Lower Semicontinuity of Quasi-Convex Functionals with Non-Standard Growth

Matteo Focardi

Scuola Normale Superiore, P.zza dei Cavalieri 7, 56126 Pisa, Italy focardi@cibs.sns.it

Elvira Mascolo

Dipartimento di Matematica "U.DINI", V.le Morgagni 87/A, 50134 Firenze, Italy mascolo@math.unifi.it

Received October 25, 1999 Revised manuscript received December 5, 2000

We study the lower semicontinuity properties of autonomous variational integrals whose energy densities are controlled by N-functions.

Keywords: Quasi-convexity, lower semicontinuity, Orlicz-Sobolev spaces

1991 Mathematics Subject Classification: 49J45

1. Introduction

In this paper we study the lower semicontinuity properties of a class of quasi-convex functionals of the Calculus of Variations. Consider the integral functional

$$F(u,\Omega) = \int_{\Omega} f(Du(x)) dx$$
(1)

where $\Omega \subseteq \mathbb{R}^n$ is a bounded and open set, $u : \Omega \to \mathbb{R}^N$ is a measurable function sufficiently regular, and $f : \mathbb{R}^{Nn} \to \mathbb{R}$ is *quasi-convex* in Morrey' sense, see [37], i.e., f is continuous and for every $A \in \mathbb{R}^{Nn}$ and $\varphi \in C_c^{\infty}(\Omega, \mathbb{R}^N)$ there holds

$$f(A) \mathcal{L}^{n}(\Omega) \leq \int_{\Omega} f(A + D\varphi(x)) dx, \qquad (2)$$

denoting with $\mathcal{L}^{n}(\Omega)$ the *n* dimensional Lebesgue's measure of Ω .

Assume that f satisfies the non-standard growth condition

$$-c(1 + \Phi_1(|A|)) \le f(A) \le c(1 + \Phi(|A|)), \qquad (3)$$

with c a positive constant, Φ_1 and Φ *N*-functions (see Section 2 for definitions) such that Φ_1 grows slower than Φ at infinity (see Remark 3.5).

When in (3) $\Phi_1(t) = t^{p_1}$ and $\Phi(t) = t^p$, with $1 < p_1 < p$ or $1 = p_1 \leq p$, the functional $F(\cdot, \Omega)$ in (1) was proven to be sequentially lower semicontinuous in the weak topology of $W^{1,p}$ by Acerbi and Fusco [2] and by Marcellini [32].

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

If, moreover, f is non negative then the lower semicontinuity inequality

$$\liminf_{r \to +\infty} F(u_r, \Omega) \ge F(u, \Omega) \tag{4}$$

has been established along sequences $(u_r) \in W^{1,p}$ converging in the weak topology of $W^{1,q}$ for $q \geq \frac{n}{n+1}p$ by Marcellini [33] and recently for $q \geq \frac{n-1}{n}p$ by Fonseca and Malý [16] and Malý [30]. See also Kristensen [28] for a refinement.

Under further structure assumptions on f, Fonseca and Marcellini [17] proved the case q > p - 1 and then Malý [30],[31], refined the result to $q \ge p - 1$.

In the polyconvex case, i.e., f(A) = g(T(A)) where g is convex and T(A) denotes the set of all minors of the matrix $A \in \mathcal{M}^{N \times n}$, Dacorogna and Marcellini [8] proved the lower semicontinuity inequality (4) for q > n - 1, while the border case q = n - 1 was stated by Acerbi and Dal Maso [1], Celada and Dal Maso [5] and Dal Maso and Sbordone [10]. An elementary approach was found by Fusco and Hutchinson [21], see also Malý [29] for related results.

Notice that for functionals $F(\cdot, \Omega)$ defined as in (1) the weak sequential lower semicontinuity in $W^{1,p}$, p > 1, can be rephrased as follows: for every sequence $(u_r) \in W^{1,1}$ such that

$$u_r \to u \text{ strongly } L^1_{loc} \text{ and } \liminf_{r \to +\infty} \int_{\Omega} |Du_r|^p \, dx < +\infty$$
 (5)

then

$$\liminf_{r \to +\infty} F\left(u_r, \Omega\right) \geq F\left(u, \Omega\right)$$

With the general growth condition (3), the natural setting where to study lower semicontinuity properties for functionals defined by (1) is provided by the functional spaces generated by N-functions, called *Orlicz spaces*.

Ball [4] was the first to set some variational problems in the framework of *Orlicz-Sobolev* spaces. Recently, the first author has considered in [15] quasi-convex integrals with the non-standard growth conditions (3) obtaining lower semicontinuity in the weak * topology of the Orlicz-Sobolev space W^1L^{Φ} (see Section 2 for references) provided Φ satisfies a subhomogeneity property at infinity called Δ_2 -condition, i.e., there exist m > 1 and $t_o \ge 0$ such that for every $\lambda > 1$ and $t \ge t_o$ there holds

$$\Phi\left(\lambda t\right) \le \lambda^m \Phi\left(t\right).$$

Those results are also applied to give existence theorems for Dirichlet's boundary value problems (see [15]).

The structure and properties of Orlicz spaces are close to the standard L^p case if $\Phi \in \Delta_2$, while if $\Phi \notin \Delta_2$ the theory is quite different. Indeed, let Φ be a N-function, set

$$K^{\Phi} = \left\{ u : \Omega \to \mathbb{R}^{\mathbb{N}} \text{ measurable: } \int_{\Omega} \Phi\left(|u|\right) dx < +\infty \right\},$$

denote with L^{Φ} the linear hull of K^{Φ} , which is a Banach space if endowed with the gauge norm, then $K^{\Phi} \equiv L^{\Phi}$ if and only if $\Phi \in \Delta_2$. This lack of linear structure has

consequences in the study of semicontinuity for functionals like in (1) whose integrand satisfies the growth condition (3).

Indeed, if $\Phi \notin \Delta_2$ then $F(\cdot, \Omega)$ is not finite a priori on the whole $W^1 L^{\Phi}$, unlike the case $\Phi \in \Delta_2$, but just on the convex set

$$W^{1,\Phi,1} = \left\{ u \in W^{1,1} : \int_{\Omega} \Phi(|Du|) \, dx < +\infty \right\},\,$$

which is strictly contained in $W^1 L^{\Phi}$.

However, assuming the analogue condition of (5), i.e., $(u_r) \in W^{1,1}$ such that

$$u_r \to u \text{ strongly } L^1_{loc} \text{ and } \liminf_{r \to +\infty} \int_{\Omega} \Phi\left(|Du_r|\right) dx < +\infty$$
, (6)

we are able to prove the lower semicontinuity of $F(\cdot, \Omega)$ along such sequences.

The main result of the paper is the following (see Section 3 Theorem 3.2).

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and open set with Lipschitz boundary, let $F(\cdot, \Omega)$ be defined as in (1) with $f : \mathbb{R}^{Nn} \to \mathbb{R}$ a quasi-convex function satisfying for every $A \in \mathbb{R}^{Nn}$

$$0 \le f(A) \le c(1 + \Phi(|A|)), \tag{7}$$

with c a positive constant and Φ a N-function.

Then for every $(u_r) \in W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$ satisfying (6) there holds $\liminf_{r \to \infty} F(u_r, \Omega) \ge F(u, \Omega).$

We remark that if $\Phi \notin \Delta_2$, the integral boundedness condition in (6) is not even implied by the norm convergence of $W^1 L^{\Phi}$, thus, unlike the case $\Phi \in \Delta_2$, it is not equivalent to weak * convergence in $W^1 L^{\Phi}$ which is in turn implied by (6). However, (6) turns out to be a natural condition when dealing with minimizing sequences of coercive functionals in $W^1 L^{\Phi}$, i.e., with energy densities satisfying

$$c_1(\Phi(|A|) - 1) \le f(A) \le c(\Phi(|A|) + 1)$$
(8)

for every $A \in \mathbb{R}^{Nn}$ and for some positive constants c_1, c .

Moreover, in that case, take $u_o \in W^{1,\Phi,1}$ and consider the boundary value problem

$$\inf \left\{ F(u, \Omega) : u \in u_o + W_o^{1,1} \right\},\$$

we prove that the infimum is attained as it happens in the W^1L^{Φ} setting when $\Phi \in \Delta_2$ (see [15] and Remark 3.12).

Eventually, it is possible to give explicit examples of non trivial applications of previous results constructing quasi-convex functions verifying the non-standard growth conditions (7), (8), in the latter case provided the dominating N-function Φ satisfies a sort of sub-additivity condition at infinity (see Section 4).

The plan of the paper is the following: in Section 2 we recall some definitions and prove some properties of N-functions and Orlicz spaces; in Section 3 we prove the semicontinuity result Theorem 3.2; in Section 4 we give some examples of quasi-convex functions with non-standard growth (7), (8).

2. N-Functions and Orlicz spaces

In this section we recall some definitions and known properties of N-functions, Orlicz, Orlicz-Sobolev spaces (see for references [3],[27],[38]).

A continuous and convex function $\Phi: [0, +\infty) \to [0, +\infty)$ is called *N*-function if it satisfies

$$\Phi(0) = 0, \Phi(t) > 0 \ t > 0, \lim_{t \to 0^+} \frac{\Phi(t)}{t} = 0, \lim_{t \to +\infty} \frac{\Phi(t)}{t} = +\infty,$$
(9)

e.g. take $\Phi_{p,\alpha}(t) = t^p \log^{\alpha} (1+t)$ for p > 1 and $\alpha \ge 0$ or p = 1 and $\alpha > 0$.

Actually, only the growth at infinity really matters in the definition of N-function. Indeed, given a continuous and convex function $Q: [0, +\infty) \to [0, +\infty)$ satisfying

$$\lim_{t \to +\infty} \frac{Q\left(t\right)}{t} = +\infty$$

there exist a N-function Φ and $t_o > 0$ such that for every $t \ge t_o$ there holds

$$\Phi\left(t\right) = Q\left(t\right).$$

Such a function Q is called *principal part* of the N-function Φ . Since this, we will not distinguish any longer the two concepts, e.g. we will refer as N-functions to the functions $\Gamma_0(t) = t^{\ln t}, \Gamma_\beta(t) = \exp(t^\beta) - 1, \beta > 0$, which have not super-linear growth in 0.

In the sequel we will often use the following convexity inequality: for every $s,\,t\in[0,+\infty)$ and $\lambda>1$

$$\Phi\left(s+t\right) \leq \frac{1}{\lambda}\Phi\left(\lambda s\right) + \left(1 - \frac{1}{\lambda}\right)\Phi\left(\frac{\lambda}{\lambda - 1}t\right).$$
(10)

Let Φ be a N-function, let Ψ denote the Fenchel's conjugate of Φ , i.e.,

$$\Psi(t) = \sup\{st - \Phi(s) : s \ge 0\},$$
(11)

 Ψ is a N-function called the *complementary N-function* of Φ . By the very definition the pair Φ, Ψ satisfies Young's inequality, i.e., for every $s, t \in [0, +\infty)$ there holds

$$st \le \Phi(s) + \Psi(t).$$

A useful class of N-functions is provided by the following definition. We say that Φ belongs to class Δ_2 , denoted by $\Phi \in \Delta_2$, if there exist m > 1 and $t_o \ge 0$ such that for every $\lambda > 1$, $t \ge t_o$ there holds

$$\Phi\left(\lambda t\right) \le \lambda^m \Phi\left(t\right). \tag{12}$$

Take for instance $\Phi_{p,\alpha}(t) = t^p \log^{\alpha} (1+t)$ for p > 1 and $\alpha \ge 0$ or p = 1 and $\alpha > 0$, then $\Phi_{p,\alpha} \in \Delta_2$, while $\Gamma_0(t) = t^{\ln t} \notin \Delta_2$ and $\Gamma_\beta(t) = \exp(t^\beta) - 1 \notin \Delta_2$ for any $\beta > 0$.

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and open set, the *Orlicz class* $K^{\Phi}(\Omega, \mathbb{R}^N)$ is the set of all (equivalence classes modulo equality \mathcal{L}^n a.e. in Ω of) measurable functions $u : \Omega \to \mathbb{R}^N$ satisfying

$$\int_{\Omega} \Phi\left(|u|\right) dx < +\infty,\tag{13}$$

where $|\cdot|$ denotes the euclidean norm in \mathbb{R}^N .

The Orlicz space $L^{\Phi}(\Omega, \mathbb{R}^N)$ is defined to be the linear hull of $K^{\Phi}(\Omega, \mathbb{R}^N)$, thus it consists of all measurable functions u such that $\lambda u \in K^{\Phi}(\Omega, \mathbb{R}^N)$ for some $\lambda > 0$. Moreover, the equality $K^{\Phi}(\Omega, \mathbb{R}^N) \equiv L^{\Phi}(\Omega, \mathbb{R}^N)$ holds if and only if $\Phi \in \Delta_2$.

Define the functional $||u||_{\Phi,\Omega} : L^{\Phi}(\Omega, \mathbb{R}^N) \to [0, +\infty)$ by

$$\|u\|_{\Phi,\Omega} = \inf\left\{\lambda > 0 : \int_{\Omega} \Phi\left(\frac{|u|}{\lambda}\right) dx \le 1\right\},\tag{14}$$

it is a norm, called the *gauge norm*, and $L^{\Phi}(\Omega, \mathbb{R}^N)$ is a Banach space if endowed with it. In the sequel we will denote $\|\cdot\|_{\Phi,\Omega}$ simply by $\|\cdot\|_{\Phi}$, and the norm convergence in $L^{\Phi}(\Omega, \mathbb{R}^N)$ by $s - L^{\Phi}(\Omega, \mathbb{R}^N)$. It easily follows the continuous immersion $L^{\Phi}(\Omega, \mathbb{R}^N) \to L^1(\Omega, \mathbb{R}^N)$ if both spaces are equipped with the gauge norm.

Notice that by the very definition of the norm for any $u \in L^{\Phi}(\Omega, \mathbb{R}^N)$ we have

$$\|u\|_{\Phi} \le 1 + \int_{\Omega} \Phi\left(|u|\right) dx. \tag{15}$$

Denote by $E^{\Phi}(\Omega, \mathbb{R}^N)$ the closure of $C_c^{\infty}(\Omega, \mathbb{R}^N)$ in $s - L^{\Phi}(\Omega, \mathbb{R}^N)$, the inclusions

 $E^{\Phi}\left(\Omega,\mathbb{R}^{N}\right)\subseteq K^{\Phi}\left(\Omega,\mathbb{R}^{N}\right)\subseteq L^{\Phi}\left(\Omega,\mathbb{R}^{N}\right)$

are trivial with equalities holding if and only if $\Phi \in \Delta_2$.

A useful characterization of $E^{\Phi}(\Omega, \mathbb{R}^N)$ is given in the following lemma (see Proposition 4 [38, p. 52]).

Lemma 2.1. Let $u \in L^{\Phi}(\Omega, \mathbb{R}^N)$, set $k_{\Phi}^u = \sup \{\lambda \ge 0 : \lambda u \in K^{\Phi}(\Omega, \mathbb{R}^N)\}$, define $l_{\Phi}^u : [0, k_{\Phi}^u] \to [0, +\infty]$ by

$$l_{\Phi}^{u}\left(\lambda\right) = \int_{\Omega} \Phi\left(\lambda \left|u\right|\right) dx,$$

then l_{Φ}^{u} is continuous, increasing and

$$\lim_{\lambda \to \left(k_{\Phi}^{u}\right)^{-}} l_{\Phi}^{u}\left(\lambda\right) = l_{\Phi}^{u}\left(k_{\Phi}^{u}\right) \le +\infty.$$

Moreover, $E^{\Phi}(\Omega, \mathbb{R}^N) = \{ u \in L^{\Phi}(\Omega, \mathbb{R}^N) : k_{\Phi}^u = +\infty \}.$

We stress the attention on the fact that if $\Phi \notin \Delta_2$ the values of k_{Φ}^u and $l_{\Phi}^u(k_{\Phi}^u)$ can be independently assigned, i.e., given any $0 < \alpha, \beta < +\infty$ there exist $u, v \in L^{\Phi}(\Omega, \mathbb{R}^N)$ with $k_{\Phi}^u = k_{\Phi}^v = \alpha$ such that $l_{\Phi}^u(\alpha) = \beta$ and $l_{\Phi}^v(\alpha) = +\infty$ (see [38, p. 54]). This last remark gives a characterization of condition Δ_2 .

Lemma 2.2. Let Φ be a N-function, $\Phi \in \Delta_2$ if and only if for every family $(u_i)_{i \in I} \subseteq L^{\Phi}(\Omega, \mathbb{R}^N)$ which is norm bounded there holds

$$\sup_{i\in I}\int_{\Omega}\Phi\left(|u_i|\right)dx<+\infty.$$

Another consequence of the previous remark is that norm convergence does not imply convergence of integrals in the case $\Phi \notin \Delta_2$. Indeed, if $u_r \to u \ s - L^{\Phi}(\Omega, \mathbb{R}^N)$ the convexity of Φ implies

$$\liminf_{r \to +\infty} \int_{\Omega} \Phi\left(|u_r|\right) dx \ge \int_{\Omega} \Phi\left(|u|\right) dx,\tag{16}$$

with the possibility of strict inequality holding in (16). However, the integral convergence holds for suitable sub-multiples of the limit.

Lemma 2.3. Let (u_r) , $u \in L^{\Phi}(\Omega, \mathbb{R}^N)$ be such that $u_r \to u \ s - L^{\Phi}(\Omega, \mathbb{R}^N)$, if $\lambda \in [0, k_{\Phi}^u)$ then

$$\lim_{r \to +\infty} \int_{\Omega} \Phi\left(\lambda \left| u_r \right| \right) dx = \int_{\Omega} \Phi\left(\lambda \left| u \right| \right) dx.$$
(17)

Proof. Fix $\lambda \in (0, k_{\Phi}^u)$, by (16) we have only to prove the inequality

$$\limsup_{r \to +\infty} \int_{\Omega} \Phi\left(\lambda \left| u_{r} \right|\right) dx \leq \int_{\Omega} \Phi\left(\lambda \left| u \right|\right) dx,$$

the case $\lambda = 0$ being trivial.

By the very definition of the norm and the convexity of Φ it follows

$$\|w\|_{\Phi} \le 1 \Rightarrow \int_{\Omega} \Phi\left(|w|\right) dx \le \|w\|_{\Phi},$$

hence for any $\sigma > 0$ there exists $r(\sigma)$ such that for every $r \ge r(\sigma)$

$$\int_{\Omega} \Phi\left(\sigma \left| u_{r} - u \right| \right) dx \leq \sigma \left\| u_{r} - u \right\|_{\Phi} \leq 1.$$
(18)

Fix $\sigma > 1$ such that $\lambda < \lambda \sigma < k_{\Phi}^{u}$, then by (10)

$$\int_{\Omega} \Phi\left(\lambda \left|u_{r}\right|\right) dx \leq \frac{1}{\sigma} \int_{\Omega} \Phi\left(\lambda \sigma \left|u\right|\right) dx + \left(1 - \frac{1}{\sigma}\right) \int_{\Omega} \Phi\left(\frac{\lambda \sigma}{\sigma - 1} \left|u_{r} - u\right|\right) dx, \quad (19)$$

hence passing to the superior limit for $r \to +\infty$ in (19) we get by (18)

$$\limsup_{r \to +\infty} \int_{\Omega} \Phi\left(\lambda \left| u_{r} \right|\right) dx \leq \frac{1}{\sigma} \int_{\Omega} \Phi\left(\lambda \sigma \left| u \right|\right) dx,$$

and so Lemma 2.1 yields the conclusion by letting $\sigma \to 1^+$.

The Orlicz-Sobolev space $W^1L^{\Phi}(\Omega, \mathbb{R}^N)$ consists of all (equivalence classes modulo equality \mathcal{L}^n a.e. in Ω of) measurable functions $u \in L^{\Phi}(\Omega, \mathbb{R}^N)$ whose first order distributional derivatives belong to $L^{\Phi}(\Omega, \mathbb{R}^N)$. As in the case of ordinary Sobolev spaces, it is a Banach space if endowed with the norm

$$||u||_{1,\Phi} = ||u||_{\Phi} + ||Du||_{\Phi}.$$

Denote by $W_o^1 E^{\Phi}(\Omega, \mathbb{R}^N)$ the closure of $C_c^{\infty}(\Omega, \mathbb{R}^N)$ in the norm topology of $W^1 L^{\Phi}(\Omega, \mathbb{R}^N)$, indicated by $s - W^1 L^{\Phi}(\Omega, \mathbb{R}^N)$. Let us state a generalization of Rellich-Kondrakov's compact embedding theorem ([3], Lemma 7.1 [14]). **Theorem 2.4.** Let $\Omega \subseteq \mathbb{R}^n$ be a open bounded set with Lipschitz boundary, let Φ be a N-function, then the embedding $W^1L^{\Phi}(\Omega, \mathbb{R}^N) \to L^{\Phi}(\Omega, \mathbb{R}^N)$ is compact.

Let $\lambda > 0$ and consider, similarly to Marcellini [31], the convex functional sets

$$W^{1,\Phi,\lambda}\left(\Omega,\mathbb{R}^{N}\right) = \left\{ u \in W^{1,1}\left(\Omega,\mathbb{R}^{N}\right) : \int_{\Omega} \Phi\left(\lambda \left| Du \right| \right) dx < +\infty \right\}.$$

The next lemma yields the set inclusion $W^{1,\Phi,\lambda}(\Omega,\mathbb{R}^N) \subseteq W^1_{loc}L^{\Phi}(\Omega,\mathbb{R}^N)$ (see Lemma 1 [6]).

Lemma 2.5. Let $C \subseteq \mathbb{R}^n$ be a convex, bounded and open set, then for every $\lambda > 0$ and $u \in W^{1,\Phi,\lambda}(\Omega,\mathbb{R}^N)$ there holds

$$\int_{C} \Phi\left(\frac{\lambda}{d} \left| u - u_{C} \right|\right) dx \leq \left(\frac{\omega_{n} d^{n}}{\mathcal{L}^{n}(C)}\right)^{1 - \frac{1}{n}} \int_{C} \Phi\left(\lambda \left| Du \right|\right) dx$$

where $u_C = \frac{1}{\mathcal{L}^n(C)} \int_C u dx$, $d = \operatorname{diam} C$, $\omega_n = \mathcal{L}^n \left(B_{(0,1)} \right)$ and $B_{(0,1)}$ is the unit ball of \mathbb{R}^n .

The set inclusion $W^{1,\Phi,\lambda}(\Omega,\mathbb{R}^N) \subseteq W^1 L^{\Phi}(\Omega,\mathbb{R}^N)$ is related to the regularity of Ω , it is a consequence of Lemma 2.7 below for which we need the following result (see Lemma 1 [39]).

Lemma 2.6. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and open set with Lipschitz boundary, then there exists a positive constant $c = c(n, \Omega)$ such that for every $u \in W^{1,1}(\Omega, \mathbb{R}^N)$

$$|u(x)| \le c \left(\|u\|_{L^{1}(\Omega,\mathbb{R}^{N})} + \int_{\Omega} \frac{|Du(y)|}{|x-y|^{n-1}} dy \right)$$

for \mathcal{L}^n a.e. $x \in \Omega$.

Lemma 2.7. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and open set with Lipschitz boundary, then there exist positive constants $c_i = c_i(n, \Omega), 1 \leq i \leq 2$, such that for every $u \in W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$ and $\lambda > 1$, there holds

$$\int_{\Omega} \Phi\left(\frac{c_1}{\lambda} |u|\right) dx \le \Phi\left(\frac{c_2}{\lambda - 1} \|u\|_{L^1(\Omega, \mathbb{R}^N)}\right) \mathcal{L}^n(\Omega) + \int_{\Omega} \Phi\left(|Du|\right) dx$$

Proof. Let $r > \operatorname{diam} \Omega$, consider the kernel $J : B_{(0,r)} \to [0, +\infty)$ defined by

$$J(x) = \begin{cases} k |x|^{1-n} & B_{(0,r)} \setminus \{0\} \\ 0 & \text{otherwise} \end{cases}$$

where k is chosen such that $||J||_{L^1(\mathbb{R}^n)} = 1$.

Define v to be the zero extension of |Du| to \mathbb{R}^n , then applying Lemma 2.6 and (10) for \mathcal{L}^n a.e. $x \in \Omega$ we have

$$\Phi\left(\frac{k}{c\lambda}\left|u\left(x\right)\right|\right) \le \Phi\left(\frac{k}{\lambda-1}\left\|u\right\|_{L^{1}(\Omega,\mathbb{R}^{N})}\right) + \Phi\left(\int_{\mathbb{R}^{n}} J\left(y-x\right)v\left(y\right)dy\right)$$

thus by a suitable version of Jensen's inequality, i.e.,

$$\Phi\left(\int_{\mathbb{R}^n} J(y-x) v(y) \, dy\right) \le \int_{\mathbb{R}^n} J(y-x) \Phi\left(v(y)\right) dy,$$

and integrating over Ω we get

$$\begin{split} \int_{\Omega} \Phi\left(\frac{k}{c\lambda} |u|\right) dx \\ &\leq \Phi\left(\frac{k}{\lambda-1} \|u\|_{L^{1}(\Omega,\mathbb{R}^{N})}\right) \mathcal{L}^{n}\left(\Omega\right) + \int_{\Omega} dx \int_{\mathbb{R}^{n}} J\left(y-x\right) \Phi\left(v\left(y\right)\right) dy \\ &\leq \Phi\left(\frac{k}{\lambda-1} \|u\|_{L^{1}(\Omega,\mathbb{R}^{N})}\right) \mathcal{L}^{n}\left(\Omega\right) + \int_{\Omega} \Phi\left(|Du\left(x\right)|\right) dx, \end{split}$$

and so we are done setting $c_1(n, \Omega) = \frac{k}{c}$ and $c_2(n, \Omega) = cc_1$.

Let $W_o^{1,\Phi,\lambda}(\Omega,\mathbb{R}^N) = W_o^{1,1} \cap W^{1,\Phi,\lambda}(\Omega,\mathbb{R}^N)$; for any bounded set Ω the inclusion $W_o^{1,\Phi,\lambda}(\Omega,\mathbb{R}^N) \subseteq W^1L^{\Phi}(\Omega,\mathbb{R}^N)$ holds by using the following lemma which generalizes to the vectorial case Lemma 3.2 [34] (see [36]).

Lemma 2.8. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and open set, let $d = \operatorname{diam} \Omega$ and $\lambda > 0$, if $u \in W^{1,\Phi,\lambda}_o(\Omega,\mathbb{R}^N)$ then

$$\int_{\Omega} \Phi\left(\frac{2\lambda}{Nd} |u|\right) dx \le \int_{\Omega} \Phi\left(\lambda |Du|\right) dx.$$

As a consequence of Lemma 2.8 we deduce that the L^{Φ} norm of the gradient and the $W^{1}L^{\Phi}$ norm are equivalent on $W^{1,\Phi,\lambda}_{o}(\Omega,\mathbb{R}^{N})$. More precisely if $u \in W^{1,\Phi,\lambda}_{o}(\Omega,\mathbb{R}^{N})$ then

$$\|u\|_{\Phi} \le \frac{Nd}{2} \|Du\|_{\Phi} \,. \tag{20}$$

Next lemma states a density result in $W^{1,\Phi,\lambda}_{o}(\Omega,\mathbb{R}^N)$ (see [25],[36] for related results).

Lemma 2.9. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and open set, let $u \in W^{1,\Phi,\lambda}_o(\Omega,\mathbb{R}^N)$ be such that sptu $\subset \subset \Omega$, then there exists a sequence $(u_r) \subset C_c^{\infty}(\Omega,\mathbb{R}^N)$ such that

 $\begin{array}{ll} (\mathrm{i}) & u_r \to u \ s - W^{1,1}\left(\Omega, \mathbb{R}^N\right); \\ (\mathrm{ii}) & \int_{\Omega} \Phi\left(|u_r|\right) dx \to \int_{\Omega} \Phi\left(|u|\right) dx; \\ (\mathrm{iii}) & \int_{\Omega} \Phi\left(|Du_r|\right) dx \to \int_{\Omega} \Phi\left(|Du|\right) dx. \end{array}$

Proof. Let J_{ε} be a mollifier, let $u_r = J_{\frac{1}{r}} * u$, then standard convolution results yield $u_r \in C_c^{\infty}(\Omega, \mathbb{R}^N)$ if r is suitable and assertion (i) hence follows.

To prove (ii) note that by Jensen's inequality for \mathcal{L}^n a.e. $x \in \Omega$

$$0 \le \Phi\left(\left|u_{r}\left(x\right)\right|\right) \le \left(J_{\frac{1}{r}} * \Phi\left(\left|u\right|\right)\right)\left(x\right),$$

moreover, since

$$J_{\frac{1}{r}} * \Phi(|u|) \to \Phi(|u|) \ s - L^{1}(\Omega) \text{ and } \mathcal{L}^{n} \text{ a.e. } x \in \Omega,$$

(ii) holds by the continuity of Φ and Lebesgue's Dominated Convergence theorem. To prove (iii) observe that since $sptu \subset \subset \Omega$, if $\frac{1}{r} < d(sptu, \partial\Omega)$ then

$$D_i\left(J_{\frac{1}{r}} * u\right)(x) = \left(J_{\frac{1}{r}} * D_i u\right)(x)$$

for \mathcal{L}^n a.e. $x \in \Omega$ and for every $1 \leq i \leq n$, so that we can conclude analogously to (ii). \Box

We now introduce the weak * convergence in $L^{\Phi}(\Omega, \mathbb{R}^N)$, which we will denote by $*w - L^{\Phi}(\Omega, \mathbb{R}^N)$. Since the Orlicz space $L^{\Phi}(\Omega, \mathbb{R}^N)$ is isometrically isomorphic to the dual space of $E^{\Psi}(\Omega, \mathbb{R}^N)$ a sequence $u_r \to u * w - L^{\Phi}(\Omega, \mathbb{R}^N)$ if and only if for every $v \in E^{\Psi}(\Omega, \mathbb{R}^N)$ there holds

$$\lim_{r \to +\infty} \int_{\Omega} u_r v dx = \int_{\Omega} u v dx.$$

By means of the Hahn-Banach theorem we have that $u_r \to u * w - W^1 L^{\Phi}(\Omega, \mathbb{R}^N)$ if and only if (u_r) , $(D_i u_r)$, $1 \leq i \leq n$, converge to u, $D_i u$ respectively. As a consequence of the previous statements we deduce that $L^{\Phi}(\Omega, \mathbb{R}^N)$ is reflexive if and only if both Φ and Ψ belong to class Δ_2 .

Eventually, $W_o^1 E^{\Phi}(\Omega, \mathbb{R}^N)$ is $*w - W^1 L^{\Phi}(\Omega, \mathbb{R}^N)$ closed if and only if $\Phi \in \Delta_2$ (see [12],[24]), in the sequel we denote by $W_o^1 L^{\Phi}(\Omega, \mathbb{R}^N)$ its weak * closure.

3. Semicontinuity

Let f be quasi-convex, i.e., f is continuous and satisfies inequality (2), then f is separately convex in each variable (see [7]) and thus for every $\theta \in [0, 1]$ and $z \in \mathbb{R}^{Nn}$ we get

$$f(\theta A) \le \sum_{0 \le k \le Nn} \theta^{Nn-k} \left(1-\theta\right)^k \sum_{|\alpha|=k} f\left(\pi_k^{\alpha}\left(A\right)\right),$$
(21)

where α is a multi-index of components $\alpha_i \in \{1, \ldots, Nn\}$ and length $|\alpha| = \alpha_1 + \ldots + \alpha_{Nn}$, considering two multi-indices equal up to permutations, and where $\pi_k^{\alpha} : \mathbb{R}^{Nn} \to \mathbb{R}^{Nn}$ is the projection on the k-plane

$$\Pi_{\alpha} = \left\{ y \in \mathbb{R}^{Nn} : y_{\alpha_1} = y_{\alpha_2} = \ldots = y_{\alpha_k} = 0 \right\},\,$$

with the convention that $\pi_0^{(0,\dots,0)} = Id_{\mathbb{R}^{Nn}}$ and $\Pi_{(0,\dots,0)} = \mathbb{R}^{Nn}$ if k = 0.

Lemma 3.1. Let Φ be an N-function and $f : \mathbb{R}^{Nn} \to \mathbb{R}$ be quasi-convex and satisfying

$$f(A) \le c(1 + \Phi(|A|)),$$
 (22)

then there exists a positive constant $c_1 = c_1(Nn)$ such that for every $\theta \in [0,1]$ and $A \in \mathbb{R}^{Nn}$

$$f(\theta A) \le \theta^{N_n} f(A) + c_1 \left(1 - \theta\right) \left(1 + \Phi\left(|A|\right)\right).$$
(23)

Proof. Since Φ is increasing, by (22) for every α and k we get

$$f(\pi_k^{\alpha}(A)) \le c(1 + \Phi(|\pi_k^{\alpha}(A)|)) \le c(1 + \Phi(|A|)),$$

then (23) follows by (21) setting $c_1 = c \sum_{1 \le k \le Nn} {Nn \choose k}$.

Let us recall our main result.

Theorem 3.2. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and open set with Lipschitz boundary, let $F(\cdot, \Omega)$ be defined as in (1) with $f : \mathbb{R}^{Nn} \to \mathbb{R}$ a quasi-convex function satisfying for every $A \in \mathbb{R}^{Nn}$

$$0 \le f(A) \le c(1 + \Phi(|A|)),$$
(24)

with c a positive constant and Φ a N-function.

Then for every $(u_r) \in W^{1,\Phi,1}(\Omega,\mathbb{R}^N)$ satisfying (6) there holds

$$\liminf_{r \to \infty} F\left(u_r, \Omega\right) \ge F\left(u, \Omega\right)$$

Remark 3.3. By the sequential lower semicontinuity of the map $v \to \int_{\Omega} \Phi(|v|) dx$ in the $w - L^1(\Omega, \mathbb{R}^N)$ convergence and by (6) it follows $u \in W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$.

Remark 3.4. The quasi-convexity inequality (2) can be extended also for test functions in $W_o^{1,\Phi,1}(\Omega,\mathbb{R}^N)$ under growth conditions (7).

Indeed, given $\varphi \in W^{1,\Phi,1}_o(\Omega,\mathbb{R}^N)$ first assume that $spt\varphi \subset \subset \Omega$ and consider the sequence $(\varphi_r) \subset C_c^{\infty}(\Omega,\mathbb{R}^N)$ provided by Lemma 2.9. We may further suppose that $D\varphi_r \to D\varphi$ \mathcal{L}^n a.e. in Ω , hence by Lebesgue's Dominated Convergence theorem

$$f(A) \mathcal{L}^{n}(\Omega) \leq \lim_{r \to +\infty} \int_{\Omega} f(A + D\varphi_{r}(x)) dx = \int_{\Omega} f(A + D\varphi(x)) dx.$$

If $\varphi \in W_o^{1,\Phi,1}(\Omega,\mathbb{R}^N)$ is any, let Σ be a bounded and open set such that $\Sigma \supset \Omega$, define φ_o to be the zero extension of φ to Σ , then $\varphi_o \in W_o^{1,\Phi,1}(\Sigma,\mathbb{R}^N)$ and $spt\varphi_o \subset \Sigma$, thus by previous step, (2) holds for φ_o on Σ , i.e.,

$$f(A)\mathcal{L}^{n}(\Sigma) \leq \int_{\Sigma} f(A + D\varphi_{o}(x)) dx = \int_{\Omega} f(A + D\varphi(x)) dx + f(A)\mathcal{L}^{n}(\Sigma \setminus \Omega),$$

and so (2) holds for φ on Ω .

Remark 3.5. The statement of Theorem 3.2 holds more generally if the growth condition (7) is substituted by (3), i.e., for every $A \in \mathbb{R}^{Nn}$

$$-c(1 + \Phi_1(|A|)) \le f(A) \le c(1 + \Phi(|A|))$$

provided Φ_1 is a N-function such that for every $\lambda > 0$

$$\lim_{t \to +\infty} \frac{\Phi(t)}{\Phi_1(\lambda t)} = +\infty.$$
(25)

Indeed, under assumption (25), if $(u_r) \in W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$ satisfies the integral boundedness condition (6), the sequence $(\Phi_1(|Du_r|))$ is equi-absolutely integrable by De la Vallée Poissin's criterion (see [KR, p.95]), then arguing like Kristensen (Theorem 3.1 Step 1 [28]) we reduce to the case $f \geq 0$. **Remark 3.6.** Following Marcellini [32] (see also [15]) one can prove that quasi-convexity and (24) yield for every $A, B \in \mathbb{R}^{Nn}$

$$|f(A) - f(B)| \le c \left(1 + \frac{\Phi(2(1 + |A| + |B|))}{1 + |A| + |B|}\right) |A - B|.$$

This kind of control on f is no longer utilizable in our setting when Φ is a N-function not in class Δ_2 .

First we prove a special case.

Lemma 3.7. If in the statement of Theorem 3.2 the limit u is affine, i.e., $Du(x) \equiv A_o$ for some $A_o \in \mathbb{R}^{Nn}$ and \mathcal{L}^n a.e. $x \in \Omega$, then

$$\liminf_{r \to \infty} F\left(u_r, \Omega\right) \ge F\left(u, \Omega\right).$$

Proof. Step 1: Suppose u_r , u have the same boundary values, i.e., $(u-u_r) \in W_o^{1,\Phi,1}(\Omega, \mathbb{R}^N)$ for every r, then the result easily follows by quasi-convexity and Remark 3.4.

Step 2: Suppose that $(u_r) \in W^{1,\Phi,\lambda}(\Omega,\mathbb{R}^N)$ for some $\lambda > 1$ and that

$$\sup_{r} \int_{\Omega} \Phi\left(\lambda \left| Du_{r} \right| \right) dx < +\infty.$$
(26)

Proceeding as Marcellini [32], [33] we change the boundary value of u_r in a suitable way. Let $\Omega_o \subset \subset \Omega$ be an open set, fix $k = \frac{1}{2} \operatorname{dist} \left(\overline{\Omega_o}, \partial\Omega\right)$ and $h \in \mathbb{N}$, then for $1 \leq i \leq h$ define the open sets

$$\Omega_i = \left\{ x \in \Omega : \operatorname{dist} \left(x, \partial \Omega \right) < \frac{i}{h} k \right\}$$

and consider a family of cut-off functions $\varphi_{i}\in C_{c}^{\infty}\left(\Omega\right)$ such that

$$0 \le \varphi_i \le 1, \ \varphi_i \equiv 1 \text{ on } \Omega_{i-1}, \ \varphi_i \equiv 0 \text{ on } \Omega \setminus \Omega_i, \ |D\varphi_i| \le \frac{h+1}{k}$$

For every r let $v_r = u_r - u$, notice that $v_r \to 0$ $s - L^1_{loc}(\Omega, \mathbb{R}^N)$, then define the functions

$$v_{i,r} = \varphi_i v_r,$$

thus $v_{i,r} \in W_o^{1,\Phi,1}(\Omega,\mathbb{R}^N)$ for every *i* provided *r* is big enough. Indeed, $v_{i,r} \in W_o^{1,1}(\Omega,\mathbb{R}^N)$ by the very definition, moreover applying twice (10) and by the choice of φ_i we get

$$\int_{\Omega} \Phi\left(|Dv_{i,r}|\right) dx \leq \int_{\Omega} \Phi\left(\lambda |Du_{r}|\right) dx + \Phi\left(\frac{\lambda}{\sqrt{\lambda}-1} |A_{o}|\right) \mathcal{L}^{n}\left(\Omega\right) + \int_{\Omega} \Phi\left(\frac{h+1}{k} \frac{\sqrt{\lambda}}{\sqrt{\lambda}-1} |v_{r}|\right) dx.$$

The assertion follows from (26) and Theorem 2.4, since the compactness of the embedding $W^1L^{\Phi}(\Omega,\mathbb{R}^N) \to L^{\Phi}(\Omega,\mathbb{R}^N)$ implies $v_r \to 0 \ s - L^{\Phi}(\Omega,\mathbb{R}^N)$ and thus by Lemma 2.3 for every $\sigma > 0$ there holds

$$\lim_{r \to +\infty} \int_{\Omega} \Phi\left(\sigma \left| v_r \right| \right) dx = 0.$$

By Step 1 we deduce

$$F(u,\Omega) \leq F(u+v_{i,r},\Omega) = \int_{\Omega} f(A_o + Dv_{i,r}) dx$$

=
$$\int_{\Omega_{i-1}} f(Du_r) dx + \int_{\Omega_i \setminus \Omega_{i-1}} f(A_o + Dv_{i,r}) dx + \int_{\Omega \setminus \Omega_i} f(A_o) dx$$

$$\leq \int_{\Omega} f(Du_r) dx + \int_{\Omega_i \setminus \Omega_{i-1}} f(A_o + Dv_{i,r}) dx + f(A_o) \mathcal{L}^n(\Omega \setminus \Omega_o).$$
(27)

Choosing $1 < \theta < \lambda$, by (26) and (10) we have

$$\sup_{r} \int_{\Omega} \Phi\left(\theta \left| Dv_{r} \right| \right) dx$$

$$\leq \sup_{r} \int_{\Omega} \Phi\left(\lambda \left| Du_{r} \right| \right) dx + \Phi\left(\frac{\lambda\theta}{\lambda-\theta} \left| A_{o} \right| \right) \mathcal{L}^{n}\left(\Omega\right) \leq c_{1} < +\infty,$$

therefore there exists $1 \leq j \leq h$ such that

$$\sup_{r} \int_{\Omega_{j} \setminus \Omega_{j-1}} \Phi\left(\theta \left| Dv_{r} \right| \right) dx \le \frac{c_{1}}{h}.$$
(28)

Now we estimate the integrals in (27) for such j. By applying (10) and by (28) we get

$$\int_{\Omega_{j}\setminus\Omega_{j-1}} f\left(A_{o} + Dv_{j,r}\right) dx$$

$$\leq c \int_{\Omega_{j}\setminus\Omega_{j-1}} \left(1 + \Phi\left(|A_{o}| + |\varphi_{j}| |Dv_{r}| + |D\varphi_{j}| |v_{r}|\right)\right) dx$$

$$\leq c_{2}\mathcal{L}^{n}\left(\Omega\setminus\Omega_{o}\right) + \frac{c_{3}}{h} + c_{4} \int_{\Omega} \Phi\left(\frac{h+1}{k}\frac{\theta}{\sqrt{\theta}-1} |v_{r}|\right) dx.$$
(29)

So by (29), (27) becomes

$$F(u,\Omega) \le F(u_r,\Omega) + \frac{c_3}{h} + c_4 \int_{\Omega} \Phi\left(\frac{h+1}{k} \frac{\theta}{\sqrt{\theta}-1} |v_r|\right) dx + c_5 \mathcal{L}^n(\Omega \setminus \Omega_o),$$

the assertion then follows passing to the limit for $r \to +\infty$, $\mathcal{L}^n(\Omega \setminus \Omega_o) \to 0$ and $h \to +\infty$. Step 3: Let us remove assumption (26). Given $(u_r) \in W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$ satisfying (6) consider a subsequence, not relabelled for convenience, such that

$$\lim_{r \to +\infty} \int_{\Omega} \Phi\left(|Du_r|\right) dx = \liminf_{r \to +\infty} \int_{\Omega} \Phi\left(|Du_r|\right) dx.$$
(30)

Fix $\lambda > 1$, then define

 $u_{r,\lambda} = \frac{1}{\lambda} u_r$ and $u_{\lambda} = \frac{1}{\lambda} u$.

Notice that $(u_{r,\lambda}), u_{\lambda} \in W^{1,\Phi,\lambda}(\Omega,\mathbb{R}^N), u_{r,\lambda} \to u_{\lambda} \ s - L^1_{loc}(\Omega,\mathbb{R}^N)$ and $(Du_{r,\lambda})$ satisfies condition (26), hence by Step2 we get

$$F(u_{\lambda},\Omega) \leq \liminf_{r \to +\infty} F(u_{r,\lambda},\Omega).$$
(31)

Since by (23) of Lemma 3.1 for every r and for \mathcal{L}^n a.e. $x \in \Omega$ there holds

$$f\left(Du_{r,\lambda}\left(x\right)\right) \leq \frac{1}{\lambda^{Nn}} f\left(Du_{r}\left(x\right)\right) + c\left(1 - \frac{1}{\lambda^{Nn}}\right)\left(1 + \Phi\left(\left|Du_{r}\left(x\right)\right|\right)\right),\tag{32}$$

integrating the inequality above and setting $k = \sup_r \int_{\Omega} \Phi(|Du_r|) dx$, with $k < +\infty$ by (30), we get

$$F\left(u_{r,\lambda},\Omega\right) \leq \frac{1}{\lambda^{Nn}}F\left(u_{r},\Omega\right) + c\left(1 - \frac{1}{\lambda^{Nn}}\right)\left(k + \mathcal{L}^{n}\left(\Omega\right)\right).$$
(33)

Then, by passing to the inferior limit in (33), we get by (31)

$$F(u_{\lambda},\Omega) \leq \frac{1}{\lambda^{Nn}} \liminf_{r \to +\infty} F(u_r,\Omega) + c\left(1 - \frac{1}{\lambda^{Nn}}\right) \left(k + \mathcal{L}^n(\Omega)\right).$$
(34)

Eventually, since $u_{\lambda} \to u \ s - W^1 L^{\Phi}(\Omega, \mathbb{R}^N)$ and since $F(\cdot, \Omega)$ is sequentially lower semicontinuous in that convergence by a simple application of Fatou's lemma, there holds

$$F(u,\Omega) \le \liminf_{\lambda \to 1^+} F(u_\lambda,\Omega) \le \liminf_{r \to +\infty} F(u_r,\Omega)$$

passing to the inferior limit for $\lambda \to 1^+$ on both sides of (34).

The proof of Theorem 3.2 now follows using the Fonseca-Müller's blow-up technique [18] (see also [17],[16]).

Proof of Theorem 3.2. Given $(u_r) \in W^{1,\Phi,1}L^{\Phi}(\Omega, \mathbb{R}^N)$ satisfying condition (6) we get $\liminf_{r \to +\infty} F(u_r, \Omega) < +\infty.$

Moreover, condition (6), Theorem 2.4 and Theorem 2.7 assure that $u_r \to u \ s - L^{\Phi}(\Omega, \mathbb{R}^N)$, and by extracting subsequences, not relabelled for convenience, we have that

$$\liminf_{r \to +\infty} F(u_r, \Omega) = \lim_{r \to +\infty} F(u_r, \Omega).$$

Moreover, we can assume the existence of μ , ν positive and finite Radon measures such that

$$\mu = \lim_{r \to +\infty} \mathcal{L}^n \lfloor f(Du_r), \nu = \lim_{r \to +\infty} \mathcal{L}^n \lfloor \Phi(|Du_r|), \qquad (35)$$

where, given any mesurable function $g : \Omega \to [0, +\infty)$ the measure $\mathcal{L}^n \lfloor g$ is defined on Borel sets of Ω by

$$\left(\mathcal{L}^{n} \lfloor g\right)(E) = \int_{E} g(x) \, dx,$$

and the limits in (35) are to be intended in the sense of measures, i.e., for every $\varphi \in C_c^0(\Omega, \mathbb{R}^N)$ there holds

$$\lim_{r \to +\infty} \int_{\Omega} \varphi f(Du_r) \, dx = \int_{\Omega} \varphi d\mu; \ \lim_{r \to +\infty} \int_{\Omega} \varphi \Phi\left(|Du_r|\right) \, dx = \int_{\Omega} \varphi d\nu.$$

We are going to show that for \mathcal{L}^n a.e. $x \in \Omega$ there holds

$$\frac{d\mu}{d\mathcal{L}^n}\left(x\right) = \lim_{\varepsilon \to 0^+} \frac{\mu\left(B_{(x,\varepsilon)}\right)}{\mathcal{L}^n\left(B_{(x,\varepsilon)}\right)} \ge f\left(Du\left(x\right)\right). \tag{36}$$

Indeed, if (36) holds, we have that for any $\varphi \in C_c^0(\Omega, \mathbb{R}^N)$ such that $0 \leq \varphi \leq 1$

$$\lim_{r \to +\infty} F(u_r, \Omega) \ge \lim_{r \to +\infty} \int_{\Omega} \varphi f(Du_r) \, dx = \int_{\Omega} \varphi d\mu \ge \int_{\Omega} \varphi f(Du) \, dx,$$

thus the lower semicontinuity inequality follows letting φ increase to 1 and applying Levi's theorem.

To prove (36) we recall that there exists a set $\Omega_o \subset \Omega$ such that $\mathcal{L}^n(\Omega \setminus \Omega_o) = 0$, and that if $x \in \Omega_o$ the quantities

$$\frac{d\mu}{d\mathcal{L}^n}\left(x\right), \frac{d\nu}{d\mathcal{L}^n}\left(x\right) \text{ are finite}$$
(37)

and

$$\lim_{\varepsilon \to 0^{+}} \frac{1}{\varepsilon^{n+1}} \int_{B_{(x,\varepsilon)}} |u(y) - u(x) - Du(x)(y-x)| \, dy = 0.$$
(38)

Let $x_o \in \Omega_o$ and let $\varepsilon_k \to 0^+$ be such that $\mu\left(\partial B_{(x_o,\varepsilon_k)}\right) = 0$, $\nu\left(\partial B_{(x_o,\varepsilon_k)}\right) = 0$ for every k, then, setting $B = B_{(0,1)}$ and $\omega_n = \mathcal{L}^n(B)$, we get

$$\lim_{k \to +\infty} \frac{\mu\left(B_{(x_o,\varepsilon_k)}\right)}{\mathcal{L}^n\left(B_{(x_o,\varepsilon_k)}\right)} = \lim_{k \to +\infty} \lim_{r \to +\infty} \int_{B_{(x_o,\varepsilon_k)}} f\left(Du_r\right) dx$$
$$= \lim_{k \to +\infty} \lim_{r \to +\infty} \frac{1}{\omega_n} \int_B f\left(Du_{r,k}\right) dx,$$

where for every $y \in B$

$$u_{r,k}(y) = \frac{1}{\varepsilon_k} \left(u_r \left(x_o + \varepsilon_k y \right) - u \left(x_o \right) \right).$$

Notice that $(u_{r,k}) \in W^{1,\Phi,1}(B,\mathbb{R}^N)$ and $(\Phi(|Du_{r,k}|))$ is $L^1(B,\mathbb{R}^N)$ norm bounded. Indeed, by the choice of x_o we have

$$\lim_{k \to +\infty} \lim_{r \to +\infty} \int_{B} \Phi\left(|Du_{r,k}|\right) dx$$
$$= \lim_{k \to +\infty} \lim_{r \to +\infty} \frac{1}{\varepsilon_{k}^{n}} \int_{B_{(x_{o},\varepsilon_{k})}} \Phi\left(|Du_{r}|\right) dx = \omega_{n} \frac{d\nu}{d\mathcal{L}^{n}}\left(x_{o}\right) < +\infty.$$
(39)

By taking into account the convergence $u_r \to u \ s - L^{\Phi}(\Omega, \mathbb{R}^N)$ and (38) for $x = x_o$ and setting $u_o(x) = Du(x_o) x$, we get

$$\lim_{k \to +\infty} \lim_{r \to +\infty} \left\| u_{r,k} - u_o \right\|_{L^1(B,\mathbb{R}^N)} = 0.$$

Thus $(u_{r,k})$ has a subsequence $v_k = u_{r_k,k}$ which is $s - L^1(B, \mathbb{R}^N)$ converging to the affine function u_o . Eventually, since by (39) (v_k) satisfies (6), by Lemma 3.7 inequality (36) follows, i.e.,

$$\frac{d\mu}{d\mathcal{L}^{n}}\left(x_{o}\right) = \lim_{k \to +\infty} \frac{1}{\omega_{n}} \int_{B} f\left(Dv_{k}\right) dx \ge f\left(Du\left(x_{o}\right)\right).$$

The previous theorem can be applied to solve Dirichlet's boundary value problems.

Corollary 3.8. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and open set, let $f : \mathbb{R}^{Nn} \to \mathbb{R}$ be a quasi-convex function satisfying for every $A \in \mathbb{R}^{Nn}$

$$c(\Phi(|A|) - 1) \le f(A) \le c(1 + \Phi(|A|)),$$
(40)

with c a positive constant and Φ a N-function. Let $F(\cdot, \Omega)$ be defined as in (1), $u_o \in W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$, set $V = u_o + W_o^{1,1}(\Omega, \mathbb{R}^N)$, then the minimum problem

$$m = \inf_{V} F\left(\cdot, \Omega\right) \tag{41}$$

has solution.

Proof. Assumption $u_o \in W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$ and the growth condition (40) assure that $-\infty < m < +\infty$. Let $(v_r) \subset V$ be a minimizing sequence for $F(\cdot, \Omega)$ on V, i.e.,

$$\lim_{r \to +\infty} F\left(v_r, \Omega\right) = m,$$

then (40) implies

$$\sup_{r} \int_{\Omega} \Phi\left(|Dv_{r}|\right) dx < +\infty.$$
(42)

Let $u_r = v_r - u_o$, then by (10), (42) implies $u_r \in W_o^{1,\Phi,\frac{1}{2}}(\Omega,\mathbb{R}^N)$ and

$$\sup_{r} \int_{\Omega} \Phi\left(\frac{1}{2} |Du_{r}|\right) dx \leq \int_{\Omega} \Phi\left(|Du_{o}|\right) dx + \sup_{r} \int_{\Omega} \Phi\left(|Dv_{r}|\right) dx.$$
(43)

Poincaré inequality yields

$$\sup_{r} \|u_r\|_{W^{1,1}(\Omega,\mathbb{R}^N)} < +\infty,$$

thus, (43), Dunford-Pettis' theorem and Rellich-Kondrakov's theorem imply the existence of $u \in W^{1,1}(\Omega, \mathbb{R}^N)$ and a subsequence of (u_r) , not relabelled for convenience, such that $u_r \to u \ w - W^{1,1}(\Omega, \mathbb{R}^N)$ and $s - L^1(\Omega, \mathbb{R}^N)$.

Then $u \in W_o^{1,1}(\Omega, \mathbb{R}^N)$, and $(u_o + u) \in V \cap W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$ since by (42)

$$\int_{\Omega} \Phi\left(|D\left(u_o + u\right)| \right) dx \le \lim_{r \to +\infty} \int_{\Omega} \Phi\left(|Dv_r| \right) dx < +\infty.$$

Eventually, by applying Theorem 3.2, $(u_o + u)$ is a minimizer for $F(\cdot, \Omega)$ on V.

Remark 3.9. The assumption $u_o \in W^{1,\Phi,1}(\Omega, \mathbb{R}^N)$ is necessary for the problem to be well posed if we want u_o itself to be in the competing class V and the functional $F(\cdot, \Omega)$ to be finite a priori in at least one point.

Remark 3.10. We point out that since the convergence introduced in (6) implies $*w - W^1L^{\Phi}(\Omega, \mathbb{R}^N)$ convergence, and minimizing sequences for problem (44) below satisfy (6) because of (40), Theorem 3.2 applies also to solve

$$\inf\left\{F\left(\cdot,\Omega\right): u \in u_o + W_o^1 L^\Phi\left(\Omega,\mathbb{R}^N\right)\right\}.$$
(44)

Remark 3.11. In our general setting we avoid to consider the minimum problem

$$\inf\left\{F\left(\cdot,\Omega\right): u \in u_o + W_o^{1,\Phi,1}\left(\Omega,\mathbb{R}^N\right)\right\},\tag{45}$$

since, if $\Phi \notin \Delta_2$, condition (6) is not sufficient to ensure the weak * closure of $W_o^{1,\Phi,1}(\Omega,\mathbb{R}^N)$. Indeed, from the proof of Corollary 3.8 we can only deduce that the minimizers belong to the class $u_o + W_o^{1,\Phi,\frac{1}{2}}(\Omega,\mathbb{R}^N)$.

Anyhow, we emphasize that the set where we consider the minimum problem is the domain of the functional.

Remark 3.12. In case $\Phi \in \Delta_2$ all the minimum problems (41), (44), (45) reduce to the same since in that case $*w - W^1 L^{\Phi}(\Omega, \mathbb{R}^N)$ convergence is equivalent to the convergence introduced in (6), cfr. Lemma 2.2, and $W_o^{1,\Phi,1}(\Omega, \mathbb{R}^N) \equiv W_o^1 L^{\Phi}(\Omega, \mathbb{R}^N) \equiv W_o^1 E^{\Phi}(\Omega, \mathbb{R}^N)$ (see [19],[26]).

4. Quasi-convex functions with non-standard growth

In this section we exhibit some quasi-convex functions satisfying conditions (7), (8) with the N-function Φ not necessarily belonging to Δ_2 . Actually, concerning condition (8), we are not able to deal with the general case but we produce such quasi-convex functions if the dominating N-function Φ satisfies a sort of sub-additivity condition at infinity, i.e., there exists $r_o > 0$ such that

$$C_{\Phi}(r_o) = \limsup_{t \to +\infty} \frac{\Phi(t + r_o)}{\Phi(t) + \Phi(r_o)} < +\infty.$$
(46)

When (46) holds, it is easy to prove that $C_{\Phi}(r) < +\infty$ for every r > 0 and that the map $C_{\Phi} : [0, +\infty) \to [0, +\infty)$ is non-decreasing and lower bounded by $C_{\Phi}(0) = 1$.

Notice that by (10) and (12) $\Phi \in \Delta_2$ implies $C_{\Phi}(r) \equiv 1$, but Δ_2 N-functions are not the only ones satisfying (46). Indeed, consider the N-functions $\Gamma_0(t) = t^{\ln t}$ and $\Gamma_{\beta}(t) = \exp(t^{\beta}) - 1$, $0 < \beta \leq 1$, then $\Gamma_0, \Gamma_\beta \notin \Delta_2$, but an easy computation yields $C_{\Gamma_0}(r) \equiv 1$, $C_{\Gamma_\beta}(r) \equiv 1$, $0 < \beta < 1$, and $C_{\Gamma_1}(r) = \exp(r)$.

Moreover, we remark that (46) is not fulfilled if the exponential growth is too fast, e.g. $C_{\Gamma_{\beta}}(r) \equiv +\infty$ for any $\beta > 1$.

We now construct a N-function satisfying (46) with polynomial growth and not belonging to class \triangle_2 . A first example of this kind was produced by Krasnosel'skij and Rutickii (see [28, p. 29], [38, p. 27]).

Fix a > 1 and 1 < q < p, define the function $\varphi_{q,p} : [0, +\infty) \to [0, +\infty)$ as

$$\varphi_{q,p}(s) = \begin{cases} qs^{q-1} & 0 \le s \le 1\\ ps^{p-1} & 1 \le s \le a\\ \alpha_i & s \in [a_i, a_{i+1}] \end{cases}$$
(47)

where α_i and a_i are defined recursively by: $a_0 = a$ and for $i \ge 0$

$$\alpha_i = p a_i^{p-1} = q a_{i+1}^{q-1}. \tag{48}$$

Then define $\Phi_{q,p}: [0, +\infty) \to [0, +\infty)$ by

$$\Phi_{q,p}\left(t\right) = \int_{0}^{t} \varphi_{q,p}\left(s\right) ds,\tag{49}$$

we claim that $\Phi_{q,p}$ is a N-function satisfying the desired properties.

By their very definition the sequences (a_i) , (α_i) and $\left(\frac{\alpha_i}{\alpha_{i-1}}\right)$ are increasingly diverging to $+\infty$. Moreover, by direct computation if *i* is large enough we have

$$\Phi_{q,p}\left(2a_{i}\right) \geq \left(1 + \frac{\alpha_{i}}{\alpha_{i-1}}\right) \Phi_{q,p}\left(a_{i}\right).$$

$$(50)$$

Indeed, since $2a_i \leq a_{i+1}$ for *i* sufficiently large, by definition (49) we get

$$\Phi_{q,p}\left(2a_{i}\right) = \Phi_{q,p}\left(a_{i}\right) + a_{i}\alpha_{i},\tag{51}$$

so that (50) holds if and only if

$$\frac{1}{\alpha_{i-1}}\Phi_{q,p}\left(a_{i}\right) \leq a_{i}.$$
(52)

Notice that since (α_i) is increasing and diverging to $+\infty$, from (47) there follows

$$\Phi_{q,p}(a_{i}) \leq \Phi_{q,p}(a_{0}) + \alpha_{i-1}(a_{i} - a_{0}), \qquad (53)$$

and thus (52) follows for *i* sufficiently large.

A similar computation holds true for the complementary N-function $\Psi_{q,p}$ of $\Phi_{q,p}$, so that neither $\Phi_{q,p}$ nor $\Psi_{q,p}$ belong to class Δ_2 .

Notice that $\Phi_{q,p}$ has q, p growth, i.e., there exist $c_i > 0, 1 \le i \le 4$, such that

$$c_1 t^q - c_2 \le \Phi_{q,p}(t) \le c_3 t^p + c_4.$$

Moreover, these are the best powers to estimate $\Phi_{q,p}$, i.e., if $r \in (q, p)$ then

$$\liminf_{t \to +\infty} \frac{\Phi_{q,p}\left(t\right)}{t^{r}} = 0, \ \limsup_{t \to +\infty} \frac{\Phi_{q,p}\left(t\right)}{t^{r}} = +\infty.$$

Indeed, by (53) there follows

$$0 \leq \liminf_{t \to +\infty} \frac{\Phi_{q,p}(t)}{t^r} \leq \liminf_{i \to +\infty} \frac{\Phi_{q,p}(a_i)}{a_i^r}$$
$$\leq \liminf_{i \to +\infty} \left(\frac{\Phi_{q,p}(a_0)}{a_i^r} + \frac{\alpha_{i-1}(a_i - a_0)}{a_i^r} \right) = q \liminf_{i \to +\infty} a_i^{q-r} = 0.$$

Now let $b_i = \frac{r}{r-1}a_i$, then $b_i \in (a_i, a_{i+1})$ and

$$\limsup_{t \to +\infty} \frac{\Phi_{q,p}(t)}{t^r} \ge \limsup_{i \to +\infty} \frac{\Phi_{q,p}(b_i)}{b_i^r}$$
$$\ge \frac{1}{b_i^r} \int_{a_i}^{b_i} \varphi_{q,p}(s) \, ds = \frac{p(r-1)^{r-1}}{r^r} \limsup_{i \to +\infty} a_i^{p-r} = +\infty.$$

Eventually, an easy computation shows that choosing $1 < q < p \leq q + 1$, $\Phi_{q,p}$ satisfies also (46).

In the sequel, given $f : \mathbb{R}^{Nn} \to \mathbb{R}$ we denote by Qf the quasi-convex envelope of f, i.e., the greatest quasi-convex function less or equal to f, which turns out to be defined by

$$Qf = \sup \{g \le f : q \text{ quasi-convex}\}.$$

Following Zhang [40], assume we are given a quasi-convex function f for which the sublevel set

$$K_{\alpha} = \left\{ A \in \mathcal{M}^{N \times n} : f(A) \le \alpha \right\}$$

is compact and non convex for some $\alpha \in \mathbb{R}$, then in Theorem 1.1 of the same paper it is proven that the quasi-convex envelope of the distance function from K_{α} , $Qd(\cdot, K_{\alpha})$, satisfies

$$Qd(A, K_{\alpha}) = 0 \Leftrightarrow A \in K_{\alpha}$$

Therefore, the function $f_q: \mathcal{M}^{N \times n} \to [0, +\infty)$ defined by

$$f_q(A) = \max\left\{\left[d\left(A, coK_{\alpha}\right)\right]^q, Qd\left(A, K_{\alpha}\right)\right\},\$$

where coK_{α} is the convex hull of K_{α} , is quasi-convex, non convex and satisfies

$$c_1 |A|^q - c_2 \le f_q (A) \le c_3 |A|^q + c_4$$

for some positive constants c_i , $1 \leq i \leq 4$, and for every $A \in \mathcal{M}^{N \times n}$.

We want to generalize that construction using N-functions as well as powers. First notice that given any N-function Φ , the function

$$g_{\Phi}(A) = \Phi\left(Qd\left(A, K_{\alpha}\right)\right) \tag{54}$$

is quasi-convex, non convex and it satisfies (7) provided $0 \in K_{\alpha}$.

Thus, as we will see in the sequel, assumption (46) on Φ plays a crucial role if we want to construct a quasi-convex function satisfying the more restrictive condition (8). Now let Φ be a N-function satisfying (46) and define

$$f_{\Phi}(A) = \max\left\{\Phi\left(d\left(A, coK_{\alpha}\right)\right); Qd\left(A, K_{\alpha}\right)\right\},\tag{55}$$

then f_{Φ} turns out to be quasi-convex and non convex since $f_{\Phi}(A) \leq 0$ if and only if $A \in K_{\alpha}$.

Let us prove that there exist positive constants c_i , $1 \leq i \leq 4$, such that for every $A \in \mathcal{M}^{N \times n}$ there holds

$$c_1 \Phi(|A|) - c_2 \le f_{\Phi}(A) \le c_3 \Phi(|A|) + c_4.$$
 (56)

Notice that (56) is equivalent to proving

$$0 < \liminf_{|A| \to +\infty} \frac{f_{\Phi}(A)}{\Phi\left(|A|\right)} \le \limsup_{|A| \to +\infty} \frac{f_{\Phi}(A)}{\Phi\left(|A|\right)} < +\infty.$$
(57)

Let $B(0,R) \supset K_{\alpha}$, then, by the very definition of f_{Φ} , we get

$$\liminf_{|A| \to +\infty} \frac{f_{\Phi}(A)}{\Phi(|A|)} \ge \liminf_{|A| \to +\infty} \frac{\Phi(d(A, coK_{\alpha}))}{\Phi(|A|)}$$
$$\ge \liminf_{|A| \to +\infty} \frac{\Phi(\max\{|A| - R; 0\})}{\Phi(|A|)} = \frac{1}{C_{\Phi}(R)} > 0.$$

Finally, to prove (57) notice that since K_{α} is bounded for every $A \in \mathcal{M}^{N \times n}$ there holds

 $Qd(A, K_{\alpha}) - \operatorname{diam} K_{\alpha} \leq d(A, coK_{\alpha}) \leq Qd(A, K_{\alpha}),$

so that for |A| sufficiently large we have

$$f_{\Phi}(A) = \Phi\left(d\left(A, coK_{\alpha}\right)\right).$$

Thus, since the map $d(\cdot, coK_{\alpha})$ is Lipschitz continuous with Lipschitz constant 1, we get by condition (46)

$$\limsup_{|A| \to +\infty} \frac{f_{\Phi}(A)}{\Phi(|A|)}$$

$$\leq \limsup_{|A| \to +\infty} \frac{\Phi(|A| + d(0, coK_{\alpha}))}{\Phi(|A|)} = C_{\Phi}(d(0, coK_{\alpha})) < +\infty$$

In order to provide an explicit example of such a construction consider $A, B \in \mathcal{M}^{N \times n}$ such that rank $(A - B) \geq 2$ and set $K = \{A, B\}$. Then K is compact and not convex. Moreover, it is well known (see [40]) that there exists a non negative function with subquadratic growth whose zero set is K.

In the sequel we will construct quasi-convex functions with such a choice of K following the previous scheme. Let $g_{q,p}$ be defined by (54), where $\Phi_{q,p}$ is defined by (47) with 1 < q < p, then $g_{q,p}$ is a quasi-convex, non convex function.

Consider the functional

$$G_{q,p}(u,\Omega) = \int_{\Omega} g_{q,p}(Du(x)) \, dx,$$

then Theorem 3.2 assures the lower semicontinuity of $G_{q,p}(\cdot, \Omega)$ in a different topology with respect to all the results provided by classical Sobolev spaces (see all the references in the Introduction).

Now let $f_{\Gamma_{\beta}}$ be defined by (55), where $\Gamma_{\beta}(t) = \exp(t^{\beta}) - 1$ for any $0 < \beta \leq 1$, thus $f_{\Gamma_{\beta}}$ is quasi-convex and non convex but we do not know whether it is polyconvex or not. Consider the functional

$$F_{\beta}(u,\Omega) = \int_{\Omega} f_{\Gamma_{\beta}}(Du(x)) \, dx,$$

then Theorem 3.2 assures its lower semicontinuity with respect to convergence introduced in (6) and Corollary 3.8 applies to finding minimizers for an exponential growth type Dirichlet's boundary value problem.

References

- E. Acerbi, G. Dal Maso: New lower semicontinuity results for polyconvex integrals case, Calc. Var. 2 (1994) 329–372.
- [2] E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal. 86 (1984) 125–145.
- [3] R. A. Adams: Sobolev Spaces, Academic Press, New York, 1975.
- [4] J. M. Ball: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63 (1977) 337–403.
- [5] P. Celada, G. Dal Maso: Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. H. Poincaré (Anal. non Linéaire) 11 (1995) 661–691.
- [6] T. Bhattacharya, F. Leonetti: A new Poincaré inequality and its applications to the regularity of minimizers of integrals functionals with non-standard growth, Nonlinear Anal. 17 (1991) 833–839.
- [7] B. Dacorogna: Direct Methods in the Calculus of Variations, Appl. Math Sci. 78, Springer Verlag, Heidelberg and New York, 1989.
- [8] B. Dacorogna, P. Marcellini: Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants, C. R. Acad. Sci. Paris 311(I) (1990) 393–396.
- [9] A. Dall'Aglio, E. Mascolo, G. Papi: Regularity for local minima of functionals with nonstandard growth conditions, Rend. Mat. 18(VII), Roma (1998) 305–326.
- [10] G. Dal Maso, C. Sbordone: Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z. 218 (1995) 603–609.
- [11] E. De Giorgi: Teoremi di semicontinuità nel calcolo delle variazioni, INdAM, Roma, 1968-69.
- [12] T. K. Donaldson: Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations 10 (1971) 507–528.
- [13] T. K. Donaldson, N. S. Trudinger: Orlicz-Sobolev spaces and embedding theorems, J. Funct. Anal. 8 (1971) 42–75.
- [14] D. E. Edmunds, B. Opic, L. Pick: Poincaré and Frederichs inequalities in abstract Sobolev spaces, Math. Proc. Camb. Phil. Soc. 113 (1993) 355–379.
- [15] M. Focardi: Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces, Rend. Ist. Mat. Univ. Trieste 29 (1997) 141–161.
- [16] I. Fonseca, J. Malý: Relaxation of multiple integrals in Sobolev spaces below the growth exponent for the energy density, Ann. Inst. H. Poincaré (Analyse non Linéaire) 14 (1997) 309–338.
- [17] I. Fonseca, P. Marcellini: Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom. Anal. 7 (1997) 57–81.
- [18] I. Fonseca, S. Müller: Quasi-convex integrands and lower semicontinuity in L^1 , SIAM J. Math. Anal. 23 (1992) 1081–98.
- [19] A. Fougères: Théorèmes de trace et de prolongement dans les espaces de Sobolev et de Sobolev-Orlicz, C. R. Acad. Sci. Paris 274(A) (1972) 181–184.
- [20] N. Fusco: Quasi-convessità e semicontinuità per integrali multipli di ordine superiore, Ricerche di Mat. 29 (1980) 307–323.
- [21] N. Fusco, J. E. Hutchinson: A direct proof of lower semicontinuity for polyconvex functionals, Manuscripta Mat. 87 (1995) 35–50.

- [22] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer Verlag, New York, 1983.
- [23] E. Giusti: Metodi Diretti nel Calcolo delle Variazioni, U.M.I., Bologna, 1994.
- [24] J. P. Gossez: Nonlinear elliptic problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math Soc. 55 (1974) 163–205.
- [25] J. P. Gossez: Some approximation properties in Orlicz-Sobolev spaces, Studia Mat. 74 (1982) 17–24.
- [26] J. P. Gossez: A remark on strongly nonlinear elliptic bondary value problems, Bol. Soc. Brasil. Mat. 8 (1977) 53–63.
- [27] M. A. Krasnosel'skij, Ya. B. Rutickii: Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [28] J. Kristensen: Lower semicontinuity in Sobolev spaces below the growth exponent of the integrand, Proc. Roy. Soc. Edinburgh Sect A 127 (1997) 797–817.
- [29] J. Malý: Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh Sect A 123 (1993) 681–691.
- [30] J. Malý: Weak lower semicontinuity of polyconvex and quasi-convex integrals, Vortragsreihe 1993, Bonn.
- [31] J. Malý: Lower semicontinuity of quasi-convex integrals, Manus. Math. 85 (1994) 419–428.
- [32] P. Marcellini: Approximation of quasi-convex functions and lower semicontinuity of multiple integrals, Manus. Math. 51 (1985) 1–28.
- [33] P. Marcellini: On the definition and the lower semicontinuity of certain quasi-convex integrals, Ann. Inst. H. Poincaré (Analyse non Linéaire) 3 (1986) 391–409.
- [34] P. Marcellini: Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993) 296–333.
- [35] N. G. Meyers: Quasi-convexity and the semicontinuity of multiple variational integrals of any order, Trans. Amer. Math Soc. 119 (1965) 125–149.
- [36] L. Mini: Rilassamento per Funzionali del Calcolo delle Variazioni, Tesi di Laurea, Università di Firenze (1997).
- [37] C. B. Morrey: Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25–53.
- [38] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces, Pure and Appl. Math., Marcel Dekker, New York, 1981.
- [39] N. S. Trudinger: On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967) 473–483.
- [40] K. Zhang: A construction of quasi-convex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa 19 (1992) 313–326.
- [41] W. Ziemer: Weakly Differentiable Functions, GTM 120, Springer Verlag, 1989.