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Abstract In the general vector-valued case N ≥ 1, we prove the Lipschitz continuity of local
minimizers to some integrals of the calculus of variations of the form

∫
�
g(x, |Du|) dx , with

p, q-growth conditions only for |Du| → +∞ and without further structure conditions on
the integrand g = g(x, |Du|). We apply the regularity results to weak solutions to nonlinear
elliptic systems of the form

∑n
i=1

∂
∂xi

aα
i (x, Du) = 0, α = 1, 2, . . . , N .

Keywords Elliptic systems · Local minimizers · Local Lipschitz continuity · p, q-growth ·
Variable exponents
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1 Introduction

Aim of this paper is to prove the local Lipschitz continuity for solutions to elliptic systems
of the form

divA(x, Du) = 0, (1.1)
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where A is the N × n matrix A = (aα
i (x, ξ))N×n , with α = 1, 2, . . . , N , i = 1, 2, . . . , n

and aα
i : � × R

N×n → R. Here, � is a bounded open subset of Rn , u : � ⊂ R
n → R

N

(N ≥ 1) is a map in a Sobolev space, and Du denotes the gradient of u. Our approach is of
variational nature, i.e., the solution is achieved through a minimization property. In fact, we
assume that there exists a function f = f (x, ξ) such that aα

i (x, ξ) = fξα
i
(x, ξ).

In contrastwith the scalar case, solutions to elliptic systemswith general structuremay lack
regularity, see [11,22]. On the contrary, everywhere regularity has been obtained for systems
withUhlenbeck structure [40]; therefore, it is natural to consider the case f (x, ξ) = g(x, |ξ |).
Under p, q-growth conditions, we obtain the local Lipschitz continuity of minimizers; this
also gives the existence of weak solutions for the associated Dirichlet problem to the elliptic
system (1.1).

Motivated by applications to the theory of elasticity for strongly anisotropic materials
(see Zhikov [41] and also Zhikov et al. [42]), in recent years the integral of the calculus of
variations ∫

�

(|Du|p + |x |α|Du|q) dx (1.2)

with 1 < p < q and α ∈ (0, 1) has been investigated from the point of view of the regularity
of local minimizers. The condition q �= p may produce not smooth minimizers. Recently
Colombo and Mingione ([6,7], see also [2]) proved the regularity of minimizers for integrals
of the type (1.2) when, more generally, |x |α is replaced by a function a = a(x) which is
Hölder continuous with exponent α and p, q are related to α by the inequality

q

p
< 1 + α

n
. (1.3)

The condition (1.3) is considered sharp in view of some examples given in [15,17].
A natural question now arises: is it necessary to assume the precise structure condition

for the integrand as in (1.2)? That is, is it possible to investigate more general integrals of
the calculus of variations of the type

F(u) =
∫

�

g(x, |Du|) dx (1.4)

where
g(x, |Du|) = |Du|p + a(x) |Du|q (1.5)

is a model example?
The structure f (x, Du) = g(x, |Du|) is necessary to treat the general case N ≥ 1, since

in the vectorial framework minimizers can be unbounded even when p = q [11,38]. In this
paper, we study the general case (1.4), by assuming an higher Sobolev summability of g with
respect to x instead of the precise structure as in (1.5). We also require uniform convexity
and growth conditions on g = g(x, t) only for large values of t .

Precisely, let g : � × [0,+∞) → [0,+∞) be a convex function with respect to the
t-variable such that for some t0 > 0, gtt and gtx are Carathéodory functions in�×[t0,+∞)

and, for t ≥ t0 and a.e. x ∈ �,

λ t p−2 ≤ gtt (x, t) ≤ �
(
1 + tq−2) , (1.6)

|gtx (x, t)| ≤ h(x)
(
1 + tq−1) , (1.7)

where h ∈ Lr (�) for some r > n. Then, gt (·, t) ∈ W 1,r (�) for every t ≥ t0.We also assume
that g(x, t0) and gt (x, t0) are bounded functions.
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As we stated above, assumptions (1.6) and (1.7) hold only for large values of the gradient
variable. This is a relevant point of view, which allows us to consider uniform convexity only
at infinity. In the mathematical literature, this fact was first pointed out by the pioneristic
paper by Chipot and Evans [4], who considered the general vector-valued case u : � ⊂
R
n → R

N and integrands satisfying some convexity conditions as |Du| → +∞. We also
refer to [9,12,16,18,21,35,37] for convexity and growth conditions at infinity. The Sobolev
dependence on x recently has been considered in [33].

In the general vector-valued context N ≥ 1, we prove that the local minimizers of the
integral in (1.4) are locally Lipschitz continuous if the exponents p, q , with q ≥ p > 1, are
close to each other, precisely if (note that r > n)

q

p
< 1 + 1

n
− 1

r
. (1.8)

In the model case (1.5) with g(x, t) = t p + a(x) tq and a ∈ W 1,r (�), the inequality (1.8)
gives back (1.3): q/p < 1 + α/n by the Sobolev embedding theorem, since a ∈ C0,α(�)

with exponent

α = 1 − n

r
.

Note that this framework g(x, t) = t p + a(x) tq with a ∈ W 1,r (�) holds for the model
functional (1.2). The precise statement of our regularity theorem is given in Theorem 2.1.

The local boundedness of the gradient Du is a fundamental property; in fact in this case,
the behavior of |Du| at infinity becomes irrelevant for further regularity. With conditions on
g(x, t) near t = 0 we get C1,β regularity for some 0 < β < 1, see Corollary 2.4.

The mathematical literature on the regularity under p, q growth is very large; it is now
well known that a restriction between p and q must be imposed since the counterexamples
in [20,24–26]; we refer to [32] for a complete survey on the subject. For similar results, we
refer to [26–31] and more recently [1,3,10]. A new impulse to the subject has been given by
the recent articles already cited [6,7]. Everywhere Lipschitz continuity up to the boundary
for either the Dirichlet or the Neumann problem has been recently considered by Cianchi
and Maz’ya [5] under uniformly elliptic conditions.

As previously noted, the special structure g = g(x, |Du|) is necessary to treat the general
case N ≥ 1 even if p = q , see [29,30,40]. Moreover, we stress that the non-autonomous case
still contains many issues not fully solved and that the x-dependence increases significantly
the difficulties in the proof.

We also consider here a more general context, in particular functionals with variable
exponent of the form ∫

�

a(x) |Du|p(x) dx, (1.9)

which are studied by Rajagopal and Růžička [34] and Růžička [36] (see also [31]), in the
context of special fluids called electrorheological; the associated system takes the form

n∑

i=1

∂

∂xi

(
m(x) |Du|p(x)−2 uα

xi

)
= 0, α = 1, 2, . . . , N ,

with m(x) = a(x) p(x). More generally, our regularity results apply to the model example
∫

�

a(x)|Du|p(x) + b(x)|Du|q(x) dx, (1.10)
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with p(x) and q(x) related by the inequality

q(x)

p(x)
< 1 + 1

n
− 1

r
,

with p, q, a, b ∈ W 1,r (�) for r > n and a(x) ≥ C > 0, b(x) ≥ 0, q(x) ≥ p(x) ≥ p > 1
for x ∈ �.

Let us discuss briefly the techniques to the regularity. First for smoothminimizers of (1.4),
we prove an a priori estimate for the L∞-norm of the gradient. Then, we construct a sequence
of functions gk	, and for u local minimizer of (1.4) and in a ball BR = B(x0, R) ⊂⊂ �, we
consider the sequence of variational problems

inf

{∫

BR

gk	(x, |Dv|) dx, v ∈ u + W 1,p
0

(
BR;RN

)}

. (1.11)

By applying the a priori estimate to the solutions vk	 to (1.11), we obtain an L∞ bound on
Dvk	 independent of k, 	. As k, 	 → +∞, the uniform convexity of g for t ≥ t0 allow us to
transfer the Lipschitz continuity property to the minimizer u.

The plan of the paper is briefly described. In Sect. 2 we give the precise assumptions and
the statement of the main results. Section 3 is devoted to the a priori estimate. In Sect. 4 we
construct the suitable double approximation and in Sects. 5 and 6 we complete the proof of
the main results. Finally in Sect. 6 we transfer the regularity results, obtained for minimizers,
to weak solutions to systems.

2 Assumptions and statement of the main results

Let � be an open bounded subset of Rn , for n ≥ 2. Let u : � → R
N (N ≥ 1), u ∈

W 1,1
loc (�;RN ) and consider the following functional of the calculus of variations

F(u) =
∫

�

f (x, Du) dx . (2.1)

We say that u is a local minimizer of F in (2.1) if f (x, Du) ∈ L1(�) and
∫

suppw

f (x, Du) dx ≤
∫

suppw

f (x, Du + Dw) dx, (2.2)

for w ∈ W 1,1(�;RN ) with suppw ⊂⊂ �. We assume that f : � × R
Nn → [0,+∞) and

its derivatives fξξ , fξ x are Carathéodory functions in � × [t0,+∞) and f is represented in
the form f (x, ξ) = g(x, |ξ |) for a given function g : � × [0,+∞) → [0,+∞). Moreover,
there exist positive constants t0, λ,� such that for all μ, ξ ∈ R

Nn , μ = μα
i , ξ = ξα

i ,
i = 1, 2, . . . , n, α = 1, 2, . . . N , for |ξ | ≥ t0 and a.e. x ∈ �

λ |ξ |p−2|μ|2 ≤
∑

i, j,α,β

f
ξα
i ξ

β
j
(x, ξ)μα

i μ
β
j , (2.3)

| f
ξα
i ξ

β
j
(x, ξ)| ≤ � |ξ |q−2, (2.4)

| fξ x (x, ξ)| ≤ h(x) |ξ |q−1, (2.5)

for some exponents 1 < p ≤ q and h ∈ Lr (�) for some r > n. We also assume g(x, 0) = 0.
Throughout the paper, we will denote by Bρ and BR balls of radii, respectively, ρ and R
(with ρ < R) compactly contained in � and with the same center, let us say, x0 ∈ �.
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Theorem 2.1 Let u ∈ W 1,1
loc (�;RN ) be a local minimizer of the integral functional (2.1),

whose integrand f satisfies (2.3), (2.4), (2.5) with exponents p, q fulfilling

q

p
< 1 + α

n
wi th

α

n
= 1

n
− 1

r
. (2.6)

Then, u is locally Lipschitz continuous, and for all 0 < ρ < R, the following estimate holds

‖Du‖L∞(Bρ ;RNn) ≤ C

((
1 + ‖h‖2Lr (�)

) n
2α
∫

BR

{1 + f (x, Du)} dx
)β

, (2.7)

with C ≡ C(n, r, p, q, λ,�, R, ρ) and β ≡ β(n, p, q, λ,�, R, ρ).

As a consequence of Theorem 2.1, under the stated assumptions, the Lavrentiev phenom-
enon for the integral functional (2.1) cannot occur.

A further relevant consequence is the following regularity result for weak solutions to
elliptic systems. In order to state it, we consider a nonlinear elliptic system of PDEs of the
form

n∑

i=1

∂

∂xi
aα
i (x, Du) = 0, α = 1, 2, . . . , N , (2.8)

where aα
i (x, ξ) = fξα

i
(x, ξ) and f (x, ξ) = g (x, |ξ |). Under the assumptions (2.3),

(2.4), (2.5), a solution in the sense of distributions to the elliptic system (2.8) is a map
u ∈ W 1,p

loc

(
�;RN

)
such that

∫

�

n∑

i=1

aα
i (x, Du)

∂ϕα

∂xi
= 0, α = 1, 2, . . . , N , (2.9)

for every ϕ = (ϕα)α=1,2,...,N ∈ C1
0

(
�;RN

)
. Note that, in general, for differential problems

under p, q-growth conditions (if p, q are not close enough, precisely, if (2.6) is not satisfied),
the notion of solution to the elliptic system (2.8) in the sense of distributionsmay differ from
the notion of weak solution, the difference being in the class of the allowed test functions ϕ,
which in this second case is W 1,q

loc

(
�;RN

)
(as necessary to treat variations). That is, a weak

solution to the elliptic (2.8) is a map u ∈ W 1,q
loc

(
�;RN

)
which satisfies the integral condition

(2.9) for every test function ϕ = (ϕα)α=1,2,...,N ∈ W 1,q
loc

(
�;RN

)
. By Theorem 2.1, we have

Corollary 2.2 Every weak solution to the system (2.8) is locally Lipschitz continuous in �.

In general, the elliptic system (2.8) may even lack a weak solution. Nevertheless, under
the assumptions (2.3), (2.4), (2.5), the associated Dirichlet problem can be solved and the two
notions of weak solution and solution in the sense of distributions turn out to be equivalent.
We have in fact the following regularity results for systems. We consider below a Dirichlet
problem, but a similar result could be stated for Neumann conditions, or for more general
variational boundary value problems.

Corollary 2.3 Let u0 ∈ W 1,p
(
�;RN

)
be a map such that

∫
�

f (x, Du0) dx < +∞, with
f satisfying the assumptions of Theorem 2.1. Then, the Dirichlet problem

⎧
⎪⎨

⎪⎩

n∑

i=1

∂

∂xi
aα
i (x, Du) = 0 α = 1, 2, . . . , N , in �,

u = u0 on ∂� ,

(2.10)
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has a weak solution u ∈ W 1,p
(
�;RN

) ∩ W 1,q
loc (�;RN ) . Moreover, u ∈ W 1,∞

loc

(
�;RN

)
,

that is u is locally Lipschitz continuous in �.

Corollary 2.4 Let f ∈ C2
(
� × R

Nn
)
with f (x, ξ) = g(x, |ξ |) satisfying the assumptions

of Theorem 2.1. Assume that there exist two positive constants m, M such that for 0 < t ≤ 1
and a.e. x ∈ �

m
(
μ2 + t2

) p−2
2 ≤ gt (x, t)

t
≤ M

(
μ2 + t2

) p−2
2 , (2.11)

m
(
μ2 + t2

) p−2
2 ≤ gtt (x, t) ≤ M

(
μ2 + t2

) p−2
2 , (2.12)

|gtx (x, t)| ≤ M
(
μ2 + t2

) p−1
2 , (2.13)

for some μ ∈ [0, 1]. Then, every weak solution u ∈ W 1,p(�;RN ) to (2.8) is of class
C1,β
loc (�;RN ), for some 0 < β < 1.

Further regularity of solutions to nonlinear elliptic systems with continuous coefficients
applies when we know that the gradient Du is locally in C0,β for some 0 < β < 1. Indeed
we state the following result.

Corollary 2.5 Assume that f ∈ Ck−1,β
(
� × R

Nn
)
with f (x, ξ) = g(x, |ξ |) for some k ≥ 2

and gtt (x, t) ≥ m > 0 for a.e. x ∈ �, for all t > 0. Then, every weak solution to elliptic
system (2.8) is of class Ck,β

loc (�;RN ).

Finally, we would like to focus on the fact that our assumptions allow us to consider a
class of integrals of the calculus of variations with variable exponent, which can be typified
by the model integral

I (u) =
∫

�

a(x) |Du|p(x) dx . (2.14)

Theorem 2.6 Let u ∈ W 1,1
loc (�;RN ) be a local minimizer of the integral functional (2.14)

with a(x), p(x) satisfying

a(x) ≥ a > 0, p(x) ≥ p > 1, a, p ∈ W 1,r (�), with r > n. (2.15)

Then, u is locally Lipschitz continuous in �.

The model integral in (2.14) has been already studied by Coscia and Mingione in [8],
where the Hölder continuity of the exponent p(x) is assumed. However, we emphasis that
the integral in (2.14), in our context, is just a model example and our techniques permit to
consider more general integrands as in (1.10).

The Lipschitz regularity for the case f (x, Du) = a(x)h(|Du|)p(x) is considered by the
authors in [13].

3 A priori estimates

Let u be a local minimizer of functional (2.1) under the assumptions (2.3), (2.4), (2.5) for a
given t0 > 0. We can transform f (x, ξ) into f (x, t0ξ), which satisfies the same assumptions
(2.3), (2.4), (2.5) for |ξ | ≥ 1 (with different constants depending on t0). Then, it is sufficient
to obtain the a priori bound and the regularity results for v = 1

t0
u. Therefore, for clarity of

exposition and without loss of generality, we can assume t0 = 1.
In this section, we make some supplementary assumptions on f .
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Assumption 3.1 Assume that f ∈ C2(� × R
Nn) and there exist two positive constants k

and K such that for ξ ∈ R
Nn and a.e. x ∈ �

k
(
1 + |ξ |2)

p−2
2 |μ|2 ≤

∑

i, j,α,β

f
ξα
i ξ

β
j
(x, ξ)μα

i μ
β
j , (3.1)

| f
ξα
i ξ

β
j
(x, ξ)| ≤ K

(
1 + |ξ |2)

p−2
2 , (3.2)

| fξ x (x, ξ)| ≤ K
(
1 + |ξ |2)

p−1
2 , (3.3)

In the next proposition, we obtain an a priori estimate for the L∞-norm of the gradient of
u, which is independent of k and K .

Proposition 3.2 Let u ∈ W 1,p(�;RN ) be a local minimizer of the integral functional (2.1),
whose integrand f satisfies Assumption 3.1 and (2.3), (2.4), (2.5), with exponents p, q ful-
filling (2.6).

Then, there exist constants C ≡ C(n, r, p, q, λ,�) and β ≡ β(n, r, p, q, λ,�) such that

‖Du‖L∞(Bρ ;RNn) ≤ C

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎣

(
1 + ‖h‖2Lr (�)

) 1
2

(R − ρ)

⎤

⎥
⎥
⎦

n
α

∫

BR

{1 + f (x, Du)} dx

⎞

⎟
⎟
⎟
⎠

β

. (3.4)

Proof Let u ∈ W 1,p(�;RN ) be a local minimizer of (2.1). We observe that by Assump-
tion 3.1, Df has p − 1 growth; then, u satisfies the Euler’s first variation

∫

�

∑

i,α

fξα
i
(x, Du)ϕα

xi (x) dx = 0 ∀ϕ = (ϕα
)
α=1,...,N ∈ W 1,p

0

(
�;RN

)
.

Since D2 f has p − 2 growth, by using the technique of the difference quotients (see for
example [14,19,23]), we have that

u ∈ W 2,min(2,p)
loc

(
�;RN

)
and

(
1 + |Du|2)

p−2
2 |D2u|2 ∈ L1

loc(�). (3.5)

and the second variation system holds

∫

�

⎧
⎨

⎩

∑

i, j,α,β

f
ξα
i ξ

β
j
(x, Du)ϕα

xi u
β
xs x j +

∑

i,α

fξα
i xs

(x, Du)ϕα
xi

⎫
⎬

⎭
dx = 0

∀s = 1, . . . , n, ∀ϕ = (ϕα)α=1,...,N ∈ W 1,min(2,p)
0

(
�;RN

)
. (3.6)

Let η ∈ C1
0 (�). For any fixed s ∈ {1, . . . , n}, we choose

ϕα = η2uα
xs

(
(|Du| − 1)+

)

for  : [0,+∞) → [0,+∞) increasing, locally Lipschitz continuous function, with  and
′ bounded on [0,+∞), such that (0) = 0 and

′(s)s ≤ c (s) (3.7)
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for a suitable constant c > 0. Here, (a)+ denotes the positive part of a ∈ R; in the following,
we denote ((|Du| − 1)+) = (|Du| − 1)+. We compute then

ϕα
xi = 2ηηxi u

α
xs(|Du| − 1)+ + η2uα

xs xi (|Du| − 1)+
+η2uα

xs
′ (|Du| − 1)+ [(|Du| − 1)+]xi .

Here, we used the fact that u ∈ W 1,∞
loc (�;RN ), see Proposition 3.1 of [9] and [39]. Plugging

this expression in (3.6) we obtain:

0 =
∫

�

2η (|Du| − 1)+
∑

i, j,α,β

f
ξα
i ξ

β
j
(x, Du) ηxi u

α
xs u

β
xs x j dx

+
∫

�

η2(|Du| − 1)+
∑

i, j,α,β

f
ξα
i ξ

β
j
(x, Du) uα

xs xi u
β
xs x j dx

+
∫

�

η2′ (|Du| − 1)+
∑

i, j,α,β

f
ξα
i ξ

β
j
(x, Du) uα

xs u
β
xs x j [(|Du| − 1)+]xi dx

+
∫

�

2η (|Du| − 1)+
∑

i,α

fξα
i xs

(x, Du) ηxi u
α
xs dx

+
∫

�

η2(|Du| − 1)+
∑

i,α

fξα
i xs

(x, Du) uα
xs xi dx

+
∫

�

η2′ (|Du| − 1)+
∑

i,α

fξα
i xs

(x, |Du|) uα
xs [(|Du| − 1)+]xi dx

=: I1 + I2 + I3 + I4 + I5 + I6. (3.8)

In the following, constants will be denoted by C , regardless of their actual value.
We now sum the previous equation with respect to s from 1 to n, and we denote by Ĩ1 − Ĩ6

the corresponding integrals.
Let us start with the estimate of the integral Ĩ1. By the Cauchy–Schwartz inequality, the

Young inequality and (2.4), we have

| Ĩ1| =
∣
∣
∣
∣
∣
∣

∫

�

2η (|Du| − 1)+
∑

i, j,s,α,β

f
ξα
i ξ

β
j
(x, Du)ηxi u

α
xs u

β
xs x j dx

∣
∣
∣
∣
∣
∣

≤
∫

�

2η (|Du| − 1)+

⎧
⎨

⎩

∑

i, j,s,α,β

f
ξα
i ξ

β
j
(x, Du)ηxi u

α
xsηx j u

β
xs

⎫
⎬

⎭

1
2

×
⎧
⎨

⎩

∑

i, j,s,α,β

f
ξα
i ξ

β
j
(x, Du)uα

xs xi u
β
xs x j

⎫
⎬

⎭

1
2

dx

≤ C
∫

�

|Dη|2(|Du| − 1)+ |Du|q dx

+ 1

2

∫

�

η2(|Du| − 1)+
∑

i, j,s,α,β

f
ξα
i ξ

β
j
(x, Du)uα

xs xi u
β
xs x j dx . (3.9)
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Let us consider Ĩ3. First of all, we have that

f
ξα
i ξ

β
j
(x, ξ) =

(
gtt (x, |ξ |)

|ξ |2 − gt (x, |ξ |)
|ξ |3

)

ξα
i ξ

β
j + gt (x, |ξ |)

|ξ | δ
ξα
i ξ

β
j
.

At this point,

∑

i, j,s,α,β

f
ξα
i ξ

β
j
(x, Du)uα

xs u
β
xs x j [(|Du| − 1)+]xi

=
(
gtt (x, |Du|)

|Du|2 − gt (x, |Du|)
|Du|3

) ∑

i, j,s,α,β

uα
xs u

β
xs x j u

β
x j u

α
xi [(|Du| − 1)+]xi

+ gt (x, |Du|)
|Du|

∑

s,i,α

uα
xs u

α
xs xi [(|Du| − 1)+]xi

=
(
gtt (x, |Du|)

|Du| − gt (x, |Du|)
|Du|2

)∑

α

[
∑

i

uα
xi (|Du|)xi

]2

+ gt (x, |Du|)|D(|Du| − 1)+|2, (3.10)

where we used the fact that

[
(|Du| − 1)+

]
xi

= (|Du|)xi = 1

|Du|
∑

α,s

uα
xi xs u

α
xs |Du| ≥ 1.

Thus, coming back to the estimate of Ĩ3 from (3.10), we deduce

Ĩ3 =
∫

�

η2′ (|Du| − 1)+
{(

gtt (x, |Du|)
|Du| − gt (x, |Du|)

|Du|2
)∑

α

[
∑

i

uα
xi (|Du|)xi

]2

+ gt (x, |Du|)|D(|Du| − 1)+|2
}

dx .

Now we argue as in the proof of Lemma 4.1 of [30]. Using the inequality

|D (|Du| − 1)+ |2 ≤ |D2u|2, |Du| ≥ 1 (3.11)

we conclude that

Ĩ3 ≥
∫

�

η2′ (|Du| − 1)+
gtt (x, |Du|)

|Du|
∑

α

(
∑

i

uα
xi [(|Du| − 1)+]xi

)2

dx ≥ 0,

where we used the fact that gtt (x, |Du|) ≥ 0 and′(|Du|−1)+ ≥ 0. By (2.3), we have that

1

2

∫

�

η2(|Du| − 1)+ |Du|p−2|D2u|2 dx ≤ 1

2
Ĩ2 + Ĩ3

≤ | Ĩ4| + | Ĩ5| + | Ĩ6| + C
∫

�

|Dη|2(|Du| − 1)+ |Du|q dx .
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We now deal with | Ĩ4|. We have

| Ĩ4| =
∣
∣
∣
∣
∣
∣

∫

�

2η (|Du| − 1)+
∑

i,s,α

fξα
i xs

(x, Du)ηxi u
α
xs dx

∣
∣
∣
∣
∣
∣

(2.5)≤
∫

�

2η (|Du| − 1)+ h(x)|Du|q−1
∑

i,s,α

|ηxi uα
xs | dx

≤
∫

�

(η2 + |Dη|2)h(x) (|Du| − 1)+ |Du|q dx .

Consider | Ĩ5|, we have

| Ĩ5| =
∣
∣
∣
∣
∣
∣

∫

�

η2(|Du| − 1)+
∑

i,s,α

fξα
i xs

(x, Du)uα
xs x j dx

∣
∣
∣
∣
∣
∣

(2.5)≤
∫

�

η2(|Du| − 1)+ h(x)|Du|q−1|D2u| dx

≤
∫

�

[
η2(|Du| − 1)+ |Du|p−2|D2u|2]1/2 [η2(|Du| − 1)+ |h(x)|2|Du|2q−p]1/2 dx

≤ ε

∫

�

η2(|Du| − 1)+ |Du|p−2|D2u|2 dx + Cε

∫

�

η2(|Du| − 1)+ |h(x)|2|Du|2q−p dx,

where in the last line we used the Young inequality. Finally, for any 0 < δ < 1

| Ĩ6| =
∣
∣
∣
∣
∣
∣

∫

�

η2
∑

i,s,α

fξα
i xs

(x, Du)uα
xs

′ (|Du| − 1)+ [(|Du| − 1)+]xi dx
∣
∣
∣
∣
∣
∣

(2.5)≤
∫

�

η2′ (|Du| − 1)+ h(x)|Du|q−1|Du||D (|Du| − 1)+ | dx
(3.11)≤

∫

�

η2′ (|Du| − 1)+ h(x)|Du|q |D2u| dx

=
∫

�

η2′ (|Du| − 1)+ h(x)
[
(|Du| − 1)+ + δ

] [
(|Du| − 1)+ + δ

]−1 |Du|q |D2u| dx

≤
∫

�

η2
{

1

c

′ (|Du| − 1)+
[
(|Du| − 1)+ + δ

] |Du|p−2|D2u|2
}1/2

×
{
c′ (|Du| − 1)+ |h(x)|2|Du|2q−p+2 [(|Du| − 1)+ + δ

]−1
}1/2

dx

≤ ε

c

∫

�

η2′ (|Du| − 1)+
[
(|Du| − 1)+ + δ

] |Du|p−2|D2u|2 dx

+Cε c

∫

�

η2′ (|Du| − 1)+ |h(x)|2|Du|2q−p+2 [(|Du| − 1)+ + δ
]−1 dx .

We concentrate our attention on the first term in the last inequality. We split the set � as
� = {x : |Du(x)| ≥ 2}∪{x : |Du(x)| < 2}, andweobserve that in the set {x : |Du(x)| ≥ 2},
we also have (|Du| − 1)+ ≥ 1 which in turn implies

(|Du| − 1)+ + δ ≤ 2 (|Du| − 1)+ (3.12)
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as long as we have chosen δ < 1. Therefore, we have, using (3.7)

∫

�

η2′ (|Du| − 1)+
[
(|Du| − 1)+ + δ

] |Du|p−2|D2u|2 dx

=
∫

|Du|≥2
η2′ (|Du| − 1)+

[
(|Du| − 1)+ + δ

] |Du|p−2|D2u|2 dx

+
∫

1<|Du|<2
η2′ (|Du| − 1)+

[
(|Du| − 1)+ + δ

] |Du|p−2|D2u|2 dx
(3.12)≤ 2

∫

|Du|≥2
η2′ (|Du| − 1)+ (|Du| − 1)+|Du|p−2|D2u|2 dx

+
∫

1<|Du|<2
η2′ (|Du| − 1)+ (|Du| − 1)+|Du|p−2|D2u|2 dx

+ δ

∫

1<|Du|<2
η2′ (|Du| − 1)+ |Du|p−2|D2u|2 dx

(3.7)≤ 2 c

∫

�

η2(|Du| − 1)+ |Du|p−2|D2u|2 dx

+ δ

∫

1<|Du|<2
η2′ (|Du| − 1)+ |Du|p−2|D2u|2 dx .

Now, choosing ε sufficiently small and putting together all the estimates obtained for
| Ĩ4|, | Ĩ5|, | Ĩ6|, we deduce

∫

�

η2(|Du| − 1)+ |Du|p−2|D2u|2 dx

≤ C c

∫

�

(
η2 + |Dη|2) (1 + h2(x)

) |Du|2q−p

×
[
(|Du| − 1)+ |Du|2q−p + ′ (|Du| − 1)+ |Du|2 [(|Du| − 1)+ + δ

]−1
]
dx

+ δ

∫

1<|Du|<2
η2′ (|Du| − 1)+ |Du|p−2|D2u|2 dx, (3.13)

with a constant C depending on n, r, p, q .
Now we define

(s) := (1 + s)γ−2s2 γ ≥ 0; (3.14)

we have
′(s) = (γ s + 2)s(1 + s)γ−3. (3.15)

This function satisfies (3.7) with c = 2(1 + γ ).
We now approximate this function  by a sequence of functions h , each of them being
equal to  in the interval [0, h], and then extended to [h,+∞) with the constant value (h).
Moreover, h and ′

h converge monotonically to  and ′, respectively. The expression of
h can be inserted in (3.13), and then, it is possible to pass to the limit as h → +∞ by the
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Monotone Convergence Theorem. Therefore, we obtain for every 0 < δ < 1

∫

�

η2
(
1 + (|Du| − 1)+

)γ−2
(|Du| − 1)2+ |Du|p−2|D2u|2 dx

≤ C (1 + γ )2
∫

�

(
η2 + |Dη|2) (1 + h(x)2

) (
1 + (|Du| − 1)+

)γ+2q−p dx

+ δ C(γ )

∫

1<|Du|<2
η2|Du|p−2|D2u|2 dx,

where we used the fact that

(|Du| − 1)+
(|Du| − 1)+ + δ

≤ 1 ∀ δ > 0

and ′(t − 1)+ ≤ C(γ ) when 1 < t < 2. Inequality (3.51) of the following Lemma 3.3 and
(3.5) imply

∫

1<|Du|<2
η2|Du|p−2|D2u|2 dx ≤ C

∫

1<|Du|<2
η2
(
1 + |Du|2)

p−2
2 |D2u|2 dx < +∞

so we can pass to the limit for δ → 0 and the last term in the previous inequality vanishes.
Since h ∈ Lr (�), by the Hölder inequality and by denoting

m :=
( r

2

)′ = r

r − 2
, (3.16)

we have, using (3.11)

∫

�

η2
(
1 + (|Du| − 1)+

)γ−2
(|Du| − 1)2+ |Du|p−2|D ((|Du| − 1)+

) |2 dx

≤ C (1 + γ )2 H

[∫

�

(
η2 + |Dη|2)m (1 + (|Du| − 1)+

)(γ+2q−p)m dx

] 1
m

, (3.17)

by denoting, from now on

H :=
(
1 + ‖h‖2Lr (�)

)
(3.18)

and where C now depends also on r and |�| (and so on n).
Let us introduce

G(t) = 1 +
∫ t

0

√
(s)(1 + s)

p−2
2 ds = 1 +

∫ t

0
(1 + s)

γ
2 + p

2 −2 s ds (3.19)

and we obtain the following upper bound for [G(t)]2

[G(t)]2 ≤ 4 (1 + t)γ+p ≤ 4 (1 + t)γ+2q−p, (3.20)

where we used the fact that p ≤ q ≤ 2q − p. On the other hand

Gt (t) = √(t) (1 + t)
p−2
2

(3.14)= (1 + t)
γ
2 + p

2 −2t (3.21)
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which in turn allows us to give the following estimate for the gradient of the function w =
ηG((|Du| − 1)+)

∫

�

|D(ηG((|Du| − 1)+))|2 dx

≤ 2
∫

�

|Dη|2|G((|Du| − 1)+)|2 dx

+ 2
∫

�

η2[Gt ((|Du| − 1)+)]2[D((|Du| − 1)+)]2 dx

(3.17),(3.20),(3.21)≤ C (1 + γ )2 H

[∫

�

(
η2 + |Dη|2)m [1 + (|Du| − 1)(γ +2q−p)m

+ ] dx
] 1

m

.

(3.22)

Now, let 2∗ = 2n
n−2 for n > 2, while 2∗ equal to any fixed real number greater than 2, if

n = 2. By Sobolev’s inequality there exists a constant C such that

{∫

�

[ηG((|Du| − 1)+)]2∗
dx

} 2
2∗ ≤ C

∫

�

|D(ηG((|Du| − 1)+))|2 dx . (3.23)

Moreover, since r > n, we have

1 ≤ m
(3.16):= r

r − 2
<

n

n − 2
= 2∗

2
. (3.24)

Observe that
(2q − p)m = 2(q − p)m + pm; (3.25)

moreover, in view of the strict inequality in (2.6), we infer the existence of 0 < ε < 1 such
that

(q − p) + ε

(
1

n
− 1

r

)

≤ p

(
1

n
− 1

r

)

. (3.26)

We also set
M̃ := 2(q − p)m + p(m − 1) + ε Ñ := p − ε. (3.27)

We remark that M̃ > 0 because q ≥ p, m ≥ 1, ε > 0 and Ñ > 0 since ε < 1 < p;
moreover, we observe that

M̃ + Ñ = (2q − p)m (3.28)

and
M̃ > (2q − p)m − p. (3.29)

Now we prove that

1

(γ + p)2

[∫

�
η2

∗ [1 + (|Du| − 1)+]
(
γ+ M̃

m

)
2∗
2 +Ñ

dx

] 2
2∗

≤ 4

(∫

�
[ηG((|Du| − 1)+)]2∗

) 2
2∗

.

(3.30)
In view of (3.19), by setting t := (|Du| − 1)+, (3.30) is proved if

1

γ + p
(1 + t)

(
γ
2 + M̃

2m + Ñ
2∗
)

≤ 2

(

1 +
∫ t

0
(1 + s)

γ
2 + p

2 −2 s ds

)

. (3.31)
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Now, if t ≤ 1, then easily

1

γ + p
(1 + t)

(
γ
2 + M̃

2m + Ñ
2∗
)

≤ 2

γ + p
≤ 2 ≤ 2

(

1 +
∫ t

0
(1 + s)

γ
2 + p

2 −2 s ds

)

so that (3.31) is achieved. Let now t ≥ 1, then (3.31) becomes, after differentiation

γ
2 + M̃

2m + Ñ
2∗

γ + p
(1 + t)

γ
2 + M̃

2m + Ñ
2∗ −1 ≤ 2(1 + t)

γ
2 + p

2 −2t. (3.32)

If we are able to show that
M̃

2m
+ Ñ

2∗ ≤ p

2
, (3.33)

then we would have

γ
2 + M̃

2m + Ñ
2∗

γ + p
(1 + t)

M̃
2m + Ñ

2∗ ≤ 1

2
(1 + t)

p
2 = 1

2
(1 + t)

p−2
2 (1 + t)

t≥1≤ (1 + t)
p−2
2 t

and so also (3.32) is satisfied.
Thus, all is reduced to prove (3.33), which is equivalent to

(q − p) + p

2
− p

2m
+ ε

2m
+ p

2∗ − ε

2∗ ≤ p

2
.

Since

1

2m
− 1

2∗ = r − 2

2r
− n − 2

2n
= n(r − 2) − r(n − 2)

2nr
= r − n

nr
= 1

n
− 1

r
= α

n
,

then, by (3.26), the claim (3.30) is satisfied.
By collecting (3.22), (3.23) and (3.30), we obtain

[∫

�

η2
∗ [1 + (|Du| − 1)+]

(
γ+ M̃

m

)
2∗
2
[
1 + (|Du| − 1)+

]Ñ dx

] 2
2∗

≤ C H (γ + 2q − p)4
[∫

�

(
η2 + |Dη|2)m [1 + (|Du| − 1)+

](γ+2q−p)m dx

] 1
m

,

(3.34)

where the constant C only depends on n, r, p, q, λ,� but is independent of γ .
Now, let η to be equal to 1 in Bρ , with supp η ⊂ BR and such that |Dη| ≤ 1

(R−ρ)
. Let us

denote by

κ := γm + M̃
(3.28)= (γ + 2q − p)m − Ñ .

We notice that κ ≥ M̃ since γ ≥ 0; moreover, 2∗
2m > 1 due to (3.24). Therefore, from (3.34)

we now have
{∫

Bρ

[
1 + (|Du| − 1)+

]κ 2∗
2m
[
1 + (|Du| − 1)+

]Ñ dx

} 2m
2∗

≤ C Hm

(
(κ + Ñ )2

R − ρ

)2m ∫

BR

[
1 + (|Du| − 1)+

]κ [1 + (|Du| − 1)+
]Ñ dx,

(3.35)
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where the constant C only depends on n, r, p, q, λ,�.
Fixed R̄ and ρ̄, with R̄ > ρ̄, we define the decreasing sequence of radii {ρi }i≥0

ρi = ρ̄ + R̄ − ρ̄

2i
∀i ≥ 0.

We observe that ρ0 = R̄ > ρi > ρi+1 > ρ̄. We also define the increasing sequence of
exponents {κi }i≥0 such that

κ0 := M̃ κi+1 = κi
2∗

2m
i ≥ 0.

We notice that κ0 > 0 because M̃ > 0. We rewrite (3.35) with R = ρi , ρ = ρi+1, κ = κi ;
then, after observing that

R − ρ := ρi − ρi+1 = R̄ − ρ̄

2i+1

we obtain for every i ≥ 0

{∫

Bρi+1

[1 + (|Du| − 1)+]κi+1 [1 + (|Du| − 1)+]Ñ dx

} 1
κi+1

≤
⎡

⎣C Hm

(
(κi + Ñ )

3
2 2i+1

R̄ − ρ̄

)2m
⎤

⎦

1
κi
(∫

Bρi

[1 + (|Du| − 1)+]κi [1 + (|Du| − 1)+]Ñ dx

) 1
κi

.

The last inequality can be rewritten as

Ai+1 ≤ Ci Ai (3.36)

having set

Ai :=
(∫

Bρi

[1 + (|Du| − 1)+]κi [1 + (|Du| − 1)+]Ñ dx

) 1
κi

Ci :=
⎡

⎣C Hm

(
(κi + Ñ )

3
2 2i+1

R̄ − ρ̄

)2m
⎤

⎦

1
κi

.

By iteration of (3.36), we deduce

{∫

Bρ̄

[1 + (|Du| − 1)+]κ0
(
2∗
2m

)i+1

[1 + (|Du| − 1)+]Ñ dx

}
(
2m
2∗
)i+1

≤ C̃
∫

BR̄

[1 + (|Du| − 1)+](2q−p)m dx, (3.37)
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where by taking into account that m > 1, we have

C̃ ≤
∞∏

k=0

⎡

⎣C Hm

(
(κk + Ñ )

3
2 2k+1

R̄ − ρ̄

)2m
⎤

⎦

(
2m
2∗
)k

=
∞∏

k=0

⎡

⎢
⎢
⎢
⎢
⎣
C Hm

⎛

⎜
⎜
⎜
⎜
⎝

[

M̃
(

2∗
2m

)k + Ñ

] 3
2

2k+1

R̄ − ρ̄

⎞

⎟
⎟
⎟
⎟
⎠

2m⎤

⎥
⎥
⎥
⎥
⎦

(
2m
2∗
)k

≤
∞∏

k=0

[
2C Hm [(2q − p)m]3m

(R̄ − ρ̄)2m

]
(
2m
2∗
)k

≤ C H
1

2
(
1
n − 1

r

)

(
R̄ − ρ̄

) 2 2∗ m
2∗−2m

,

with a constant C = C(n, r, p, q). Let us denote

τ := 2
2∗ m

2∗ − 2m
= 1

1
n − 1

r

; (3.38)

thus (3.37) implies

{∫

Bρ̄

[1 + (|Du| − 1)+]κ0
(
2∗
2m

)i+1

dx

}
(
2m
2∗
)i+1

≤ C

[ √
H

(R̄ − ρ̄)

]τ ∫

BR̄

[1 + (|Du| − 1)+](2q−p)m dx . (3.39)

At this point, we pass to the limit as i → +∞, obtaining

sup
{
[1 + (|Du| − 1)+]M̃ : x ∈ Bρ̄

}
= lim

i→+∞

{∫

Bρ̄

[1 + (|Du| − 1)+]M̃
(
2∗
2m

)i+1
}
(
2m
2∗
)i+1

≤ C

[ √
H

(R̄ − ρ̄)

]τ ∫

BR̄

[1 + (|Du| − 1)+](2q−p)m dx . (3.40)

Let us now set

V (x) := 1 + (|Du|(x) − 1)+ and s := (2q − p)m; (3.41)

then, estimate (3.40) becomes

sup
x∈Bρ

|V (x)| ≤ C

⎛

⎝

[ √
H

(R̄ − ρ̄)

] τ
s

‖V ‖Ls (BR)

⎞

⎠

s
M̃

(3.42)

for every ρ, R such that 0 < ρ < R ≤ ρ + 1 and where C = C(n, r, p, q).
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We now use the classical interpolation inequality

‖V ‖Ls (Bρ) ≤ ‖V ‖
p
s
L p(Bρ)‖V ‖1−

p
s

L∞(Bρ), (3.43)

which permits to estimate the essential supremum of |Du| in terms of its L p-norm. In fact,
(3.42) and (3.43) give

‖V ‖Ls (Bρ) ≤ C1− p
s ‖V ‖

p
s
L p(Bρ)

⎛

⎝

[ √
H

(R̄ − ρ̄)

] τ
s

‖V ‖Ls (BR)

⎞

⎠

θ

(3.44)

where

θ := s

M̃

(
1 − p

s

)
= 1

M̃
(s − p)

(3.41)= 1

M̃
[(2q − p)m − p] (3.29)

< 1. (3.45)

For 0 < ρ̄ < R̄ and for every k ≥ 0, let us define

ρk := R̄ − (R̄ − ρ̄)2−k Bk := ‖V ‖Ls (Bρk ).

By inserting in (3.44) ρ = ρk and R = ρk+1 (so that R − ρ = (R̄ − ρ̄)2−(k+1)), we have for
every k ≥ 0

Bk ≤ C1− p
s ‖V ‖

p
s
L p(BR̄)

⎛

⎝2
τ
s (k+1)

[ √
H

(R̄ − ρ̄)

] τ
s

Bk+1

⎞

⎠

θ

. (3.46)

By iteration of (3.46), we deduce for k ≥ 0

B0 ≤
⎛

⎝C1− p
s

[ √
H

(R̄ − ρ̄)

] τ
s θ

‖V ‖
p
s
L p(BR̄)

⎞

⎠

∑k
i=0 θ i

2
τ
s

∑k+1
i=0 iθ i (Bk+1)

θk+1
. (3.47)

By (3.45), the series appearing in (3.47) are convergent.
Since Bk is bounded independently of k, i.e.,

Bk+1 ≤ ‖V ‖Ls (BR̄),

we can pass to the limit as k → +∞ and we obtain for every 0 < ρ < R with a constant
C = C(n, r, p, q) independent of k

‖V ‖Ls (Bρ) ≤ C

⎛

⎝

[ √
H

(R − ρ)

] τ
s θ

‖V ‖
p
s
L p(BR)

⎞

⎠

1
1−θ

. (3.48)

Combining (3.42) and (3.48), by setting ρ′ = (R+ρ)
2 , we have

‖V ‖L∞(Bρ) ≤ C

⎛

⎝

[ √
H

(ρ′ − ρ)

] τ
s

‖V ‖Ls (Bρ′ )

⎞

⎠

s
M̃

≤ C

⎛

⎝

[ √
H

(ρ′ − ρ)

] τ
s (1−θ) [ √

H

(R − ρ′)

] τ
s θ

‖V ‖
p
s
L p(BR)

⎞

⎠

s
M̃

1
1−θ

;
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now, since

(
ρ′ − ρ

) = (R − ρ′) = R − ρ

2
,

this implies

‖Du‖L∞(Bρ) ≤ C

[ √
H

(R − ρ)

]β̃ (∫

BR

(1 + |Du|p) dx
)β

,

with

β := 1

M̃(1 − θ)

(3.45)= 1

M̃
(
1 − s

M̃
+ p

M̃

) = 1

M̃ − s + p

(3.25),(3.27)= 1

ε
> 1 (3.49)

β̃ := τ

s

s

M̃

1

1 − θ

(3.38),(3.49)= 1
1
n − 1

r

1

ε
= n

α

1

ε
(3.50)

Since f (x, ξ) ≥ C |ξ |p for every |ξ | ≥ 1, (3.4) follows. ��

We needed in the proof above the following elementary result.

Lemma 3.3 Let t0 > 0 and p ≥ 1. For every t ≥ t0, we have

min

⎧
⎨

⎩

(
t20

t20 + 1

) p−2
2

, 1

⎫
⎬

⎭

(
1 + t2

) p−2
2 ≤ t p−2 ≤ max

⎧
⎨

⎩

(
t20

t20 + 1

) p−2
2

, 1

⎫
⎬

⎭

(
1 + t2

) p−2
2 .

(3.51)

Proof Since 1 ≤ t2/t20 then

1 + t2 ≤
(
1

t20
+ 1

)

t2

and thus, for every t ≥ t0,

t ≤ (1 + t2
)1/2 ≤

(
t20 + 1

t20

)1/2

t.

If p ≥ 2, then

t p−2 ≤ (
1 + t2

) p−2
2 ≤

(
t20 + 1

t20

) p−2
2

t p−2.

On the contrary, if p < 2,

(
t20 + 1

t20

) p−2
2

t p−2 ≤ (
1 + t2

) p−2
2 ≤ t p−2.

In both cases, we obtain the conclusion (3.51). ��
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4 Approximation

In this section, we give two approximation lemmas, which are the main tools to prove The-
orem 2.1. First, we need the following preliminary lemma. Note that the conditions (4.1),
(4.2), (4.3) below are consequence of (1.6) and (1.7) since g(x, 1) and gt (x, 1) are bounded
functions.

Lemma 4.1 Let f be as in Sect. 2 satisfying (2.3)–(2.5) and let g = g(x, t) be such that
f (x, ξ) = g(x, |ξ |) for a.e. x ∈ �. Then, (2.3) and (2.4) are equivalent to the following:

• There exist two positive constants λ,� such that for |ξ | ≥ 1, for a.e. x ∈ �

λ|ξ |p−2 ≤ gt (x, |ξ |)
|ξ | ≤ �|ξ |q−2 (4.1)

λ|ξ |p−2 ≤ gtt (x, |ξ |) ≤ � |ξ |q−2 (4.2)

|gtx (x, |ξ |) | ≤ h(x) |ξ |q−1. (4.3)

Moreover, from the assumptions on f , we have that also g(x, t) is strictly convex in the
second variable for t ≥ 1.

Proof First, we prove the equivalence (2.3)–(2.4) ⇔ (4.1)–(4.2).
On the one hand, following [3], we first notice that

fξξ (x, ξ)(μ,μ) = gtt (x, |ξ |) |ξ : μ|2
|ξ |2 + gt (x, |ξ |)

|ξ |
[

|μ|2 − |ξ : μ|
|ξ |2

]

. (4.4)

At this point, the choices μ = ξ and μ⊥ξ in (4.4) imply, recalling (2.3), (2.4), exactly (4.1)
and (4.2), respectively.

On the other hand (see for instance [30]), we have that f (x, ξ) = g(x, |ξ |) implies

fξα
i
(x, ξ) = gt (x, |ξ |) ξα

i

|ξ | f
ξα
i ξ

β
j
(x, ξ)

=
(
gtt (x, |ξ |)

|ξ |2 − gt (x, |ξ |)
|ξ |3

)

ξα
i ξ

β
j + gt (x, |ξ |)

|ξ | δ
ξα
i ξ

β
j
.

Since

∑

i, j,α,β

ξα
i ξ

β
j μα

i μ
β
j =

⎛

⎝
∑

i,α

ξα
i μα

i

⎞

⎠

2

≤ (|ξ ||μ|)2, ∀μ, ξ ∈ R
Nn

with the equality holdingwhenμ is proportional to ξ , we easily obtain the following ellipticity
estimate

min

{

gtt (x, |ξ |) ,
gt (x, |ξ |)

|ξ |
}

≤
∑

i, j,α,β f
ξα
i ξ

β
j
μα
i μ

β
j

|μ|2 ≤ max

{

gtt (x, |ξ |) ,
gt (x, |ξ |)

|ξ |
}

from which (2.3) and (2.4) follows from (4.1) and (4.2). Finally (2.5) implies (4.3). ��
We present now a first approximation lemma: we approximate g by a sequence of func-

tions gk(x, t) monotonically converging to g(x, t) and satisfying p-growth conditions with
constants depending on k ((4.8)–(4.11) below) and for t ≥ 1 the p, q-growth conditions as
in (4.1)–(4.3) with constants independent of k.
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Lemma 4.2 Let g : � × [0,+∞) → [0,+∞) convex with respect to the second variable,
g of class C2(� × [1,+∞)) satisfying

g(x, 0) = gt (x, 0) = 0 for a.e. x ∈ � (4.5)

and (4.1)–(4.3). Then, there exists a sequence of functions gk ∈ W 2,∞
loc (� × (1,+∞)) such

that for all t > 0, we have

gk(x, t) ≤ g(x, t) (4.6)

gk(x, t) ≤ gk+1(x, t) ∀k; (4.7)

moreover, for a.e x ∈ � and for all t ≥ 1, we have

gkt (x, t) ≤ C(k)t p−1 (4.8)

λmin

{
1

p − 1
, 1

}

t p−2 ≤ gkt (x, t)

t
≤ C(k)t p−2 (4.9)

λ t p−2 ≤ gktt (x, t) ≤ C(k)t p−2 (4.10)

|gktx (x, t)| ≤ C(k) h(x) t p−1 (4.11)

and finally, for a.e. x ∈ � and for all t ≥ 1, the following inequalities hold

λmin

{
1

p − 1
, 1

}

t p−2 ≤ gkt (x, t)

t
≤ � tq−2 (4.12)

λ t p−2 ≤ gktt (x, t) ≤ � tq−2 (4.13)

|gktx (x, t)| ≤ h(x) tq−1, (4.14)

with λ,� as in (4.1)–(4.2).

Proof Let us define, for a.e. x ∈ �

gk(x, t) :=
∫ t

0
gkt (x, s) ds, (4.15)

where

gkt (x, t) :=
⎧
⎨

⎩

gt (x, t) 0 ≤ t < k

gt (x, k) + λ

p − 1
[t p−1 − k p−1] t ≥ k.

(4.16)

Direct computations show that

gktt (x, t) :=
{
gtt (x, t) 0 < t < k
λ t p−2 t ≥ k.

(4.17)

We claim that the sequence of functions defined by (4.16) satisfies the conditions in the
statement of the Lemma. Before proceeding, we first observe that

{
tq−1 ≤ C(k) t p−1 t < k
kq−1 ≤ C(k) t p−1 t ≥ k.

(4.18)

It is not restrictive to assume k > 1. We also notice that for all t ≥ 0 and a.e. x ∈ �

gkt (x, t) ≤ gt (x, t). (4.19)

Indeed, (4.19) is trivial for 0 ≤ t < k. Assume t ≥ k. Then, t ≥ 1. We need to prove that

gkt (x, t) := gt (x, k) + λ

p − 1

[
t p−1 − k p−1] ≤ gt (x, t). (4.20)
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By setting

�(s) := gt (x, s) − λ

p − 1
s p−1

then � is an increasing function as long as, due to (4.2), � ′(s) ≥ 0. Then, (4.20) holds.
Now let us deal with the proof of (4.6)–(4.7).

• Proof of (4.6): it simply follows from (4.19) by integration (keeping into account (4.5)
and the fact that by definition, also gk(x, 0) = 0.

• Proof of (4.7): we prove that gkt (x, t) ≤ gk+1
t (x, t) for all t ≥ 0 and a.e. x ∈ �. When

t ≤ k + 1, (4.7) follows easily from (4.19). Let t ≥ k + 1, since the function �(s)
defined by

�(s) = gt (x, s) + λ

p − 1

[
t p−1 − s p−1]

is increasing by (4.2), (4.7) is achieved.
Before proceeding with the remaining inequalities, we notice that (4.8)–(4.14) are valid
only for t ≥ 1; therefore, we need to distinguish between the two cases 1 ≤ t < k
and t ≥ k. Actually, when 1 ≤ t < k, the inequalities follow from the assumptions
(4.1)–(4.3) possibly combined with (4.16) and (4.18). Thus, in the sequel we will focus
just on the case t ≥ k.

• Proof of (4.8): we have

gkt (x, t)
(4.16)= gt (x, k) + λ

p − 1
[t p−1 − k p−1] (4.1)≤ � kq−1 + C t p−1 (4.18)≤ C(k) t p−1.

• Proof of (4.9): to prove the left inequality of (4.9) we distinguish two cases:

1

p − 1
≤ 1 ⇔ p ≥ 2 or

1

p − 1
> 1 ⇔ p < 2.

In the first case

gkt (x, t)
(4.16)= gt (x, k) + λ

p − 1
t p−1 − λ

p − 1
k p−1

≥ gt (x, k) + λ

p − 1
t p−1 − λk p−1 (4.1)≥ λ

p − 1
t p−1,

while in the second case, using the fact that t ≥ k

gkt (x, t)
(4.16)= gt (x, k) + λ

p − 1
[t p−1 − k p−1]

(4.1)≥ λ

(

1 − 1

p − 1

)

k p−1 + λ

p − 1
t p−1

≥ λ

(

1 − 1

p − 1

)

t p−1 + λ

p − 1
t p−1 = λ t p−1.

The right inequality instead follows as in the proof of (4.8).
• Proof of (4.10): in view of (4.17), it easily follows from (4.2) and (4.18).
• Proof of (4.11): observing that for t ≥ k, gktx (x, t) = gtx (x, k), the thesis follows

combining (4.3) and (4.18).
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• Proof of (4.12): the left inequality follows as in the proof of (4.9), while concerning the
right inequality, we have

gkt (x, t)

t

(4.19)≤ gt (x, t)

t

(4.1)≤ �tq−2.

• Proof of (4.13): as long as t ≥ k, then gktt (x, t) = λt p−2 ≤ � tq−2.
• Proof of (4.14): as k ≤ t , then

|gtx (x, t)| (4.16)= |gtx (x, k)|
(4.3)≤ h(x) kq−1 ≤ h(x) tq−1.

��
We now construct a smooth approximation for each gk(x, t). In the following, we will use
also the following condition

0 ≤ g(x, 1) ≤ C for a.e. x ∈ �. (4.21)

Lemma 4.3 Let g be as in Lemma 4.2. Then, there exists a sequence of functions gk	 =
gk	(x, t) such that gk	 ∈ C2(� × R) and the following inequalities are satisfied for a.e.
x ∈ � and for all t > 0

gk	(x, t) ≤ C(k)
(
1 + t2

) p
2 (4.22)

ε	

(
1 + t2

) p−2
2 ≤ gk	t (x, t)

t
≤ C(k)

(
1 + t2

) p−2
2 (4.23)

min{p − 1, 1} ε	

(
1 + t2

) p−2
2 ≤ gk	t t (x, t) ≤ C(k)

(
1 + t2

) p−2
2 (4.24)

|gk	t x (x, t)| ≤ C(k, 	,�0)
(
1 + t2

) p−1
2 ∀ �0 ⊂⊂ �, (4.25)

where ε	 is an infinitesimal sequence of positive numbers. Moreover, the functions gk	 fulfill
for a.e. x ∈ � and t ≥ 1

λmin

{
1

p − 1
, 1

}

t p−2 ≤ gk	t (x, t)

t
≤ 2� tq−2 (4.26)

λt p−2 ≤ gk	t t (x, t) ≤ � tq−2 (4.27)

|gk	t x (x, t)| ≤ hε	
(x)
(
1 + t2

) q−1
2 , (4.28)

where λ,� are as in (4.1)–(4.2), 	 and hε	
∈ C∞(�) is the regularized function of h in (4.3)

defined by (4.31) below.

Proof Let gk as in (4.15). Fixed an open set A ⊂⊂ �, an infinitesimal sequence ε	 of
positive numbers and two positive mollifiers ρ and φ. For 	 large enough, we define for all
(x, t) ∈ A × R the sequence of functions gk	 : � × R → [0,+∞) such that

gk	(x, t) := g̃k	(x, t) + ε	

(
1 + t2

) p
2 , for a.e. x ∈ �, ∀t > 0, (4.29)

with

g̃k	(x, t) :=
∫

B×B
ρ(y)φ(η)gk(x + ε	y, t + ε	η)dy dη, (4.30)

where B is the unit open ball in R
n .
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It is not difficult to see that the sequence of functions gk	t ∈ C2(� × R) satisfy the
inequalities (4.22)–(4.28). Indeed, for 0 < t < 1, by (4.15), (4.16) and (4.5), we have
gk(x, t) = g(x, t); using the fact that g is increasing in the second variable, this entails that

0 ≤ g̃k	(x, t)
(4.21)≤ C, for a.e. x ∈ �, 0 < t < 1,

with a constant C independent of k, 	. On the other hand, for t ≥ 1, to deduce the desired
inequalities it is enough to take into account (4.15), (4.16) and the estimates obtained in
Lemma 4.2 for gk . In particular

|gk	t x (x, t)| = |g̃k	t x (x, t)| ≤
∫

B×B
ρ(y)φ(η)|gktx (x + ε	y, t + ε	η)| dy dη

(4.11)≤ C(k)
∫

B×B
ρ(y)φ(η)h(x + ε	y)(t + ε	η)p−1 dy dη

= C(k)
∫

B
ρ(y)h(x + ε	y) dy

∫

B
φ(η)(t + ε	η)p−1dη

so that

|gk	t x (x, t)| ≤ C(k)hε	
(x)
(
1 + t2

) p−1
2 ∀ t > 1

and also

|gk	t x (x, t)| ≤ C(k) ‖hε	
‖L∞(�)

(
1 + t2

) p−1
2 ∀ t > 1,

where hε	
denotes the regularization of the function h

hε	
(x, t) =

∫

B
ρ(y)h(x + ε	y) dy. (4.31)

On the other hand, since gk	 ∈ C2(� × [0,+∞)), we have, for every �0 ⊂⊂ �

|gk	t x (x, t)| ≤ C(k, 	,�0)
(
1 + t2

) p−1
2 ∀ 0 < t < 1, x ∈ �0

so that (4.25) is achieved

|gk	t x (x, t)| ≤ C(k, 	,�0) [1 + ‖hε‖L∞(�0)]
(
1 + t2

) p−1
2 ∀ t > 0.

Arguing in a similar way but using (4.14) instead of (4.11) we obtain also (4.28). ��

5 Proof of Theorem 2.1

For k, 	 ∈ N, let us consider the following functional

Fk	(w) =
∫

�

gk	(x, |Dw|) dx . (5.1)

Let u ∈ W 1,p(�;RN ) be a local minimizer of the functional (2.1); moreover, let us take
x0 ∈ � and BR = BR(x0) ⊂⊂ � to be a ball of center x0 and radius R compactly contained
in �.

We consider the following variational problem

inf
{
Fk	(w) : w ∈ u + W 1,p

0

(
BR;RN

)}
. (5.2)
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It is not difficult to verify that Fk	 is lower semicontinuous; therefore, there exists vk	 ∈
u + W 1,p

0 (�;RN ) solution to Problem (5.2).
We observe that since

t p ≤ C(1 + gk	(x, t)) ∀t > 0, for a.e. x ∈ �

by the minimality of vk	, we have
∫

BR

|Dvk	|p dx ≤ C
∫

BR

[1 + gk	(x, |Dvk	|)] dx ≤ C
∫

BR

[1 + gk	(x, |Du|)] dx . (5.3)

Moreover, by the convolution properties, as 	 → +∞
gk	(x, |Du|) → gk(x, |Du|) for a.e. x ∈ �,

since

gk	(x, |Du|) ≤ C(k)
(
1 + |Du|2)

p
2 ∈ L1(�).

The Lebesgue Dominated Convergence Theorem and (4.6) then imply

lim
	

∫

BR

gk	(x, |Du|) dx =
∫

BR

gk(x, |Du|) dx (4.6)≤
∫

BR

g(x, |Du|) dx . (5.4)

By collecting (5.3) and (5.4)

sup
	

∫

BR

|Dvk	|p dx ≤ C
∫

BR

[1 + g(x, |Du|)] dx . (5.5)

and there exists vk ∈ u + W 1,p
0 (BR;RN ) such that

vk	 ⇀ vk weakly inW 1,p
(
BR;RN

)
.

On the other hand, by Lemma 4.2 and Lemma 4.3, we have that f k	(x, ξ) = gk	(x, |ξ |)
satisfy Assumption 3.1 and (2.3), (2.4), (2.5) for |ξ | ≥ 1 with constants independent of k, 	;
thus, we can apply Proposition 3.2 to vk	 and we obtain for 0 < ρ < R

‖Dvk	‖L∞(Bρ ;RNn) ≤ C

⎡

⎢
⎢
⎣

(
1 + ‖hε	

‖2Lr (�)

) 1
2

(R − ρ)

⎤

⎥
⎥
⎦

β
1
n − 1

r [∫

BR

(1 + gk	(x, |Dvk	|)) dx
]β

,

(5.6)
with constantC, β independent of k, 	. By taking into account that by convolution properties

‖hε	
‖Lr (�) ≤ ‖h‖Lr (�)

we also have

‖Dvk	‖L∞(Bρ ;RNn) ≤ C

⎡

⎢
⎢
⎣

(
1 + ‖h‖2Lr (�)

) 1
2

(R − ρ)

⎤

⎥
⎥
⎦

β
1
n − 1

r [∫

BR

(1 + gk	(x, |Dvk	|)) dx
]β

.

(5.7)
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In the following, we denote by

C̃ := C

⎡

⎢
⎢
⎣

(
1 + ‖h‖2Lr (�)

) 1
2

(R − ρ)

⎤

⎥
⎥
⎦

β
1
n − 1

r

.

Therefore, by (5.3) and (5.4), we get, for all Bρ ⊂⊂ BR

vk	
∗
⇀ vk weakly star in W 1,∞(Bρ;RN ).

At this point, by the semicontinuity of the norm and (5.5), we obtain
∫

BR

|Dvk |p dx ≤ lim inf
	

∫

BR

|Dvk	|p dx ≤ C̃
∫

BR

(1 + g(x, |Du|)) dx . (5.8)

On the other hand, (5.4) and (5.6) imply

‖Dvk‖L∞(Bρ ;RNn) ≤ lim inf
	

‖Dvk	‖L∞(Bρ ;RNn) ≤ C̃

[∫

BR

(1 + g(x, |Du|)) dx
]β

=: M.

(5.9)
Thus, we can deduce that up to subsequences, there exist v ∈ u + W 1,p

0 (BR;RN ) such that

vk ⇀ v weakly inW 1,p
(
BR;RN

)

vk
∗
⇀ v weakly star in W 1,∞ (Bρ;RN

)
for all Bρ ⊂⊂ BR .

Now we proceed in a similar way as in [9,16]. First, we show that v is a solution to the
problem

inf

{∫

BR

g(x, Dw) dx : w ∈ u + W 1,p
0 (BR,Rn)

}

. (5.10)

To this end, using the semicontinuity of the functional
∫
Bρ

gk0(x, |Du|) dx and (see (4.7))

gk0(x, t) ≤ gk(x, t) ∀k ≥ k0,

we get
∫

Bρ

gk0(x, |Dvk |) dx ≤ lim inf
	

∫

Bρ

gk0(x, |Dvk	|) dx ≤ lim inf
	

∫

Bρ

gk(x, |Dvk	|) dx .
(5.11)

Since, up to subsequences, gk	(x, t) converges as k → +∞, a.e. in�×[0,+∞) to gk(x, t),
by Egorov theorem, fixed K = {ξ ∈ R

Nn : |ξ | ≤ M + 1}, for every δ > 0 there exists Aδ

with |Aδ| < δ such that gk	 converges to gk uniformly in (Bρ \ Aδ) × K . Thus,

lim sup
	

∫

Bρ\Aδ

gk(x, |Dvk	|) dx = lim sup
	

∫

Bρ\Aδ

gk	(x, |Dvk	|) dx

and due to (5.9)

lim sup
	

∫

Bρ∩Aδ

gk(x, |Dvhk |) dx ≤ C(k) |Aδ| (1 + M),
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with C(k) independent of δ. Thus, putting together the previous inequalities, (5.11) gives
∫

Bρ

gk0(x, |Dvk |) dx ≤ lim inf
	

∫

Bρ

gk(x, |Dvk	|) dx

≤ lim sup
	

∫

Bρ

gk(x, |Dvk	|) dx

≤ lim sup
	

∫

BR

gk	(x, |Dvk	|) dx + C(k) |Aδ| (1 + M)

so that letting δ → 0, by (5.4)
∫

Bρ

gk0(x, |Dvk |) dx ≤ lim sup
	

∫

BR

gk	(x, |Du|) dx ≤
∫

BR

gk(x, |Du|) dx .

At this point, exploiting the lower semicontinuity of the functional
∫
Bρ

gk0(x, |Du|) dx , we
obtain

∫

Bρ

gk0(x, |Dv|) dx ≤ lim inf
k

∫

Bρ

gk0(x, |Dvk |) dx

≤ lim inf
k

∫

BR

gk(x, |Du|) dx =
∫

BR

g(x, |Du|) dx,

where in the last line, we applied once more the Lebesgue Dominated Convergence Theorem
to the sequence of functions gk . This has been possible because of (4.6) and due to the fact
that gk(x, |Du|) → g(x, |Du|) pointwise. Finally, letting k0 → +∞ and ρ → R

∫

BR

g(x, |Dv|) dx ≤
∫

BR

g(x, |Du|) dx, (5.12)

and passing to the limit in (5.9), we get

‖Dv‖L∞(Bρ ;RNn) ≤ C̃

[∫

BR

(1 + g(x, |Du|) dx
]β

. (5.13)

Therefore, u and v are two solutions to Problem (5.10), but since g is not strictly convex for
all t > 0, we may not conclude that u = v in BR . Set

E0 :=
{

x ∈ BR :
∣
∣
∣
∣
Du(x) + Dv(x)

2

∣
∣
∣
∣ > 1

}

and ū := u + v

2
.

If E0 has positive measure, then from the convexity of g(x, .), we have:
∫

BR\E0

g(x, |Dū|) dx ≤ 1

2

∫

BR\E0

g(x, |Du|) dx + 1

2

∫

BR\E0

g(x, |Dv|) dx . (5.14)

Now, by the strictly convexity of g(x, t) for t ≥ 1 and applying two times the following
inequality

g(x, t) > g(x, s0) + gt (x, s0)(t − s0), s0 ≥ 1

first with s0 = Dū and t = Du, then for s0 = Dū and t = Dv, finally by adding up the two
inequalities obtained, we have

∫

BR∩E0

g(x, |Dū|) dx <
1

2

∫

BR∩E0

g(x, |Du|) dx + 1

2

∫

BR∩E0

g(x, |Dv|) dx . (5.15)
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Adding (5.14) and (5.15), we get a contradiction with the minimality of u and v. Therefore,
the set E0 has zero measure, which implies that

sup
Bρ

|Du(x)| ≤ sup
Bρ

|Du(x) + Dv(x)| + sup
Bρ

|Dv(x)| ≤ 2 + sup
Bρ

|Dv(x)|

and estimate (2.7) follows by (5.13). ��
Proof of Theorem 2.6. For every x0 ∈ �, there exists R > 0 such that the ball BR(x0)
contained in � and

sup{p(x) : x ∈ BR(x0)} + δ

inf{p(x) : x ∈ BR(x0)} < 1 + α

n
(5.16)

for some 0 < δ < 1. Observe that for the functional (2.14), with the notation g(x, t) =
a(x) t p(x), we get

gtxi (x, t) = (a p)xi t
p(x)−1 + a p pxi t

p(x)−1 log t, ∀i = 1, . . . , n. (5.17)

Set

p := inf {p(x) : x ∈ BR(x0)} q := sup {p(x) : x ∈ BR(x0)} + δ

where δ permits to absorb the logarithmic term in (5.17). Then, the following estimate

|gtx (x, t)| ≤ � h(x) tq+δ−1, t ≥ 1, a.e. in BR

holds for some h ∈ Lr (BR). This is due to the fact that the product (a p)xi ∈ Lr (BR), since
a, p ∈ W 1,r (BR), r > n, are continuous functions.

We conclude that with this choice of p, q , f (x, ξ) = a(x) |ξ |p(x) satisfies (2.3), (2.4) and
(2.5). Since a minimizer u of (2.14) in � is also a minimizer in BR(x0), by proceeding as in
Theorem 2.1, we obtain the u is locally Lipschitz continuous in BR(x0). ��

6 Back to systems

In this section, we give the proof of the previous statements about systems. The proof of
Corollary 2.2 is similar to the next one, and we omit it.

Proof of Corollary 2.3. We consider the variational problem

inf

{∫

�

f (x, Dv) dx : v ∈ u0 + W 1,p
0

(
�;RN

)}

. (6.1)

Assumption (2.3) guarantees the convexity of f (x, ξ) = g (x, |ξ |)with respect to the second
variable and its coercivity with p-growth. The lower semicontinuity of the integral in (6.1)
gives the existence of (at least) a minimizing map u ∈ u0 +W 1,p

0

(
�;RN

)
. By the regularity

Theorem2.1,we have that u ∈ W 1,∞
loc

(
�;RN

)
. Then, theq-growth fromabove in (2.3) allows

us to apply the well-known variational technique to show that u in fact satisfies the weak
form in (2.9), with test function ϕ = (ϕα)α=1,2,...,N ∈ W 1,q

loc

(
�;RN

)
, and therefore, u is a

weak solution to the Dirichlet system (2.10) too. This completes the proof of Corollary 2.3.
��

Proof of Corollary 2.4. Once we get an estimate for the norm in L∞ of the gradient of
the solution to problem (2.10), with assumptions on the behavior of g, and then on f , as
t = |ξ | → 0+, the C1,β regularity of the solution follows by well-known results for the
systems considered in (2.8) (see [39] and [40]). ��

123



M. Eleuteri et al.

Proof of Corollary 2.5. Since gtt (x, t) > 0 for all t > 0, we are in the framework of uni-
formly elliptic systems. Since u ∈ C1,β

loc (�;RN ), each component of the gradient Du is a
weak solution to a system with Hölder continuous coefficients. Then, further regularity fol-
lows from the regularity theory for linear elliptic systems with smooth coefficients (see for
instance Section 3 of [19]). ��
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