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Abstract

We consider the integral functional of the calculus of variations∫
Ω

f (Du)dx,

wheref :RnN → R satisfiesf (z) = g(|z|) andg is anN-function with subquadraticp–q growth.
We prove that minimizersu :Ω ⊂ R

n → R
N of such a functional are locally Lipschitz continuou

providedg verifies some additional conditions.
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1. Introduction

LetΩ be a bounded open subset ofR
n and let us consider the variational integral

I(u)=
∫
Ω

f
(
Du(x)

)
dx, (1.1)

wheref :RnN → R is continuous and nonnegative,u :Ω ⊂ R
n → R

N andDu(x) =
(∂uα/∂xj )α=1,...,N; j=1,...,n.

We say that a functionu ∈W
1,1
loc (Ω,RN) is a local minimizerof I if f (Du) ∈ L1

loc(Ω)

and, for everyϕ ∈W1,1(Ω,RN) with supp(ϕ)�Ω we have∫
supp(ϕ)

f
(
Du(x)

)
dx �

∫
supp(ϕ)

f
(
Du(x)+Dϕ(x)

)
dx.

Let us assume thatf satisfies the growth condition

|z|p −m� f (z)�M
(
1+ |z|q),

wherem,M are positive constants and 1< p � q . We are going to deal with Lipschit
regularity of vector-valued minimizers, under the special structure assumption

f (z)= g
(|z|), ∀z ∈ R

nN .

When handling vector-valued mappings and aiming at Lipschitz continuity, such a s
assumption is not surprising: Uhlenbeck [10], Giaquinta and Modica [4] forp = q � 2,
Acerbi and Fusco [1] for 1< p = q < 2. Recently Marcellini in [7] has proved aC1,α-
regularity result for local minimizers of functionals wheng has a nonoscillating proper
and, at least, quadratic growth: such a result does not cover the case in whichg has sub-
quadratic growth. Our present paper is concerned with this case.

We assume thatg : [0,+∞)→ [0,+∞) is anN -function, i.e.,g(t) = 0 if and only if
t = 0,

lim
t→∞

g(t)

t
= +∞, lim

t→0

g(t)

t
= 0.

We assume also thatg is strictly convex and the following conditions hold:

(G1) There existΛ1,Λ2 > 0 and 1< p < q < 2 such thatg ∈ C2((0,+∞)) ∩
C1([0,+∞)), g′(0)= 0, g′(t)/t is decreasing and

Λ1t
p−2 � g′(t)

t
�Λ2(t

q−2 + tp−2); (1.2)

(G2) There existsγ > 1 such that

g′′(t)t � g′(t)� γg′′(t)t.

We remark that (1.2) implies

Λ1
tp � g(t)� Λ2

(tq + tp), ∀t � 0, (1.3)

p p
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thus we are in thesubquadraticp–q growth. Let us remark that we do not requirep to be
close toq ; on the contrary, many regularity results assume thatp is nearq ; see [3,5,6,8].
The main result of the paper is the following

Theorem 1.1. Let g satisfy (G1), (G2) and u ∈ W
1,1
loc (Ω,RN) be a local minimizer o

functionalI in (1.1). Thenu is locally Lipschitz continuous inΩ . Moreover, for0< ρ <R

with B2R �Ω , there exists a positive constantc such that

sup
Bρ

|Du| � c

∫
BR

(
1+ g

(|Du|))dx, (1.4)

wherec = c(n,N,γ,ρ,R,g′(
√

2)) > 0.

We observe explicitly that the constantc does not depend onΛ1,Λ2 of (1.2).
Our result includes energy densitiesf with slow growth. For instance, it can be prov

that the function

g(t)= tp logα(a + t)

with 1<p < 2,α > 0 anda > 0 large enough is anN -functions satisfying conditions (G1
and (G2). The limit caseg(t)= t log(1+ t) has been studied by Mingione and Siepe in

The proof of our regularity result is splitted into two parts.
First, we consider the standard growth case, i.e., whenf (z)= g(|z|) andg satisfies (1.3)

with q instead ofp in the left-hand side. Ifv ∈ W
1,1
loc (Ω,RN) is a local minimizer forI

in this case, by the results of Acerbi and Fusco in [1] we have thatv ∈W
1,∞
loc (Ω,RN). By

our special assumptions we are able to derive an estimate of sup|Dv| like (1.4),by using
only the properties of theN -functiong, so the constantc does not depend onΛ1 andΛ2
in (1.2).

Then we study the case ofp–q growth by applying a double approximation procedure
in [2,6,9], combined with some techniques about functionals without explicit polyno
growth. More precisely, we start from a local minimizeru of (1.1), we definefσ (z) =
f (z)+ σ |z|q with σ > 0, so that the functionfσ satisfies the standard growth condition
orderq .

We regularize the original minimizeru by means of mollifiers, thus obtaining the s
quence{uε}. Then we consider the Dirichlet problem inBR �Ω ,

min

{
Iσ (v)=

∫
BR

fσ (Dv) dx: v ∈ uε +W
1,q
0 (BR,R

N)

}
. (1.5)

Let vε,σ be the unique solution of (1.5). By the previous results we can estimate

sup
Bρ

|Dvε,σ | � c

{ ∫
BR+ε

[
1+ g

(|Du|)]dx + σ

∫
BR

|Duε|q dx
}
,

wherec is independent ofσ and ε. Then, by letting firstσ → 0 and thenε → 0, esti-
mate (1.4) follows.
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2. Regularity under standard growth conditions

In this section we start from Acerbi–Fusco regularity result (see [1]), for the minim
of subquadratic functionals and we give an estimate for sup|Du|, in which we carefully
prove how the constant depends on the assumptions of the energy density. This wi
us to deal with the case of general growth.

Definition 2.1. We say thath : [0,+∞) → [0,+∞) is anN -function if h is convex and
increasing,h(t) = 0 if and only if t = 0,

lim
t→+∞

h(t)

t
= +∞, lim

t→0+
h(t)

t
= 0.

Moreover we say that anN -functionh is of class∆m
2 if there existsm> 1 such that

h(λt) � λmh(t), ∀t � 0, ∀λ > 1.

As it can be easily checked, ifh is of classC1, the latter is equivalent to require that

h′(t)t �mh(t), ∀t � 0.

Let 1< p < q < 2 and leth be anN -function strictly convex in[0,+∞). We will
assume thath satisfies the following assumptions:

(H1) h ∈ C2((0,+∞))∩ C1([0,+∞)). Moreoverh′(0)= 0 and, for everyt > 0, h′(t)/t
is decreasing and two positive constantsΛ1,Λ2 exist such that

Λ1t
q−2 � h′(t)

t
�Λ2(t

q−2 + tp−2); (2.1)

(H2) There existsγ > 1 such that

h′′(t)t � h′(t)� γ h′′(t)t, ∀t > 0. (2.2)

Remark 2.1. We observe that the left inequality in (2.2) implies without other assump
thath ∈∆2

2.
Moreover by (2.1) it easily follows that

Λ1

q
tq � h(t)� Λ2

p
(tq + tp). (2.3)

Let us consider the integral functional

I(u)=
∫
Ω

f (Du)dx, (2.4)

whereΩ ⊂ R
n (n� 2) is a bounded open set,f :RnN → R (N > 1) is such that

f (z)= h
(|z|) (2.5)

andu :Ω → R
N is a weakly differentiable function.

We remark also that, under such conditions,f turns out to be strictly convex inRnN .
The main result of this section is the following
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Proposition 2.1. Let u be a local minimizer of functional(2.4), wheref is as in (2.5)
andh satisfies conditions(H1) and (H2). Thenu ∈ W

1,∞
loc (Ω,RN). Moreover, for every

0< ρ < R such thatBR � Ω , there exists a positive constantc such that the following
inequality holds:

sup
Bρ

|Du| � c

∫
BR

[
1+ h

(|Du|)]dx, (2.6)

where c = c̃[V (h′(
√

2))]2/(2∗−2), c̃ = c̃(n,N,ρ,R) > 0, V (t) = 1 + t + c0t
−ϑ , c0 =

c0(n, γ ) > 0, ϑ = ϑ(n) > 0 and2∗ = 2n/(n− 2) if n� 3, while2∗ = 3 if n= 2.

Remark 2.2. We note in particular that the constantc in (2.6) does not depend onΛ1
andΛ2.

Proof of Proposition 2.1. We divide the proof into three steps.
Step1 (Approximation by means of nondegenerate densities). Let us fixµ ∈ (0,1] and

define

Hµ(t)= h
(√

µ2 + t2
)− h(µ). (2.7)

It is easy to check thatHµ is anN -function of class∆2
2. Moreover, by properties (2.1)–(2.

of h it follows that

Λ1

q
(µ2 + t2)q/2 − Λ1

q
µq �Hµ(t)� Λ2

p

(
(µ2 + t2)q/2 + (µ2 + t2)p/2

)
� 2Λ2

pµq
(µ2 + t2)q/2, ∀t � 0, (2.8)

Hµ ∈ C2(R), H ′
µ(0)= 0,H ′

µ(t)/t is decreasing in(0,+∞) and

Λ1(µ
2 + t2)(q−2)/2 �

H ′
µ(t)

t
�Λ3(µ

2 + t2)(q−2)/2, ∀t > 0, (2.9)

whereΛ3 =Λ3(Λ2,p, q,µ) and finally

H ′′
µ(t)t �H ′

µ(t)� γH ′′
µ(t)t, ∀t � 0. (2.10)

Let us consider the functionals

Iµ(v)=
∫
Ω

fµ(Dv)dx, (2.11)

where we setfµ(z)=Hµ(|z|) for everyz ∈ R
nN . By (2.8) and (2.9) we have

Λ1

q

(
µ2 + |z|2)q/2 − Λ1

q
µq � fµ(z)� Λ3

q

(
µ2 + |z|2)q/2. (2.12)

Moreoverfµ ∈C2(RnN),∣∣D2fµ(z)
∣∣�Λ3

√
nN

(
µ2 + |z|2)(q−2)/2 (2.13)
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and 〈
D2fµ(z)λ,λ

〉
� Λ1

γ

(
µ2 + |z|2)(q−2)/2|λ|2 (2.14)

for everyz,λ ∈ R
nN . Let us check (2.13) and (2.14).

To simplify our notations, from now on we will writef andH to denote the function
fµ andHµ. First we observe that forz �= 0,

fzαi (z)=H ′(|z|) zαi|z| ,
f
zαi z

β
j

(z)=
(
H ′′(|z|)

|z|2 − H ′(|z|)
|z|3

)
zαi z

β
j + H ′(|z|)

|z| δij δ
αβ (2.15)

and then∣∣D2f (z)
∣∣=√ ∑

α,β,i,j

(
f
zαi z

β
j

(z)
)2 �

√
nN

H ′(|z|)
|z| �Λ3

√
nN

(
µ2 + |z|2)(q−2)/2

,

that is (2.13). Finally we have∑
α,β,i,j

f
zαi z

β
j

(z)λαi λ
β
j =

(
H ′′(|z|)

|z|2 − H ′(|z|)
|z|3

)∣∣〈z,λ〉∣∣2 + H ′(|z|)
|z| |λ|2,

from which, by (2.10) it follows that∑
α,β,i,j

f
zαi z

β
j

(z)λαi λ
β
j �

(
H ′′(|z|)− H ′(|z|)

|z|
)

|λ|2 + H ′(|z|)
|z| |λ|2

=H ′′(|z|)|λ|2 � 1

γ

H ′(|z|)
|z| |λ|2 (2.16)

and then by (2.9), (2.14) follows. Moreover by (2.10) we have∑
α,β,i,j

f
zαi z

β
j

(z)λαi λ
β
j � H ′(|z|)

|z| |λ|2. (2.17)

Step2 (Estimates for minimizers of nondegenerate densities). Letv be a local minimizer
of the functionalIµ defined in (2.11), withHµ as in (2.7). By Lemma 2.5 and Prop
sition 2.7 in [1], taking into account (2.12)–(2.14) we deduce thatv ∈ W

2,2
loc (Ω,RN) ∩

W
1,∞
loc (Ω,RN). Furthermorefµzα

i
(Dv) ∈W

1,2
loc (Ω) and the chain rule can be used for co

putingDs(fµzα
i
(Dv)).

If 0 < ρ < R are such thatBR � Ω , then we claim that there exists a positive cons
c such that

sup
Bρ

|Dv| � c

∫
BR

[
1+Hµ

(|Dv|)]dx, (2.18)

where c = c∗[V (h′(
√

2))]2/(2∗−2) with c∗(n, |Ω |, ρ,R) and |Ω | is the n-dimensional
Lebesgue measure ofΩ .
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Let us drop againµ fromHµ andfµ. We will prove our claim starting from thesecond
variationof our functionalIµ,∫

Ω

∑
α,β,i,j

f
zαi z

β
j

(Dv)vβxj xsφ
α
xi
dx = 0 (2.19)

for every functionφ ∈ C∞
0 (Ω,RN) and any fixeds ∈ {1, . . . , n}. Sincef

zαi z
β
j

(Dv)v
β
xj xs ∈

L2
loc(Ω), equality (2.19) holds true for everyφ ∈W1,2(Ω) with supp(φ)�Ω .
Let ψ : [0,+∞)→ [0,+∞) be continuous, bounded, piecewise of classC1 with only

a finite number of corner points, such thatψ ′ is bounded andψ ′ � 0; moreover letη ∈
C1

0(Ω) and setφα = η2uαxsψ(|Dv|) for everyα = 1, . . . ,N . Thenφ ∈W1,2(Ω,RN) and

φαxi = 2ηηxiv
α
xs
ψ
(|Dv|)+ η2vαxixsψ

(|Dv|)+ χ{|Dv|/∈L}η2vαxsψ
′(|Dv|)(|Dv|)

xi
,

where we denote byL the set of the corner points ofψ . Now we insertφαxi in (2.19) and
we add up overs,

∑
s

∫
Ω

2ηψ
(|Dv|) ∑

α,β,i,j

f
zαi z

β
j

(Dv)vβxj xs ηxi v
α
xs
dx

+
∑
s

∫
Ω

η2ψ
(|Dv|) ∑

α,β,i,j

f
zαi z

β
j

(Dv)vβxj xs v
α
xixs

dx

+
∫

Ω∩{|Dv|/∈L}
η2ψ ′(|Dv|) ∑

α,β,i,j,s

f
zαi z

β
j

(Dv)vβxj xs v
α
xs

(|Dv|)
xi
dx

=
∑
s

I1,s + I2 + I3 = 0. (2.20)

By Cauchy–Schwartz inequality and sinceab � (a2 + b2)/2 for everya, b� 0 we have

|I1,s | � 2
∫
Ω

ψ
(|Dv|)(η2

∑
α,β,i,j

f
zαi z

β
j

(Dv)vαxi xs v
β
xj xs

)1/2

×
( ∑

α,β,i,j

f
zαi z

β
j

(Dv)ηxi v
α
xs
ηxj v

β
xs

)1/2

dx

� 1

2

∫
Ω

η2ψ
(|Dv|) ∑

α,β,i,j

f
zαi z

β
j

(Dv)vαxi xs v
β
xj xs

dx

+ 2
∫
Ω

ψ
(|Dv|) ∑

α,β,i,j

f
zαi z

β
j

(Dv)ηxi v
α
xs
ηxj v

β
xs
dx.

To give an estimate ofI3 we observe that, by (2.15),

A=
∑

f
zαi z

β
j

(Dv)vβxj xs v
α
xs

(|Dv|)
xi
α,β,i,j,s
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(
H ′′(|Dv|)

|Dv|2 − H ′(|Dv|)
|Dv|3

) ∑
α,β,i,j,s

vαxi v
β
xj
vβxj xs v

α
xs

(|Dv|)
xi

+ H ′(|Dv|)
|Dv|

∑
α,i,s

vαxixs v
α
xs

(|Dv|)
xi
.

Moreover, since∑
β,j

vβxj v
β
xj xs

= (|Dv|)
xs

|Dv|,

we have

A=
(
H ′′(|Dv|)

|Dv| − H ′(|Dv|)
|Dv|2

)∑
α,i,s

vαxi

(|Dv|)
xi
vαxs

(|Dv|)
xs

+H ′(|Dv|)∑
i

((|Dv|)
xi

)2

�
(
H ′′(|Dv|)

|Dv| − H ′(|Dv|)
|Dv|2

)
|Dv|2∣∣D(|Dv|)∣∣2 +H ′(|Dv|)∣∣D(|Dv|)∣∣2

=H ′′(|Dv|)|Dv|∣∣D(|Dv|)∣∣2 � 0.

Sinceψ ′ � 0 andA� 0, it turns out thatI3 � 0, so that (2.20) gives∫
Ω

η2ψ
(|Dv|) ∑

α,β,i,j,s

f
zαi z

β
j

(Dv)vαxi xs v
β
xj xs

dx

� 4
∫
Ω

ψ
(|Dv|) ∑

α,β,i,j,s

f
zαi z

β
j

(Dv)ηxi v
α
xs
ηxj v

β
xs
dx.

Now since|D(|Dv|)|2 � |D2v|2, by (2.17) and (2.16) we obtain∫
Ω

η2ψ
(|Dv|)H ′′(|Dv|)∣∣D(|Dv|)∣∣2dx

� 4
∫
Ω

ψ
(|Dv|) ∑

α,β,i,j,s

f
zαi z

β
j

(Dv)ηxi v
α
xs
ηxj v

β
xs
dx

� 4
∫
Ω

|Dη|2ψ(|Dv|)H ′(|Dv|)|Dv|dx. (2.21)

We use (2.21) withψ ≡ 1,∫
Ω

η2H ′′(|Dv|)∣∣D(|Dv|)∣∣2dx � 4
∫
Ω

|Dη|2H ′(|Dv|)|Dv|dx <+∞.

Now letM > 1 such that|Dv| �M on supp(η). Forδ > 0 we define

ψ(t) =
{
t2δ if t ∈ [0,M],

2δ
M if t ∈ (M,+∞).
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s:

) for

a

In the case ofδ ∈ [1/2,+∞) we can use such a functionψ in (2.21) in order to get∫
Ω

η2H ′′(|Dv|)|Dv|2δ∣∣D(|Dv|)∣∣2 dx � 4
∫
Ω

|Dη|2H ′(|Dv|)|Dv|2δ+1dx. (2.22)

Whenδ ∈ (0,1/2), suchψ does not have bounded derivative near 0. So welinearizebe-
tween 0 and 1/k, for every integerk � 1 and we get the following sequence of function

ψk(t)=
{( 1

k

)2δ−1
t if t ∈ [0, 1

k

]
,

ψ(t) if t ∈ ( 1
k
,+∞)

.

It can be easily shown that 0� ψk � ψk+1 � ψ andψk(t) → ψ(t) in [0,+∞). Then
we can use estimate (2.21) withψk and monotone convergence Theorem gives (2.22
δ ∈ (0,1/2) too.

Let us define

G(t)= 1+
t∫

0

√
s2δH ′′(s) ds.

Then, by means of inequality(a + b)2 � 2(a2 + b2) we have∣∣D(ηG(|Dv|))∣∣2 � 2|Dη|2∣∣G(|Dv|)∣∣2 + 2η2|Dv|2δH ′′(|Dv|)∣∣D(|Dv|)∣∣2
so that, by (2.22),∫

Ω

∣∣D(ηG(|Dv|))∣∣2 dx � 2
∫
Ω

|Dη|2∣∣G(|Dv|)∣∣2dx
+ 8

∫
Ω

|Dη|2H ′(|Dv|)|Dv|2δ+1dx. (2.23)

SinceH ′ is increasing, by (2.10),

G(t)� 1+
t∫

0

√
s2δ−1H ′(s) ds � 1+ 2

√
H ′(t)

t(2δ+1)/2

2δ + 1
,

which implies, sinceδ � 0,∣∣G(t)∣∣2 � 2

(
1+ 4H ′(t)

(2δ + 1)2
t2δ+1

)
� 8

(
1+H ′(t)t2δ+1). (2.24)

By (2.23) and (2.24) it follows that∫
Ω

∣∣D(ηG(|Dv|))∣∣2 dx � 24
∫
Ω

|Dη|2[1+H ′(|Dv|)|Dv|2δ+1]dx.
Set 2∗ = 2n/(n− 2) if n > 2 and 2∗ = 3 if n = 2. By Sobolev inequality, there exists
positive constantC1 = C1(n, |Ω |) such that(∫ [

ηG
(|Dv|)]2∗

dx

)2/2∗

�C1

∫
|Dη|2[1+H ′(|Dv|)|Dv|2δ+1]dx. (2.25)
Ω Ω



602 F. Leonetti et al. / J. Math. Anal. Appl. 287 (2003) 593–608

e

Now by (2.10), sinceH ′(t)/t is decreasing, we observe that

[
G(t)

]2∗
� 1+

( t∫
0

√
s2δH ′′(s) ds

)2∗

� 1+
(
H ′(t)
t

)2∗/2 1

γ 2∗/2

( t∫
0

sδ ds

)2∗

= 1+ [
H ′(t)

]2∗/2 1

γ 2∗/2
t2

∗(δ+1/2)

(δ + 1)2∗

for everyt ∈ [0,+∞).
Let us assume thatt � 1. By (2.7) we have

H ′(t)= h′(
√
µ2 + t2 )√
µ2 + t2

t

and then, sinceH ′ is increasing andh′(t)/t is decreasing, by assumingµ� 1 we have

H ′(t)�H ′(1)= h′(
√
µ2 + 1)√
µ2 + 1

� h′(
√

2)√
2

.

Then[
G(t)

]2∗
� C2

(δ + 1)2∗
[
1+H ′(t)t(2δ+1)2∗/2],

where

C2 = min

{
1, γ−2∗/2

(
h′(

√
2)√

2

)2∗/2−1}
.

For t ∈ [0,1), sinceh′ is increasing,G(t)� 1 andδ � 0 we have

1+H ′(t)t(2δ+1)2∗/2 � 1+H ′(1)�
[
1+ h′(

√
2)
][
G(t)

]2∗
.

Then for everyt � 0 the inequality

[
G(t)

]2∗
� C3

(δ + 1)2∗
[
1+H ′(t)t(2δ+1)2∗/2] (2.26)

holds with

C3 = min

{
C2,

1

1+ h′(
√

2)

}
.

Let 0< ρ <R be such thatBR �Ω and let us fixη in such a way that 0� η � 1 in R
n,

η = 1 in Bρ , supp(η) ⊂ BR and |Dη| � 2/(R − ρ) in R
n. Then by (2.25) and (2.26) w

get
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(∫
Bρ

[
1+H ′(|Dv|)|Dv|(2δ+1)2∗/2]dx

)2/2∗

� C4(δ + 1)2

(R − ρ)2

∫
BR

[
1+H ′(|Dv|)|Dv|(2δ+1)]dx, (2.27)

whereC4 = 4C1C
−2/2∗
3 .

Let us setϑ = 2δ + 1. Then (2.27) becomes(∫
Bρ

[
1+H ′(|Dv|)|Dv|ϑ2∗/2]dx)2/2∗

� C4ϑ
2

(R − ρ)2

∫
BR

[
1+H ′(|Dv|)|Dv|ϑ ]dx. (2.28)

Now we define a sequence of radii and another one of numbers as follows:

ρi = ρ + R − ρ

2i
, ϑi =

(
2∗

2

)i
for i = 0,1,2, . . . . Moreover we set

Ai =
( ∫
Bρi

[
1+H ′(|Dv|)|Dv|ϑi ]dx

)1/ϑi

.

Using this notation, and puttingρ = ρi+1, R = ρi andϑ = ϑi in (2.28) we easily have

Ai+1 �
[
C44i+1ϑ2

i

(R − ρ)2

]1/ϑi
Ai,

thus, if we iterate this estimate,

Ai+1 �
{

i∏
k=0

[
C44k+1ϑ2

k

(R0 − ρ0)2

]1/ϑk
}
A0 � C5A0, (2.29)

whereC5 = C5(n, γ, |Ω |, h′(
√

2), ρ,R) and, in particular,

C5 =
[(

1+ 4C4

(R − ρ)2

)
(2∗)4/(2∗−2)

]2∗/(2∗−2)

.

Then (2.29) leads to( ∫
Bρ0

[
1+H ′(|Dv|)|Dv|(2∗/2)i+1]

dx

)(2/2∗)i+1

� C5

∫
B

[
1+H ′(|Dv|)|Dv|]dx <+∞. (2.30)
R0
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eck

n

Now we observe that, sinceH ′ is increasing andH ′(t)/t is decreasing, for everyτ > 1
and everyt � 1 we have

H ′(t)tτ �H ′(1)tτ � h′(
√

2)√
2

tτ .

Then we can say that, for everyt > 0 and everyτ > 1,

tτ � C6
(
1+H ′(t)tτ

)
,

where

C6 = max

{
1,

√
2

h′(
√

2)

}
.

Therefore by (2.30) it follows that

sup
Bρ

|Dv| = lim
i→+∞

(∫
Bρ

|Dv|(2∗/2)i+1
dx

)(2/2∗)i+1

� lim sup
i→+∞

(
C6

∫
Bρ

[
1+H ′(|Dv|)|Dv|(2∗/2)i+1]

dx

)(2/2∗)i+1

� C5

∫
BR

[
1+H ′(|Dv|)|Dv|] dx � 2C5

∫
BR

[
1+H

(|Dv|)]dx,
where we used the∆2

2 property in the last inequality. Thus (2.18) holds true if we ch
the wayC5 depends onh′(

√
2).

A careful inspection shows that

C5 � C7
[
V
(
h′(

√
2)
)]2/(2∗−2)

,

whereV (t)= 1+ t + c0t
−ϑ , c0 = c0(n, γ ) > 0,ϑ = ϑ(n) > 0 andC7 = C7(n, |Ω |, ρ,R)

> 0. This ends the second step of the proof.
Step3 (Letµ go to 0).
We proceed as in Lemma 2.13 of [1].
Leth satisfy conditions (H1) and (H2). We recall thatu is a local minimizer ofI defined

by (2.4) and (2.5). LetBR be a ball such thatBR �Ω and, for everyµ ∈ (0,1), let us define
the function

Hµ(t)= h
(√

µ2 + t2
)− h(µ).

We consider the variational problem inBR ,

min

{
Iµ(v)=

∫
BR

fµ(Dv) dx: v ∈ u+W
1,q
0 (BR,R

N)

}
, (2.31)

wherefµ(z) = Hµ(|z|). Because of (2.12) and (2.14), there exists a unique solutiovµ
of (2.31). Then we have
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e,
Λ1

q

∫
BR

|Dvµ|p dx �
∫
BR

h
(|Dvµ|)dx �

∫
BR

[
Hµ

(|Dvµ|)+ h(µ)
]
dx

�
∫
BR

Hµ

(|Du|)dx + h(µ)|BR|

�
∫
BR

h
(√

1+ |Du|2 )dx <+∞. (2.32)

Now, let us consider a sequence{µk}k ∈ (0,1), with µk → 0. Then, up to a subsequenc
Dvµk ⇀ Du0 in Lq(BR), for some functionu0 ∈ u + W

1,q
0 (BR,R

N) and eventually, by
lower semicontinuity and (2.32),∫

BR

f (Du0) dx =
∫
BR

h
(|Du0|

)
dx � lim inf

k→+∞

∫
BR

h
(|Dvµk |

)
dx

� lim inf
k→+∞

∫
BR

h
(√

µ2
k + |Du|2 )dx =

∫
BR

h
(|Du|)dx

=
∫
BR

f (Du)dx. (2.33)

Thusu andu0 are minimizers with the same boundary datum; sincef is strictly convex, it
follows thatu0 = u.

Let 0< ρ <R; we use Step 2 with ballsBρ andB(ρ+R)/2, so that the minimality ofvµk

with respect tou gives

sup
Bρ

|Dvµk | � c

∫
BR

[
1+Hµk

(|Dvµk |
)]
dx

� c

∫
BR

[
1+ h

(√
µ2
k + |Du|2 )]dx � c

∫
BR

[
1+ h

(√
1+ |Du|2 )]dx,

thus

sup
Bρ

|Dvµk | � c, ∀k,

for some constantc independent ofµk. Then, up to a subsequence,{Dvµk }k converges in
the weak-∗ topology ofL∞(Bρ), to some functionw ∈ L∞(Bρ) that turns out to beDu.

The lower semicontinuity of theL∞-norm gives

sup
Bρ

|Du| � c

∫
BR

[
1+ h

(|Du|)]dx,
wherec = c̃[V (h′(

√
2))]2/(2∗−2) andc̃ = c̃(n,N,ρ,R) > 0. ✷
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ming
ader,

nts

n

3. Proof of Theorem 1.1

In this section we study the regularity of minimizers of integral functionals assu
this time that the integrandf satisfies nonstandard growth. For convenience of the re
we recall the assumptions of Theorem 1.1

Let 1< p < q < 2 andg be anN -function. We assume that there exist two consta
Λ1,Λ2 > 0 such that

(G1) g ∈C2((0,+∞))∩C1([0,+∞)), g′(0)= 0, g′(t)/t is decreasing and

Λ1t
p−2 � g′(t)

t
�Λ2(t

q−2 + tp−2); (3.1)

(G2) There existsγ > 1 such that

g′′(t)t � g′(t)� γg′′(t)t. (3.2)

As we already observed, by (3.1) and (3.2) it follows that

Λ1

p
tp � g(t)� Λ2

p
(tq + tp)

andg ∈∆2
2.

Consider, forσ ∈ (0,1), the functions

gσ (t)= g(t)+ σ tq .

As it can be easily checked,gσ : [0,+∞) → [0,+∞) is anN -function strictly convex,
gσ ∈ C2((0,+∞))∩C1([0,+∞)), g′

σ (0)= 0 andt → g′
σ (t)/t is decreasing in(0,+∞).

Furthermore we have that

σqtq−2 � g′
σ (t)

t
� (Λ2 + q)(tq−2 + tp−2),

g′′
σ (t)t � g′

σ (t)� max

{
γ,

1

q − 1

}
g′′
σ (t)t.

Now let

fσ (z)= gσ
(|z|)

for everyz ∈ R
nN and consider the functional

Iσ (v)=
∫
Ω

fσ (Dv) dx. (3.3)

Let 0< ε < min{1,R}, whereR > 0 is such thatB2R � Ω . Moreover let{uε}ε be a
sequence of smooth functions obtained fromu by means of standard mollifiers, the
uε ∈W1,q (BR,R

N).
SinceIσ hasq-growth, we consider the following variational problem:

min
{
Iσ (v): v ∈ uε +W

1,q
(BR,R

N)
}

(3.4)
0



F. Leonetti et al. / J. Math. Anal. Appl. 287 (2003) 593–608 607

to

e,
and letvε,σ ∈ uε +W
1,q
0 (BR,R

N) be the (unique) minimizer. We are now in condition
apply Proposition 2.1 for 0< ρ <R,

sup
Bρ

|Dvε,σ | � c̃
[
V
(
g′
σ (

√
2)
)]2/(2∗−2)

∫
BR

[
1+ gσ

(|Dvε,σ |)]dx = (I).

Let us point out that

0< g′(
√

2)� g′
σ (

√
2)� g′(

√
2)+ 4

thusV (g′
σ (

√
2))� 5V (g′(

√
2)) and

(I)� c̃
[
5V
(
g′(

√
2)
)]2/(2∗−2)

∫
BR

[
1+ gσ

(|Dvε,σ |)]dx.
Now we use the minimality ofvε,σ with respect touε and Jensen inequality,

Λ1

p

∫
BR

|Dvε,σ |p dx �
∫
BR

g
(|Dvε,σ |)dx �

∫
BR

gσ
(|Dvε,σ |)dx

�
∫
BR

gσ
(|Duε|

)
dx =

∫
BR

g
(|Duε|

)
dx + σ

∫
BR

|Duε|q dx

�
∫

BR+ε

g
(|Du|)dx + σ

∫
BR

|Duε|q dx � c(ε) (3.5)

and

sup
Bρ

|Dvε,σ | � c̃
[
5V
(
g′(

√
2)
)]2/(2∗−2)

{ ∫
BR+ε

[
1+ g

(|Du|)]dx + σ

∫
BR

|Duε|q dx
}
.

(3.6)

Then for every fixedε, (3.5) gives us weak compactness inLp(BR) asσ → 0. So, up to a
subsequenceDvε,σ ⇀Dwε in Lp(BR) asσ → 0, for somewε ∈ uε +W

1,p
0 (BR,R

N).
Moreover, by (3.6), supBρ

|Dvε,σ | is equibounded with respect toσ . Hence{Dvε,σ }σ
converges in the weak-∗ topology ofL∞ toDwε and

sup
Bρ

|Dwε| � c
[
5V
(
g′(

√
2)
)]2/(2∗−2)

∫
BR+ε

[
1+ g

(|Du|)]dx (3.7)

for somec = c(n,N,ρ,R) > 0. By lower semicontinuity in (3.5) we get∫
BR

g
(|Dwε|

)
dx � lim inf

σ→0

∫
BR

g
(|Dvε,σ |)dx �

∫
BR+ε

g
(|Du|)dx. (3.8)

Now, (3.8) gives weak compactness inLp(BR) as ε → 0, thus up to a subsequenc
Dwε ⇀Dw in Lp(BR) for some functionw ∈ u+W

1,p
(BR,R

N).
0
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ionals,

itions,

cuola

ns, in:
1–22.
Lower semicontinuity and (3.8) allow us to write∫
BR

g
(|Dw|)dx � lim inf

ε→0

∫
BR

g
(|Dwε|

)
dx �

∫
BR

g
(|Du|)dx.

The minimality ofu and the strict convexity ofg imply w ≡ u.
Finally, using (3.7) we obtain that alsoDwε converges toDw = Du asε → 0, in the

weak-∗ topology ofL∞ and, lettingε → 0 in (3.7) we easily get

sup
Bρ

|Du| � c
[
5V
(
g′(

√
2)
)]2/(2∗−2)

∫
BR

[
1+ g

(|Du|)]dx
for somec = c(n,N,ρ,R). ✷
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