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1. Introduction

In this paper we study the lower semicontinuity properties of a class of quasi-convex
functionals of the Calculus of Variations. Consider the integral functional

F (u,Ω) =

∫

Ω

f (Du (x)) dx (1)

where Ω ⊆ Rn is a bounded and open set, u : Ω → RN is a measurable function sufficiently
regular, and f : RNn → R is quasi-convex in Morrey’ sense, see [37], i.e., f is continuous
and for every A ∈ RNn and ϕ ∈ C∞

c

(

Ω,RN
)

there holds

f (A)Ln (Ω) ≤
∫

Ω

f (A+Dϕ (x)) dx, (2)

denoting with Ln (Ω) the n dimensional Lebesgue’s measure of Ω.

Assume that f satisfies the non-standard growth condition

−c (1 + Φ1 (|A|)) ≤ f (A) ≤ c (1 + Φ (|A|)) , (3)

with c a positive constant, Φ1 and Φ N-functions (see Section 2 for definitions) such that
Φ1 grows slower than Φ at infinity (see Remark 3.5).

When in (3) Φ1 (t) = tp1 and Φ (t) = tp, with 1 < p1 < p or 1 = p1 ≤ p, the functional
F (·,Ω) in (1) was proven to be sequentially lower semicontinuous in the weak topology
of W 1,p by Acerbi and Fusco [2] and by Marcellini [32].
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If, moreover, f is non negative then the lower semicontinuity inequality

lim inf
r→+∞

F (ur,Ω) ≥ F (u,Ω) (4)

has been established along sequences (ur) ∈ W 1,p converging in the weak topology of W 1,q

for q ≥ n
n+1

p by Marcellini [33] and recently for q ≥ n−1
n
p by Fonseca and Malý [16] and

Malý [30]. See also Kristensen [28] for a refinement.

Under further structure assumptions on f , Fonseca and Marcellini [17] proved the case
q > p− 1 and then Malý [30],[31], refined the result to q ≥ p− 1.

In the polyconvex case, i.e., f (A) = g (T (A)) where g is convex and T (A) denotes the
set of all minors of the matrix A ∈ MN×n, Dacorogna and Marcellini [8] proved the lower
semicontinuity inequality (4) for q > n − 1, while the border case q = n − 1 was stated
by Acerbi and Dal Maso [1], Celada and Dal Maso [5] and Dal Maso and Sbordone [10].
An elementary approach was found by Fusco and Hutchinson [21], see also Malý [29] for
related results.

Notice that for functionals F (·,Ω) defined as in (1) the weak sequential lower semicon-
tinuity in W 1,p, p > 1, can be rephrased as follows: for every sequence (ur) ∈ W 1,1 such
that

ur → u strongly L1
loc and lim inf

r→+∞

∫

Ω

|Dur|p dx < +∞ (5)

then
lim inf
r→+∞

F (ur,Ω) ≥ F (u,Ω) .

With the general growth condition (3), the natural setting where to study lower semi-
continuity properties for functionals defined by (1) is provided by the functional spaces
generated by N-functions, called Orlicz spaces.

Ball [4] was the first to set some variational problems in the framework of Orlicz-Sobolev
spaces. Recently, the first author has considered in [15] quasi-convex integrals with the
non-standard growth conditions (3) obtaining lower semicontinuity in the weak ∗ topology
of the Orlicz-Sobolev space W 1LΦ (see Section 2 for references) provided Φ satisfies a sub-
homogeneity property at infinity called 42-condition, i.e., there exist m > 1 and to ≥ 0
such that for every λ > 1 and t ≥ to there holds

Φ (λt) ≤ λmΦ (t) .

Those results are also applied to give existence theorems for Dirichlet’s boundary value
problems (see [15]).

The structure and properties of Orlicz spaces are close to the standard Lp case if Φ ∈ 42,
while if Φ /∈ 42 the theory is quite different. Indeed, let Φ be a N-function, set

KΦ =

{

u : Ω → RN measurable:

∫

Ω

Φ (|u|) dx < +∞
}

,

denote with LΦ the linear hull of KΦ, which is a Banach space if endowed with the
gauge norm, then KΦ ≡ LΦ if and only if Φ ∈ 42. This lack of linear structure has
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consequences in the study of semicontinuity for functionals like in (1) whose integrand
satisfies the growth condition (3).

Indeed, if Φ /∈ 42 then F (·,Ω) is not finite a priori on the whole W 1LΦ, unlike the case
Φ ∈ 42, but just on the convex set

W 1,Φ,1 =

{

u ∈ W 1,1 :

∫

Ω

Φ (|Du|) dx < +∞
}

,

which is strictly contained in W 1LΦ.

However, assuming the analogue condition of (5), i.e., (ur) ∈ W 1,1 such that

ur → u strongly L1
loc and lim inf

r→+∞

∫

Ω

Φ (|Dur|) dx < +∞ , (6)

we are able to prove the lower semicontinuity of F (·,Ω) along such sequences.

The main result of the paper is the following (see Section 3 Theorem 3.2).

Let Ω ⊆ Rn be a bounded and open set with Lipschitz boundary, let F (·,Ω) be defined as
in (1) with f : RNn → R a quasi-convex function satisfying for every A ∈ RNn

0 ≤ f (A) ≤ c (1 + Φ (|A|)) , (7)

with c a positive constant and Φ a N-function.

Then for every (ur) ∈ W 1,Φ,1
(

Ω,RN
)

satisfying (6) there holds

lim inf
r→∞

F (ur,Ω) ≥ F (u,Ω) .

We remark that if Φ /∈ 42, the integral boundedness condition in (6) is not even implied
by the norm convergence of W 1LΦ, thus, unlike the case Φ ∈ 42, it is not equivalent to
weak ∗ convergence in W 1LΦ which is in turn implied by (6). However, (6) turns out to
be a natural condition when dealing with minimizing sequences of coercive functionals in
W 1LΦ, i.e., with energy densities satisfying

c1 (Φ (|A|)− 1) ≤ f (A) ≤ c (Φ (|A|) + 1) (8)

for every A ∈ RNn and for some positive constants c1, c.

Moreover, in that case, take uo ∈ W 1,Φ,1 and consider the boundary value problem

inf
{

F (u,Ω) : u ∈ uo +W 1,1
o

}

,

we prove that the infimum is attained as it happens in the W 1LΦ setting when Φ ∈ 42

(see [15] and Remark 3.12).

Eventually, it is possible to give explicit examples of non trivial applications of previous
results constructing quasi-convex functions verifying the non-standard growth conditions
(7), (8), in the latter case provided the dominating N-function Φ satisfies a sort of sub-
additivity condition at infinity (see Section 4).

The plan of the paper is the following: in Section 2 we recall some definitions and prove
some properties of N-functions and Orlicz spaces; in Section 3 we prove the semicontinuity
result Theorem 3.2; in Section 4 we give some examples of quasi-convex functions with
non-standard growth (7), (8).
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2. N-Functions and Orlicz spaces

In this section we recall some definitions and known properties of N-functions, Orlicz,
Orlicz-Sobolev spaces (see for references [3],[27],[38]).

A continuous and convex function Φ : [0,+∞) → [0,+∞) is called N-function if it satisfies

Φ (0) = 0,Φ (t) > 0 t > 0, lim
t→0+

Φ (t)

t
= 0, lim

t→+∞

Φ (t)

t
= +∞, (9)

e.g. take Φp,α (t) = tp logα (1 + t) for p > 1 and α ≥ 0 or p = 1 and α > 0.

Actually, only the growth at infinity really matters in the definition of N-function. Indeed,
given a continuous and convex function Q : [0,+∞) → [0,+∞) satisfying

lim
t→+∞

Q (t)

t
= +∞

there exist a N-function Φ and to > 0 such that for every t ≥ to there holds

Φ (t) = Q (t) .

Such a function Q is called principal part of the N-function Φ. Since this, we will not
distinguish any longer the two concepts, e.g. we will refer as N-functions to the functions
Γ0 (t) = tln t, Γβ (t) = exp

(

tβ
)

− 1, β > 0, which have not super-linear growth in 0.

In the sequel we will often use the following convexity inequality: for every s, t ∈ [0,+∞)
and λ > 1

Φ (s+ t) ≤ 1
λ
Φ (λs) +

(

1− 1
λ

)

Φ
(

λ
λ−1

t
)

. (10)

Let Φ be a N-function, let Ψ denote the Fenchel’s conjugate of Φ, i.e.,

Ψ (t) = sup {st− Φ (s) : s ≥ 0} , (11)

Ψ is a N-function called the complementary N-function of Φ. By the very definition the
pair Φ,Ψ satisfies Young’s inequality, i.e., for every s, t ∈ [0,+∞) there holds

st ≤ Φ(s) + Ψ(t).

A useful class of N-functions is provided by the following definition. We say that Φ belongs
to class 42, denoted by Φ ∈ 42, if there exist m > 1 and to ≥ 0 such that for every λ > 1,
t ≥ to there holds

Φ (λt) ≤ λmΦ (t) . (12)

Take for instance Φp,α (t) = tp logα (1 + t) for p > 1 and α ≥ 0 or p = 1 and α > 0, then
Φp,α ∈ 42, while Γ0 (t) = tln t /∈ 42 and Γβ (t) = exp

(

tβ
)

− 1 /∈ 42 for any β > 0.

Let Ω ⊆ Rn be a bounded and open set, the Orlicz class KΦ
(

Ω,RN
)

is the set of all
(equivalence classes modulo equality Ln a.e. in Ω of) measurable functions u : Ω → RN

satisfying
∫

Ω

Φ (|u|) dx < +∞, (13)

where |·| denotes the euclidean norm in RN .
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The Orlicz space LΦ
(

Ω,RN
)

is defined to be the linear hull ofKΦ
(

Ω,RN
)

, thus it consists
of all measurable functions u such that λu ∈ KΦ

(

Ω,RN
)

for some λ > 0. Moreover, the
equality KΦ

(

Ω,RN
)

≡ LΦ
(

Ω,RN
)

holds if and only if Φ ∈ 42.

Define the functional ‖u‖Φ,Ω : LΦ
(

Ω,RN
)

→ [0,+∞) by

‖u‖Φ,Ω = inf

{

λ > 0 :

∫

Ω

Φ

(

|u|
λ

)

dx ≤ 1

}

, (14)

it is a norm, called the gauge norm, and LΦ
(

Ω,RN
)

is a Banach space if endowed with
it. In the sequel we will denote ‖·‖Φ,Ω simply by ‖·‖Φ, and the norm convergence in

LΦ
(

Ω,RN
)

by s−LΦ
(

Ω,RN
)

. It easily follows the continuous immersion LΦ
(

Ω,RN
)

→
L1

(

Ω,RN
)

if both spaces are equipped with the gauge norm.

Notice that by the very definition of the norm for any u ∈ LΦ
(

Ω,RN
)

we have

‖u‖Φ ≤ 1 +

∫

Ω

Φ (|u|) dx. (15)

Denote by EΦ
(

Ω,RN
)

the closure of C∞
c

(

Ω,RN
)

in s− LΦ
(

Ω,RN
)

, the inclusions

EΦ
(

Ω,RN
)

⊆ KΦ
(

Ω,RN
)

⊆ LΦ
(

Ω,RN
)

are trivial with equalities holding if and only if Φ ∈ 42.

A useful characterization of EΦ
(

Ω,RN
)

is given in the following lemma (see Proposition
4 [38, p. 52]).

Lemma 2.1. Let u ∈ LΦ
(

Ω,RN
)

, set ku
Φ = sup

{

λ ≥ 0 : λu ∈ KΦ
(

Ω,RN
)}

, define luΦ :
[0, ku

Φ] → [0,+∞] by

luΦ (λ) =

∫

Ω

Φ (λ |u|) dx,

then luΦ is continuous, increasing and

lim
λ→(kuΦ)

−
luΦ (λ) = luΦ (ku

Φ) ≤ +∞.

Moreover, EΦ
(

Ω,RN
)

=
{

u ∈ LΦ
(

Ω,RN
)

: ku
Φ = +∞

}

.

We stress the attention on the fact that if Φ /∈ 42 the values of ku
Φ and luΦ (ku

Φ) can be
independently assigned, i.e., given any 0 < α, β < +∞ there exist u, v ∈ LΦ

(

Ω,RN
)

with
ku
Φ = kv

Φ = α such that luΦ (α) = β and lvΦ (α) = +∞ (see [38, p. 54]). This last remark
gives a characterization of condition 42.

Lemma 2.2. Let Φ be a N-function, Φ ∈ 42 if and only if for every family (ui)i∈I ⊆
LΦ

(

Ω,RN
)

which is norm bounded there holds

sup
i∈I

∫

Ω

Φ (|ui|) dx < +∞.
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Another consequence of the previous remark is that norm convergence does not imply
convergence of integrals in the case Φ /∈ 42. Indeed, if ur → u s − LΦ

(

Ω,RN
)

the
convexity of Φ implies

lim inf
r→+∞

∫

Ω

Φ (|ur|) dx ≥
∫

Ω

Φ (|u|) dx, (16)

with the possibility of strict inequality holding in (16). However, the integral convergence
holds for suitable sub-multiples of the limit.

Lemma 2.3. Let (ur), u ∈ LΦ
(

Ω,RN
)

be such that ur → u s−LΦ
(

Ω,RN
)

, if λ ∈ [0, ku
Φ)

then

lim
r→+∞

∫

Ω

Φ (λ |ur|) dx =

∫

Ω

Φ (λ |u|) dx. (17)

Proof. Fix λ ∈ (0, ku
Φ), by (16) we have only to prove the inequality

lim sup
r→+∞

∫

Ω

Φ (λ |ur|) dx ≤
∫

Ω

Φ (λ |u|) dx,

the case λ = 0 being trivial.

By the very definition of the norm and the convexity of Φ it follows

‖w‖Φ ≤ 1 ⇒
∫

Ω

Φ (|w|) dx ≤ ‖w‖Φ ,

hence for any σ > 0 there exists r (σ) such that for every r ≥ r (σ)
∫

Ω

Φ (σ |ur − u|) dx ≤ σ ‖ur − u‖Φ ≤ 1. (18)

Fix σ > 1 such that λ < λσ < kuΦ, then by (10)

∫

Ω

Φ (λ |ur|) dx ≤ 1

σ

∫

Ω

Φ (λσ |u|) dx+

(

1− 1

σ

)∫

Ω

Φ
(

λσ
σ−1

|ur − u|
)

dx, (19)

hence passing to the superior limit for r → +∞ in (19) we get by (18)

lim sup
r→+∞

∫

Ω

Φ (λ |ur|) dx ≤ 1

σ

∫

Ω

Φ (λσ |u|) dx,

and so Lemma 2.1 yields the conclusion by letting σ → 1+.

The Orlicz-Sobolev space W 1LΦ
(

Ω,RN
)

consists of all (equivalence classes modulo equal-
ity Ln a.e. in Ω of) measurable functions u ∈ LΦ

(

Ω,RN
)

whose first order distributional
derivatives belong to LΦ

(

Ω,RN
)

. As in the case of ordinary Sobolev spaces, it is a Banach
space if endowed with the norm

‖u‖1,Φ = ‖u‖Φ + ‖Du‖Φ .

Denote byW 1
oE

Φ(Ω,RN) the closure of C∞
c (Ω,RN) in the norm topology ofW 1LΦ(Ω,RN),

indicated by s − W 1LΦ(Ω,RN). Let us state a generalization of Rellich-Kondrakov’s
compact embedding theorem ([3], Lemma 7.1 [14]).
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Theorem 2.4. Let Ω ⊆ Rn be a open bounded set with Lipschitz boundary, let Φ be a
N-function, then the embedding W 1LΦ

(

Ω,RN
)

→ LΦ
(

Ω,RN
)

is compact.

Let λ > 0 and consider, similarly to Marcellini [31], the convex functional sets

W 1,Φ,λ
(

Ω,RN
)

=

{

u ∈ W 1,1
(

Ω,RN
)

:

∫

Ω

Φ (λ |Du|) dx < +∞
}

.

The next lemma yields the set inclusion W 1,Φ,λ
(

Ω,RN
)

⊆ W 1
locL

Φ
(

Ω,RN
)

(see Lemma 1
[6]).

Lemma 2.5. Let C ⊆ Rn be a convex, bounded and open set, then for every λ > 0 and
u ∈ W 1,Φ,λ

(

Ω,RN
)

there holds

∫

C

Φ
(

λ
d
|u− uC |

)

dx ≤
(

ωndn

Ln(C)

)1− 1
n

∫

C

Φ (λ |Du|) dx,

where uC = 1
Ln(C)

∫

C
udx, d = diamC, ωn = Ln

(

B(0,1)

)

and B(0,1) is the unit ball of Rn.

The set inclusion W 1,Φ,λ
(

Ω,RN
)

⊆ W 1LΦ
(

Ω,RN
)

is related to the regularity of Ω, it is
a consequence of Lemma 2.7 below for which we need the following result (see Lemma 1
[39]).

Lemma 2.6. Let Ω ⊆ Rn be a bounded and open set with Lipschitz boundary, then there
exists a positive constant c = c (n,Ω) such that for every u ∈ W 1,1

(

Ω,RN
)

|u (x)| ≤ c

(

‖u‖L1(Ω,RN ) +

∫

Ω

|Du(y)|
|x−y|n−1dy

)

for Ln a.e. x ∈ Ω.

Lemma 2.7. Let Ω ⊆ Rn be a bounded and open set with Lipschitz boundary, then there
exist positive constants ci = ci (n,Ω), 1 ≤ i ≤ 2, such that for every u ∈ W 1,Φ,1

(

Ω,RN
)

and λ > 1, there holds

∫

Ω

Φ
(

c1
λ
|u|

)

dx ≤ Φ
(

c2
λ−1

‖u‖L1(Ω,RN )

)

Ln (Ω) +

∫

Ω

Φ (|Du|) dx.

Proof. Let r > diamΩ, consider the kernel J : B(0,r) → [0,+∞) defined by

J(x) =

{

k |x|1−n B(0,r) \ {0}
0 otherwise

where k is chosen such that ‖J‖L1(Rn) = 1.

Define v to be the zero extension of |Du| to Rn, then applying Lemma 2.6 and (10) for
Ln a.e. x ∈ Ω we have

Φ
(

k
cλ
|u (x)|

)

≤ Φ
(

k
λ−1

‖u‖L1(Ω,RN )

)

+ Φ

(∫

Rn

J (y − x) v (y) dy

)
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thus by a suitable version of Jensen’s inequality, i.e.,

Φ

(∫

Rn

J (y − x) v (y) dy

)

≤
∫

Rn

J (y − x) Φ (v (y)) dy,

and integrating over Ω we get

∫

Ω

Φ
(

k
cλ
|u|

)

dx

≤ Φ
(

k
λ−1

‖u‖L1(Ω,RN )

)

Ln (Ω) +

∫

Ω

dx

∫

Rn

J (y − x) Φ (v (y)) dy

≤ Φ
(

k
λ−1

‖u‖L1(Ω,RN )

)

Ln (Ω) +

∫

Ω

Φ (|Du (x)|) dx,

and so we are done setting c1 (n,Ω) =
k
c
and c2 (n,Ω) = cc1.

Let W 1,Φ,λ
o

(

Ω,RN
)

= W 1,1
o ∩ W 1,Φ,λ

(

Ω,RN
)

; for any bounded set Ω the inclusion
W 1,Φ,λ

o

(

Ω,RN
)

⊆ W 1LΦ
(

Ω,RN
)

holds by using the following lemma which generalizes
to the vectorial case Lemma 3.2 [34] (see [36]).

Lemma 2.8. Let Ω ⊆ Rn be a bounded and open set, let d = diamΩ and λ > 0, if
u ∈ W 1,Φ,λ

o

(

Ω,RN
)

then

∫

Ω

Φ
(

2λ
Nd

|u|
)

dx ≤
∫

Ω

Φ (λ |Du|) dx.

As a consequence of Lemma 2.8 we deduce that the LΦ norm of the gradient and the
W 1LΦ norm are equivalent on W 1,Φ,λ

o

(

Ω,RN
)

. More precisely if u ∈ W 1,Φ,λ
o

(

Ω,RN
)

then

‖u‖Φ ≤ Nd
2
‖Du‖Φ . (20)

Next lemma states a density result in W 1,Φ,λ
o

(

Ω,RN
)

(see [25],[36] for related results).

Lemma 2.9. Let Ω ⊆ Rn be a bounded and open set, let u ∈ W 1,Φ,λ
o

(

Ω,RN
)

be such that
sptu ⊂⊂ Ω, then there exists a sequence (ur) ⊂ C∞

c

(

Ω,RN
)

such that

(i) ur → u s−W 1,1
(

Ω,RN
)

;

(ii)
∫

Ω
Φ (|ur|) dx →

∫

Ω
Φ (|u|) dx;

(iii)
∫

Ω
Φ (|Dur|) dx →

∫

Ω
Φ (|Du|) dx.

Proof. Let Jε be a mollifier, let ur = J 1
r
∗ u, then standard convolution results yield

ur ∈ C∞
c

(

Ω,RN
)

if r is suitable and assertion (i) hence follows.

To prove (ii) note that by Jensen’s inequality for Ln a.e. x ∈ Ω

0 ≤ Φ (|ur (x)|) ≤
(

J 1
r
∗ Φ (|u|)

)

(x) ,

moreover, since

J 1
r
∗ Φ (|u|) → Φ (|u|) s− L1 (Ω) and Ln a.e. x ∈ Ω,
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(ii) holds by the continuity of Φ and Lebesgue’s Dominated Convergence theorem.

To prove (iii) observe that since sptu ⊂⊂ Ω, if 1
r
< d (sptu, ∂Ω) then

Di

(

J 1
r
∗ u

)

(x) =
(

J 1
r
∗Diu

)

(x)

for Ln a.e. x ∈ Ω and for every 1 ≤ i ≤ n, so that we can conclude analogously to (ii).

We now introduce the weak ∗ convergence in LΦ
(

Ω,RN
)

, which we will denote by ∗w −
LΦ

(

Ω,RN
)

. Since the Orlicz space LΦ
(

Ω,RN
)

is isometrically isomorphic to the dual
space of EΨ

(

Ω,RN
)

a sequence ur → u ∗w − LΦ
(

Ω,RN
)

if and only if for every v ∈
EΨ

(

Ω,RN
)

there holds

lim
r→+∞

∫

Ω

urvdx =

∫

Ω

uvdx.

By means of the Hahn-Banach theorem we have that ur → u ∗w −W 1LΦ
(

Ω,RN
)

if and
only if (ur), (Diur), 1 ≤ i ≤ n, converge to u, Diu respectively. As a consequence of the
previous statements we deduce that LΦ

(

Ω,RN
)

is reflexive if and only if both Φ and Ψ
belong to class 42.

Eventually, W 1
oE

Φ
(

Ω,RN
)

is ∗w − W 1LΦ
(

Ω,RN
)

closed if and only if Φ ∈ 42 (see
[12],[24]), in the sequel we denote by W 1

oL
Φ
(

Ω,RN
)

its weak ∗ closure.

3. Semicontinuity

Let f be quasi-convex, i.e., f is continuous and satisfies inequality (2), then f is separately
convex in each variable (see [7]) and thus for every θ ∈ [0, 1] and z ∈ RNn we get

f (θA) ≤
∑

0≤k≤Nn

θNn−k (1− θ)k
∑

|α|=k

f (πα
k (A)) , (21)

where α is a multi-index of components αi ∈ {1, . . . , Nn} and length |α| = α1+ . . .+αNn,
considering two multi-indices equal up to permutations, and where πα

k : RNn → RNn is
the projection on the k-plane

Πα =
{

y ∈ RNn : yα1 = yα2 = . . . = yαk
= 0

}

,

with the convention that π
(0,...,0)
0 = IdRNn and Π(0,...,0) = RNn if k = 0.

Lemma 3.1. Let Φ be an N-function and f : RNn → R be quasi-convex and satisfying

f (A) ≤ c (1 + Φ (|A|)) , (22)

then there exists a positive constant c1 = c1 (Nn) such that for every θ ∈ [0, 1] and
A ∈ RNn

f (θA) ≤ θNnf (A) + c1 (1− θ) (1 + Φ (|A|)) . (23)

Proof. Since Φ is increasing, by (22) for every α and k we get

f (πα
k (A)) ≤ c (1 + Φ (|πα

k (A)|)) ≤ c (1 + Φ (|A|)) ,

then (23) follows by (21) setting c1 = c
∑

1≤k≤Nn

(

Nn
k

)

.
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Let us recall our main result.

Theorem 3.2. Let Ω ⊆ Rn be a bounded and open set with Lipschitz boundary, let F (·,Ω)
be defined as in (1) with f : RNn → R a quasi-convex function satisfying for every
A ∈ RNn

0 ≤ f (A) ≤ c (1 + Φ (|A|)) , (24)

with c a positive constant and Φ a N-function.

Then for every (ur) ∈ W 1,Φ,1
(

Ω,RN
)

satisfying (6) there holds

lim inf
r→∞

F (ur,Ω) ≥ F (u,Ω) .

Remark 3.3. By the sequential lower semicontinuity of the map v →
∫

Ω
Φ (|v|) dx in the

w − L1
(

Ω,RN
)

convergence and by (6) it follows u ∈ W 1,Φ,1
(

Ω,RN
)

.

Remark 3.4. The quasi-convexity inequality (2) can be extended also for test functions
in W 1,Φ,1

o

(

Ω,RN
)

under growth conditions (7).

Indeed, given ϕ ∈ W 1,Φ,1
o

(

Ω,RN
)

first assume that sptϕ ⊂⊂ Ω and consider the sequence
(ϕr) ⊂ C∞

c

(

Ω,RN
)

provided by Lemma 2.9. We may further suppose that Dϕr → Dϕ
Ln a.e. in Ω, hence by Lebesgue’s Dominated Convergence theorem

f (A)Ln (Ω) ≤ lim
r→+∞

∫

Ω

f (A+Dϕr (x)) dx =

∫

Ω

f (A+Dϕ (x)) dx.

If ϕ ∈ W 1,Φ,1
o

(

Ω,RN
)

is any, let Σ be a bounded and open set such that Σ ⊃⊃ Ω, define
ϕo to be the zero extension of ϕ to Σ, then ϕo ∈ W 1,Φ,1

o

(

Σ,RN
)

and sptϕo ⊂⊂ Σ, thus
by previous step, (2) holds for ϕo on Σ, i.e.,

f (A)Ln (Σ) ≤
∫

Σ

f (A+Dϕo (x)) dx =

∫

Ω

f (A+Dϕ (x)) dx+ f (A)Ln (Σ \ Ω) ,

and so (2) holds for ϕ on Ω.

Remark 3.5. The statement of Theorem 3.2 holds more generally if the growth condition
(7) is substituted by (3), i.e., for every A ∈ RNn

−c (1 + Φ1 (|A|)) ≤ f (A) ≤ c (1 + Φ (|A|)) ,

provided Φ1 is a N-function such that for every λ > 0

lim
t→+∞

Φ (t)

Φ1 (λt)
= +∞. (25)

Indeed, under assumption (25), if (ur) ∈ W 1,Φ,1
(

Ω,RN
)

satisfies the integral boundedness
condition (6), the sequence (Φ1 (|Dur|)) is equi-absolutely integrable by De la Vallée
Poissin’s criterion (see [KR, p.95]), then arguing like Kristensen (Theorem 3.1 Step 1
[28]) we reduce to the case f ≥ 0.
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Remark 3.6. Following Marcellini [32] (see also [15]) one can prove that quasi-convexity
and (24) yield for every A, B ∈ RNn

|f (A)− f (B)| ≤ c

(

1 +
Φ (2 (1 + |A|+ |B|))

1 + |A|+ |B|

)

|A−B| .

This kind of control on f is no longer utilizable in our setting when Φ is a N-function not
in class 42.

First we prove a special case.

Lemma 3.7. If in the statement of Theorem 3.2 the limit u is affine, i.e., Du (x) ≡ Ao

for some Ao ∈ RNn and Ln a.e. x ∈ Ω, then

lim inf
r→∞

F (ur,Ω) ≥ F (u,Ω) .

Proof. Step 1 : Suppose ur, u have the same boundary values, i.e., (u−ur) ∈ W 1,Φ,1
o (Ω,RN)

for every r, then the result easily follows by quasi-convexity and Remark 3.4.

Step 2: Suppose that (ur) ∈ W 1,Φ,λ
(

Ω,RN
)

for some λ > 1 and that

sup
r

∫

Ω

Φ (λ |Dur|) dx < +∞. (26)

Proceeding as Marcellini [32], [33] we change the boundary value of ur in a suitable way.
Let Ωo ⊂⊂ Ω be an open set, fix k = 1

2
dist

(

Ωo, ∂Ω
)

and h ∈ N, then for 1 ≤ i ≤ h define
the open sets

Ωi =
{

x ∈ Ω : dist (x, ∂Ω) < i
h
k
}

and consider a family of cut-off functions ϕi ∈ C∞
c (Ω) such that

0 ≤ ϕi ≤ 1, ϕi ≡ 1 on Ωi−1, ϕi ≡ 0 on Ω \ Ωi, |Dϕi| ≤ h+1
k
.

For every r let vr = ur − u, notice that vr → 0 s−L1
loc

(

Ω,RN
)

, then define the functions

vi,r = ϕivr,

thus vi,r ∈ W 1,Φ,1
o

(

Ω,RN
)

for every i provided r is big enough. Indeed, vi,r ∈ W 1,1
o

(

Ω,RN
)

by the very definition, moreover applying twice (10) and by the choice of ϕi we get

∫

Ω

Φ (|Dvi,r|) dx ≤
∫

Ω

Φ (λ |Dur|) dx

+Φ
(

λ√
λ−1

|Ao|
)

Ln (Ω) +

∫

Ω

Φ
(

h+1
k

√
λ√

λ−1
|vr|

)

dx.

The assertion follows from (26) and Theorem 2.4, since the compactness of the embedding
W 1LΦ

(

Ω,RN
)

→ LΦ
(

Ω,RN
)

implies vr → 0 s−LΦ
(

Ω,RN
)

and thus by Lemma 2.3 for
every σ > 0 there holds

lim
r→+∞

∫

Ω

Φ (σ |vr|) dx = 0.
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By Step 1 we deduce

F (u,Ω) ≤ F (u+ vi,r,Ω) =

∫

Ω

f (Ao +Dvi,r) dx

=

∫

Ωi−1

f (Dur) dx+

∫

Ωi\Ωi−1

f (Ao +Dvi,r) dx+

∫

Ω\Ωi

f (Ao) dx

≤
∫

Ω

f (Dur) dx+

∫

Ωi\Ωi−1

f (Ao +Dvi,r) dx+ f (Ao)Ln (Ω\Ωo) . (27)

Choosing 1 < θ < λ, by (26) and (10) we have

sup
r

∫

Ω

Φ (θ |Dvr|) dx

≤ sup
r

∫

Ω

Φ (λ |Dur|) dx+ Φ
(

λθ
λ−θ

|Ao|
)

Ln (Ω) ≤ c1 < +∞,

therefore there exists 1 ≤ j ≤ h such that

sup
r

∫

Ωj\Ωj−1

Φ (θ |Dvr|) dx ≤ c1
h
. (28)

Now we estimate the integrals in (27) for such j. By applying (10) and by (28) we get

∫

Ωj\Ωj−1

f (Ao +Dvj,r) dx

≤ c

∫

Ωj\Ωj−1

(1 + Φ (|Ao|+ |ϕj| |Dvr|+ |Dϕj| |vr|)) dx

≤ c2Ln (Ω\Ωo) +
c3
h

+ c4

∫

Ω

Φ
(

h+1
k

θ√
θ−1

|vr|
)

dx. (29)

So by (29), (27) becomes

F (u,Ω) ≤ F (ur,Ω) +
c3
h

+ c4

∫

Ω

Φ
(

h+1
k

θ√
θ−1

|vr|
)

dx+ c5Ln (Ω\Ωo) ,

the assertion then follows passing to the limit for r → +∞, Ln (Ω\Ωo) → 0 and h → +∞.

Step 3: Let us remove assumption (26). Given (ur) ∈ W 1,Φ,1
(

Ω,RN
)

satisfying (6)
consider a subsequence, not relabelled for convenience, such that

lim
r→+∞

∫

Ω

Φ (|Dur|) dx = lim inf
r→+∞

∫

Ω

Φ (|Dur|) dx. (30)

Fix λ > 1, then define
ur,λ = 1

λ
ur and uλ = 1

λ
u.

Notice that (ur,λ), uλ ∈ W 1,Φ,λ
(

Ω,RN
)

, ur,λ → uλ s − L1
loc

(

Ω,RN
)

and (Dur,λ) satisfies
condition (26), hence by Step2 we get

F (uλ,Ω) ≤ lim inf
r→+∞

F (ur,λ,Ω) . (31)
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Since by (23) of Lemma 3.1 for every r and for Ln a.e. x ∈ Ω there holds

f (Dur,λ (x)) ≤ 1
λNnf (Dur (x)) + c

(

1− 1
λNn

)

(1 + Φ (|Dur (x)|)) , (32)

integrating the inequality above and setting k = supr

∫

Ω
Φ (|Dur|) dx, with k < +∞ by

(30), we get
F (ur,λ,Ω) ≤ 1

λNnF (ur,Ω) + c
(

1− 1
λNn

)

(k + Ln (Ω)) . (33)

Then, by passing to the inferior limit in (33), we get by (31)

F (uλ,Ω) ≤ 1
λNn lim inf

r→+∞
F (ur,Ω) + c

(

1− 1
λNn

)

(k + Ln (Ω)) . (34)

Eventually, since uλ → u s−W 1LΦ
(

Ω,RN
)

and since F (·,Ω) is sequentially lower semi-
continuous in that convergence by a simple application of Fatou’s lemma, there holds

F (u,Ω) ≤ lim inf
λ→1+

F (uλ,Ω) ≤ lim inf
r→+∞

F (ur,Ω)

passing to the inferior limit for λ → 1+ on both sides of (34).

The proof of Theorem 3.2 now follows using the Fonseca-Müller’s blow-up technique [18]
(see also [17],[16]).

Proof of Theorem 3.2. Given (ur) ∈ W 1,Φ,1LΦ
(

Ω,RN
)

satisfying condition (6) we get

lim inf
r→+∞

F (ur,Ω) < +∞.

Moreover, condition (6), Theorem 2.4 and Theorem 2.7 assure that ur → u s−LΦ
(

Ω,RN
)

,
and by extracting subsequences, not relabelled for convenience, we have that

lim inf
r→+∞

F (ur,Ω) = lim
r→+∞

F (ur,Ω) .

Moreover, we can assume the existence of µ, ν positive and finite Radon measures such
that

µ = lim
r→+∞

Lnbf (Dur) , ν = lim
r→+∞

LnbΦ (|Dur|) , (35)

where, given any mesurable function g : Ω → [0,+∞) the measure Lnbg is defined on
Borel sets of Ω by

(Lnbg) (E) =

∫

E

g (x) dx,

and the limits in (35) are to be intended in the sense of measures, i.e., for every ϕ ∈
C0

c

(

Ω,RN
)

there holds

lim
r→+∞

∫

Ω

ϕf (Dur) dx =

∫

Ω

ϕdµ; lim
r→+∞

∫

Ω

ϕΦ (|Dur|) dx =

∫

Ω

ϕdν.

We are going to show that for Ln a.e. x ∈ Ω there holds

dµ

dLn
(x) = lim

ε→0+

µ
(

B(x,ε)

)

Ln
(

B(x,ε)

) ≥ f (Du (x)) . (36)
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Indeed, if (36) holds, we have that for any ϕ ∈ C0
c

(

Ω,RN
)

such that 0 ≤ ϕ ≤ 1

lim
r→+∞

F (ur,Ω) ≥ lim
r→+∞

∫

Ω

ϕf (Dur) dx =

∫

Ω

ϕdµ ≥
∫

Ω

ϕf (Du) dx,

thus the lower semicontinuity inequality follows letting ϕ increase to 1 and applying Levi’s
theorem.

To prove (36) we recall that there exists a set Ωo ⊂ Ω such that Ln (Ω\Ωo) = 0, and that
if x ∈ Ωo the quantities

dµ

dLn
(x) ,

dν

dLn
(x) are finite (37)

and

lim
ε→0+

1

εn+1

∫

B(x,ε)

|u (y)− u (x)−Du (x) (y − x)| dy = 0. (38)

Let xo ∈ Ωo and let εk → 0+ be such that µ
(

∂B(xo,εk)

)

= 0, ν
(

∂B(xo,εk)

)

= 0 for every k,
then, setting B = B(0,1) and ωn = Ln (B), we get

lim
k→+∞

µ
(

B(xo,εk)

)

Ln
(

B(xo,εk)

) = lim
k→+∞

lim
r→+∞

∫

B(xo,εk)

f (Dur) dx

= lim
k→+∞

lim
r→+∞

1

ωn

∫

B

f (Dur,k) dx,

where for every y ∈ B

ur,k (y) =
1

εk
(ur (xo + εky)− u (xo)) .

Notice that (ur,k) ∈ W 1,Φ,1
(

B,RN
)

and (Φ (|Dur,k|)) is L1
(

B,RN
)

norm bounded. In-
deed, by the choice of xo we have

lim
k→+∞

lim
r→+∞

∫

B

Φ (|Dur,k|) dx

= lim
k→+∞

lim
r→+∞

1

εnk

∫

B(xo,εk)

Φ (|Dur|) dx = ωn
dν

dLn
(xo) < +∞. (39)

By taking into account the convergence ur → u s− LΦ
(

Ω,RN
)

and (38) for x = xo and
setting uo(x) = Du (xo)x, we get

lim
k→+∞

lim
r→+∞

‖ur,k − uo‖L1(B,RN ) = 0.

Thus (ur,k) has a subsequence vk = urk,k which is s−L1
(

B,RN
)

converging to the affine
function uo. Eventually, since by (39) (vk) satisfies (6), by Lemma 3.7 inequality (36)
follows, i.e.,

dµ

dLn
(xo) = lim

k→+∞

1

ωn

∫

B

f (Dvk) dx ≥ f (Du (xo)) .
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The previous theorem can be applied to solve Dirichlet’s boundary value problems.

Corollary 3.8. Let Ω ⊆ Rn be a bounded and open set, let f : RNn → R be a quasi-convex
function satisfying for every A ∈ RNn

c (Φ (|A|)− 1) ≤ f (A) ≤ c (1 + Φ (|A|)) , (40)

with c a positive constant and Φ a N-function. Let F (·,Ω) be defined as in (1), uo ∈
W 1,Φ,1

(

Ω,RN
)

, set V = uo +W 1,1
o

(

Ω,RN
)

, then the minimum problem

m = inf
V

F (·,Ω) (41)

has solution.

Proof. Assumption uo ∈ W 1,Φ,1
(

Ω,RN
)

and the growth condition (40) assure that
−∞ < m < +∞. Let (vr) ⊂ V be a minimizing sequence for F (·,Ω) on V , i.e.,

lim
r→+∞

F (vr,Ω) = m,

then (40) implies

sup
r

∫

Ω

Φ (|Dvr|) dx < +∞. (42)

Let ur = vr − uo, then by (10), (42) implies ur ∈ W
1,Φ, 12
o

(

Ω,RN
)

and

sup
r

∫

Ω

Φ
(

1
2
|Dur|

)

dx ≤
∫

Ω

Φ (|Duo|) dx+ sup
r

∫

Ω

Φ (|Dvr|) dx. (43)

Poincaré inequality yields
sup
r

‖ur‖W 1,1(Ω,RN ) < +∞,

thus, (43), Dunford-Pettis’ theorem and Rellich-Kondrakov’s theorem imply the existence
of u ∈ W 1,1

(

Ω,RN
)

and a subsequence of (ur), not relabelled for convenience, such that
ur → u w −W 1,1

(

Ω,RN
)

and s− L1
(

Ω,RN
)

.

Then u ∈ W 1,1
o

(

Ω,RN
)

, and (uo + u) ∈ V ∩W 1,Φ,1
(

Ω,RN
)

since by (42)

∫

Ω

Φ (|D (uo + u)|) dx ≤ lim
r→+∞

∫

Ω

Φ (|Dvr|) dx < +∞.

Eventually, by applying Theorem 3.2, (uo + u) is a minimizer for F (·,Ω) on V .

Remark 3.9. The assumption uo ∈ W 1,Φ,1
(

Ω,RN
)

is necessary for the problem to be
well posed if we want uo itself to be in the competing class V and the functional F (·,Ω)
to be finite a priori in at least one point.

Remark 3.10. We point out that since the convergence introduced in (6) implies ∗w−
W 1LΦ

(

Ω,RN
)

convergence, and minimizing sequences for problem (44) below satisfy (6)
because of (40), Theorem 3.2 applies also to solve

inf
{

F (·,Ω) : u ∈ uo +W 1
oL

Φ
(

Ω,RN
)}

. (44)
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Remark 3.11. In our general setting we avoid to consider the minimum problem

inf
{

F (·,Ω) : u ∈ uo +W 1,Φ,1
o

(

Ω,RN
)}

, (45)

since, if Φ /∈ 42, condition (6) is not sufficient to ensure the weak ∗ closure ofW 1,Φ,1
o (Ω,RN).

Indeed, from the proof of Corollary 3.8 we can only deduce that the minimizers belong to

the class uo +W
1,Φ, 12
o

(

Ω,RN
)

.

Anyhow, we emphasize that the set where we consider the minimum problem is the domain
of the functional.

Remark 3.12. In case Φ ∈ 42 all the minimum problems (41), (44), (45) reduce to
the same since in that case ∗w− W 1LΦ

(

Ω,RN
)

convergence is equivalent to the con-
vergence introduced in (6), cfr. Lemma 2.2, and W 1,Φ,1

o

(

Ω,RN
)

≡ W 1
oL

Φ
(

Ω,RN
)

≡
W 1

oE
Φ
(

Ω,RN
)

(see [19],[26]).

4. Quasi-convex functions with non-standard growth

In this section we exhibit some quasi-convex functions satisfying conditions (7), (8) with
the N-function Φ not necessarily belonging to 42. Actually, concerning condition (8), we
are not able to deal with the general case but we produce such quasi-convex functions if
the dominating N-function Φ satisfies a sort of sub-additivity condition at infinity, i.e.,
there exists ro > 0 such that

CΦ (ro) = lim sup
t→+∞

Φ (t+ ro)

Φ (t) + Φ (ro)
< +∞. (46)

When (46) holds, it is easy to prove that CΦ(r) < +∞ for every r > 0 and that the map
CΦ : [0,+∞) → [0,+∞) is non-decreasing and lower bounded by CΦ(0) = 1.

Notice that by (10) and (12) Φ ∈ 42 implies CΦ(r) ≡ 1, but 42 N-functions are not
the only ones satisfying (46). Indeed, consider the N-functions Γ0 (t) = tln t and Γβ(t) =
exp

(

tβ
)

− 1, 0 < β ≤ 1, then Γ0,Γβ /∈ 42, but an easy computation yields CΓ0(r) ≡ 1,
CΓβ

(r) ≡ 1, 0 < β < 1, and CΓ1 (r) = exp(r).

Moreover, we remark that (46) is not fulfilled if the exponential growth is too fast, e.g.
CΓβ

(r) ≡ +∞ for any β > 1.

We now construct a N-function satisfying (46) with polynomial growth and not belonging
to class 42. A first example of this kind was produced by Krasnosel’skij and Rutickii (see
[28, p. 29], [38, p. 27]).

Fix a > 1 and 1 < q < p, define the function ϕq,p : [0,+∞) → [0,+∞) as

ϕq,p (s) =











qsq−1 0 ≤ s ≤ 1

psp−1 1 ≤ s ≤ a

αi s ∈ [ai, ai+1]

(47)

where αi and ai are defined recursively by: a0 = a and for i ≥ 0

αi = pap−1
i = qaq−1

i+1 . (48)
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Then define Φq,p : [0,+∞) → [0,+∞) by

Φq,p (t) =

∫ t

0

ϕq,p (s) ds, (49)

we claim that Φq,p is a N-function satisfying the desired properties.

By their very definition the sequences (ai), (αi) and
(

αi

αi−1

)

are increasingly diverging to

+∞. Moreover, by direct computation if i is large enough we have

Φq,p (2ai) ≥
(

1 + αi

αi−1

)

Φq,p (ai) . (50)

Indeed, since 2ai ≤ ai+1 for i sufficiently large, by definition (49) we get

Φq,p (2ai) = Φq,p (ai) + aiαi, (51)

so that (50) holds if and only if

1
αi−1

Φq,p (ai) ≤ ai. (52)

Notice that since (αi) is increasing and diverging to +∞, from (47) there follows

Φq,p (ai) ≤ Φq,p (a0) + αi−1 (ai − a0) , (53)

and thus (52) follows for i sufficiently large.

A similar computation holds true for the complementary N-function Ψq,p of Φq,p, so that
neither Φq,p nor Ψq,p belong to class 42.

Notice that Φq,p has q, p growth, i.e., there exist ci > 0, 1 ≤ i ≤ 4, such that

c1t
q − c2 ≤ Φq,p (t) ≤ c3t

p + c4.

Moreover, these are the best powers to estimate Φq,p, i.e., if r ∈ (q, p) then

lim inf
t→+∞

Φq,p (t)

tr
= 0, lim sup

t→+∞

Φq,p (t)

tr
= +∞.

Indeed, by (53) there follows

0 ≤ lim inf
t→+∞

Φq,p (t)

tr
≤ lim inf

i→+∞

Φq,p (ai)

ari

≤ lim inf
i→+∞

(

Φq,p (a0)

ari
+

αi−1 (ai − a0)

ari

)

= q lim inf
i→+∞

aq−r
i = 0.

Now let bi =
r

r−1
ai, then bi ∈ (ai, ai+1) and

lim sup
t→+∞

Φq,p (t)

tr
≥ lim sup

i→+∞

Φq,p (bi)

bri

≥ 1

bri

∫ bi

ai

ϕq,p (s) ds =
p(r−1)r−1

rr
lim sup
i→+∞

ap−r
i = +∞.
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Eventually, an easy computation shows that choosing 1 < q < p ≤ q + 1, Φq,p satisfies
also (46).

In the sequel, given f : RNn → R we denote by Qf the quasi-convex envelope of f , i.e.,
the greatest quasi-convex function less or equal to f , which turns out to be defined by

Qf = sup {g ≤ f : q quasi-convex} .

Following Zhang [40], assume we are given a quasi-convex function f for which the sub-
level set

Kα =
{

A ∈ MN×n : f (A) ≤ α
}

is compact and non convex for some α ∈ R, then in Theorem 1.1 of the same paper it
is proven that the quasi-convex envelope of the distance function from Kα, Qd (·, Kα),
satisfies

Qd (A,Kα) = 0 ⇔ A ∈ Kα.

Therefore, the function fq : MN×n → [0,+∞) defined by

fq (A) = max {[d (A, coKα)]
q , Qd (A,Kα)} ,

where coKα is the convex hull of Kα, is quasi-convex, non convex and satisfies

c1 |A|q − c2 ≤ fq (A) ≤ c3 |A|q + c4

for some positive constants ci, 1 ≤ i ≤ 4, and for every A ∈ MN×n.

We want to generalize that construction using N-functions as well as powers. First notice
that given any N-function Φ, the function

gΦ (A) = Φ (Qd (A,Kα)) (54)

is quasi-convex, non convex and it satisfies (7) provided 0 ∈ Kα.

Thus, as we will see in the sequel, assumption (46) on Φ plays a crucial role if we want to
construct a quasi-convex function satisfying the more restrictive condition (8). Now let
Φ be a N-function satisfying (46) and define

fΦ (A) = max {Φ (d (A, coKα)) ;Qd (A,Kα)} , (55)

then fΦ turns out to be quasi-convex and non convex since fΦ (A) ≤ 0 if and only if
A ∈ Kα.

Let us prove that there exist positive constants ci, 1 ≤ i ≤ 4, such that for every A ∈
MN×n there holds

c1Φ (|A|)− c2 ≤ fΦ (A) ≤ c3Φ (|A|) + c4. (56)

Notice that (56) is equivalent to proving

0 < lim inf
|A|→+∞

fΦ(A)

Φ (|A|)
≤ lim sup

|A|→+∞

fΦ (A)

Φ (|A|)
< +∞. (57)
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Let B (0, R) ⊃ Kα, then, by the very definition of fΦ, we get

lim inf
|A|→+∞

fΦ(A)

Φ (|A|)
≥ lim inf

|A|→+∞

Φ (d (A, coKα))

Φ (|A|)

≥ lim inf
|A|→+∞

Φ (max {|A| −R; 0})
Φ (|A|)

=
1

CΦ (R)
> 0.

Finally, to prove (57) notice that since Kα is bounded for every A ∈ MN×n there holds

Qd (A,Kα)− diamKα ≤ d (A, coKα) ≤ Qd (A,Kα) ,

so that for |A| sufficiently large we have

fΦ (A) = Φ (d (A, coKα)) .

Thus, since the map d (·, coKα) is Lipschitz continuous with Lipschitz constant 1, we get
by condition (46)

lim sup
|A|→+∞

fΦ(A)

Φ (|A|)

≤ lim sup
|A|→+∞

Φ (|A|+ d (0, coKα))

Φ (|A|)
= CΦ (d (0, coKα)) < +∞.

In order to provide an explicit example of such a construction consider A,B ∈ MN×n

such that rank (A−B) ≥ 2 and set K = {A,B}. Then K is compact and not convex.
Moreover, it is well known (see [40]) that there exists a non negative function with sub-
quadratic growth whose zero set is K.

In the sequel we will construct quasi-convex functions with such a choice of K following
the previous scheme. Let gq,p be defined by (54), where Φq,p is defined by (47) with 1 <
q < p, then gq,p is a quasi-convex, non convex function.

Consider the functional

Gq,p (u,Ω) =

∫

Ω

gq,p (Du (x)) dx,

then Theorem 3.2 assures the lower semicontinuity of Gq,p (·,Ω) in a different topology
with respect to all the results provided by classical Sobolev spaces (see all the references
in the Introduction).

Now let fΓβ
be defined by (55), where Γβ (t) = exp

(

tβ
)

− 1 for any 0 < β ≤ 1, thus
fΓβ

is quasi-convex and non convex but we do not know whether it is polyconvex or not.
Consider the functional

Fβ (u,Ω) =

∫

Ω

fΓβ
(Du (x)) dx,

then Theorem 3.2 assures its lower semicontinuity with respect to convergence introduced
in (6) and Corollary 3.8 applies to finding minimizers for an exponential growth type
Dirichlet’s boundary value problem.
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