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Abstract

We consider the integral functional of the calculus of variations

/ f(Du)dx,
2

where f: R"V — R satisfiesf (z) = g(|z|) andg is an N-function with subquadratip—; growth.
We prove that minimizers: 2 ¢ R" — R of such a functional are locally Lipschitz continuous,
providedg verifies some additional conditions.
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1. Introduction
Let 2 be a bounded open subsetisf and let us consider the variational integral

I(u):/f(Du(x))dx, (1.1
2

where f:R*™ — R is continuous and nonnegative; 2 ¢ R*” — RY and Du(x) =
(8Ma/axj)a=l,...,N;j=l ..... ne

We say that a function € W-1($2, RV) is alocal minimizerof Z if f(Du) € L% (£2)
and, for everyp € Wh1(£2, RV) with suppp) € 2 we have

/ f(Du(x)) dx < / f(Du(x) + D(p(x)) dx.
SUpfy) supfy)
Let us assume that satisfies the growth condition

lz|P —m < f(z) < M(1+ Iz]9),

wherem, M are positive constants and<lp < g. We are going to deal with Lipschitz
regularity of vector-valued minimizers, under the special structure assumption

f@=g(lzl), VYzeR™.

When handling vector-valued mappings and aiming at Lipschitz continuity, such a special
assumption is not surprising: Uhlenbeck [10], Giaquinta and Modica [4pferg > 2,
Acerbi and Fusco [1] for k p = ¢ < 2. Recently Marcellini in [7] has proved @-¢-
regularity result for local minimizers of functionals wherhas a nonoscillating property
and, at least, quadratic growth: such a result does not cover the case ingumshsub-
guadratic growth. Our present paper is concerned with this case.

We assume that: [0, +00) — [0, +00) is an N-function, i.e.,g(r) = 0 if and only if
t=0,

g() g

lim = =+o0, lim =— =0.
t—>o0 t t—0 ¢

We assume also thatis strictly convex and the following conditions hold:
(G1) There existA;, A2 > 0 and 1< p < ¢ < 2 such thatg € C2((0, +00)) N
C1([0, +00)), g’ (0) =0, ¢’ (r)/t is decreasing and

/
t
A1tP72 —gt( ) < Ap@12 4 1772), (1.2)
(G2) There existy > 1 such that

g'nr<g ) <yg" .
We remark that (1.2) implies

A A
2 <o) <22 +17), Vi =0, (1.3)
p p
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thus we are in theubquadraticp—q growth Let us remark that we do not requipeto be
close tog; on the contrary, many regularity results assume thist nearg; see [3,5,6,8].
The main result of the paper is the following

Theorem 1.1. Let g satisfy(G1), (G2) andu € Wl(l)’cl(Q,RN) be a local minimizer of
functionalZ in (1.1). Theru is locally Lipschitz continuous is2. Moreover, for0 < p < R
with Bog € £2, there exists a positive constansuch that

sup|Du| gcf(1+g(|1)u|))dx, (1.4)
By
Bg

wherec =c(n, N, y, p, R, g'(+/2)) > 0.

We observe explicitly that the constantioes not depend on, A; of (1.2).
Our result includes energy densitigswith slow growth. For instance, it can be proved
that the function

g(t)=t"log*(a +1)

with1l < p < 2,a > 0 anda > 0 large enough is aN -functions satisfying conditions (G1)
and (G2). The limit case(¢) = r log(1+ ¢) has been studied by Mingione and Siepe in [9].
The proof of our regularity result is splitted into two parts.
First, we consider the standard growth case, i.e., wheh= g(|z|) andg satisfies (1.3)
with ¢ instead ofp in the left-hand side. Ib € Wé’cl(Q, R is a local minimizer forZ

in this case, by the results of Acerbi and Fusco in [1] we haveuraam};?(g, RY). By
our special assumptions we are able to derive an estimate ¢bsiifike (1.4),by using
only the properties of th&-functiong, so the constant does not depend o1 and A;
in (1.2).

Then we study the case pfq growth by applying a double approximation procedure as
in [2,6,9], combined with some techniques about functionals without explicit polynomial
growth. More precisely, we start from a local minimizerof (1.1), we definef, (z) =
f(2) +0olz]? with o > 0, so that the functiorf, satisfies the standard growth condition of
orderg.

We regularize the original minimizer by means of mollifiers, thus obtaining the se-
guenceu.}. Then we consider the Dirichlet problem By € €2,

min{I(,(v) = / fo(Dv)dx: veus + Wg’q(BR, RN),. (1.5)
Br
Let v, » be the unique solution of (1.5). By the previous results we can estimate

sup|Du€,(,|<c: / [1+g(|Du|)]dx+c7/|Du€|qu},
Bg

B,
BR+s

wherec is independent o& ande. Then, by letting firstb — 0 and thens — 0, esti-
mate (1.4) follows.
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2. Regularity under standard growth conditions

In this section we start from Acerbi—Fusco regularity result (see [1]), for the minimizers
of subquadratic functionals and we give an estimate for Buj, in which we carefully
prove how the constant depends on the assumptions of the energy density. This will allow
us to deal with the case of general growth.

Definition 2.1. We say that: : [0, +o0) — [0, +00) is an N-function if z is convex and
increasingh(t) =0 if and only ifr =0,
h(t
lim Q = 400, lim @ =0.
t—>+400 1—>0t t
Moreover we say that aN-function’ is of classA?' if there existsn > 1 such that

h(at) <A™h(t), Vt>0, VA>1

As it can be easily checked,/fis of classC?, the latter is equivalent to require that
Bt <mh(t), Vt>=0.

Let 1 < p < g < 2 and leth be anN-function strictly convex in[0, +o00). We will
assume that satisfies the following assumptions:

(H1) h € C2((0, +00)) N CL([0, +00)). Moreoverh’(0) = 0 and, for every > 0, #'(t) /¢
is decreasing and two positive constants A, exist such that

h ()

A2 < < AQ(t172 41772, (2.1)

(H2) There existy > 1 such that

'@ <h@)<yh"@®)t, Vt>0. (2.2)
Remark 2.1. We observe that the left inequality in (2.2) implies without other assumptions
thath € A3.
Moreover by (2.1) it easily follows that
A A
Py <h(t) < —z(tq +tP). (2.3)
q p

Let us consider the integral functional

I(u):/f(Du)dx, (2.4)
2

where2 C R” (n > 2) is a bounded open sef,; R*"Y — R (N > 1) is such that
f(@)=h(|zl) (2.5)

andu : 2 — R" is a weakly differentiable function.
We remark also that, under such conditiofigurns out to be strictly convex iRV
The main result of this section is the following
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Proposition 2.1. Let u be a local minimizer of functional.4), where f is as in (2.5)
and i satisfies conditiongH1) and (H2). Thenu € Wkl)’c‘”(ﬂ, R™). Moreover, for every
0 < p < R such thatBr € £2, there exists a positive constansuch that the following
inequality holds

sup|Du| gc/[1+h(|Du|)]dx, (2.6)
By
Br

wherec = E[V(h'(V2)1% @2, ¢ =¢n,N,p,R) >0, V(1) =1+t + cot™?, co =
con,y)>0,9=0{m)>0and2*=2n/(n—2) if n > 3, while2* =3if n =2.

Remark 2.2. We note in particular that the constanin (2.6) does not depend an;
andAs.

Proof of Proposition 2.1. We divide the proof into three steps.
Stepl (Approximation by means of nondegenerate densities). Let ys X0, 1] and
define

Hy (1) = h(y/ 2 +12) — h(w). (2.7)

Itis easy to check thdt,, is anN-function of classdg. Moreover, by properties (2.1)—(2.3)
of h it follows that

A A A
2R+ 1212 - St <HL () < 2 (B + T2 4 (P 4 D))
q q P

24
<212 4+12)92 v >0, (2.8)
pud

H, € C4(R), H),(0) =0, H,(1)/1 is decreasing iit0, +c0) and

H) (1)
Ap(p? 413272 ¢ MT < A3(p? 41522 vi >0, (2.9)

whereAz = A3(A2, p, ¢, 1) and finally
H,(t < H,(t) <yH,/(0r, ¥1>0. (2.10)

Let us consider the functionals

Zy(v) = / fu(Dv)dx, (2.11)
2

where we seff,, (z) = H,(|z]) for everyz € RN, By (2.8) and (2.9) we have
Ag 2 A1 A3 2
1P+ 12D - 2 < fu0 < S (P4 12D (2.12)
q q q

Moreoverf, € C>(R"™),

|D?f,(2)| < Asv/nN (12 + 1217) 7272 (2.13)



598 F. Leonetti et al. / J. Math. Anal. Appl. 287 (2003) 593-608

and

A _
(D? fu (D), 1) = 71(u2+ 122) 47272152 (2.14)

for everyz, » e R™V. Let us check (2.13) and (2.14).
To simplify our notations, from now on we will writ¢ and H to denote the functions
fi. andH,,. First we observe that far 0,

O(

fe(@=H (Izl)| i
H'(z]) H'(z2D\ op , HUZD ;. cop
_ o 518 2.15
I < 22 P )Z’ G TR0 (2.19)
and then
‘sz(z)|= Z (fzqzl?(Z))2< /—nNHl(Z||Z|) < As /_nN(,uz—i—Izlz)(q_Z)/z,
apBij

that is (2.13). Finally we have
H// H/ H/
Z Fa, ﬁ( ) a)\ﬂ < IZ(|I2ZI) B (Izl))|<z’)\)‘2+ (Izl)mz’

3
wBi k4 lz]

from which, by (2.10) it follows that

H’ H’
> fep @] > (H”(|z|>— ('Z'))m L LD e

e 2] el

g (|Z|)
= H"(jz)I1? > e 12 (2.16)

and then by (2.9), (2.14) follows. Moreover by (2.10) we have

H'(z])
E fa ﬁ(z)kf‘k’? < d
- Z; Z] p | |
a,B,i,j

Step2 (Estimates for minimizers of nondegenerate densitiesy beta local minimizer
of the functionalZ,, defined in (2.11), with”#,, as in (2.7). By Lemma 2. 5 and Propo-

sition 2.7 in [1], taking into account (2. 12) (2.14) we deduce th&th 22,RV)n
Wléc"" (£2,RN). Furthermorqfﬂzl_, (Dv) € WIOC (£2) and the chain rule can be used for com-
puting Ds (fiu o (D).

If 0 < p < R are such thaBg € £2, then we claim that there exists a positive constant
¢ such that

sup| Dv] < c/[1+Hﬂ(|Dv|)]dx, (2.18)

B,

A2 (2.17)

Br

where ¢ = c.[V(H (V2)]17@ =2 with c.(n, 2|, p, R) and |£2] is the n-dimensional
Lebesgue measure &f.
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Let us drop agaim from H,, and f,,. We will prove our claim starting from theecond
variation of our functionalZ,,,

> L DOV @5 dx = (2.19)

2% Bii.J
for every functionp € C3°(£2, RY) and any fixeds € {1,...,n}. Sincefa ﬁ(DU)Ufjxs €

L2 (£2), equality (2.19) holds true for evegye W' 2(.(2) with supf¢) € Q.
Let ¢ : [0, +00) — [0, +00) be continuous, bounded, piecewise of cladswith only
a finite number of corner points, such that is bounded and;’ > 0; moreover let; €
C3(£2) and sep® = n2u? y(|Dv|) for everya = 1,..., N. Thenp € W?(22, RV) and
¢%, = 25 v, ¥ (1Dv]) + 0?05, 0 (1Dv]) + xgpuignyn®vi ' (1Dv) (1DVI) .

where we denote by, the set of the corner points gf. Now we inserig?, in (2.19) and
we add up over,

Z/Zmﬁ |Dv| Z fa ﬁ( U)Ux xsnxlvx dx

a.B.i,j

+Z/n w |DU| Z fa ﬁ(Dv)vx %X xxs

a.B.i,j

+ / I// |DU| Z foz ﬁ(Dv)vx jXs X5(|Dv|)

2n(|Dv|¢L) @pBiisjs
=Y hy+I+ =0 (2.20)

By Cauchy—Schwartz inequality and sinde< (a? + b?)/2 for everya, b > 0 we have

1/2
[11,s] <2/1/I(IDU| < Z foc ﬁ(DU)Ux X x x:)
2

o, B,i,j

1/2
X < Z fa ﬁ(DU)rlx,UxSnx, f) dx

a,B,i,j

1 2
<5 [ PHDe) Y Fas Dot de

0 a,B.i,j
+2/w(|Dv|) > S ﬂ(Dv)nx,strli P dx.
Q2 a.B.i.j
To give an estimate af; we observe that, by (2.15),

A= Z foz ﬁ(DU)Uxx X5(|Dv|)

o, B0, ],
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H"(IDv|)  H'(|Dv)) PP
:< |Dv|? - |Dv|3 Z Uxivvaxjxsvxs(IDvl)xi

a,B.i, ],

H'(|Dv|)
D 2 Ve (D),

ao,i,s

Moreover, since

va] XjXs T |DU|) |Dv|a
we have

H"(IDv))  H'(IDv)) i .
:< Do [DuP? )ZUXf('D“')xf“xSUDvl)xs

o,i,s

+H'(1Dv)) Y (1)), )°

i
S H"(|Dv])  H'(IDv|)
|Dv| |Dv|?

/ 2
= H"(|Dvl|)|Dv||D(IDv])|" >0
Sincey’ > 0 andA > 0, it turns out thaf3 > 0, so that (2.20) gives

)|Dv|2|D(|DUI)|2 + H'(|Dv])| D(1Dv])|?

[uipe) ¥ s 0o oh s

Q o,B,i, ],
<4/1/f |Dvl) Y Fa (DO VR i, .
o, B,i,],8

Now since| D(|Dv|)|2 < | D?v|?, by (2.17) and (2.16) we obtain

/nzw(|Dv|)H”(|Dv|)|D(|Du|)\2dx

2

<4/1p |Dvl) Z fa ﬁ(Dv)nx,vxﬂx] f‘ dx

o, B0, ],

< 4/ |Dn|?y (IDv|)H'(|Dvl)|Dv] dx.
2

We use (2.21) withy =1,

/nzH”(|Dv|)|D(|Dv|)|2dx < 4/ |Dn|2H'(IDv])| Dv| dx < +00.
2

Now let M > 1 such thatDv| < M on supfgn). Fors > 0 we define

1% ifre[0, M],

vin= {MZ‘S if t € (M, +00).

(2.21)
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In the case 08 € [1/2, +00) we can use such a functignin (2.21) in order to get

fn2H”(|Dv|)|Du|25|D(|Du|)|2dx<4/|Dn|2H/(|Du|)|Dv|25+ldx. (2.22)
2 2

Whens € (0, 1/2), suchys does not have bounded derivative near 0. Sdimearizebe-
tween 0 and 1k, for every integek > 1 and we get the following sequence of functions:

(H? 4 ifrefo ],

0 if £ € (¢, +00).

It can be easily shown that Q v < ¥i+1 < ¢ and ¥ (t) — ¥ (¢) in [0, 4+00). Then

we can use estimate (2.21) with, and monotone convergence Theorem gives (2.22) for

5 €(0,1/2) too.
Let us define

t
G@)=1+ / VsBH(s)ds.
0

1ﬁk(t)={

Then, by means of inequality: + b)? < 2(a? + b%) we have
|D(nG(1Dv)))|* < 21D 1| G(1Dv]) |* + 242 Do|? H" (| Dv]) | D(1Dv]) |?
so that, by (2.22),

/\D(nG(|Du|))|2dx <2/|Dn|2|G(|Du|)|2dx
2 2
+8/|Dn|2H'(|Du|)|Dv|25+1dx. (2.23)
2

SinceH'’ is increasing, by (2.10),

1(25+1)/2
254+1°

t
G < 1+/ s2=1H'(s)ds <1+ 2V H'(t)
0

which implies, sinceé > 0,
2 4H'(t)
GoH|" <21+ —=
6@ < T @12
By (2.23) and (2.24) it follows that

/|D(nG(|Dv|))|2dx < 24/ \Dy|?[1+ H'(IDvl)| Dv|? ] dx.
2 2

Set2=2n/(n—2) if n>2 and Z =3 if n = 2. By Sobolev inequality, there exists a
positive constan€, = C1(n, |§2]) such that

t25+1> <81+ H'(ne®Hh. (2.24)

2/2*
(/[nG(|Du|)]2* dx) < C1/ |Dy|?[1+ H'(IDv])|Dv|* ] dx. (2.25)
2 2
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Now by (2.10), since’(¢)/t is decreasing, we observe that

t 2%
[GoO] =1+ (/\/S%H”(s)ds)
0

" t 2+
HNO\?/? 1 5
214‘( P > m /S ds
0

1 (26+1/2)
yZ2 (5 + 1)

=1+ [H O]

for everyt € [0, +0).
Let us assume that> 1. By (2.7) we have

WP +2)
[u2 112
and then, sincél’ is increasing and’ () /¢ is decreasing, by assuming< 1 we have
W (Vp?+1) S h'(V/2)
JZ+1 T V2

H ()=

H'(t)> H'(1) =

Then
2r C2 1 (25+1)2 /2
G > —° _[1+H' (1) :
[GO)] (5+1)2,[ +H'(0)1 ]
where
" h/ 2 2*/2—1
C2=min{1,y‘2 /2(£) }
Nz

Forz € [0, 1), sinceh’ is increasingG (1) > 1 ands > 0 we have
1+ H' (1P H22 <14 B (1) < [1+ K VD] [60)]7.

Then for every > 0 the inequality
2+ Cs 10N (2641)2% )2
G >———|(1+H 2.26
[G()] (5+1)2.[ + H' (1)t ] (2.26)
holds with
C —min{C = }
MR TV b

Let0< p < R be suchthaBy € £2 and let us fix; in such away that & n < 1 inR",
n=11in B,, supfn) C Bg and|Dn| < 2/(R — p) in R". Then by (2.25) and (2.26) we
get
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2/2*
(/[1+ H'(|Dvl|)| Dv|@+DZ/2] dx)

By
C4(8 4 1)2
< LJF; /[1+ H'(1Dv|)| Dv| @] ax, (2.27)
(R—p) ;
R

whereCy = 4C1C5 212"
Letus sety =26 + 1. Then (2.27) becomes

i 2/2%
(/[1+ H/(|Du|)|Du|ﬁ2'/2]dx)
By
C4ﬁ2

< m/[1+ H'(|Dv|)|Dv|” ] dx. (2.28)

Bpg
Now we define a sequence of radii and another one of numbers as follows:
R—p % i
fori=0,1,2,.... Moreover we set

A= (/[1+ H’(|Du|)|Du|ﬁf]dx)l/0i.

By,

i

Using this notation, and putting= p;+1, R = p; and?® = ©; in (2.28) we easily have
C44i+119.2 1/9;
1
. < A.7
o [(R—p)z} ’
thus, if we iterate this estimate,

i k+192 71/

Cyp4 v

Ais1< :| |[72} }Ao<c5Ao, (2.29)
i—oL (Ro— po)

whereCs = Cs(n, v, |2], #' (+/2), p, R) and, in particular,
4C, 4/ o 2%/(2"=2)
Cs= [<1+7)(2*) /(2"=2) .
(R —p)?
Then (2.29) leads to

(2/2*)i+1
(/[1+ H’(|Du|)|Du|(2*/2>'“]dx)

Bpg

<Cs / [1+ H'(IDvl|)| Dv|] dx < 4oo0. (2.30)

Bprg
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Now we observe that, sincH’ is increasing and?’(¢)/t is decreasing, for every > 1
and every > 1 we have

h’(ﬁ)tr
5

Then we can say that, for every- 0 and everyr > 1,
1" < Co(1+ H'(1)17),

where

H N > H Ot >

)
Co=maxi1 Y2 |,
° max{ W(V2)

Therefore by (2.30) it follows that
(2/2*)i+l
sup|Dv| = lim </|Du|<2*/2>’“dx>
Bp i——+00
By

. (2/2*)i+1
<lim sup(CG/[l—l— H/(|Dv|)|Du|(2*/2)z+1]dx)
i——+00
By
< C5/[1+ H’(|Dv|)|Dv|] dx < ZCS/[]-"' H(|D”|)]dx’

Br Br

where we used tha% property in the last inequality. Thus (2.18) holds true if we check
the wayCs depends o’ (+/2).
A careful inspection shows that

Cs < C7[V (W (V2))]/* 2,

whereV(t) =1+t +cot™?, co=co(n, y) > 0,9 =9 (n) > 0 andC7 = C7(n, |2|, p, R)
> 0. This ends the second step of the proof.

Step3 (Letu go to 0).

We proceed as in Lemma 2.13 of [1].

Let h satisfy conditions (H1) and (H2). We recall thais a local minimizer ofZ defined
by (2.4) and (2.5). LeBg be a ball suchthaky € 2 and, for everys € (0, 1), let us define
the function

Hy (1) = h(y/ u? +12) — h(w).

We consider the variational problem By,

min{IM(v) = / fu(Dv)dx:veu+ W&’q(BR, RM) L, (2.312)
Br

where f,,(z) = H,(|z]). Because of (2.12) and (2.14), there exists a unique solutjon
of (2.31). Then we have
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A
—l/|Dv,L|”dxg/h(|Dvul)dxg/[HM(|Dv,L|)+h(M)]dx
q Bgr BRr Br

g/HM(|Du|)dx+h(u)|BR|

Br
< /h(,/1+ |Du|?) dx < +oo. (2.32)
Br

Now, let us consider a sequenge }x € (0, 1), with ux — 0. Then, up to a subsequence,
Dv,, — Dug in L9(Bg), for some functionio € u + W&’q(BR, RY™) and eventually, by
lower semicontinuity and (2.32),

/f(Duo)dx:/h(lDuoDdxg;{imjrnf/hUDvudex
Bpg

Br Bgr
< limi 2 2 —
\IJT-H;Z h(,/,u,k—i—|Du| )dx /h(|Du|)dx
Br Bpg
:/f(Du)dx. (2.33)
Bg

Thusu andug are minimizers with the same boundary datum; sifide strictly convex, it
follows thatug = u.

Let0< p < R; we use Step 2 with ballB, and B, r),2, S0 that the minimality ob,,,
with respect ta: gives

sBup|Dvuk| <c / [1+ Hy, (1D, 1)] dx
P

éc/[l+h(,/uf+|Du|2)]dxgc'/[1+h(,/1+|Du|2)]dx,

thus

sup|Dvy, | <c, Vk,
BP
for some constant independent of.x. Then, up to a subsequen¢®u,,, }x converges in
the weak?* topology of L*°(B,,), to some functionw € L*°(B,,) that turns out to b&®u.
The lower semicontinuity of th&°°-norm gives

sup|Du| < c/[l+h(|Du|)]dx,
By
Br

wherec = ¢[V (K (v/2))1%@ =2 andé¢ =é(n, N, p,R) > 0. O
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3. Proof of Theorem 1.1

In this section we study the regularity of minimizers of integral functionals assuming
this time that the integrangd satisfies nonstandard growth. For convenience of the reader,
we recall the assumptions of Theorem 1.1

Let 1< p < g <2 andg be anN-function. We assume that there exist two constants
A1, Az > 0 such that
(G1) g € C2((0, +00)) N CL([0, +00)), g'(0) =0, g'(¢) /1 is decreasing and

/
t
AtPT2 < gT() < Ap(t17% 1P 72); (3.1)

(G2) There existy > 1 such that
g Ot <g' ) <yg'r. (3.2)
As we already observed, by (3.1) and (3.2) it follows that
A A
C2r < gty < P20 +1)
p p
andg € A3.
Consider, fow € (0, 1), the functions

8o () =gt)+ot9.

As it can be easily checked, :[0, +00) — [0, +00) is an N-function strictly convex,
2o € C2((0, +00)) N CL([0, +00)), g, (0) =0 andr — g/ (t)/t is decreasing irf0, +00).
Furthermore we have that
/
t
oqt1?< g"T() <(A2+ )12 +1772),

" < / 1 7
Now let

fo (@) =g (12l)

for everyz e R"V and consider the functional

Ig(v)szg(Dv)dx. (3.3)
Q

Let 0 < ¢ < min{1, R}, whereR > 0 is such thatBog € 2. Moreover let{u.}, be a
sequence of smooth functions obtained franby means of standard mollifiers, then
us € Wh4(Bg, RV).

SinceZ, hasg-growth, we consider the following variational problem:

min{Z, (v): v € us + Wy ¥ (B, RY)} (3.4)
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and letv, , € u, + W&"’(BR, R™) be the (unique) minimizer. We are now in condition to
apply Proposition 2.1 for & p < R,

sup| Due o | < &V (gl (v/2))]/# 2 / [1+ g0 (1Dve o 1)]dx = (D).
B, i
Let us point out that

0<g'(V2)<g,(W2)<g(V2)+4

thusV (g, (v/2)) <5V (¢'(+/2)) and
(D < &[5V (' (v2)) 7% 2 / [1+ g0 (1Dve o )] dx.
Bg

Now we use the minimality od. , with respect ta:, and Jensen inequality,

Br Br Br
</go(|Dug|)dx=/g(|Dug|)dx+cr/|Dug|qu
Bg Bg Bg
< / g(IDu|)dx+cr/|Dug|q dx <c(g) (3.5)
Br+e Br

and

B,

sup| D o | < 5[5V(g’(ﬁ))]2/(2*2){ / [1+ ¢(1Dul)]dx + o / | Du |4 dx}.
BRys Br
(3.6)
Then for every fixed, (3.5) gives us weak compactnesdif(Bgr) asoc — 0. So, upto a
subsequenc®v, , — Dw; in L?(Bg) aso — 0, for somew, € u, + W&”’(BR, RNY,
Moreover, by (3.6), sup, |Dv, | is equibounded with respect o Hence{Dv; ; }o
converges in the weak{opology of L*° to Dw, and

suplDw| < c[5V (¢’ (v2))]/* 2 / [1+ ¢(1Dul)] dx (3.7)

P
BR+£

for somec =c(n, N, p, R) > 0. By lower semicontinuity in (3.5) we get

/g(lDwngxglimir(‘;f/g(leg,gl)dxé / g(lDu|)dx. (3.8)
o—>
Br Br BRys

Now, (3.8) gives weak compactness if (Bg) ase — 0, thus up to a subsequence,
Dw, — Dw in L?(Bg) for some functiorw € u + W&”’(BR, RM),
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Lower semicontinuity and (3.8) allow us to write

/g(|Dw|)dx§|i£n_j[)1f/g(|Dwg|)dxg/g(|Du|)dx_

Bg Bg Br

The minimality ofu and the strict convexity of imply w = u.
Finally, using (3.7) we obtain that alddw, converges tdDw = Du ase — 0, in the
weak* topology of L*>° and, lettinge — 0 in (3.7) we easily get

suplDu| < c[5V (s (v2))]7? /[1 +¢(1Dul)] dx
3 Br

forsomec=c(n,N,p,R). O
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