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Abstract. We are interested in the regularity of local minimizers of energy integrals of
the Calculus of Variations. Precisely, let Ω be an open subset of Rn. Let f (x, ξ) be a

real function defined in Ω × Rn satisfying the growth condition |fξx (x, ξ)| ≤ h (x) |ξ|p−1
,

forx ∈ Ω and ξ ∈ Rn with |ξ| ≥ M0 for some M0 ≥ 0, with h ∈ Lrloc (Ω) for some r > n.
This growth condition is more general than those considered in the mathematical literature
and allows us to handle some cases recently studied in similar contexts. We associate
to f (x, ξ) the so-called natural p−growth conditions on the second derivatives fξξ (x, ξ);
i.e., (p− 2)−growth for |fξξ (x, ξ)| from above and (p− 2)−growth from below for the
quadratic form (fξξ (x, ξ)λ, λ); for details see either (1.3) or (2.2) below. We prove that these

conditions are sufficient for the local Lipschitz continuity of any minimizer u ∈ W 1,p
loc (Ω) of

the energy integral
∫

Ω
f (x,Du (x)) dx .

1. Introduction

In recent years many authors considered differential problems, in the context of the cal-
culus of variations and of partial differential equations of elliptic and parabolic type, under
general p, q−growth conditions and, as a special relevant case, related to p (x)−growth; i.e.,
variable exponents. Among them Vicenţiu D. Rădulescu who studied, in this framework of
general growth, multiplicity of solutions for some nonlinear problems, qualitative analysis,
anisotropic elliptic equations, eigenvalue problems and several other related questions; see
for instance [20], [21], [5], [23], [2]. We like to explicitly dedicate this manuscript to Vicenţiu
D. Rădulescu, with esteem and sympathy.

In order to introduce the problem we first consider the classical Dirichlet energy integral∫
Ω

a (x) |Du (x)|2 dx ; (1.1)

then any minimizer u of this functional is locally Lipschitz continuous in the open set Ω ⊂ Rn

if also the coefficient a (x) is assumed to be locally Lipschitz continuous and positive in Ω.
In the nonlinear case too, more generally, a minimizer of an energy integral of the type∫

Ω

f (x,Du (x)) dx (1.2)

comes out to be locally Lipschitz continuous in Ω if the integrand f : Ω× Rn → R satisfies
the ellipticity and the growth conditions{

(fξξ (x, ξ)λ, λ) ≥M1

(
1 + |ξ|2

) p−2
2 |λ|2

|fξξ (x, ξ)| ≤M2

(
1 + |ξ|2

) p−2
2

, (1.3)

for some positive constants M1,M2, for an exponent p ∈ (1,+∞) and for every x ∈ Ω
and ξ ∈ Rn. The assumption usually considered in the mathematical literature for Lipschitz
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loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica).

1



2 M. ELEUTERI – P. MARCELLINI – E. MASCOLO

continuity of solutions is the Lipschitz continuity of f (x, ξ) with respect to x; more precisely,
similarly to the Dirichlet integral in (1.1), the condition often assumed on the x−dependence
is

|fξx (x, ξ)| ≤ L
(
1 + |ξ|2

) p−1
2 . (1.4)

A classical reference is, for instance, the book by Ladyzhenskaya-Uraltseva [19]. The x−depen-
dence cannot be only considered as a perturbation, but it is a relevant difference with the
case f = f (ξ) from several points of view. For instance recently several authors studied the
x−dependence under Hölder continuity assumptions as well as under Sobolev summability
assumptions, in the general context of p, q−growth conditions; see [7], [8], [13], [14]; see also
[11], [3], [4], [15].

In this paper we show that we can obtain the local Lipschitz continuity in Ω of the local
minimizers by assuming a mild condition on the x−dependence, weaker than (1.4). Precisely,
instead of (1.4), we assume that

|fξx (x, ξ)| ≤ h (x)
(
1 + |ξ|2

) p−1
2 , (1.5)

where h ∈ Lrloc (Ω) for some exponent r > n. A precise statement (with assumptions only
for |ξ| → +∞) is described in the next section. The following regularity theorem holds.

Theorem 1.1. Let p > 1 and u ∈ W 1,p
loc (Ω) be a local minimizer of the energy integral (1.2)

under the growth assumptions (1.3), (1.5). Then u is locally Lipschitz continuous in Ω.

An explicit bound for the L∞−norm of u in any compactly contained subset of Ω ⊂ Rn

is given in terms of the Lr− norm of h and of the Lp− norm of the gradient Du. See the
details in the next Section, precisely in the statement of Theorem 2.1.

A motivation for the previous result, other that its intrinsic interest in the framework of
regularity theory, also relies in the approximation procedure to pass from a-priori estimates to
existence and regularity under general p, q−growth conditions. A place where this procedure
has been used is the author’s paper [15]; we plan to go back to this problem in the next
future to explain with more details the use of Theorem 1.1 to get local Lipschitz continuity
and regularity of solutions in a general context.

2. A-priori estimates

Let Ω be an open set of Rn. In the following, we say that u ∈ W 1,p
loc (Ω) is a local minimizer

of the energy integral (1.2) if∫
Ω′
f (x,Du) dx ≤

∫
Ω′
f (x,D (u+ ϕ)) dx , (2.1)

for every open set Ω′ compactly contained in Ω and for every ϕ ∈ W 1,p
0 (Ω′).

We assume that f : Ω × Rn → [0,+∞) is a convex function with respect to the gradient
variable ξ ∈ Rn and it is strictly convex only at infinity. Precisely, the second derivatives of
f are Carathéodory functions satisfying the growth conditions

(fξξ (x, ξ)λ, λ) ≥M1 |ξ|p−2 |λ|2,

|fξξ (x, ξ)| ≤ M2 |ξ|p−2 ,

|fξx (x, ξ)| ≤ h(x) |ξ|p−1 ,

(2.2)

for a.e. x ∈ Ω and for all λ, ξ ∈ Rn, with |ξ| ≥M0, for some constants M0 ≥ 0, M1,M2 > 0.
Here h ∈ Lrloc(Ω) for some r > n.

We observe that here the ellipticity and growth assumptions hold only for large values of
the gradient variable, i.e., we consider functionals which are uniformly convex only at infinity.
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In this context see [6], [17], [10] and recently [13], [14] and [9]. The Sobolev dependence on
x recently has been considered in [22], [1] and for obstacle problems in [16].

We observe that we can transform f(x, ξ) into f(x,M0ξ), which satisfies the same assump-
tions for |ξ| ≥ 1 (with different constants depending on M0). Therefore and without loss of
generality, for clarity of exposition, we assume M0 = 1.

Throughout the paper we will denote by Bρ and BR balls of radii ρ and R (ρ < R)
compactly contained in Ω and with the same center.

In this section we assume the following supplementary assumptions on f which will be
automatically satisfied in Section 3. Assume that f ∈ C2(Ω×Rn) and there exist two positive
constants k,K such that ∀ξ ∈ Rn, ∀x ∈ Ω

k (1 + |ξ|2)
p−2
2 |λ|2 ≤

∑
i,j fξiξj(x, ξ)λiλj,

|fξξ(x, ξ)| ≤ K (1 + |ξ|2)
p−2
2 ,

|fξx(x, ξ)| ≤ K (1 + |ξ|2)
p−1
2 .

(2.3)

The following a-priori estimate holds.

Theorem 2.1. (a-priori estimate) Let the growth assumptions (2.2) and (2.3) hold and
let u ∈ W 1,p

loc (Ω) be a local minimizer of the energy integral in (1.2). Then u is locally
Lipschitz continuous in Ω and the following a-priori estimate holds

‖Du‖L∞(Bρ;Rn) ≤ C

[
‖1 + h‖Lr(Ω)

(R− ρ)

]β (∫
BR

{1 + |Du|p} dx
) 1

p

, (2.4)

for every ρ,R, with ρ < R ≤ ρ+1 and Bρ+1 ⊂ Ω, where C, β are positive constants depending
on n, r, p,M1,M2 but independent of k and K in (2.3).

Proof. Let u ∈ W 1,p
loc (Ω) be a local minimizer of (1.2). First of all we obtain an a-priori

estimate for the L∞−norm of the gradient of u which is independent of k and K, i.e. for
every 0 < ρ < R ≤ ρ + 1, we prove that there exists a positive constant C depending only
on n, r, p,M1,M2 such that

‖Du‖L∞(Bρ;Rn) ≤ C

[
‖1 + h‖Lr(Ω)

(R− ρ)

]β̃ (∫
BR

{1 + |Du|pm} dx
) 1

pm

, (2.5)

where

m :=
r

r − 2
β̃ :=

2

p
(
1− 2m

2∗

) . (2.6)

Let us observe that since r > n

1 < m :=
r

r − 2
<

n

n− 2
=

2∗

2
, (2.7)

where 2∗ := 2n
n−2

when n > 3 and 2∗ is any fixed real number greater than 2m = 2r
r−2

when

n = 2. Therefore β̃ > 0 in (2.6).
The local minimizer u satisfies the following Euler first variation∫

Ω

n∑
i=1

fξi(x,Du)ϕxi(x) dx = 0 ∀ϕ ∈ W 1,p
0 (Ω).

By (2.3), the technique of the difference quotients (see [19], [12], in particular [18], Chapter
8, Sections 8.1 and 8.2) gives

u ∈ W 1,∞
loc (Ω) ∩W 2,min (2,p)

loc (Ω) and (1 + |Du|2)
p−2
2 |D2u|2 ∈ L1

loc(Ω). (2.8)
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Let η ∈ C1
0(Ω) and for any fixed s ∈ {1, . . . , n} define ϕ = η2uxsΦ((|Du| − 1)+) for Φ :

[0,+∞)→ [0,+∞) increasing, locally Lipschitz continuous function, with Φ and Φ′ bounded
on [0,+∞), such that Φ(0) = Φ′(0) = 0 and

Φ′(s)s ≤ cΦ Φ(s) (2.9)

for a suitable constant cΦ > 1. Here (a)+ denotes the positive part of a ∈ R; in the following
we denote Φ((|Du| − 1)+) = Φ(|Du| − 1)+. We have then

ϕxi = 2ηηxiuxsΦ(|Du|−1)++η2uxsxiΦ(|Du|−1)++η2uxsΦ
′(|Du|−1)+[(|Du|−1)+]xi . (2.10)

Let p ≥ 2, by (2.8) we have that |D2u|2 ∈ L1
loc(Ω) . Otherwise if 1 < p < 2, we use the

fact that u ∈ W 1,∞
loc (Ω) to infer that there exists M = M(suppϕ) such that |Du(x)| ≤

M for a.e. x ∈ suppϕ. Now since p− 2 < 0 we have

(1 +M2)
p−2
2 |D2u|2 ≤ (1 + |Du|2)

p−2
2 |D2u|2,

and by (2.8) we again get |D2u|2 ∈ L1(suppϕ). Therefore we can insert ϕxi in the following
second variation∫

Ω

{
n∑

i,j=1

fξiξj(x,Du)uxjxsϕxi +
n∑
i=1

fξixs(x,Du)ϕxi

}
dx = 0 ∀s = 1, . . . , n,

and we obtain

0 =
∑
s

[∫
Ω

2ηΦ(|Du| − 1)+

∑
i,j

fξiξj(x,Du)ηxiuxsuxsxj dx

+

∫
Ω

η2Φ(|Du| − 1)+

∑
i,j

fξiξj(x,Du)uxsxiuxsxj dx

+

∫
Ω

η2Φ′(|Du| − 1)+

∑
i,j

fξiξj(x,Du)uxsuxsxj [(|Du| − 1)+]xi dx

+

∫
Ω

2ηΦ(|Du| − 1)+

∑
i

fξixs(x,Du)ηxiuxs dx

+

∫
Ω

η2Φ(|Du| − 1)+

∑
i

fξixs(x,Du)uxsxi dx

+

∫
Ω

η2Φ′(|Du| − 1)+

∑
i

fξixs(x,Du)uxs [(|Du| − 1)+]xi dx

]
=:

∑
s

(Is1 + Is2 + Is3 + Is4 + Is5 + Is6). (2.11)

In the following, constants will be denoted by C, regardless of their actual value.
First of all, using the Cauchy-Schwarz inequality, the Young inequality and (2.2), we have∣∣∣∣∣∑

s

Is1

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω

2ηΦ(|Du| − 1)+

∑
i,j,s

fξiξj(x,Du)ηxiuxsuxsxj dx

∣∣∣∣∣ (2.12)

≤
∫

Ω

2ηΦ(|Du| − 1)+

{∑
i,j,s

fξiξj(x,Du)ηxiuxsηxjuxs

} 1
2
{∑
i,j,s

fξiξj(x,Du)uxsxiuxsxj

} 1
2

dx

≤ C

∫
Ω

|Dη|2Φ(|Du| − 1)+ |Du|p dx+
1

2

∫
Ω

η2Φ(|Du| − 1)+

∑
i,j,s

fξiξj(x,Du)uxsxiuxsxj dx.
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Moreover, by the growth of fξξ in (2.2), we obtain∑
s

Is3 =

∫
Ω

η2Φ′(|Du| − 1)+

∑
i,j,s

fξiξj(x,Du)uxsuxsxj [(|Du− 1|+)]xi dx

≥ M1

∫
Ω

η2Φ′(|Du| − 1)+|Du|p−1|D(|Du| − 1)+|2 dx ≥ 0

On the other hand, we have∣∣∣∣∣∑
s

Is4

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω

2ηΦ(|Du| − 1)+

∑
i,s

fξixs(x,Du)ηxiuxs dx

∣∣∣∣∣
(2.2)

≤
∫

Ω

2ηΦ(|Du| − 1)+h(x)|Du|p−1
∑
i,s

|ηxiuxs | dx

≤ C

∫
Ω

(η2 + |Dη|2)h(x)Φ(|Du| − 1)+|Du|p dx.

Consider now the fifth term in (2.11):∣∣∣∣∣∑
s

Is5

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω

η2Φ(|Du| − 1)+

∑
i,s

fξixs(x,Du)uxsxj dx

∣∣∣∣∣
(2.2)

≤
∫

Ω

η2Φ(|Du| − 1)+h(x)|Du|p−1|D2u| dx

≤
∫

Ω

[
η2Φ(|Du| − 1)+|Du|p−2|D2u|2

]1/2 [
η2Φ(|Du| − 1)+|h(x)|2|Du|p

]1/2
dx

≤ ε

∫
Ω

η2Φ(|Du| − 1)+|Du|p−2|D2u|2 dx+ Cε

∫
Ω

η2Φ(|Du| − 1)+|h(x)|2|Du|p dx.

Finally we need to estimate the sixth integral in (2.11). Let us observe that we want to
consider growth conditions only at infinity, therefore we need to overcome the difficulty due
to the presence of the term Φ′ in this sixth integral. The idea is to use the same argument
exploited in [13]. For any 0 < δ < 1 we have∣∣∣∣∣∑

s

Is6

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω

η2
∑
i,s

fξixs(x,Du)uxsΦ
′(|Du| − 1)+[(|Du| − 1)+]xi dx

∣∣∣∣∣
≤

∫
Ω

η2Φ′(|Du| − 1)+h(x)[(|Du| − 1)+ + δ] [(|Du| − 1)+ + δ]−1|Du|p |D2u| dx

≤
∫

Ω

η2

{
1

cΦ

Φ′(|Du| − 1)+[(|Du| − 1)+ + δ]|Du|p−2|D2u|2
}1/2

×
{
cΦΦ′(|Du| − 1)+|h(x)|2|Du|p+2[(|Du| − 1)+ + δ]−1

}1/2
dx

≤ Cε cΦ

∫
Ω

η2Φ′(|Du| − 1)+|h(x)|2|Du|p+2[(|Du| − 1)+ + δ]−1 dx

+
ε

cΦ

∫
Ω

η2Φ′(|Du| − 1)+[(|Du| − 1)+ + δ]|Du|p−2|D2u|2 dx.

In {x : |Du(x)| ≥ 2} we get (|Du|−1)+ +δ ≤ 2(|Du|−1)+ and we estimate the last integral
using the properties of Φ in (2.9)∫

Ω

η2Φ′(|Du| − 1)+[(|Du| − 1)+ + δ]|Du|p−2|D2u|2 dx
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≤ 2

∫
|Du|≥2

η2Φ′(|Du| − 1)+(|Du| − 1)+|Du|p−2|D2u|2 dx

+

∫
1<|Du|<2

η2Φ′(|Du| − 1)+(|Du| − 1)+|Du|p−2|D2u|2 dx

+ δ

∫
1<|Du|<2

η2Φ′(|Du| − 1)+|Du|p−2|D2u|2 dx

(2.9)

≤ 2 cΦ

∫
Ω

η2Φ(|Du| − 1)+|Du|p−2|D2u|2 dx+ δ

∫
1<|Du|<2

η2Φ′(|Du| − 1)+|Du|p−2|D2u|2 dx.

Therefore we finally obtain∣∣∣∣∣∑
s

Is6

∣∣∣∣∣ ≤ Cε cΦ

∫
Ω

η2Φ′(|Du| − 1)+|h(x)|2|Du|p+2[(|Du| − 1)+ + δ]−1 dx

+2 ε

∫
Ω

η2Φ(|Du| − 1)+|Du|p−2|D2u|2 dx

+ δ ε

∫
1<|Du|<2

η2Φ′(|Du| − 1)+|Du|p−2|D2u|2 dx.

Now putting together all the previous estimates, for ε sufficiently small, we deduce that there
exists a constant C depending on n, p,M1,M2 such that∫

Ω

η2Φ(|Du| − 1)+|Du|p−2|D2u|2 dx (2.13)

≤ C cΦ

∫
Ω

(η2 + |Dη|2)(1 + h(x))2|Du|p

×
[
Φ(|Du| − 1)+ + Φ′(|Du| − 1)+|Du|2[(|Du| − 1)+ + δ]−1

]
dx

+ δ

∫
1<|Du|<2

η2Φ′(|Du| − 1)+|Du|p−2|D2u|2 dx.

At this point we set

Φ(s) := (1 + s)γ−2s2 γ ≥ 0; (2.14)

with

Φ′(s) = (γs+ 2)s(1 + s)γ−3. (2.15)

It is easy to check that Φ satisfies (2.9) with cΦ = 2(1 + γ).
Let Φh be a sequence of functions, with Φh equal to Φ in [0, h] and extended to [h,+∞)
with the constant value Φ(h). Then (2.13) holds for each Φh and since Φh and Φ′h converge
monotonically to Φ and Φ′, by passing to the limit we have (2.5) with Φ defined in (2.14).

Therefore, for every 0 < δ < 1, since

(|Du| − 1)+

(|Du| − 1)+ + δ
≤ 1 ∀ δ > 0

and Φ′(t− 1)+ ≤ C(γ) when 1 < t < 2, we obtain∫
Ω

η2(1 + (|Du| − 1)+)γ−2(|Du| − 1)2
+|Du|p−2|D2u|2 dx

≤ C (1 + γ)2

∫
Ω

(η2 + |Dη|2)(1 + h(x))2(1 + (|Du| − 1)+)γ+p dx

+δ C(γ)

∫
1<|Du|<2

η2|Du|p−2|D2u|2 dx. (2.16)
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Since |Du|p−2 ≤ C(p) (1 + |Du|2)
p−2
2 when |Du| > 1 (see Lemma 3.3 in [13]), we get∫

1<|Du|<2

η2|Du|p−2|D2u|2 dx ≤ C

∫
1<|Du|<2

η2(1 + |Du|2)
p−2
2 |D2u|2 dx < +∞

by (2.8), and the last term in (2.16) vanishes as δ → 0. Using the Hölder inequality, since
h ∈ Lr(Ω) and 1

m
+ 2

r
= 1, by (2.16) we have∫

Ω

η2(1 + (|Du| − 1)+)γ−2(|Du| − 1)2
+|Du|p−2|D((|Du| − 1)+)|2 dx

≤ C (1 + γ)2 (‖1 + h‖2
Lr(Ω))

[∫
Ω

(η2 + |Dη|2)m(1 + (|Du| − 1)+)(γ+p)m dx

] 1
m

.(2.17)

Let us define

G(t) = 1 +

∫ t

0

(1 + s)
γ
2

+ p
2
−2 s ds (2.18)

so that
[G(t)]2 ≤ 4 (1 + t)γ+p Gt(t) = (1 + t)

γ
2

+ p
2
−2t, (2.19)

which gives the following estimate for the gradient of the function w = ηG((|Du| − 1)+)∫
Ω

|D(ηG((|Du| − 1)+))|2 dx (2.20)

(2.17),(2.19)

≤ C (1 + γ)2 (‖1 + h‖2
Lr(Ω))

[∫
Ω

(η2 + |Dη|2)m[1 + (|Du| − 1)+](γ+p)m dx

] 1
m

.

By Sobolev’s inequality there exists a constant C, depending also on |Ω| when n = 2, such
that {∫

Ω

[ηG((|Du| − 1)+)]2
∗
dx

} 2
2∗

≤ C

∫
Ω

|D(ηG((|Du| − 1)+))|2 dx.

By the previous inequality we get{∫
Ω

[ηG((|Du| − 1)+)]2
∗
dx

} 2
2∗

(2.21)

≤ C (1 + γ)2 (‖1 + h‖2
Lr(Ω))

[∫
Ω

(η2 + |Dη|2)m[1 + (|Du| − 1)+](γ+p)m dx

] 1
m

.

We take into account the definition of G (t) in (2.18) and we use Lemma 2.2 below, and in
particular formula (2.36) with µ = γ+p

2
. Being µ ≥ 0, we have µ ≥ µ0 := p/2 > 0 and

(1 + t)
γ+p
2 ≤ c′′

(
γ + p

2

)2(
1 +

∫ t

0

(1 + s)
γ+p
2
−2 s ds

)
, (2.22)

for every γ ≥ 0 and every t ∈ [0,+∞). In terms of G(t) equivalently

(1 + t)
γ+p
2 ≤ c′′

(
γ + p

2

)2

G (t) , ∀ γ ≥ 0, ∀ t ≥ 0.

Therefore, if t := (|Du| − 1)+,(
1 + (|Du| − 1)+

) γ+p
2

2∗ ≤ (c′′)
2∗
(
γ + p

2

)2·2∗ [
G
(
(|Du| − 1)+

)]2∗
, ∀ γ ≥ 0,

and by (2.21) finally for every γ ≥ 0 we obtain{∫
Ω

η2∗
[
1 + (|Du| − 1)+

] γ+p
2

2∗
dx

} 2
2∗
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≤ (c′′)
2

(
γ + p

2

)4{∫
Ω

[ηG((|Du| − 1)+)]2
∗
dx

} 2
2∗

≤ C (γ + 1)6 (1 + ‖h‖2
Lr(Ω))

[∫
Ω

(η2 + |Dη|2)m[1 + (|Du| − 1)+](γ+p)m dx

] 1
m

.

For ρ < R < ρ + 1 consider a function η with η = 1 in Bρ, supp η ⊂ BR and such that
|Dη| ≤ 2

(R−ρ)
; we obtain[∫

Bρ

[1 + (|Du| − 1)+][(γ+p)m] 2∗
2m dx

] 2m
2∗

≤ C0 (‖1 + h‖Lr(Ω))
2m (γ + p)6m

(R− ρ)2m

∫
BR

[1 + (|Du| − 1)+](γ+p)m dx , (2.23)

where the constant C0 only depends on n, r, p,M1,M2 but is independent of γ.
Fixed 0 < ρ0 < R0 ≤ ρ0 + 1, we define the decreasing sequence of radii {ρk}k≥1

ρk = ρ0 +
R0 − ρ0

2k
∀k ≥ 1.

We define recursively a sequence αk in the following way

α1 := 0 αk+1 := (αk + pm)
2∗

2m
− pm = αk

2∗

2m
+ p

(
2∗

2
−m

)
. (2.24)

The following representation formula for αk can be easily proved by induction

αk = pm

[(
2∗

2m

)k−1

− 1

]
, (2.25)

so that

(αk + pm)
2∗

2m
= pm

(
2∗

2m

)k
.

We rewrite (2.23) with R = ρk, ρ = ρk+1, γ = αk
m

and we observe that

R− ρ := ρk − ρk+1 =
R0 − ρ0

2k+1
.

For all k ≥ 1, denote by

Ak :=

(∫
Bρk

[1 + (|Du| − 1)+]αk+pm dx

)1/(αk+pm)

Ck := C0 (‖1 + h‖Lr(Ω))
2m

(
(αk + pm)32k+1

R0 − ρ0

)2m

;

for every k ≥ 1, (2.23) implies Ak+1 ≤ C
1/(αk+pm)
k Ak. By iteration, we deduce that there

exist β̃ and C̃ such that

Ak+1 ≤ C̃

[
‖1 + h‖Lr(Ω)

(R0 − ρ0)

]β̃
A1 k ≥ 1, (2.26)

such that

C̃ := C exp

[
∞∑
i=1

log[(αi + pm)6m22m(i+1)]

αi + pm

]
< +∞
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which is finite because the series is convergent (αi from the representation formula (2.25)
grows exponentially) and

β̃ :=
∞∑
i=1

2m

αi + pm
=

2

p

∞∑
i=0

(
2m

2∗

)i
=

2

p

1(
1− 2m

2∗

) .
By letting k → +∞ in (2.26), we have (2.5).

The a-priori estimate (2.4) follows by the classical interpolation inequality

‖v‖Ls(Bρ) ≤ ‖v‖
p
s

Lp(Bρ)‖v‖
1− p

s

L∞(Bρ), (2.27)

for any s ≥ p, which permits to estimate the essential supremum of the gradient of the local
minimizer in terms of its Lp−norm.

Let us denote
V (x) := 1 + (|Du|(x)− 1)+ (2.28)

then estimate (2.5) becomes

‖V ‖L∞(Bρ) ≤ C

[
‖1 + h‖Lr(Ω)

R− ρ

]β̃
‖V ‖Lpm(BR) (2.29)

for every ρ,R such that 0 < ρ < R ≤ ρ + 1 and where C = C(n, r, p,M1,M2). By applying
at this point, (2.29) and (2.27) give

‖V ‖Lpm(Bρ) ≤ C1− 1
m‖V ‖

1
m

Lp(Bρ)

([
‖1 + h‖Lr(Ω)

R− ρ

]β̃
‖V ‖Lpm(BR)

)(1− 1
m)

. (2.30)

We observe that, since m > 1

τ :=

(
1− 1

m

)
< 1. (2.31)

For 0 < ρ < R and for every k ≥ 0, let us define ρk := R − (R − ρ)2−k. By inserting in
(2.30) ρ = ρk and R = ρk+1, (so that R− ρ = (R− ρ)2−(k+1)) we have, for every k ≥ 0

‖V ‖Lpm(Bρk ) ≤ C1− 1
m‖V ‖

1
m

Lp(Bρk )

(
2β̃(k+1)

[
‖1 + h‖Lr(Ω)

(R− ρ)

]β̃
‖V ‖Lpm(Bρk+1

)

)τ

. (2.32)

By iteration of (2.32), we deduce for k ≥ 0

‖V ‖Lpm(Bρ0 ) ≤

(
C1− 1

m

[
‖1 + h‖Lr(Ω)

(R− ρ)

]β̃τ
‖V ‖

1
m

Lp(Bρk )

)∑k
i=0 τ

i

×2β̃
∑k+1
i=0 iτ

i

(‖V ‖Lpm(Bρk+1
))
τk+1

. (2.33)

By (2.31), the series in (2.33) are convergent. Since

‖V ‖Lpm(Bρk ) ≤ ‖V ‖Lpm(BR),

we can pass to the limit as k → +∞ and we obtain for every 0 < ρ < R with a constant
C = C(n, r, p,M1,M2) independent of k

‖V ‖Lpm(Bρ) ≤ C

([
‖1 + h‖Lr(Ω)

(R− ρ)

]β̃τ
‖V ‖

1
m

Lp(BR)

)m

, (2.34)

as 1− τ = 1
m

. Combining (2.29) and (2.34), by setting ρ′ = (R+ρ)
2

we have

‖V ‖L∞(Bρ) ≤ C

[
‖1 + h‖Lr(Ω)

(ρ′ − ρ)

]β̃
‖V ‖Lpm(Bρ′ )
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≤ C

[‖1 + h‖Lr(Ω)

(ρ′ − ρ)

] β̃
m
[
‖1 + h‖Lr(Ω)

(R− ρ′)

]β̃(1− 1
m)
‖V ‖

1
m

Lp(BR)

m

;

now, since (ρ′ − ρ) = (R− ρ′) = (R− ρ)/2, we get

‖Du‖L∞(Bρ;Rn) ≤ C

[
‖1 + h‖Lr(Ω)

(R− ρ)

]β (∫
BR

{1 + |Du|p} dx
)1/p

,

where

β := β̃m =
2∗

p
(

2∗

2m
− 1
) .

so (2.4) follows. �

Above we applied the following technical lemma whose proof is in [15].

Lemma 2.2. Let µ0 > 0. There exist constants c′ and c′′, depending on µ0 but independent
of µ ≥ µ0 and of t ≥ 0, such that

(1 + t)µ ≤ c′
µ2

log (1 + µ)

(
1 +

∫ t

0

(1 + s)µ−2 s ds

)
, (2.35)

(1 + t)µ ≤ c′′µ2

(
1 +

∫ t

0

(1 + s)µ−2 s ds

)
, (2.36)

for every µ ∈ [µ0,+∞) and every t ∈ [0,+∞).

3. Regularity

First of all we state an approximation theorem for f through a suitable sequence of regular
functions. Let B be the unit ball of Rn centered in the origin and consider a positive
decreasing sequence ε` → 0. Define

f `(x, ξ) =

∫
B×B

ρ(y)ρ(η)f(x+ ε`y, ξ + ε`η) dη dy,

where ρ is a suitable symmetric mollifier, and set

f `k(x, ξ) = f `(x, ξ) +
1

k
(1 + |ξ|2)

p
2 . (3.1)

Proposition 3.1. Let f be satisfying the growth conditions (2.2) with M0 = 1 and f strictly
convex at infinity. Then the sequence of C2−functions f `k : Ω × Rn → [0,+∞) defined in
(3.1), convex in the last variable and strictly convex at infinity, is such that f `k converges
to f as ` → ∞ and k → ∞ for a.e. x ∈ Ω, for all ξ ∈ Rn and uniformly in Ω0 ×K where
Ω0 ⊂⊂ Ω and K being a compact set of Rn. Moreover:
• there exists C̃, independently of k, ` such that

|ξ|p ≤ f `k(x, ξ) ≤ C̃(1 + |ξ|p) for a.e. x ∈ Ω, for all ξ ∈ Rn, (3.2)

• there exists M̃1 > 0 such that for |ξ| > 2 and a.e. x ∈ Ω

M̃1|ξ|p−2|λ|2 ≤
∑
i,j

f `kξiξj(x, ξ)λiλj λ ∈ Rn, (3.3)

• there exists c(k) > 0 such that for all (x, ξ) ∈ Ω× Rn and λ ∈ Rn

c(k)(1 + |ξ|2)
p−2
2 |λ|2 ≤

∑
i,j

f `kξiξj(x, ξ)λiλj, (3.4)

• there exists M̃2 > 0 such that for |ξ| > 2 and a.e. x ∈ Ω

|f `kξξ (x, ξ)| ≤ M̃ |ξ|p−2 (3.5)
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• there exists C(k) such that for a.e. x ∈ Ω and ξ ∈ Rn

|f `kξξ (x, ξ)| ≤ C(k)(1 + |ξ|2)
p−2
2 (3.6)

• there exists a constant C > 0 such that for a.e. x ∈ Ω and |ξ| > 2

|f `kξx(x, ξ)| ≤ C h`(x)|ξ|p−1 (3.7)

where h` ∈ C∞(Ω) is the regularized function of h which converges to h in Lr(Ω)
• for Ω0 ⊂⊂ Ω, there exists a constant C(h,Ω0) such that for a.e. x ∈ Ω0 and ξ ∈ Rn

|f `kξx(x, ξ)| ≤ C(k,Ω0, `)(1 + |ξ|2)
p−1
2 . (3.8)

The proof follows with a similar argument as in [13] (see also [15]).
We are ready to prove the main result of the paper.

Theorem 3.2. Let p > 1 and u ∈ W 1,p
loc (Ω) be a local minimizer of the energy integral (1.2)

under the growth assumptions (2.2). Then u is locally Lipschitz continuous in Ω and we
have

‖Du‖L∞(Bρ;Rn) ≤ C

[
‖1 + h‖Lr(Ω)

(R− ρ)

]β (∫
BR

{1 + |Du|p} dx
)1/p

, (3.9)

for some positive constants C, β (depending on n, r, p M0,M1,M2) and for every ρ,R, with
ρ < R ≤ ρ+ 1 and Bρ+1 ⊂ Ω.

Proof. Let u ∈ W 1,p
loc (Ω) be a local minimizer of the functional (1.2). Let BR ⊂⊂ Ω and

consider the following variational problem

inf

{∫
BR

f `k(x,Dv) dx, v ∈ W 1,p
0 (BR) + u

}
, (3.10)

where f `k are defined in (3.1). By semicontinuity arguments, there exists v`k ∈ u+W 1,p
0 (Ω)

solution to (3.10). By the growth conditions and the minimality of v`k, we get∫
BR

|Dv`k|p dx ≤
∫
BR

f `k(x,Dv`k) dx ≤
∫
BR

f `k(x,Du) dx

=

∫
BR

f `(x,Du) dx+
1

k

∫
BR

(1 + |Du|2)
p
2 dx.

Moreover the properties of the convolutions imply that f `(x,Du)
`→∞→ f(x,Du) a.e. in BR

and since ∫
BR

f `(x,Du) dx ≤ C

∫
BR

(1 + |Du|2)
p
2 dx,

by the Lebesgue Dominated Convergence Theorem we deduce therefore

lim
`→∞

∫
BR

|Dv`k|p dx =

∫
BR

f(x,Du) dx+
1

k

∫
BR

(1 + |Du|2)
p
2 dx.

By Proposition 3.1, f `k satisfy the growth conditions (2.2) and (2.3), so we can apply the
a-priori estimate (2.4) to v`k and obtain

‖Dv`k‖L∞(Bρ;Rn) ≤ C
[
‖1 + h`‖Lr(BR)

]β [∫
BR

(1 + f `k(x,Dv`k)) dx

] 1
p

,

where C depends on p, r, n,M1,M2, ρ, R but is independent of `, k.
Since ‖1 + h`‖Lr(BR) = ‖(1 + h)`‖Lr(BR) ≤ ‖1 + h‖Lr(BR), we obtain

‖Dv`k‖L∞(Bρ;Rn) ≤ C
[
‖1 + h‖Lr(BR)

]β [∫
BR

1 + f `(x,Du) +
1

k
(1 + |Du|2)

p
2dx

] 1
p

,
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where C depends on n, r, p,M1,M2, ρ, R but it is independent of `, k. Therefore we conclude
that

v`k
`→∞→ vk weakly in W 1,p

0 (BR) + u, v`k
`→∞→ vk weakly star in W 1,∞

loc (BR).

Moreover by the previous estimates

‖Dvk‖Lp(BR;Rn) ≤ lim inf
`→∞

‖Dv`k‖Lp(BR;Rn) ≤
∫
BR

f(x,Du) dx+

∫
BR

(1 + |Du|2)
p
2 dx

and, for 0 < ρ < R

‖Dvk‖L∞(Bρ;Rn) ≤ lim inf
`→∞

‖Dv`k‖L∞(Bρ;Rn)

≤ C
[
‖1 + h‖Lr(BR)

]β [∫
BR

{1 + f(x,Du)} dx
]
.

Thus we can deduce that there exists v̄ ∈ u+W 1,p
0 (BR) such that, up to subsequences

vk → v̄ weakly in W 1,p
0 (BR) + u, vk → v̄ weakly star in W 1,∞

loc (BR)

and, for 0 < ρ < R

‖Dv̄‖L∞(Bρ;Rn) ≤ C
[
‖1 + h‖Lr(BR)

]β [∫
BR

{1 + f(x,Du)} dx
]
. (3.11)

Now, for any fixed k ∈ N, using the uniform convergence of f ` to f in Bρ ×K (for any K
compact subset of Rn) and the minimality of v`k, we get∫

Bρ

f(x,Dvk) dx ≤ lim inf
`→∞

∫
Bρ

f(x,Dv`k) dx = lim inf
`→∞

∫
Bρ

f `(x,Dv`k) dx

≤ lim inf
`→∞

∫
Bρ

f `(x,Dv`k) dx+
1

k

∫
BR

(1 + |Dv`k|2)
p
2 dx

≤ lim inf
`→∞

∫
BR

f `(x,Du) dx+
1

k

∫
BR

(1 + |Du|2)
p
2 dx.

Then, for ρ→ R∫
BR

f(x,Dvk) dx ≤
∫
BR

f(x,Du) dx+
1

k

∫
BR

(1 + |Du|2)
p
2 dx.

By the semicontinuity we get∫
BR

f(x,Dv̄) dx ≤ lim inf
k→∞

∫
BR

f(x,Dvk) dx ≤
∫
BR

f(x,Du) dx. (3.12)

Then u and v̄ are two solutions to the problem

inf

{∫
BR

f(x,Dv) dx, v ∈ W 1,p
0 (BR) + u

}
.

By the strict convexity of f at infinity and by proceeding in an similar way as in [13], (see
also [17]), we can conclude that also the gradient of Du is locally bounded and the estimate
(3.9) follows by (3.11). �
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gagni 67/A, 50134 - Firenze, Italy


