying $\partial \psi(x,u_\lambda(x)) = \lambda$, is a radial function for all λ . All these facts allow us to conclude that whenever Cases 1 or 2 in Step 2 hold, i.e., $\Phi(\lambda_a) = a$ or $\Phi(\lambda_a) < a = \lim_{\lambda \to \lambda_a^+} \Phi(\lambda)$, respectively, then v_{λ_a} is a radial function. To prove that v_{λ_a} is radial in the third case it is sufficient to notice that the sets $O, O \cap B_r(0)$, and $O \setminus B_r(0)$ are symmetric with respect to the origin and consequently the function Θ is radial. \square

- 5. Nonpolyconvex problems: Regularity result for the auxiliary problem. In this section we prove a regularity result for solutions to the nonconvex variational problem (4.1). Let Ω be a bounded open subset of \mathbb{R}^N and let $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ be a continuous function, differentiable with respect to the last variable, $D_t \varphi \in C^{0,\delta}(\Omega \times K), 0 < \delta \leq 1$, for every compact K in $(0, +\infty)$ such that
 - (A1) there exist $\alpha, \beta \in C^{0,\delta}(\Omega)$, $\beta(x) > \alpha(x)$ for every x, inf $\alpha > 0$ such that $\varphi(x,\cdot)$ and $\varphi^{**}(x,\cdot)$ both coincide and are strictly convex in $(0,\alpha(x)]$ and $[\beta(x),+\infty)$ for every $x \in \Omega$;
 - (A2) $t \to \varphi^{**}(x,t)$ is affine in $[\alpha(x),\beta(x)]$ for every $x \in \Omega$, i.e., for every $\alpha(x) \le t \le \beta(x)$,

$$\varphi^{**}(x,t) = h(x)t + q(x)$$
 with $h(x) = \frac{\varphi(x,\beta(x)) - \varphi(x,\alpha(x))}{\beta(x) - \alpha(x)}$.

Moreover,

$$|\partial \{x : h(x) = \lambda\}| = 0 \quad \forall \lambda \in \mathbb{R};$$

(A3) there exists $\lambda_0 \in \mathbb{R} \cup \{-\infty\}$ such that

$$\lim_{t \to 0^+} D_t \varphi(x,t) = \lambda_0, \quad \lim_{t \to +\infty} D_t \varphi(x,t) = +\infty, \quad \text{uniformly in } x;$$

(A4) for every m > 0 there exists $c_m > 0$ such that

$$\varphi(x,t) \ge \varphi(x,s) + D_t \varphi(x,s)(t-s) + c_m |t-s|^{2+\varepsilon}$$

for every $s, t \ge m$ such that $s < t \le \alpha(x)$ or $\beta(x) \le s < t$ for every $x \in \Omega$ and some $\varepsilon \ge 0$.

The following result is in the same spirit of Lemma 4.2.

LEMMA 5.1. Let O be an open set in \mathbb{R}^N . Let $\alpha, \beta \in L^1(O)$ be such that $\alpha(x) \leq \beta(x)$ for a.e. x and suppose that

(5.1)
$$\int_{\Omega} \alpha(x) \, dx < \kappa < \int_{\Omega} \beta(x) \, dx.$$

Then there exists a finite number of balls $B_{\rho_i}(y_j)$, $j=1,\ldots,m$, satisfying

- (1) $B_{\rho_j}(y_j) \subset\subset O, \ j=1,\ldots,m;$
- (2) $\overline{B_{\rho_i}(y_i)} \cap \overline{B_{\rho_j}(y_j)} = \emptyset$ for every $i \neq j$;
- (3) $\int_{\Omega} \Theta(x) dx = \kappa$,

where $\Theta(x) := \alpha(x)$ if $x \in \bigcup_{1 \le j \le m} B_{\rho_j}(y_j)$ and $\Theta(x) := \beta(x)$ else.

Proof. Since O is open, there exist (at most) countably many pairwise disjoint balls $\{B_{R_j}(y_j)\}_{j\in J}$ in O, and a negligible set \mathcal{N} such that $O=\mathcal{N}\cup(\bigcup_{j\in J}B_{R_j}(y_j))$. Without loss of generality we assume $J=\{1,2,\ldots,m\}$ if card $J=m\in\mathbb{N}$ and $J=\mathbb{N}$ if J is countable. For every $n\in J$, let us define the function $\theta_n:O\to\mathbb{R}$,

$$\theta_n(x) := \begin{cases} \alpha(x) & \text{if } x \in \bigcup_{1 \le j \le n} B_{R_j}(y_j), \\ \beta(x) & \text{else.} \end{cases}$$

If J is finite, then (5.1) implies $\int_O \theta_m(x) dx < \kappa$. If $J = \mathbb{N}$, it is easy to check that $\lim_{n \to +\infty} \int_O \theta_n(x) dx < \kappa$; thus, there exists $m \in \mathbb{N}$ such that

$$\int_O \theta_m(x) \, dx = \int_{\cup_{1 \le j \le m} B_{R_j}(y_j)} \alpha(x) \, dx + \int_{O \setminus \cup_{1 \le j \le m} B_{R_j}(y_j)} \beta(x) \, dx < \kappa \, .$$

Aiming at (1) and (2), we slightly reduce the radius of the previously selected balls $\{B_{R_j}(y_j)\}_{1\leq j\leq m}$. This can easily be done by noticing that

$$\lim_{\varepsilon \to 0^+} \int_{\bigcup_{j=1}^m B_{R_j}(y_j) \setminus B_{R_j - \varepsilon}(y_j)} (\beta(x) - \alpha(x)) \, dx = 0.$$

Thus, there exists $0 < \varepsilon < \min\{R_j : 1 \le j \le m\}$ such that

$$(5.2) \qquad \int_{\bigcup_{1 \le j \le m} B_{R_j - \varepsilon}(y_j)} \alpha(x) \, dx + \int_{O \setminus \bigcup_{1 \le j \le m} B_{R_j - \varepsilon}(y_j)} \beta(x) \, dx < \kappa.$$

Set $R := \max \{R_j - \varepsilon : 1 \le j \le m\}$ and define $\theta : O \times [0, R] \to \mathbb{R}, \ \theta(x, 0) := \beta(x)$ and

$$\theta(x,\rho) := \begin{cases} \alpha(x) & \text{if } x \in \bigcup_{1 \le j \le m} (B_{R_j - \varepsilon}(y_j) \cap B_\rho(y_j)), \\ \beta(x) & \text{else} \end{cases}$$

for every $\rho > 0$. From (5.2) we have that

$$\int_{O} \theta(x, R) dx < \kappa < \int_{O} \theta(x, 0) dx = \int_{O} \beta(x) dx.$$

Since $\rho \to \int_O \theta(x, \rho) dx$ is a continuous function, there exists $\overline{\rho}$ such that $\int_O \theta(x, \overline{\rho}) dx = \kappa$. The claim of the theorem follows by defining $\Theta(x) := \theta(x, \overline{\rho})$ and $\rho_j := \min\{R_j - \varepsilon, \overline{\rho}\}, 1 \le j \le m$.

Let h be as in (A2). For every $\lambda > \lambda_0$ we define

$$(5.3) \quad \Omega_{\lambda}^{+} := \{x \, : \, h(x) > \lambda\}, \quad \Omega_{\lambda}^{-} := \{x \, : \, h(x) < \lambda\}, \quad \Omega_{\lambda}^{=} := \{x \, : \, h(x) = \lambda\}.$$

Under (A1)-(A4) there exists a piecewise Hölder continuous solution to (4.1).

THEOREM 5.2. Let $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ be a continuous function, differentiable with respect to the last variable, $D_t \varphi(x,t)$ in $C^{0,\delta}(\Omega \times K)$ for every compact $K \subset (0, +\infty)$. Suppose that (A1)–(A4) hold. Then, with fixed a > 0 there exist $\lambda_a > \lambda_0$ and $v_{\lambda_a} \in L^{\infty}(\Omega)$, inf $v_{\lambda_a} > 0$, satisfying the following properties:

(i)
$$D_t \varphi^{**}(x, v_{\lambda_a}(x)) = \lambda_a \text{ for every } x \in \Omega;$$

- (ii) $\int_{\Omega} v_{\lambda_a}(x) dx = a;$
- (iii) v_{λ_a} is Hölder continuous in $\Omega_{\lambda_a}^+ \cup \Omega_{\lambda_a}^-$;
- (iv) $v_{\lambda_a}(x) < \alpha(x)$ for all $x \in \Omega_{\lambda_a}^+$ and $v_{\lambda_a}(x) > \beta(x)$ for all $x \in \Omega_{\lambda_a}^-$; (v) in $\Omega_{\lambda_a}^=$ either $v_{\lambda_a} \equiv \alpha$ or $v_{\lambda_a} \equiv \beta$ or

(5.4)
$$v_{\lambda_a}(x) = \begin{cases} \alpha(x) & \text{if } x \in \bigcup_{1 \le j \le m} B_{\rho_j}(y_j), \\ \beta(x) & \text{if } x \in \Omega^{=}_{\lambda_a} \setminus \bigcup_{1 < j < m} B_{\rho_j}(y_j) \end{cases}$$

with $B_{\rho_j}(y_j) \subset \operatorname{int} \Omega^{=}_{\lambda_a}, \ j=1,\ldots,m \ \text{such that} \ \overline{B_{\rho_i}(y_i)} \cap \overline{B_{\rho_i}(y_j)} = \emptyset \ \text{if}$

Moreover, v_{λ_a} is a solution to (4.1).

Proof. Let $\psi: \Omega \times (0, +\infty) \to [0, +\infty)$ be defined as

$$(5.5) \qquad \psi(x,t) := \begin{cases} \varphi(x,t) & \text{if} \quad 0 < t \le \alpha(x) \,, \ x \in \Omega, \\ \varphi(x,t+\beta(x)-\alpha(x)), & \\ -\varphi(x,\beta(x))+\varphi(x,\alpha(x)) & \text{if} \quad t > \alpha(x) \,, \ x \in \Omega. \end{cases}$$

It holds true that ψ is a continuous function, differentiable with respect to the last variable, satisfying (H1)-(H4) in section 3, with possibly different constants. By Proposition 3.5 for every $\lambda > \lambda_0$, there exists u_{λ} such that $u_{\lambda} \in C^{0,\gamma}(\Omega)$ for some $0 < \gamma \le 1$, inf $u_{\lambda} > 0$, and

$$(5.6) D_t \psi(x, u_{\lambda}(x)) = \lambda \quad \forall x \in \Omega.$$

Moreover (see (4.6) and (4.8)),

(5.7)
$$u_{\lambda} < \alpha \text{ in } \Omega_{\lambda}^{+}, \quad u_{\lambda} = \alpha \text{ in } \Omega_{\lambda}^{-}, \quad u_{\lambda} > \alpha \text{ in } \Omega_{\lambda}^{-}.$$

Let $\Phi:(\lambda_0,+\infty)\to\mathbb{R}$ be the left-continuous function defined as

$$\Phi(\lambda) := \int_{\Omega} \left(u_{\lambda}(x) + (\beta(x) - \alpha(x)) \chi_{\Omega_{\lambda}^{-}}(x) \right) dx, \quad \lambda > \lambda_{0}.$$

We have three different cases:

- 1. there exists $\lambda_a > \lambda_0$ such that $\Phi(\lambda_a) = a$;
- 2. there exists $\lambda_a > \lambda_0$ such that $\Phi(\lambda_a) < a = \lim_{\lambda \to \lambda_a^+} \Phi(\lambda)$;
- 3. there exists $\lambda_a > \lambda_0$ such that $\Phi(\lambda_a) < a < \lim_{\lambda \to \lambda_a^+} \Phi(\lambda)$.

Let us consider the first two cases: since (A1)-(A3) imply (K1)-(K3), then by proceeding as in Theorem 4.1 there exists $v_{\lambda_a} \in L^{\infty}(\Omega)$, $\inf v_{\lambda_a} > 0$, which satisfies (i) and (ii). Moreover, if case 1 holds, then $v_{\lambda_a} := u_{\lambda_a} + (\beta - \alpha)\chi_{\{h < \lambda_a\}}$, i.e.,

$$v_{\lambda_a} := u_{\lambda_a} \text{ in } \Omega_{\lambda_a}^+, \quad v_{\lambda_a} := \alpha \text{ in } \Omega_{\lambda_a}^=, \quad v_{\lambda_a} := u_{\lambda_a} + \beta - \alpha \text{ in } \Omega_{\lambda_a}^-;$$

if instead case 2 holds, then $v_{\lambda_a} := u_{\lambda_a} + (\beta - \alpha)\chi_{\{h \le \lambda\}}$, i.e.,

$$v_{\lambda_a} := u_{\lambda_a} \text{ in } \Omega_{\lambda_a}^+, \quad v_{\lambda_a} := \beta \text{ in } \Omega_{\lambda_a}^=, \quad v_{\lambda_a} := u_{\lambda_a} + \beta - \alpha \text{ in } \Omega_{\lambda_a}^-.$$

Therefore, from the Hölder continuity of α and β , (5.6) and (5.7) it follows that v_{λ_a} satisfies (iii), (iv), and (v). Moreover, reasoning as in (4.10) we get that v_{λ_a} is a solution to (4.1).

Suppose the third case holds. We define v_{λ_a} as in the proof of Theorem 4.1, but using Lemma 5.1 instead of Lemma 4.2. Precisely, since

$$\int_{\Omega_{\lambda_a}^{=}} \alpha(x) \, dx < \kappa < \int_{\Omega_{\lambda_a}^{=}} \beta(x) \, dx$$

with

$$\kappa := a - \int_{\Omega \setminus \Omega_{\lambda_a}^{=}} \left(u_{\lambda_a}(x) + (\beta(x) - \alpha(x)) \chi_{\Omega_{\lambda_a}^{-}}(x) \right) dx,$$

then from Lemma 5.1 there exist m balls $B_{\rho_j}(y_j) \subset \subset \operatorname{int} \Omega_{\overline{\lambda}_a}^{=}, j = 1, \ldots, m, \overline{B_{\rho_i}(y_i)} \cap \overline{B_{\rho_j}(y_j)} = \emptyset$ for every $i \neq j$ such that $\Theta : \operatorname{int} \Omega_{\overline{\lambda}_a}^{=} \to \mathbb{R}$,

$$\Theta := \alpha \quad \text{in } \textstyle \bigcup_{1 \leq j \leq m} B_{\rho_j}(y_j), \qquad \Theta := \beta \quad \text{in int } \Omega^=_{\lambda_a} \setminus \textstyle \bigcup_{1 \leq j \leq m} B_{\rho_j}(y_j)$$

satisfies $\int_{\inf \Omega_{\lambda_a}^{=}} \Theta(x) dx = \kappa$.

Define v_{λ_a} as follows:

$$v_{\lambda_a}(x) := \begin{cases} u_{\lambda_a}(x) & \text{if } x \in \Omega_{\lambda_a}^+, \\ \alpha(x) & \text{if } x \in \bigcup_{1 \le j \le m} B_{\rho_j}(y_j), \\ \beta(x) & \text{if } x \in \Omega_{\lambda_a}^= \setminus \bigcup_{1 \le j \le m} B_{\rho_j}(y_j), \\ u_{\lambda_a}(x) + \beta(x) - \alpha(x) & \text{if } x \in \Omega_{\lambda_a}^-. \end{cases}$$

We have that $v_{\lambda_a} \in L^{\infty}(\Omega)$, inf $v_{\lambda_a} > 0$, and it satisfies (i)–(v). Moreover, v_{λ_a} is a solution to (4.1).

6. Nonpolyconvex problems: Attainment result in a general setting. In this section we consider the variational problem

$$\min\left\{\int_{\Omega}\varphi(x,\det Du(x))\,dx\,:\,u\in W^{1,N}(\Omega,\mathbb{R}^N),\quad\det Du>0\text{ a.e., }u(x)=x\text{ on }\partial\Omega\right\},$$
 (6.1)

where Ω is a bounded open subset of \mathbb{R}^N with Lipschitz boundary and $\varphi: \Omega \times (0,+\infty) \to [0,+\infty)$ is a nonconvex function with respect to the second variable.

Before stating an attainment result for (6.1), we need some preliminary results.

LEMMA 6.1. Let Ω be a bounded open set with Lipschitz boundary and let $\overline{\Omega} = \bigcup_{i=1}^{m} \overline{\Omega}_{i}$ with $\{\Omega_{i}\}$ pairwise disjoint open connected sets with Lipschitz boundary.

Consider $\alpha_i > 0$, i = 1, ..., m, with $\sum_{i=1}^m \alpha_i = |\Omega|$. Then there exists a bi-Lipschitz homeomorphism $u_0 : \overline{\Omega} \to \overline{\Omega}$ such that $\det Du_0 \in C^{\infty}(\overline{\Omega})$, inf $\det Du_0 > 0$, and

(6.2)
$$u_0(x) = x \text{ on } \partial\Omega, \quad |u_0(\Omega_i)| = \alpha_i, \quad i = 1, \dots, m.$$

Moreover, $u_0(\Omega_i)$ is an open set of class (L) for every i.

Proof. Fix $0 < \delta < \min\{\alpha_i/|\Omega_i| : i = 1, ..., m\}$. For every $1 \le i \le m$ let $\eta_i \in C_c^{\infty}(\Omega_i)$ be such that $\int_{\Omega_i} \eta_i(x) dx = 1$. Define

$$f(x) = \delta + \sum_{i=1}^{m} (\alpha_i - \delta |\Omega_i|) \eta_i(x), \quad x \in \overline{\Omega}.$$

Hence, $f \in C^{\infty}(\overline{\Omega})$, inf f > 0, $\int_{\Omega_i} f(x) dx = \alpha_i$ for every i, and $\int_{\Omega} f(x) dx = |\Omega|$. From Theorem 2.4 there exists a bi-Lipschitz homeomorphism $u_0 : \overline{\Omega} \to \overline{\Omega}$ such that

$$\det Du_0 = f \text{ in } \Omega, \qquad u_0(x) = x \text{ on } \partial\Omega.$$

Therefore,

$$|u_0(\Omega_i)| = \int_{\Omega_i} \det Du_0(x) dx = \int_{\Omega_i} f(x) dx = \alpha_i, \quad i = 1, \dots, m;$$

moreover, Lemma 2.3 implies that $u_0(\Omega_i)$ is an open set of class (L) for each i. Proposition 6.2. Let Ω and Ω_i , $i=1,\ldots,m$, be as in Lemma 6.1. Suppose that $g_i:\overline{\Omega_i}\to [c_0,+\infty)$, with $c_0>0$, $i=1,\ldots,m$, are Hölder continuous functions satisfying

$$\sum_{i=1}^{m} \int_{\Omega_i} g_i(x) \, dx = |\Omega|.$$

Then there exists a Lipschitz continuous function $u: \overline{\Omega} \to \overline{\Omega}$ such that

(6.3)
$$u(x) = x \text{ on } \partial\Omega, \quad \det Du(x) = g_i(x) \quad \forall x \in \Omega_i \quad \forall i = 1, \dots, m.$$

Proof. By Lemma 6.1 there exists a bi-Lipschitz homeomorphism $u_0:\overline{\Omega}\to\overline{\Omega}$ such that

$$u_0(x) = x$$
 on $\partial \Omega$, $|u_0(\Omega_i)| = \int_{\Omega_i} g_i(x) dx$

and $u_0(\Omega_i)$ is of class (L) for each $i=1,\ldots,m$. Moreover, $\underline{f}:=\det Du_0$ is of class $C^{\infty}(\overline{\Omega})$ and inf f>0. Since $\frac{g_i}{f}\circ u_0^{-1}$ is Hölder continuous in $u_0(\Omega_i)$ and it satisfies

$$\int_{u_0(\Omega_i)} \frac{g_i}{f} \circ u_0^{-1}(y) \, dy = \int_{\Omega_i} g_i(x) \, dx = |u_0(\Omega_i)|,$$

then from Theorem 2.4 there exists a bi-Lipschitz homeomorphism $z_i:\overline{u_0(\Omega_i)}\to \overline{u_0(\Omega_i)}$ such that

$$\begin{cases} \det Dz_i = \frac{g_i}{f} \circ u_0^{-1} & \text{in } u_0(\Omega_i), \\ z_i(y) = y & \text{on } \partial u_0(\Omega_i). \end{cases}$$

Thus, $u_i = z_i \circ u_0$ is a Lipschitz homeomorphism such that

$$\begin{cases} \det Du_i = g_i & \text{in } \Omega_i, \\ u_i = u_0 & \text{on } \partial\Omega_i. \end{cases}$$

Hence, the Lipschitz continuous function $u: \overline{\Omega} \to \overline{\Omega}$ such that $u(x) = u_i(x)$ for every $x \in \overline{\Omega}_i, i = 1, ..., m$, satisfies (6.3).

We are in position to state an existence result for the nonpolyconvex problem (6.1). The sets Ω_{λ}^{+} , Ω_{λ}^{-} , and $\Omega_{\lambda}^{=}$ are defined in (5.3).

THEOREM 6.3. Let Ω be a bounded open subset of \mathbb{R}^N with Lipschitz boundary and let $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ be a continuous function, differentiable with respect to the last variable, $D_t \varphi \in C^{0,\delta}(\Omega \times K)$, $0 < \delta \le 1$, for every compact $K \subset (0, +\infty)$.

Suppose that (A1)-(A4) hold and assume that, for every $\lambda > \lambda_0$, Ω_{λ}^+ , Ω_{λ}^- , and int $\Omega_{\lambda}^=$ are either empty or connected open sets with Lipschitz boundary. Then the variational problem (6.1) has a Lipschitz continuous solution.

Proof. From Theorem 5.2, applied with $a=|\Omega|$, there exist $\lambda_a>\lambda_0$ and a solution v_{λ_a} to (4.1) with inf $v_{\lambda_a}>0$. Throughout we write v instead of v_{λ_a} .

From Theorem 5.2 v is Hölder continuous in $\Omega_{\lambda_a}^+ \cup \Omega_{\lambda_a}^-$. If int $\Omega_{\lambda_a}^=$ is empty, we get the thesis applying Proposition 6.2 with $\Omega_1 = \Omega_{\lambda_a}^+$, $\Omega_2 = \Omega_{\lambda_a}^-$, and replacing g_1 and g_2 with the continuous extension of v to $\Omega_{\lambda_a}^+$ and to $\Omega_{\lambda_a}^-$, respectively.

If int $\Omega_{\lambda_a}^{=}$ is not empty, correspondingly to (v) of Theorem 5.2 we have to consider three cases.

If $v = \alpha$ in $\Omega_{\lambda_a}^=$, the thesis follows by applying Proposition 6.2 with m = 3, choosing $\Omega_1 = \Omega_{\lambda_a}^+$, $\Omega_2 = \Omega_{\lambda_a}^-$, $\Omega_3 = \operatorname{int} \Omega_{\lambda_a}^=$, and replacing, as above, g_1 and g_2 with the continuous extension of v to $\Omega_{\lambda_a}^+$ and $\Omega_{\lambda_a}^-$, respectively, and g_3 with α . Analogously, we proceed if $v = \beta$ in $\Omega_{\lambda_a}^=$, but defining $g_3 = \beta$.

Now suppose that (5.4) holds. In this case the thesis follows by Proposition 6.2 choosing $\Omega_1 = \Omega_{\lambda_a}^+$, $\Omega_2 = \Omega_{\lambda_a}^-$, $\Omega_3 = \operatorname{int} \Omega_{\lambda_a}^= \setminus \bigcup_{1 \leq j \leq n} B_{\rho_j}(y_j)$, $\Omega_{3+i} = B_{\rho_i}(y_i)$ for every $i = 1, \ldots, n$ and $g_1 = v$, $g_2 = v$, $g_3 = \beta$, $g_{3+i} = \alpha$, for every $i = 1, \ldots, n$.

With obvious changes in the proof above, we get the following theorem.

THEOREM 6.4. Let Ω and φ be as in Theorem 6.3. Suppose that (A1)-(A4) hold and assume that for every $\lambda > \lambda_0$,

(6.4)
$$\overline{\Omega_{\lambda}^{+}} = \bigcup_{i=1}^{h} \overline{A_i}, \quad \overline{\Omega_{\lambda}^{-}} = \bigcup_{i=h+1}^{k} \overline{A_i}, \quad \operatorname{int} \Omega_{\lambda}^{=} = \bigcup_{i=k+1}^{l} A_i$$

with A_i either empty or pairwise disjoint open connected sets with Lipschitz boundary. Then the variational problem (6.1) has a Lipschitz continuous solution.

REMARK 6.5. The following are examples of sets Ω and functions $h: \Omega \to \mathbb{R}$ such that for every $\lambda \in \mathbb{R}$ (6.4) holds with either empty or disjoint open sets $\{A_i\}$ with Lipschitz boundary:

- (a) Ω is a bounded and convex set and h is strictly convex in Ω and constant on $\partial\Omega$:
- (b) $\Omega = B_1(0)$ and h is a radial function, $h(x) = \tilde{h}(|x|)$, with \tilde{h} piecewise monotone, i.e., there exists $0 = s_0 < s_1 < \cdots < s_m = 1$ such that $\tilde{h}|_{[s_i, s_{i+1}]}$ is monotone for all i.
- 7. Nonpolyconvex problems: Some special cases. In this section we consider particular classes of the variational problem (6.1), where Ω is a bounded open subset of \mathbb{R}^N with Lipschitz boundary and $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ is a continuous function satisfying (A1) and (A2). We begin considering the case of functions φ such that h in (A2) is a constant. See [20] and [3] for related results.

THEOREM 7.1. Let $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ be a continuous function satisfying (A1) and (A2) with h constant. If $\int_{\Omega} \alpha(x) dx \leq |\Omega| \leq \int_{\Omega} \beta(x) dx$, then (6.1) has a Lipschitz continuous solution.

Proof. Consider the auxiliary problem (4.1) with $a = |\Omega|$. If $\int_{\Omega} \alpha(x) dx$ is equal to $|\Omega|$, then α solves (4.1). Then from Theorem 2.4 there exists a Lipschitz homeomorphism u solution to (2.1) with $f = \alpha$. Moreover, u is a solution of (6.1). The same argument works if $\int_{\Omega} \beta(x) dx$ is equal to $|\Omega|$. Of course in this case choose $f = \beta$.

Suppose $\int_{\Omega} \alpha(x) dx < |\Omega| < \int_{\Omega} \beta(x) dx$. Then using Lemma 5.1 with $O = \Omega$, we get that a Lipschitz continuous solution u to (4.1) exists with $u \equiv \alpha$ on pairwise disjoint balls $B_{\rho_j}(y_j) \subset\subset \Omega$, $j=1,\ldots,n$, and with $u\equiv\beta$ outside these balls. The thesis follows by Proposition 6.2 with m=n+1, $\Omega_j=B_{\rho_j}(y_j)$, and $g_j=\alpha$ if $j=1,\ldots,m-1$ and with $\Omega_m=\Omega\setminus\bigcup_{j=1}^n B_{\rho_j}(y_j)$, $g_m=\beta$.

THEOREM 7.2. Let $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ be a continuous function, differentiable with respect to the last variable, $D_t \varphi \in C^{0,\delta}(\Omega \times K)$, $0 < \delta \le 1$, for every compact $K \subset (0, +\infty)$. Suppose that (A1), (A2) with h constant, (A3), and (A4) hold. If $\int_{\Omega} \alpha(x) dx > |\Omega|$ or $\int_{\Omega} \beta(x) dx < |\Omega|$, then (6.1) has a Lipschitz continuous solution.

Proof. Let $a = |\Omega|$. From Theorem 5.2 there exist $\lambda_a > \lambda_0$ and $v_{\lambda_a} \in L^{\infty}(\Omega)$ satisfying

$$(7.1) v_{\lambda_a}(x) \not\in (\alpha(x), \beta(x)), D_t \varphi^{**}(x, v_{\lambda_a}(x)) = \lambda_a, \int_{\Omega} v_{\lambda_a}(x) dx = |\Omega|.$$

(A1), (A2), and (A3) imply $h=D_t\varphi(x,\alpha(x))=D_t\varphi(x,\beta(x))$ and the definition of $\{v_\lambda\}$ (see the proofs of Theorems 4.1 and 5.2) gives that $\lambda< h$ if and only if $v_\lambda(x)<\alpha(x)$ for all $x,\ \lambda>h$ if and only if $v_\lambda(x)>\beta(x)$ for all x. Therefore, if $\int_\Omega \alpha(x)\,dx>|\Omega|$, then $\lambda_a< h$ and $v_{\lambda_a}(x)<\alpha(x)$. Thus, using the notation in (5.3), $\Omega_{\lambda_a}^+=\Omega$. Analogously, if $\int_\Omega \beta(x)\,dx<|\Omega|$, then $\lambda_a>h$ and $v_{\lambda_a}(x)>\beta(x)$, so that $\Omega_{\lambda_a}^-=\Omega$. Therefore, Theorem 5.2 implies that v_{λ_a} is Hölder continuous in Ω . A Lipschitz continuous solution u to

$$\begin{cases} \det Du = v_{\lambda_a} & \text{in } \Omega, \\ u(x) = x & \text{on } \partial\Omega, \end{cases}$$

solution also to (6.1), exists because of Theorem 2.4.

In Propositions 7.3 and 7.4 we deal with a variant of functionals considered above, precisely

(7.2)

$$\min \left\{ \int_{\Omega} \Phi(x, \det Du(x)) \, dx : u \in W^{1,N}(\Omega, \mathbb{R}^N), \, \det Du > 0 \text{ a.e.}, \quad u(x) = x \text{ on } \partial \Omega \right\}$$

with $\Phi(x,t) = \varphi(x,t) + f(x)t$.

PROPOSITION 7.3. Let Ω be a bounded open convex set in \mathbb{R}^N and let $\varphi: \Omega \times (0, +\infty) \to [0, +\infty)$ satisfy the assumptions of Theorem 7.2 with $\lambda_0 = -\infty$ in (A3). Suppose that $f: \Omega \to (0, +\infty)$ is a strictly convex function, constant on $\partial\Omega$. Then there exists a Lipschitz solution to (7.2).

Proof. It is easy to see that Φ satisfies the assumptions of Theorem 6.3. Since $\Phi^{**}(x,t) = \varphi^{**}(x,t) + f(x)t$ for every $x \in \Omega$, then in $(0,\alpha(x)]$ and in $[\beta(x),+\infty)$ we have that $\Phi(x,\cdot) = \Phi^{**}(x,\cdot)$. Moreover, for every $t \in [\alpha(x),\beta(x)]$ it holds true that $\Phi^{**}(x,t) = H(x)t + q(x)$ with $H(x) := \mu + f(x)$ and the superlevel, sublevel, and level sets of H satisfy the assumptions in Theorem 6.3. (A3) implies that $D_t\Phi(x,t) = D_t\varphi(x,t) + f(x)$ goes to $-\infty$ as $t \to -\infty$ and goes to $+\infty$ as $t \to +\infty$, uniformly with respect to x. The thesis easily follows from Theorem 6.3. \square

From now on, Ω is the unit ball B in \mathbb{R}^N centered at the origin.

PROPOSITION 7.4. Let $\varphi: B \times (0, +\infty) \to [0, +\infty)$ satisfy the assumptions of Theorem 7.2 with $\lambda_0 = -\infty$ in (A3). Let $f \in C^{0,\gamma}([0,1])$, $0 < \gamma \le 1$, f(s) > 0 for every s, f piecewise monotone. Then there exists a Lipschitz continuous solution to (7.2) with $\Phi(x,t) = \varphi(x,t) + f(|x|)t$.

Proof. Proceeding as in the proof of Proposition 7.3, the thesis easily follows from Remark 6.5(b) and from Theorem 6.4 applied to $\Phi(x,t) = \varphi(x,t) + f(|x|)t$.

Now, we deal with one more class of nonpolyconvex functionals, characterized by an integrand φ with radial structure $\varphi(x,t) = \tilde{\varphi}(|x|,t)$. Precisely, we deal with the variational problem

$$(7.3) \\ \min \left\{ \int_{B} \tilde{\varphi}(|x|, \det Du(x)) \, dx \, : \, u \in W^{1,N}(B, \mathbb{R}^{N}), \, \det Du > 0 \text{ a.e., } u(x) = x \text{ on } \partial B \right\}$$

and $\tilde{\varphi}: [0,1) \times (0,+\infty) \to [0,+\infty)$ is a continuous function.

THEOREM 7.5. Let $\tilde{\varphi}:[0,1)\times(0,+\infty)\to[0,+\infty)$ be a continuous function satisfying the following assumptions:

- (i) there exist $a, b \in L^{\infty}(0,1)$, b(s) > a(s) > 0 for every s, inf a > 0, such that $\tilde{\varphi}(s,\cdot)$ and $\tilde{\varphi}^{**}(s,\cdot)$ both coincide and are strictly convex in (0,a(s)] and $[b(s),+\infty)$ for all $s \in [0,1)$;
- (ii) $\tilde{\varphi}^{**}(x,\cdot)$ is affine in [a(s),b(s)] for all $s \in [0,1)$;
- (iii) there exists $\lambda_0 \in \mathbb{R} \cup \{-\infty\}$ such that

$$\lim_{t \to 0^+} D_t^+ \tilde{\varphi}(s,t) = \lambda_0, \quad \lim_{t \to +\infty} D_t^- \tilde{\varphi}(s,t) = +\infty, \quad uniformly \ in \ s.$$

Then there exists a Lipschitz solution to (7.3).

Proof. Let us define $\varphi(x,t) := \tilde{\varphi}(|x|,t)$ for every $x \in B$. Notice that $\varphi^{**}(x,t) = \tilde{\varphi}^{**}(|x|,t)$ and that assumptions (K1), (K2), and (K3) of Theorem 4.1 holds with $\Omega = \Omega_A = B$, $\alpha(x) = a(|x|)$, and $\beta(x) = b(|x|)$. Let $v \in L^{\infty}(B)$, inf v > 0, be the radial solution of (4.1). It is a known fact (see, e.g., [15]) that there exists a bi-Lipschitz solution u to (2.1) with f = v and $\Omega = B$. Thus, u is a solution to (7.3), too. \square

Appendix. Proof of Theorem 2.4. In the following we use the arguments of the proof of Lemma 1 in [16] and the fact, proved in [18], that if $\Omega = (0,1)^N$ and f is Hölder continuous, then there exists a bi-Lipschitz homeomorphism solution to (2.1). We divide the proof into steps.

Step 1. Let Ω be a bounded open connected subset of \mathbb{R}^N of class (L). Thus, there exist m open sets Ω_j such that $\overline{\Omega} \subset \cup_j \Omega_j$ and m bi-Lipschitz homeomorphisms $\psi_j: \overline{\Sigma}_j \to \overline{Q}$, with $\Sigma_j = \Omega \cap \Omega_j$ and $Q = (0,1)^N$ such that $\det D\psi_j \in \operatorname{Lip}(\overline{\Sigma}_j)$ and $\frac{1}{A} < \det D\psi_j < A$ for some $A \geq 1$. Consider a partition of unity $\{\phi_j\}_{j=1}^m$ subordinate to such a covering of $\overline{\Omega}$: $\{\phi_j\}_{j=1}^m$ is a family of smooth and nonnegative functions, $\sum_j \phi_j(x) = 1$ for every $x \in \overline{\Omega}$ and

(7.4)
$$\operatorname{supp} \phi_j \subset\subset \Omega_j \quad \forall j = 1, \dots, m.$$

Since $\Omega = \bigcup_{j=1}^{m} \Sigma_j$ and Ω is connected, we can assume that for every k = 2, ..., m there exists $\rho(k) < k$ such that $\Sigma_k \cap \Sigma_{\rho(k)}$ is not empty. Define the matrix (α_{hk}) , $1 \le h \le m$, $2 \le k \le m$,

$$\alpha_{hk} = \begin{cases} 1 & \text{if } h = k, \\ -1 & \text{if } h = \rho(k), \\ 0 & \text{else.} \end{cases}$$

Each of the m-1 columns contains exactly one pair +1, -1 so that $\sum_{k=2}^{m} \alpha_{hk} = 0$ for every h.

Define $\eta_k \in C_c^{\infty}(\Sigma_k \cap \Sigma_{\rho(k)})$ such that $\int_{\Omega} \eta_k(x) dx = 1$. Let $g \in C^{0,\alpha}(\overline{\Omega})$ be such that $\int_{\Omega} g(x) dx = 0$. Define the Hölder continuous functions $g_h : \overline{\Omega} \to \mathbb{R}, 1 \le h \le m$,

$$g_h := g\phi_h|_{\overline{\Omega}} - \sum_{k=2}^m \lambda_k \alpha_{hk} \eta_k,$$

where $\lambda_2, \ldots, \lambda_m$ are real numbers solutions of the following system of m equations

(7.5)
$$\sum_{k=2}^{m} \lambda_k \alpha_{hk} = \int_{\Omega} g \phi_h \, dx, \qquad h = 1, \dots, m.$$

Since the rank of (α_{hk}) is m-1 and both $\sum_{h=1}^{m} \sum_{k=2}^{m} \lambda_k \alpha_{hk}$ and $\sum_{h=1}^{m} \int_{\Omega} g \phi_h dx$ are equal to 0, then system (7.5) is uniquely solvable.

We claim that supp $g_h \subseteq \overline{\Sigma}_h$. In fact supp $\phi_h|_{\overline{\Omega}} \subseteq \overline{\Sigma}_h$ and, since $\alpha_{hk} \neq 0$ if and only if h = k or $h = \rho(k)$,

$$\operatorname{supp} \lambda_k \alpha_{hk} \eta_k \subset \Sigma_k \cap \Sigma_{\rho(k)} \subseteq \Sigma_h$$

for every $k=2,\ldots,m$. Moreover, from (7.5) there exists M>0 depending on Ω , $\{\phi_j\}_j$, and $\{\eta_j\}_j$ only such that $\sup |g_h| \leq M \sup |g|$.

Step 2. Let Ω , $\{\Sigma_j\}_j$, $\{\psi_j\}_j$, $\{\phi_j\}_j$, $\{\eta_j\}_j$, m, and M be as above. Let f in (2.1) be such that $\sup |f-1| < m^{-1}M^{-1}$. Define m Hölder continuous functions g_h reasoning as in the previous step with g replaced by f-1. For every $j=1,\ldots,m+1$ define $f_j: \overline{\Omega} \to (0,+\infty)$,

$$f_j(x) := \begin{cases} 1 & \text{if } j = 1, \\ 1 + \sum_{h=1}^{j-1} g_h(x) & \text{if } j > 1. \end{cases}$$

In particular $f_{m+1} = f$. Notice that each f_j is a Hölder continuous function, and since $\sup |f-1| < m^{-1}M^{-1}$, then $\inf f_j > 0$. Fixed j = 1, ..., m, we have that

$$(7.6) \ f_{j+1} - f_j = 0 \quad \text{in } \overline{\Omega} \setminus \overline{\Sigma}_j, \quad \int_{\Omega} f_j(x) \, dx = |\Omega|, \quad \int_{\Sigma_j} f_{j+1}(x) \, dx = \int_{\Sigma_j} f_j(x) \, dx.$$

Define $f_j^*, f_{j+1}^* : \overline{Q} \to (0, +\infty),$

$$f_j^* := f_j(\psi_j^{-1}) \det D\psi_j^{-1}, \quad f_{j+1}^* := f_{j+1}(\psi_j^{-1}) \det D\psi_j^{-1},$$

so that $f_j^*, f_{j+1}^* \in C^{0,\alpha}(\overline{Q})$ and $\int_Q f_j^* dx = \int_Q f_{j+1}^* dx$.

As proved in [18] there exist two bi-Lipschitz homeomorphisms $v_j, w_j: \overline{Q} \to \overline{Q}$ solutions to

$$\begin{cases} \det Dv_j = \frac{f_j^*}{\int_Q f_j^* dx} & \text{in } Q, \\ v_j(y) = y & \text{on } \partial Q, \end{cases} \quad \text{and} \quad \begin{cases} \det Dw_j = \frac{f_{j+1}^*}{\int_Q f_j^* dx} & \text{in } Q, \\ w_j(y) = y & \text{on } \partial Q, \end{cases}$$

respectively. Let us consider $\varphi_j:\overline{Q}\to\overline{Q},\, \varphi_j(y):=(v_j^{-1}\circ w_j)(y).$ Then

$$\det D\varphi_j(y) = \det Dv_j^{-1}(w_j(y)) \det Dw_j(y) = \frac{f_{j+1}^*(y)}{f_j^*(\varphi_j(y))} \quad \forall y \in \overline{Q}$$

so that

$$f_j\big((\psi_j^{-1}\circ\varphi_j)(y)\big)\det D\psi_j^{-1}(\varphi_j(y))\det D\varphi_j(y)=f_{j+1}\big(\psi_j^{-1}(y)\big)\det D\psi_j^{-1}(y)\quad\forall y\in\overline{Q}.$$

Using the invertibility of ψ_i the equality above implies that

(7.7)
$$f_j(u_j(x)) \det Du_j(x) = f_{j+1}(x) \quad \forall x \in \overline{\Sigma}_j,$$

where $u_j: \overline{\Sigma}_j \to \overline{\Sigma}_j$ is the Lipschitz continuous function defined as $u_j(x) := (\psi_j^{-1} \circ \varphi_j \circ \psi_j)(x)$.

Since $\varphi_j(\psi_j(x)) = \psi_j(x)$ for all $x \in \partial \Sigma_j$, we have that $u_j(x) = x$ for every $x \in \partial \Sigma_j$. Then $\tilde{u}_j : \overline{\Omega} \to \mathbb{R}, j = 1, \ldots, m$,

$$\tilde{u}_j(x) := \begin{cases} u_j(x) & \text{if } x \in \overline{\Sigma}_j, \\ x & \text{else} \end{cases}$$

is Lipschitz continuous and from (7.6) and (7.7)

$$f_j(\tilde{u}_j(x)) \det D\tilde{u}_j(x) = f_{j+1}(x) \quad \forall x \in \overline{\Omega}.$$

Iterating this argument on j and recalling that $f_1 = 1$ and $f_{m+1} = f$, we get that $\tilde{u}_1 \circ \cdots \circ \tilde{u}_m$ is a Lipschitz solution to (2.1).

Step 3. Now we suppose that f in (2.1) satisfies $\sup |f-1| \ge m^{-1}M^{-1}$. There exists $c_1 > 0$ and $0 < t_1 < 1$ such that $\int_{\Omega} c_1 f^{t_1}(x) \, dx = |\Omega|$ and $\sup |c_1 f^{t_1} - 1| < m^{-1}M^{-1}$. Applying the same arguments described in Step 2 to $g := c_1 f^{t_1} - 1$, we obtain a Lipschitz function u_1 satisfying (2.1) with f replaced by $c_1 f^{t_1}$. Applying again this procedure to $g := c_2 f^{t_2} - c_1 f^{t_1}$, with a suitable choice of c_2 and t_2 in such a way that $t_1 < t_2 \le 1$, $\int_{\Omega} c_2 f^{t_2} \, dx = |\Omega|$ and $\sup |c_2 f^{t_2} - c_1 f^{t_1}| < m^{-1}M^{-1}$, we get u_2 Lipschitz solution to

$$\begin{cases} c_1 f^{t_1}(u_2) \det Du_2 = c_2 f^{t_2} & \text{in } \Omega, \\ u_2(x) = x & \text{on } \partial \Omega. \end{cases}$$

Hence, $u_1 \circ u_2$ solves (2.1) with f replaced by $c_2 f^{t_2}$. It can be proved that the exponents $\{t_i\}$ can be chosen such that in finitely many steps, say n, we get $t_n = 1$. The existence of a Lipschitz continuous solution to (2.1) follows.

REFERENCES

- J.M. Ball and G. Knowles, Young measures and minimization problems of mechanics, in Elasticity: Mathematical Methods and Applications, The Ian N. Sneddon 70th Birthday Volume, G. Eason and R.W. Ogden, eds., Ellis Horwood, Chichester, UK, 1990, pp. 1–20.
- [2] D. BURAGO AND B. KLEINER, Separated nets in Euclidean space and Jacobians of biLipschitz maps, Geom. Funct. Anal., 8 (1998), pp. 304–314.
- [3] P. CELADA AND S. PERROTTA, Vectorial Hamilton-Jacobi equations with rank-one affine dependence on the gradient, Nonlinear Anal., 41 (2000), pp. 383-404.
- [4] A. Cellina and S. Zagatti, An existence result in a problem of the vectorial case of the calculus of variations, SIAM J. Control Optim., 33 (1995), pp. 960-970.
- [5] B. DACOROGNA, A relaxation theorem and its applications to the equilibrium of gases, Arch. Ration. Mech. Anal., 77 (1981), pp. 359–385.
- [6] B. DACOROGNA, Direct Methods in the Calculus of Variations, Appl. Math. Sci. 78, Springer, Berlin, 1989.
- [7] B. DACOROGNA AND J. MOSER, On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), pp. 1–26.
- [8] I. EKELAND AND R. TEMAM, Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, Paris, 1974.
- [9] I. FONSECA, N. FUSCO, AND P. MARCELLINI, An existence result for a nonconvex variational problem via regularity, ESAIM Control Optim. Calc. Var., 7 (2002), pp. 69–95.
- [10] G. FRIESECKE, A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Roy. Soc. Edinburgh, 124 (1994), pp. 437–471.
- [11] P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman, Boston, 1985.
- [12] P. MARCELLINI, The stored-energy for some discontinuous deformations in nonlinear elasticity, in Partial Differential Equations and the Calculus of Variations, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1989, pp. 767–786.
- [13] E. MASCOLO, Existence results for a class of noncoercive polyconvex integrals, Boll. Un. Mat. Ital. A (7), 5 (1991), pp. 97–107.
- [14] E. MASCOLO AND R. SCHIANCHI, Existence theorems for nonconvex problems, J. Math. Pures Appl., 62 (1983), pp. 349–359.
- [15] C.T. McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal., 8 (1998), pp. 304–314.
- [16] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), pp. 286–294.

- [17] R.W. Odgen, Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 328 (1972), pp. 567–583.
- [18] T. RIVIÈRE AND D. YE, Resolution of the prescribed volume form equation, NoDEA Nonlinear Differential Equations Appl., 3 (1996), pp. 323–369.
- [19] D. Ye, Prescribing the Jacobian determinant in Sobolev spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), pp. 275–296.
- [20] S. ZAGATTI, On the Dirichlet problem for vectorial Hamilton-Jacobi equations, SIAM J. Math. Anal., 29 (1998), pp. 1481–1491.