Local Boundedness for Vector Valued Minimizers of Anisotropic Functionals

Francesco Leonetti and Elvira Mascolo

Abstract

For variational integrals $\mathcal{F}(u)=\int_{\Omega} f(x, D u) d x$ defined on vector valued mappings $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$, we establish some structure conditions on f that enable us to prove local boundedness for minimizers $u \in W^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ of \mathcal{F}. These structure conditions are satisfied in three remarkable examples: $f(x, D u)=g(x,|D u|)$, $f(x, D u)=\sum_{j=1}^{n} g_{j}\left(x,\left|u_{x_{j}}\right|\right)$ and $f(x, D u)=a\left(x,\left|\left(u_{x_{1}}, \ldots, u_{x_{n-1}}\right)\right|\right)+b\left(x,\left|u_{x_{n}}\right|\right)$, for suitable convex functions $t \rightarrow g(x, t), t \rightarrow g_{j}(x, t), t \rightarrow a(x, t)$ and $t \rightarrow b(x, t)$.

Keywords. Regularity, boundedness, minimizer, variational integral, elliptic system Mathematics Subject Classification (2010). Primary 49N60, secondary 35J60

1. Introduction

We are concerned with regularity of minimizers of integral functionals

$$
\begin{equation*}
\mathcal{F}(u)=\int_{\Omega} f(x, D u(x)) d x \tag{1}
\end{equation*}
$$

where Ω is a bounded open set of $\mathbb{R}^{n}, n \geq 2$ and $D u$ denotes the gradient of a vector-valued function $u: \Omega \rightarrow \mathbb{R}^{N}$. Moreover $f: \Omega \times \mathbb{R}^{N \times n} \rightarrow[0,+\infty)$ is a Caratheodory function, that is, $f(x, z)$ is measurable with respect to x and continuous with respect to z. The study includes also weak solutions of nonlinear elliptic systems

$$
\sum_{i=1}^{n} D_{x_{i}}\left(a_{i}^{\alpha}(x, D u(x))\right)=0, \quad \alpha=1, \ldots, N
$$

F. Leonetti: Dipartimento di Matematica, Università di L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy; leonetti@univaq.it
E. Mascolo: Dipartimento di Matematica, Università di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italy; elvira.mascolo@math.unifi.it
where the vector field $a=\left(a_{i}^{\alpha}\right): \Omega \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}^{N \times n}$ is the gradient with respect to z of the function $f(x, z)$, i.e.,

$$
a_{i}^{\alpha}(x, z)=\frac{\partial f}{\partial z_{i}^{\alpha}}(x, z) .
$$

We consider minimizers $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ of (1), that is, $u \in W^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ with finite energy

$$
\begin{equation*}
\mathcal{F}(u)<+\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}(u) \leq \mathcal{F}(u+\varphi) \tag{3}
\end{equation*}
$$

for every $\varphi \in W_{0}^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$. In the vectorial case it is usual to look for boundedness of minimizers by assuming some structure condition on f. In fact a counterexample of De Giorgi shows that minimizers and weak solutions of systems do not need to be bounded, [9]. See also Frehse [13], Nečas [30] and SverakYan [32]. However, in the case where $f(x, z)=|z|^{p}, p \geq 2$, Uhlenbeck proved in [34] that minimizers are $C_{\text {loc }}^{1, \alpha}\left(\Omega ; \mathbb{R}^{N}\right)$, a result that was later extended by Tolksdorf [33], Fusco-Hutchinson [14], Giaquinta-Modica [18], Acerbi-Fusco [1], Marcellini [24], Esposito-Leonetti-Mingione [12], Leonetti-Mascolo-Siepe [20], Marcellini-Papi [25]. As a first step towards regularity we want to analize the local boundedness of minimizers u. We assume the p, q-growth condition: There exist constants $c_{1}, c_{3} \in(0,+\infty), c_{2}, c_{4} \in[0,+\infty), p, q \in[1,+\infty)$ with $p \leq q$, such that

$$
\begin{equation*}
c_{1}|z|^{p}-c_{2} \leq f(x, z) \leq c_{3}|z|^{q}+c_{4} \tag{4}
\end{equation*}
$$

for almost every $x \in \Omega$ and for every $z \in \mathbb{R}^{N \times n}$. Such a growth assumption is not strong enough to ensure boundedness even in the scalar case $N=1$, when q is large with respect to p (see Giaquinta [17], Marcellini [22,23] and Hong [19]). This leads to require that q is not too far from p. The previous p, q-growth arises in the study of

$$
\begin{equation*}
f(x, D u)=g(x,|D u|) \tag{5}
\end{equation*}
$$

and in the anisotropic energy densities:

$$
\begin{gather*}
f(x, D u)=\sum_{j=1}^{n} g_{j}\left(x,\left|u_{x_{j}}\right|\right) \tag{6}\\
f(x, D u)=a\left(x,\left|\left(u_{x_{1}}, \ldots, u_{x_{n-1}}\right)\right|\right)+b\left(x,\left|u_{x_{n}}\right|\right), \tag{7}
\end{gather*}
$$

for suitable convex functions $t \rightarrow g(x, t), t \rightarrow g_{j}(x, t), t \rightarrow a(x, t)$ and $t \rightarrow$ $b(x, t)$. In the last years the study of regularity under non standard growth condition has increased. In the scalar case the local boundeness has been proved by Moscariello-Nania [28] and Fusco-Sbordone [15, 16], by Mascolo-Papi [26]
and Cianchi [5] with some techniques related with the Orlicz spaces, by Lieberman [21] and more recently by Cupini-Marcellini-Mascolo [6]. In the vectorial case, Dall'Aglio-Mascolo in [8] proved the local boundedness of minimizers of (5) when g is a N-function with Δ_{2}-property. In this paper we give some structure assumptions in order to garantee the boundedness of minimizers. These assumptions allow us to give a unified proof (see Theorem 2.1) of local boundeness for (5), (6), and (7), with g, g_{i}, a, b satisfying the Δ_{2}-property and growth condition (4), provided p and q are not too far apart. We remark that examples (6) and (7) are interesting even in the isotropic case $p=q$ since they go away from Uhlenbeck-structure (5). For the local boundedness of solutions to quasilinear systems see Cupini-Marcellini-Mascolo [7]. We remark that boundedness of minimizers is an important tool in order to achieve higher integrability of $D u$ as in D'Ottavio [10], Esposito-Leonetti-Mingione [11], Bildhauer-Fuchs [3, 4]. See also Apushkinskaya-Bildhauer-Fuchs [2]. The plan of the paper is the following: In Section 2 we give precise assumptions and state the main theorem. Section 3 contains preliminary results. In Section 4 we discuss examples (5), (6) and (7). Section 5 is devoted to the proof of the theorem, which is based on suitable Caccioppoli estimates and Moser iteration method, [29]. We thank the referees for useful remarks.

2. Assumptions and result

We consider the functional (1) where $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ and Ω is a bounded open set, $n \geq 2$ and $N \geq 1$. Let $f: \Omega \times \mathbb{R}^{N \times n} \rightarrow[0,+\infty)$ be such that: for almost every $x \in \Omega$ we have

$$
\begin{equation*}
z \rightarrow f(x, z) \quad \text { is } C^{1}\left(\mathbb{R}^{N \times n}\right) \tag{8}
\end{equation*}
$$

for every $z \in \mathbb{R}^{N \times n}$, for any $i \in\{1, \ldots, n\}$ and $\alpha \in\{1, \ldots, N\}$, we have

$$
\begin{equation*}
x \rightarrow f(x, z) \quad \text { and } \quad x \rightarrow \frac{\partial f}{\partial z_{i}^{\alpha}} f(x, z) \quad \text { are measurable. } \tag{9}
\end{equation*}
$$

In the sequel we will write "for a.e. x " instead of "for almost every x ". Let us assume:
(H1) Behaviour of $\frac{\partial f}{\partial z}$: There exist $\nu, L \in(0,+\infty)$, such that for a.e. $x \in \Omega$, for every $z, v, w \in \mathbb{R}^{N \times n}$ and $t \in[-1,1]$ we have

$$
\begin{equation*}
\nu f(x, z) \leq \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, z) z_{i}^{\alpha} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, v+t w) w_{i}^{\alpha}\right| \leq \frac{\nu}{2} f(x, v)+L f(x, w) ; \tag{11}
\end{equation*}
$$

(H2) Monotonicity condition: There exists $H \in[1,+\infty)$ such that for a.e. $x \in \Omega$ and for every $z, w \in \mathbb{R}^{N \times n}$ we have

$$
\begin{equation*}
\left|z_{i}\right| \leq\left|w_{i}\right| \quad \forall i=1, \ldots, n \quad \Longrightarrow \quad f(x, z) \leq H f(x, w) ; \tag{12}
\end{equation*}
$$

(H3) Sign condition:

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, z) y^{\alpha} \sum_{\beta=1}^{N} y^{\beta} z_{i}^{\beta} \tag{13}
\end{equation*}
$$

for a.e. $x \in \Omega$, for every $z \in \mathbb{R}^{N \times n}$ and $y \in \mathbb{R}^{N}$;
(H4) p, q growth: There exist $c_{1}, c_{3} \in(0,+\infty), c_{2}, c_{4} \in[0,+\infty), p, q \in[1,+\infty)$ with $p \leq q$, such that

$$
\begin{equation*}
c_{1}|z|^{p}-c_{2} \leq f(x, z) \leq c_{3}|z|^{q}+c_{4}, \tag{14}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for every $z \in \mathbb{R}^{N \times n}$.
Let us state our main result:
Theorem 2.1. Let f satisfy $(\mathrm{H} 1)-(\mathrm{H} 4)$ and $u \in W^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ be a minimizer of \mathcal{F}. If

$$
\begin{equation*}
p<n \quad \text { and } \quad q<\frac{p n}{n-p}=p^{*} \tag{15}
\end{equation*}
$$

then $u \in L_{\text {loc }}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$. Moreover, for every ball $B\left(x_{0}, \sigma\right)$, with $\sigma \leq 1$ and $B\left(x_{0}, \sigma\right) \subset \Omega$, it results that

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(B\left(x_{0}, \frac{\sigma}{2}\right)\right)} \leq C\left(\int_{B\left(x_{0}, \sigma\right)}\left(1+|u|^{p^{*}}\right) d x\right)^{\frac{p^{*}-p}{p^{*}\left(p^{*}-q\right)}} \tag{16}
\end{equation*}
$$

for a suitable constant $C \in(1,+\infty)$ depending only on $\sigma, n, p, q, \nu, L, c_{1}, c_{2}, c_{3}, c_{4}$.
Remark 2.2. The right hand side in (13), called "indicator function" in the framework of elliptic systems, seems to play an important role in deriving regularity properties (see [27] where the isotropic case $p=q$ has been dealt with).

3. Properties of f and Euler-Lagrange system

We first note that positivity of f and coercivity (10) give

$$
\begin{equation*}
f(x, 0)=0 \tag{17}
\end{equation*}
$$

for a.e. $x \in \Omega$. We have the following

Proposition 3.1. Let $f: \Omega \times \mathbb{R}^{N \times n} \rightarrow[0,+\infty)$ satisfy (8) and (11). Then

$$
\begin{equation*}
|f(x, v+t w)-f(x, v)| \leq \frac{\nu}{2} f(x, v)+L f(x, w) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x, v+t w) \leq\left(\frac{\nu}{2}+1\right) f(x, v)+L f(x, w) \tag{19}
\end{equation*}
$$

for a.e. $x \in \Omega$, for every $v, w \in \mathbb{R}^{N \times n}$, for any $t \in[-1,1]$. Moreover for a.e. $x \in \Omega$, for every $w \in \mathbb{R}^{N \times n}$, for any $t \in \mathbb{R}$ with $|t| \leq k \in \mathbb{N}$ it results that

$$
\begin{equation*}
f(x, t w) \leq 2 f(x, w) \sum_{i=1}^{k+1}(\tilde{L})^{i} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{L}=\max \left\{\frac{\nu}{2}+1 ; L\right\} . \tag{21}
\end{equation*}
$$

Proof. Let us evaluate the difference
$f(x, v+t w)-f(x, v)=\int_{0}^{1} \frac{d}{d s}[f(x, v+s t w)] d s=\int_{0}^{1} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, v+s t w) t w_{i}^{\alpha} d s$
then, using (11) we get

$$
\begin{align*}
|f(x, v+t w)-f(x, v)| & \leq \int_{0}^{1}\left|\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, v+s t w) t w_{i}^{\alpha}\right| d s \\
& \leq \int_{0}^{1}\left[\frac{\nu}{2} f(x, v)+L f(x, w)\right]|t| d s \tag{22}\\
& =\left[\frac{\nu}{2} f(x, v)+L f(x, w)\right]|t| \\
& \leq \frac{\nu}{2} f(x, v)+L f(x, w) .
\end{align*}
$$

Thus (18) holds true and (19) follows at once. Let \tilde{L} be as in (21), then (19) gives

$$
\begin{equation*}
f(x, v+t w) \leq \tilde{L}[f(x, v)+f(x, w)] \tag{23}
\end{equation*}
$$

for a.e. $x \in \Omega$, for every $v, w \in \mathbb{R}^{N \times n}$, for any $t \in[-1,1]$. When $v=0$, since $f(x, 0)=0$, we get

$$
\begin{equation*}
f(x, t w) \leq \tilde{L} f(x, w) \tag{24}
\end{equation*}
$$

and for $t=-1$ we have

$$
\begin{equation*}
f(x,-w) \leq \tilde{L} f(x, w) \tag{25}
\end{equation*}
$$

for a.e. $x \in \Omega$, for every $w \in \mathbb{R}^{N \times n}$. Assume that $s \in(1,2]$, then $0<s-1 \leq 1$ and we can use (23) as follows

$$
f(x, s w)=f(x, w+(s-1) w) \leq \tilde{L}[f(x, w)+f(x, w)]=2 \tilde{L} f(x, w)
$$

Iterating the procedure, for every $k \in \mathbb{N}$, for any $s \in(k, k+1]$, for a.e. $x \in \Omega$ and for every $w \in \mathbb{R}^{N \times n}$ we have

$$
\begin{equation*}
f(x, s w) \leq 2 f(x, w) \sum_{j=1}^{k}(\tilde{L})^{j} . \tag{26}
\end{equation*}
$$

Now, if $k \in \mathbb{N}$ and $t \in[-(k+1),-k)$, then $-t \in(k, k+1]$ and we can use (25), (26) as follows $f(x, t w)=f(x,-(-t) w) \leq \tilde{L} f(x,(-t) w) \leq 2 \tilde{L} f(x, w) \sum_{j=1}^{k}(\tilde{L})^{j}$ $=2 f(x, w) \sum_{i=2}^{k+1}(\tilde{L})^{i}$ so that

$$
\begin{equation*}
f(x, t w) \leq 2 f(x, w) \sum_{i=1}^{k+1}(\tilde{L})^{i} \tag{27}
\end{equation*}
$$

if $t \in[-(k+1),-k)$. Inequalities (24), (26) and (27) merge into (20).
Remark 3.2. Left hand side of (14) gives that

$$
\begin{equation*}
0<f(x, z) \quad \text { when } \quad|z|^{p}>\frac{c_{2}}{c_{1}} \tag{28}
\end{equation*}
$$

for a.e. $x \in \Omega$. By means of (28), (17) and (19) with $v=0$ and $t=1$, we get $0<f(x, z) \leq\left(\frac{\nu}{2}+1\right) f(x, 0)+L f(x, z)=L f(x, z)$ so that $1 \leq L$. On the other hand (28), (10) and (11) with $v=0, w=z$ and $t=1$ imply

$$
0<\nu f(x, z) \leq \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, z) z_{i}^{\alpha} \leq \frac{\nu}{2} f(x, 0)+L f(x, z)=L f(x, z)
$$

then

$$
\begin{equation*}
\nu \leq L \tag{29}
\end{equation*}
$$

Previous properties of f allow us to show that minimizers of (1) satisfy the Euler system as follows.

Theorem 3.3. Let $f: \Omega \times \mathbb{R}^{N \times n} \rightarrow[0,+\infty)$ satisfy (8), (9) and (11). Let $u \in W^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ minimize \mathcal{F} so that (2) and (3) hold true. Then u verifies the Euler system

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u) D_{i} v^{\alpha} d x=0 \tag{30}
\end{equation*}
$$

for every $v \in W_{0}^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ with finite energy $\mathcal{F}(v)<+\infty$.

Proof. Note that both u and v have finite energy. Then assumptions (8) and (11) give additivity property (19), so that

$$
0 \leq f(x, D u(x)+t D v(x)) \leq\left(\frac{\nu}{2}+1\right) f(x, D u(x))+L f(x, D v(x))
$$

thus $u+t v$ has finite energy for every $t \in[-1,1]$. Moreover, assumption (11) with $t=0$ ensures that

$$
x \rightarrow \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u(x)) D_{i} v^{\alpha}(x) \in L^{1}(\Omega) .
$$

Let us set $\phi(t)=\mathcal{F}(u+t v)$. Then $\phi:[-1,1] \rightarrow \mathbb{R}$ and $\phi(0)=\min _{[-1,1]} \phi$. We claim that

$$
\begin{equation*}
\phi^{\prime}(0)=\int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u) D_{i} v^{\alpha} d x . \tag{31}
\end{equation*}
$$

If so, since ϕ achieves its minumum value at $t=0$, then $\phi^{\prime}(0)=0$ and (30) follows at once. Let us prove claim (31). Observe that

$$
\begin{equation*}
\frac{\phi(t)-\phi(0)}{t}=\int_{\Omega} \frac{f(x, D u+t D v)-f(x, D u)}{t} d x \tag{32}
\end{equation*}
$$

and

$$
\lim _{t \rightarrow 0} \frac{f(x, D u(x)+t D v(x))-f(x, D u(x))}{t}=\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u(x)) D_{i} v^{\alpha}(x) .
$$

On the other hand assumption (11) gives us (22) and we get

$$
\left|\frac{f(x, D u(x)+t D v(x))-f(x, D u(x))}{t}\right| \leq \frac{\nu}{2} f(x, D u(x))+L f(x, D v(x)) ;
$$

since $x \rightarrow f(x, D u(x)) \in L^{1}(\Omega)$ and $x \rightarrow f(x, D v(x)) \in L^{1}(\Omega)$, then we can pass to limit as $t \rightarrow 0$ under the integral sign in (32) and (31) is proved. This ends the proof of Theorem 3.3.

4. Examples

In this section we give some densities f verifing assumptions (H1)-(H3).
4.1. Notations and preliminaries. We recall properties of generalized N functions of Δ_{2}-class ([31]). Let $g: \Omega \times[0,+\infty) \rightarrow[0,+\infty)$ be a generalized N-function, i.e., for a.e. $x \in \Omega$,

$$
\begin{gather*}
t \rightarrow g(x, t) \text { is convex, increasing and } C^{1}([0,+\infty)), \tag{33}\\
\frac{\partial g}{\partial t}(x, 0)=0=g(x, 0)<g(x, t) \quad \text { if } 0<t \tag{34}
\end{gather*}
$$

Moreover, for every $t \in[0,+\infty)$,

$$
\begin{equation*}
x \rightarrow g(x, t) \quad \text { and } \quad x \rightarrow \frac{\partial g}{\partial t}(x, t) \quad \text { are measurable. } \tag{35}
\end{equation*}
$$

In addition, we assume Δ_{2}-property uniformly with respect to x : There exists a constant $k_{2}>0$ such that, for a.e. $x \in \Omega$,

$$
\begin{equation*}
g(x, 2 t) \leq k_{2} g(x, t) \quad \forall t \geq 0 \tag{36}
\end{equation*}
$$

Now we recall known properties of function $g: \Omega \times[0,+\infty) \rightarrow[0,+\infty)$ satisfying (33), (34) and (36), see [31]. Fix $x \in \Omega$. For every s and t in [$0,+\infty$) convexity gives

$$
\begin{equation*}
g(x, s) \geq g(x, t)+\frac{\partial g}{\partial t}(x, t)(s-t) \tag{37}
\end{equation*}
$$

We use $s=0$ in (37). Since $g(x, 0)=0$, it results that

$$
\begin{equation*}
g(x, t) \leq \frac{\partial g}{\partial t}(x, t) t \quad \forall t \geq 0 \tag{38}
\end{equation*}
$$

We use (37) with $s=2 t$ and Δ_{2}-property. We get $g(x, t)+\frac{\partial g}{\partial t}(x, t)(t) \leq$ $g(x, 2 t) \leq k_{2} g(x, t)$ then

$$
\begin{equation*}
\frac{\partial g}{\partial t}(x, t) t \leq\left(k_{2}-1\right) g(x, t) \quad \forall t \geq 0 \tag{39}
\end{equation*}
$$

Inequalities (38), (39) and (34) show that $1 \leq k_{2}-1$, then $2 \leq k_{2}$. A careful inspection shows that $2=k_{2}$ cannot happen under our assumptions, then $2<k_{2}$. By iterating inequality (36) we get, for every $m \in \mathbb{N}$,

$$
g\left(x, 2^{m} t\right) \leq k_{2}^{m} g(x, t) \quad \forall t \geq 0 .
$$

Therefore

$$
g(x, \lambda t) \leq k_{2} \lambda^{\frac{\ln \left(k_{2}\right)}{\ln (2)}} g(x, t) \quad \forall \lambda \geq 1, \forall t \geq 0
$$

and for every $r, t \in[0,+\infty)$

$$
g(x, r t) \leq k_{2} \max \left\{1, r^{\frac{\ln \left(k_{2}\right)}{\ln (2)}}\right\} g(x, t) .
$$

Convexity (33) and Δ_{2}-property (36) imply that, for every $t_{1}, t_{2} \in[0,+\infty)$

$$
g\left(x, t_{1}+t_{2}\right)=g\left(x, 2\left(\frac{1}{2} t_{1}+\frac{1}{2} t_{2}\right)\right) \leq k_{2} g\left(x, \frac{1}{2} t_{1}+\frac{1}{2} t_{2}\right) \leq \frac{k_{2}}{2}\left(g\left(x, t_{1}\right)+g\left(x, t_{2}\right)\right) .
$$

Now we need the following inequality: Let $h, f: I \subset \mathbb{R} \rightarrow[0,+\infty)$ be increasing, then

$$
\begin{equation*}
h(t) f(s) \leq h(t) f(t)+h(s) f(s) \quad \forall t, s \in I . \tag{40}
\end{equation*}
$$

Let us apply (40) with $h(t)=\frac{\partial g}{\partial t}(x, t)$ and $f(s)=s$, so that, for $t_{1}, t_{2} \in[0,+\infty)$, we have

$$
0 \leq \frac{\partial g}{\partial t}\left(x, t_{1}\right) t_{2} \leq \frac{\partial g}{\partial t}\left(x, t_{1}\right) t_{1}+\frac{\partial g}{\partial t}\left(x, t_{2}\right) t_{2} .
$$

Moreover, (39) allows us to write

$$
\frac{\partial g}{\partial t}\left(x, t_{1}\right) t_{1}+\frac{\partial g}{\partial t}\left(x, t_{2}\right) t_{2} \leq\left(k_{2}-1\right)\left(g\left(x, t_{1}\right)+g\left(x, t_{2}\right)\right)
$$

4.2. Example 1. Let us define

$$
f(x, z)=g(x,|z|)
$$

where $g: \Omega \times[0,+\infty) \rightarrow[0,+\infty)$ satisfies (33), (34) and (36). We obtain

$$
\frac{\partial f}{\partial z_{i}^{\alpha}}(x, z)= \begin{cases}\frac{\partial g}{\partial t}(x,|z|) \frac{z_{i}^{\alpha}}{|z|} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

so that, if $z \neq 0$,

$$
\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, z) z_{i}^{\alpha}=\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial g}{\partial t}(x,|z|) \frac{z_{i}^{\alpha}}{|z|} z_{i}^{\alpha}=\frac{\partial g}{\partial t}(x,|z|)|z| \geq g(x,|z|)=f(x, z)
$$

where we used (38) in the inequality. If $z=0$ then $\frac{\partial f}{\partial z_{i}^{\alpha}}(x, z)=0=g(x, 0)=$ $f(x, z)$. Then (10) holds true with $\nu=1$. In order to verify (11), assume that $z=v+t w \neq 0$. By means of properties of $g,|z| \leq|v|+|w|$, provided $\epsilon \in(0,1]$,
we have

$$
\begin{align*}
& \left|\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, z) w_{i}^{\alpha}\right|^{\prime} \\
& =\frac{\partial g}{\partial t}(x,|z|) \frac{1}{|z|}\left|\sum_{i=1}^{n} \sum_{\alpha=1}^{N} z_{i}^{\alpha} w_{i}^{\alpha}\right| \\
& \leq \frac{\partial g}{\partial t}(x,|z|)|w| \\
& =\epsilon \frac{\partial g}{\partial t}(x,|z|) \frac{|w|}{\epsilon} \\
& \leq \epsilon\left(k_{2}-1\right)\left[g(x,|z|)+g\left(x, \frac{|w|}{\epsilon}\right)\right] \tag{41}\\
& \leq \epsilon\left(k_{2}-1\right)\left[g(x,|v|+|w|)+g\left(x, \frac{|w|}{\epsilon}\right)\right] \\
& \leq \epsilon\left(k_{2}-1\right)\left[\frac{k_{2}}{2} g(x,|v|)+\frac{k_{2}}{2} g(x,|w|)+k_{2}\left(\frac{1}{\epsilon}\right)^{\frac{\ln \left(k_{2}\right)}{\ln (2)}} g(x,|w|)\right] \\
& =\epsilon\left(k_{2}-1\right) \frac{k_{2}}{2}\left[f(x, v)+\left(1+2\left(\frac{1}{\epsilon}\right)^{\frac{\ln \left(k_{2}\right)}{\ln (2)}}\right) f(x, w)\right] .
\end{align*}
$$

Since $k_{2}>2$ we take $\epsilon=\frac{1}{\left(k_{2}-1\right) k_{2}} \in\left(0, \frac{1}{2}\right)$ and (41) becomes

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, z) w_{i}^{\alpha}\right| \leq \frac{1}{2}\left[f(x, v)+\left(1+2 k_{2}^{\frac{2 \ln \left(k_{2}\right)}{\ln (2)}}\right) f(x, w)\right] . \tag{42}
\end{equation*}
$$

When $z=v \underset{2 \ln (k))}{t w}=0$ easily (42) holds true. Then we checked (11) with $L=\frac{1}{2}\left(1+2 k_{2}^{\frac{2 \ln \left(k_{2}\right)}{\ln (2)}}\right)$. Inequality (13) follows easily. Indeed, if $z \neq 0$ we have

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, z) y^{\alpha} \sum_{\beta=1}^{N} y^{\beta} z_{i}^{\beta} & =\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial g}{\partial t}(x,|z|) \frac{z_{i}^{\alpha}}{|z|^{\alpha}} \sum_{\beta=1}^{N} y^{\beta} z_{i}^{\beta} \\
& =\frac{\partial g}{\partial t}(x,|z|) \frac{1}{|z|} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} z_{i}^{\alpha} y^{\alpha} \sum_{\beta=1}^{N} y^{\beta} z_{i}^{\beta} \\
& =\frac{\partial g}{\partial t}(x,|z|) \frac{1}{|z|} \sum_{i=1}^{n}\left(\left\langle z_{i} ; y\right\rangle\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

Now we are going to verify (12). If $\left|z_{i}\right| \leq\left|w_{i}\right|$ for every i, then $|z| \leq|w|$. Since $t \rightarrow g(x, t)$ is increasing, we get $f(x, z)=g(x,|z|) \leq g(x,|w|)=f(x, w)$.

Thus (12) holds true with $H=1$. Note that (8) is verified. If g satisfies also (35) then (9) is satisfied, too.

4.3. Example 2. Define

$$
f(x, z)=\sum_{j=1}^{n} g_{j}\left(x,\left|z_{j}\right|\right)
$$

where every $g_{j}: \Omega \times[0,+\infty) \rightarrow[0,+\infty)$ satisfies (33), (34) and (36). Note that Δ_{2}-property (36) holds true with the same constant k_{2} for every g_{j}. Then

$$
\frac{\partial f}{\partial z_{i}^{\alpha}}(x, z)= \begin{cases}\frac{\partial g_{i}}{\partial t}\left(x,\left|z_{i}\right|\right) \frac{z_{i}^{\alpha}}{\left|z_{i}\right|} & \text { if } z_{i} \neq 0 \\ 0 & \text { if } z_{i}=0 .\end{cases}
$$

Similar arguments to those performed in the above Example 1 on each g_{j} allow us to check (10) with $\nu=1$, (11) with $L=\frac{1}{2}\left(1+2 k_{2}^{\frac{2 \ln \left(k_{2}\right)}{\ln (2)}}\right)$, (13) and (12) with $H=1$. Note that (8) is verified. If, in addition, every g_{j} satisfies also (35) then (9) is satisfied, too.

4.4. Example 3. We take

$$
f(x, z)=a\left(x,\left|z_{*}\right|\right)+b\left(x,\left|z^{*}\right|\right)
$$

where $a, b: \Omega \times[0,+\infty) \rightarrow[0,+\infty)$ satisfy (33), (34) and (36). Note that the Δ_{2}-property (36) holds true for a and b with the same constant k_{2}. Moreover, I_{*} and I^{*} are not empty subsets of $\{1, \ldots, n\}$ with $I_{*} \cap I^{*}=\emptyset$ and $I_{*} \cup I^{*}=$ $\{1, \ldots, n\}$.

$$
z_{*}=\left\{z_{i}^{\alpha}: i \in I_{*} \text { and } \alpha=1, \ldots, N\right\}
$$

and

$$
z^{*}=\left\{z_{i}^{\alpha}: i \in I^{*} \text { and } \alpha=1, \ldots, N\right\} .
$$

We get

$$
\frac{\partial f}{\partial z_{i}^{\alpha}}(x, z)= \begin{cases}\frac{\partial a}{\partial t}\left(x,\left|z_{*}\right|\right) \frac{z_{i}^{\alpha}}{\left|z_{*}\right|} & \text { if } i \in I_{*} \text { and } z_{*} \neq 0 \\ 0 & \text { if } i \in I_{*} \text { and } z_{*}=0 \\ \frac{\partial b}{\partial t}\left(x,\left|z^{*}\right|\right) \frac{z_{i}^{\alpha}}{\left|z^{*}\right|} & \text { if } i \in I^{*} \text { and } z^{*} \neq 0 \\ 0 & \text { if } i \in I^{*} \text { and } z^{*}=0\end{cases}
$$

By proceeding as in Example 1, separately on a and b, we obtain (10) with $\nu=1$, (11) with $L=\frac{1}{2}\left(1+2 k_{2}^{\frac{2 \ln \left(k_{2}\right)}{\ln (2)}}\right)$, (13) and (12) with $H=1$. Note that (8) is verified. When a and b satisfy also (35) then (9) holds true.

Remark 4.1. Now we show a "negative" example in which sign condition (13) is not fulfilled. When $N=n$ we take

$$
f(x, z)=|z|^{2}+(\operatorname{tr}(z))^{2}=\sum_{r, s=1}^{n}\left(z_{r}^{s}\right)^{2}+\left(\sum_{r=1}^{n} z_{r}^{r}\right)^{2}
$$

Then $\frac{\partial f}{\partial z_{i}^{\alpha}}(z)=2 z_{i}^{\alpha}+2\left(\sum_{r=1}^{n} z_{r}^{r}\right) \delta_{i \alpha}$ where $\delta_{i \alpha}=1$ when $i=\alpha$ and $\delta_{i \alpha}=0$ when $i \neq \alpha$. We take z to be a diagonal matrix and y to be the unit vector in the first direction: $z_{i}^{\alpha}=t_{i} \delta_{i \alpha}$ for suitable constants t_{1}, \ldots, t_{n} and $y^{\alpha}=\delta_{1 \alpha}$. Then we have

$$
\sum_{i, \alpha} \frac{\partial f}{\partial z_{i}^{\alpha}}(z) y^{\alpha} \sum_{\beta} y^{\beta} z_{i}^{\beta}=2 t_{1}\left[t_{1}+\sum_{r=1}^{n} t_{r}\right]<0
$$

provided $t_{1}=1, t_{2}<-2$ and $t_{r}=0$ for $r=3, \ldots, n$.

5. Proof of Theorem 2.1

Let u be a minimizer of (1). We split the proof into several steps.
Step 1. We construct a suitable test function v to be inserted into Euler system (30). Let $\phi:[0,+\infty) \rightarrow[0,+\infty)$ be increasing and $C^{1}([0,+\infty))$. Moreover we assume that there exists a constant $\tilde{c} \in[1,+\infty)$ such that

$$
\begin{align*}
& 0 \leq \phi(t) \leq \tilde{c} \quad \forall t \in[0,+\infty) \tag{43}\\
& 0 \leq \phi^{\prime}(t) \leq \tilde{c} \quad \forall t \in[0,+\infty) \tag{44}\\
& 0 \leq \phi^{\prime}(t) t \leq \tilde{c} \quad \forall t \in[0,+\infty) \tag{45}
\end{align*}
$$

Let $B_{\rho}=B\left(x_{0}, \rho\right)$ and $B_{R}=B\left(x_{0}, R\right)$ be open balls with the same center x_{0} and radii $0<\rho<R \leq 1$, with $\overline{B_{R}} \subset \Omega$. We assume that $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$, $\eta \in C_{0}^{1}\left(B_{R}\right)$ with $0 \leq \eta \leq 1$ in $\mathbb{R}^{n}, \eta=1$ on $B_{\rho},|D \eta| \leq \frac{4}{R-\rho}$ in \mathbb{R}^{n}. Note that $0<R-\rho<R \leq 1$ so $\frac{4}{R-\rho}>4$. Let $m>1$. We consider the test function $v=\left(v^{1}, \ldots, v^{N}\right)$ defined as follows

$$
\begin{equation*}
v^{\alpha}=\phi(|u|) u^{\alpha} \eta^{m} . \tag{46}
\end{equation*}
$$

It results that $v^{\alpha} \in W_{0}^{1,1}\left(B_{R}\right) \subset W_{0}^{1,1}(\Omega)$ and

$$
D_{i} v^{\alpha}=\eta^{m}\left[\phi^{\prime}(|u|) 1_{\{|u|>0\}} \sum_{\beta=1}^{N} \frac{u^{\beta}}{|u|}\left(D_{i} u^{\beta}\right) u^{\alpha}+\phi(|u|) D_{i} u^{\alpha}\right]+\left[\phi(|u|) u^{\alpha}\right] D_{i}\left(\eta^{m}\right)
$$

where $1_{A}(x)=1$ if $x \in A$ and $1_{A}(x)=0$ if $x \notin A$. We claim that $x \rightarrow$ $f(x, D v(x)) \in L^{1}(\Omega)$. Indeed, (45) gives

$$
\begin{equation*}
\sum_{\alpha=1}^{N}\left|\phi^{\prime}(|u|) 1_{\{|u|>0\}} \sum_{\beta=1}^{N} \frac{u^{\beta}}{|u|}\left(D_{i} u^{\beta}\right) u^{\alpha} \eta^{m}\right|^{2} \leq(\tilde{c})^{2}\left|D_{i} u\right|^{2} . \tag{47}
\end{equation*}
$$

Let us set

$$
z_{i}^{\alpha}=\phi^{\prime}(|u|) 1_{\{|u|>0\}} \sum_{\beta=1}^{N} \frac{u^{\beta}}{|u|}\left(D_{i} u^{\beta}\right) u^{\alpha} \eta^{m} \quad \text { and } \quad w_{i}^{\alpha}=\tilde{c} D_{i} u^{\alpha} .
$$

Since inequality (47) gives $\left|z_{i}\right| \leq\left|w_{i}\right|$, by assumption (12) and property (20) with $\tilde{c} \leq k \in \mathbb{N}$ we get:

$$
\begin{align*}
f\left(x, \phi^{\prime}(|u|) 1_{\{|u|>0\}} \sum_{\beta=1}^{N} \frac{u^{\beta}}{|u|}\left[\left(D u^{\beta}\right) \times u\right] \eta^{m}\right) & \leq H f(x, \tilde{c} D u) \\
& \leq 2 H f(x, D u) \sum_{i=1}^{k+1}(\tilde{L})^{i} . \tag{48}
\end{align*}
$$

Since u has finite energy (2), the positivity of f and inequality (48) ensure that

$$
\begin{equation*}
x \rightarrow f\left(x, \phi^{\prime}(|u(x)|) 1_{\{|u|>0\}}(x) \sum_{\beta=1}^{N} \frac{u^{\beta}(x)}{|u(x)|}\left[\left(D u^{\beta}(x)\right) \times u(x)\right] \eta^{m}(x)\right) \in L^{1}(\Omega) \tag{49}
\end{equation*}
$$

Moreover, (43) and properties of η give $0 \leq \phi(|u|) \eta^{m} \leq \tilde{c} \leq k$ for a suitable $k \in \mathbb{N}$. Then (20) implies $f\left(x, \phi(|u|) \eta^{m} D u\right) \leq 2 f(x, D u) \sum_{i=1}^{k+1}(\tilde{L})^{i}$ and then

$$
\begin{equation*}
x \rightarrow f\left(x, \phi(|u(x)|) \eta^{m}(x) D u(x)\right) \in L^{1}(\Omega) . \tag{50}
\end{equation*}
$$

Finally, again by (43) and (20) we get $f\left(x, \phi(|u|) u \times D\left(\eta^{m}\right)\right) \leq 2 f\left(x, u \times D\left(\eta^{m}\right)\right)$ $\sum_{i=1}^{k+1}(\tilde{L})^{i}$. Since u has finite energy (2), the left hand side of (14) guarantees that $D u \in L^{p}(\Omega)$. Sobolev embedding and (15) give us $u \in L^{p^{*}}\left(B_{R}\right) \subset L^{q}\left(B_{R}\right)$. We recall that $\eta=0$ outside B_{R}. Since $f(x, 0)=0$, then

$$
f\left(x, u \times D\left(\eta^{m}\right)\right)=f\left(x, u \times D\left(\eta^{m}\right)\right) 1_{B_{R}}
$$

Now we use the right hand side of (14) and the estimate for $|D \eta|$:

$$
f\left(x, u \times D\left(\eta^{m}\right)\right) 1_{B_{R}} \leq\left(c_{3}\left|u \times D\left(\eta^{m}\right)\right|^{q}+c_{4}\right) 1_{B_{R}} \leq\left(c_{3} m^{q}\left(\frac{4}{R-\rho}\right)^{q}|u|^{q}+c_{4}\right) 1_{B_{R}} .
$$

Since $q<p^{*}$, we have $u \in L^{q}\left(B_{R}\right)$ and

$$
\begin{equation*}
x \rightarrow f\left(x, \phi(|u(x)|) u(x) \times D\left(\eta^{m}(x)\right)\right) \in L^{1}(\Omega) . \tag{51}
\end{equation*}
$$

Inequality (19) and (49), (50), (51) give $x \rightarrow f(x, D v(x)) \in L^{1}(\Omega)$.

Step 2. For ϕ and η as in the previous step we prove that

$$
\begin{align*}
\int_{B_{R}}|D u|^{p} \phi(|u|) \eta^{m} d x \leq & \frac{2 L c_{3}}{\nu c_{1}}\left(\frac{4 m}{R-\rho}\right)^{q} \int_{B_{R}}|u|^{q} \phi(|u|) d x \tag{52}\\
& +\left(\frac{2 L c_{4}}{\nu c_{1}}+\frac{c_{2}}{c_{1}}\right) \int_{B_{R}} \phi(|u|) d x .
\end{align*}
$$

By inserting $v=\phi(|u|) u \eta^{m}$ into Euler System (30), we get

$$
\begin{aligned}
0= & \int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u) D_{i} v^{\alpha} d x \\
= & \int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u) \phi^{\prime}(|u|) 1_{\{|u|>0\}} \sum_{\beta=1}^{N} \frac{u^{\beta}}{|u|}\left(D_{i} u^{\beta}\right) u^{\alpha} \eta^{m} d x \\
& +\int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u) \phi(|u|)\left(D_{i} u^{\alpha}\right) \eta^{m} d x \\
& +\int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u) \phi(|u|) u^{\alpha} D_{i}\left(\eta^{m}\right) d x \\
= & \left(A_{1}\right)+\left(A_{2}\right)+\left(A_{3}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left(A_{1}\right)+\left(A_{2}\right)=-\left(A_{3}\right) . \tag{53}
\end{equation*}
$$

We can use assumption (13) with $z=D u(x)$ and $y=u(x)$ in such a way that $0 \leq\left(A_{1}\right)$. Coercivity assumption (10) with $z=D u(x)$ gives:

$$
\nu \int_{\Omega} f(x, D u) \phi(|u|) \eta^{m} d x \leq\left(A_{2}\right) .
$$

We apply (11) with $v=D u(x), t=0$ and $w=[u(x) \times D \eta(x)] m \eta^{-1}(x)$ as follows

$$
\begin{aligned}
-\left(A_{3}\right) & =\int_{\{\eta>0\}}-\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial f}{\partial z_{i}^{\alpha}}(x, D u) u^{\alpha}\left(D_{i} \eta\right) \eta^{-1} m \phi(|u|) \eta^{m} d x \\
& \leq \frac{\nu}{2} \int_{\Omega} f(x, D u) \phi(|u|) \eta^{m} d x+L \int_{\{\eta>0\}} f\left(x,[u \times D \eta] m \eta^{-1}\right) \phi(|u|) \eta^{m} d x
\end{aligned}
$$

These inequalities can be inserted into (53) and we get the following Caccioppoli estimate

$$
\begin{equation*}
\frac{\nu}{2} \int_{\Omega} f(x, D u) \phi(|u|) \eta^{m} d x \leq L \int_{\{\eta>0\}} f\left(x,[u \times D \eta] m \eta^{-1}\right) \phi(|u|) \eta^{m} d x \tag{54}
\end{equation*}
$$

The right hand side of growth assumption (14) allows us to write

$$
\begin{aligned}
& \int_{\{\eta>0\}} f\left(x,[u \times D \eta] m \eta^{-1}\right) \phi(|u|) \eta^{m} d x \\
& \leq \int_{\{\eta>0\}}\left[c_{3}\left(|u \times D \eta| m \eta^{-1}\right)^{q}+c_{4}\right] \phi(|u|) \eta^{m} d x \\
& =\int_{\{\eta>0\}}\left[c_{3}\left(|u|^{q}|D \eta|^{q} m^{q} \eta^{-q+m} \phi(|u|)+c_{4} \phi(|u|) \eta^{m}\right] d x\right. \\
& =\left(A_{4}\right) .
\end{aligned}
$$

By choosing $m=q+1$, since $0 \leq \eta \leq 1$, we have

$$
\left(A_{4}\right) \leq \int_{\Omega}\left[c_{3}\left(|u|^{q}|D \eta|^{q} m^{q} \phi(|u|)+c_{4} \phi(|u|) \eta^{m}\right] d x\right.
$$

The left hand side of growth assumption (14) allows us to get

$$
\int_{\Omega}\left[c_{1}|D u|^{p}-c_{2}\right] \phi(|u|) \eta^{m} d x \leq \int_{\Omega} f(x, D u) \phi(|u|) \eta^{m} d x .
$$

Thus Caccioppoli inequality (54) gives

$$
\frac{\nu}{2} \int_{\Omega}\left[c_{1}|D u|^{p}-c_{2}\right] \phi(|u|) \eta^{m} d x \leq L \int_{\Omega}\left[c_{3}\left(|u|^{q}|D \eta|^{q} m^{q} \phi(|u|)+c_{4} \phi(|u|) \eta^{m}\right] d x\right.
$$

so that
$\int_{\Omega}|D u|^{p} \phi(|u|) \eta^{m} d x \leq \frac{2 L c_{3} m^{q}}{\nu c_{1}} \int_{\Omega}|u|^{q}|D \eta|^{q} \phi(|u|) d x+\left(\frac{2 L c_{4}}{\nu c_{1}}+\frac{c_{2}}{c_{1}}\right) \int_{\Omega} \phi(|u|) \eta^{m} d x$.
By the properties of η and $|D \eta|$, we get (52).
Step 3. Let $\beta \in(1,+\infty)$ and assume that

$$
\begin{equation*}
|u| \in L^{q+p(\beta-1)}\left(B_{R}\right) . \tag{55}
\end{equation*}
$$

With a suitable choice of ϕ we are going to show that

$$
\begin{equation*}
\int_{B_{R}}|D u|^{p} \beta^{p}|u|^{p(\beta-1)} \eta^{m} d x \leq c_{5}\left(\frac{4 m}{R-\rho}\right)^{q} \beta^{p} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x \tag{56}
\end{equation*}
$$

where $c_{5}=\frac{2 L\left(c_{2}+c_{3}+c_{4}\right)}{\nu c_{1}}$. Indeed, for every $k \in \mathbb{N}$, we consider $\phi_{k}:[0,+\infty) \rightarrow$ $[0,+\infty)$ in $C^{1}([0,+\infty))$ such that there exists $\tilde{c}_{k} \in[1,+\infty)$ for which the following properties hold true:

$$
\begin{array}{ll}
\phi_{k}(t), \phi_{k}^{\prime}(t), \phi_{k}^{\prime}(t) t \in\left[0, \tilde{c}_{k}\right] & \forall t \in[0,+\infty), \\
0 \leq \phi_{k}(t) \leq\left(\beta t^{\beta-1}\right)^{p} & \forall t \in[0,+\infty), \tag{58}
\end{array}
$$

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \phi_{k}(t)=\left(\beta t^{\beta-1}\right)^{p} \quad \forall t \in[0,+\infty) . \tag{59}
\end{equation*}
$$

For instance, the construction of ϕ_{k} can be done as follows. We consider

$$
\tilde{\phi}(t)=c t^{\alpha}
$$

where $c=\beta^{p}$ and $\alpha=(\beta-1) p$. Since $\tilde{\phi}^{\prime}(t)=c \alpha t^{\alpha-1}$ and $\tilde{\phi}^{\prime \prime}(t)=c \alpha(\alpha-1) t^{\alpha-2}$, we have to distinguish the case $0<\alpha<1$ from $1 \leq \alpha$. Indeed, when $0<\alpha<1$, we see that $\tilde{\phi}^{\prime}$ is decreasing and $\lim _{t \rightarrow 0^{+}} \tilde{\phi}^{\prime}(t)=+\infty$. On the other hand, when $1 \leq \alpha$, then ϕ^{\prime} is increasing and $\lim _{t \rightarrow 0^{+}} \phi^{\prime}(t) \in \mathbb{R}$. Thus, when $0<\alpha<1$ we consider

$$
\theta_{k}(t)= \begin{cases}\tilde{\phi}^{\prime}\left(\frac{1}{k}\right) & \text { for } t \in\left[0, \frac{1}{k}\right) \\ \tilde{\phi}^{\prime}(t) & \text { for } t \in\left[\frac{1}{k}, k\right] \\ \tilde{\phi}^{\prime}(k)(k+1-t) & \text { for } t \in(k, k+1) \\ 0 & \text { for } t \in[k+1,+\infty)\end{cases}
$$

When $1 \leq \alpha$ it is not necessary to modify $\tilde{\phi}^{\prime}(t)$ for small t and we can consider

$$
\theta_{k}(t)= \begin{cases}\tilde{\phi}^{\prime}(t) & \text { for } t \in[0, k] \\ \tilde{\phi}^{\prime}(k)(k+1-t) & \text { for } t \in(k, k+1) \\ 0 & \text { for } t \in[k+1,+\infty)\end{cases}
$$

We set $\phi_{k}(s)=\int_{0}^{s} \theta_{k}(t) d t$ and all the required properties are verified. Consider (52) with ϕ replaced by ϕ_{k}. Assumption (55) and property (58) allow us to write

$$
\begin{aligned}
& 0 \leq \phi_{k}(|u|) \quad \leq \beta^{p}|u|^{p(\beta-1)} \in L^{1}\left(B_{R}\right), \\
& 0 \leq|u|^{q} \phi_{k}(|u|) \leq \beta^{p}|u|^{q+p(\beta-1)} \in L^{1}\left(B_{R}\right) .
\end{aligned}
$$

So (52) becomes

$$
\begin{aligned}
& \int_{B_{R}}|D u|^{p} \phi_{k}(|u|) \eta^{m} d x \\
& \leq \frac{2 L c_{3}}{\nu c_{1}}\left(\frac{4 m}{R-\rho}\right)^{q} \int_{B_{R}} \beta^{p}|u|^{q+p(\beta-1)} d x+\left(\frac{2 L c_{4}}{\nu c_{1}}+\frac{c_{2}}{c_{1}}\right) \int_{B_{R}} \beta^{p}|u|^{p(\beta-1)} d x \\
& \leq \frac{2 L\left(c_{2}+c_{3}+c_{4}\right)}{\nu c_{1}}\left(\frac{4 m}{R-\rho}\right)^{q} \beta^{p} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x
\end{aligned}
$$

since $\frac{4 m}{R-\rho}>4 m>4$ and (29) implies $\frac{L}{\nu} \geq 1$. We set $c_{5}=\frac{2 L\left(c_{2}+c_{3}+c_{4}\right)}{\nu c_{1}}$ and get

$$
\int_{B_{R}}|D u|^{p} \phi_{k}(|u|) \eta^{m} d x \leq c_{5}\left(\frac{4 m}{R-\rho}\right)^{q} \beta^{p} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x
$$

Fatou lemma and (59) allow us to let k go to ∞ and (56) follows.

Step 4. Now we prove that

$$
\begin{equation*}
u \in L^{q+p(\beta-1)}\left(B_{R}\right) \quad \text { for some } \beta>1 \quad \Longrightarrow \quad u \in L^{\beta p^{*}}\left(B_{\rho}\right) \tag{60}
\end{equation*}
$$

and the following estimate holds true

$$
\begin{equation*}
\int_{B_{\rho}}\left(1+|u|^{\beta p^{*}}\right) d x \leq c_{8} \beta^{p^{*}}\left(\frac{8 m}{R-\rho}\right)^{q \frac{p^{*}}{p}}\left(\int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x\right)^{\frac{p^{*}}{p}} \tag{61}
\end{equation*}
$$

where $c_{8}=2\left(\left(1+\left|B_{1}\right|^{-\frac{p}{n}}\right)+\frac{2 L\left(c_{1}+c_{2}+c_{3}+c_{4}\right)}{\nu c_{1}}\left(\frac{p(n-1)}{n-p}\right)^{p}\right)^{\frac{p^{*}}{p}} \in(1,+\infty)$. Indeed, assumption (55) and Caccioppoli inequality (56) allow us to check that the function $w=|u|^{\beta} \eta^{m}$ is in $W_{0}^{1, p}\left(B_{R}\right)$ with

$$
|D w| \leq \beta|u|^{\beta-1}|D u| \eta^{m}+|u|^{\beta} m \eta^{m-1}|D \eta|
$$

and

$$
\begin{aligned}
\int_{B_{R}}|D w|^{p} d x \leq & 2^{p} \int_{B_{R}}|D u|^{p} \beta^{p}|u|^{p(\beta-1)} \eta^{m} d x \\
& +2^{p}\left(\frac{4 m}{R-\rho}\right)^{p} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x \\
\leq & 2^{p} c_{5}\left(\frac{4 m}{R-\rho}\right)^{q} \beta^{p} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x \\
& +2^{p}\left(\frac{4 m}{R-\rho}\right)^{p} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x .
\end{aligned}
$$

Then $\int_{B_{R}}|D w|^{p} d x \leq\left(1+c_{5}\right)\left(\frac{8 m}{R-\rho}\right)^{q} \beta^{p} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x$. Since $p<n$, we can use Sobolev embedding theorem and we get

$$
\begin{aligned}
\left(\int_{B_{R}}|w|^{p^{*}} d x\right)^{\frac{p}{p^{*}}} & \leq\left(\frac{p(n-1)}{n-p}\right)^{p} \int_{B_{R}}|D w|^{p} d x \\
& \leq\left(\frac{p(n-1)}{n-p}\right)^{p}\left(1+c_{5}\right)\left(\frac{8 m}{R-\rho}\right)^{q} \beta^{p} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x
\end{aligned}
$$

so that

$$
\left(\int_{B_{R}}\left(|u|^{\beta} \eta^{m}\right)^{p^{*}} d x\right)^{\frac{p}{p^{*}}} \leq c_{6} \beta^{p}\left(\frac{8 m}{R-\rho}\right)^{q} \int_{B_{R}}\left(1+|u|^{q+(\beta-1) p}\right) d x
$$

where $c_{6}=\frac{2 L\left(c_{1}+c_{2}+c_{3}+c_{4}\right)}{\nu c_{1}}\left(\frac{p(n-1)}{n-p}\right)^{p} \in(1,+\infty)$ since $1=\frac{c_{1}}{c_{1}} \leq \frac{2 L c_{1}}{\nu c_{1}}$. Note that

$$
\begin{aligned}
\left(\int_{B_{R}} 1 d x\right)^{\frac{p}{p^{*}}} & =\left(\int_{B_{R}} 1 d x\right)\left(\left|B_{1}\right| R^{n}\right)^{-\frac{p}{n}} \\
& \leq\left(1+\left|B_{1}\right|^{-\frac{p}{n}}\right) \frac{1}{(R-\rho)^{p}} \int_{B_{R}} 1 d x \\
& \leq\left(1+\left|B_{1}\right|^{-\frac{p}{n}}\right) \beta^{p}\left(\frac{8 m}{R-\rho}\right)^{q} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x .
\end{aligned}
$$

Then we obtain

$$
\begin{aligned}
\left(\int_{B_{R}}\left(1+\left(|u|^{\beta} \eta^{m}\right)^{p^{*}}\right) d x\right)^{\frac{p}{p^{*}} \leq} & 2^{\frac{p}{p^{*}}}\left(1+\left|B_{1}\right|^{-\frac{p}{n}}\right) \beta^{p}\left(\frac{8 m}{R-\rho}\right)^{q} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x \\
& +2^{\frac{p}{p^{*}}} c_{6} \beta^{p}\left(\frac{8 m}{R-\rho}\right)^{q} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x \\
= & c_{7} \beta^{p}\left(\frac{8 m}{R-\rho}\right)^{q} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x
\end{aligned}
$$

where $c_{7}=2^{\frac{p}{p^{*}}}\left(\left(1+\left|B_{1}\right|^{-\frac{p}{n}}\right)+c_{6}\right) \in(1,+\infty)$. Since $\eta=1$ on B_{ρ} and $0 \leq \eta$, we have $\left(\int_{B_{\rho}}\left(1+|u|^{\beta p^{*}}\right) d x\right)^{\frac{p}{p^{*}}} \leq c_{7} \beta^{p}\left(\frac{8 m}{R-\rho}\right)^{q} \int_{B_{R}}\left(1+|u|^{q+p(\beta-1)}\right) d x$ and (61) follows.

Step 5. Now we use Moser's iteration. Let us recall assumption (15): $q<p^{*}$. Then

$$
q+p(\beta-1)<\beta p^{*}
$$

Let us define β_{1} such that $q+p\left(\beta_{1}-1\right)=p^{*}$. It turns out that $\beta_{1}=1+\left(p^{*}-q\right) / p$. Since $q<p^{*}$, then $\beta_{1}>1$ and (60) gives higher integrabilty. We iterate this procedure as follows. Let B_{σ} be the open ball with radius $\sigma \leq 1$, centered at x_{0}, with $\overline{B_{\sigma}} \subset \Omega$. We define the radii ρ_{k} in this way

$$
\rho_{1}=\sigma-\frac{\sigma}{2^{1+1}} \quad \text { and } \quad \rho_{j+1}=\rho_{j}-\frac{\sigma}{2^{1+j+1}} \quad \text { for } j \in \mathbb{N} \text {. }
$$

Then $\frac{1}{2} \sigma<\rho_{k} \leq \frac{3}{4} \sigma$. We define R_{k} as follows

$$
R_{1}=\sigma \quad \text { and } \quad R_{j+1}=\rho_{j} \quad \text { for } j \in \mathbb{N}
$$

Then $R_{k}-\rho_{k}=\frac{\sigma}{2^{1+k}}$. We define exponents β_{k} as follows

$$
q+p\left(\beta_{1}-1\right)=p^{*} \quad \text { and } \quad q+p\left(\beta_{j+1}-1\right)=p^{*} \beta_{j} \quad \text { for } j \in \mathbb{N}
$$

It results that $\beta_{j} \in(1,+\infty)$ and

$$
\beta_{j}=\left(\frac{p^{*}}{p}\right)^{j} \frac{p^{*}-q}{p^{*}-p}+\frac{q-p}{p^{*}-p} .
$$

We iterate (61) and, for every $j \in \mathbb{N}$, we get

$$
\begin{aligned}
\int_{B_{\rho_{j}}}\left(1+|u|^{p^{*} \beta_{j}}\right) d x \leq & \left(c_{8}\right)^{\sum_{k=0}^{j-1}\left(\frac{p^{*}}{p}\right)^{k}}\left(\Pi_{k=1}^{j}\left(\beta_{k}\right)^{p^{*}\left(\frac{p^{*}}{p}\right)^{j-k}}\right) \\
& \times\left(\Pi_{h=1}^{j}\left(\frac{8 m}{\sigma} 2^{1+h}\right)^{q\left(\frac{p^{*}}{p}\right)^{1+j-h}}\right)\left(\int_{B_{\sigma}}\left(1+|u|^{p^{*}}\right) d x\right)^{\left(\frac{p^{*}}{p}\right)^{j}}
\end{aligned}
$$

where all balls have the same center x_{0}. Since $\frac{\sigma}{2}<\rho_{k}$, taking the power of both sides with exponent $\frac{1}{p^{*} \beta_{j}}$ we obtain

$$
\begin{align*}
& \left(\int_{B \frac{\sigma}{2}}|u|^{p^{*} \beta_{j}} d x\right)^{\frac{1}{p^{*} \beta_{j}}} \\
& \leq\left(c_{8}\right)^{\frac{1}{p^{*} \beta_{j}} \sum_{k=0}^{j-1}\left(\frac{p^{*}}{p}\right)^{k}}\left(\Pi_{k=1}^{j}\left(\beta_{k}\right)^{\left(\frac{p^{*}}{p}\right)^{j-k} \frac{1}{\beta_{j}}}\right) \tag{62}\\
& \quad \times\left(\Pi_{h=1}^{j}\left(\frac{8 m}{\sigma} 2^{1+h}\right)^{\left.\frac{q}{p^{*}\left(\frac{p^{*}}{p}\right.}\right)^{1+j-h} \frac{1}{\beta_{j}}}\right)\left(\int_{B_{\sigma}}\left(1+|u|^{p^{*}}\right) d x\right)^{\left(\frac{p^{*}}{p}\right)^{j} \frac{1}{p^{*} \beta_{j}}} .
\end{align*}
$$

Note that for every $j \in \mathbb{N}$ we have $1 \leq \frac{\left(\frac{p^{*}}{p}\right)^{j}}{\beta_{j}} \leq \frac{p^{*}-p}{p^{*}-q}$,

$$
\begin{equation*}
\left(c_{8}\right)^{\frac{1}{p^{*} \beta_{j}} \sum_{k=0}^{j-1}\left(\frac{p^{*}}{p}\right)^{k}}<\left(c_{8}\right)^{\frac{p}{p^{*}\left(p^{*}-q\right)}} \tag{63}
\end{equation*}
$$

and $\left(\int_{B_{\sigma}}\left(1+|u|^{p^{*}}\right) d x\right)^{\left(\frac{p^{*}}{p}\right)^{j} \frac{1}{p^{*} \beta_{j}}} \leq\left(\int_{B_{\sigma}}\left(1+|u|^{p^{*}}\right) d x\right)^{\frac{1}{p^{*}}}+\left(\int_{B_{\sigma}}\left(1+|u|^{p^{*}}\right) d x\right)^{\frac{p^{*}-p}{p^{*}\left(p^{*}-q\right)}}$.
Moreover

$$
\begin{equation*}
\Pi_{k=1}^{j}\left(\beta_{k}\right)^{\left(\frac{p^{*}}{p}\right)^{j-k}} \frac{1}{\beta_{j}}<e^{\frac{p^{*}-p}{p^{*}-q}\left(\ln \left(\frac{p^{*}}{p}\right)\right) \sum_{k=1}^{+\infty} k\left(\frac{p}{p^{*}}\right)^{k} .} \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
\Pi_{h=1}^{j}\left(\frac{8 m}{\sigma} 2^{1+h}\right)^{\frac{q}{p^{*}}\left(\frac{p^{*}}{p}\right)^{1+j-h} \frac{1}{\beta_{j}}}<e^{\frac{q}{p^{*}-p} p^{*}-q}\left(\ln \left(\frac{32 m}{\sigma}\right)\right) \sum_{h=1}^{+\infty}\left(\frac{p}{p^{*}}\right)^{h} h . \tag{65}
\end{equation*}
$$

We insert the previous estimates (63), (64) and (65) into (62). For every $j \in \mathbb{N}$ we obtain

$$
\begin{align*}
\left(\int_{B \frac{\sigma}{2}}|u|^{p^{*} \beta_{j}} d x\right)^{\frac{1}{p^{*} \beta_{j}}} \leq & \left(c_{8}\right)^{\frac{p}{p^{*}\left(p^{*}-q\right)}} e^{\frac{p^{*}-p}{p^{*}-q}}\left(\ln \left(\frac{p^{*}}{p}\right)\right) \sum_{k=1}^{+\infty} k\left(\frac{p}{p^{*}}\right)^{k} \tag{66}\\
& \times e^{\frac{q}{p} p^{*}-p}\left(\ln \left(\frac{32 m}{\sigma}\right)\right) \sum_{h=1}^{+\infty}\left(\frac{p}{p^{*}}\right)^{h} h\left(\int_{B_{\sigma}}\left(1+|u|^{p^{*}}\right) d x\right)^{\left(\frac{p^{*}}{p}\right)^{j} \frac{1}{p^{*} \beta_{j}}} .
\end{align*}
$$

Again by (15), $q<p^{*}$, we get

$$
\lim _{j \rightarrow+\infty} \beta_{j}=+\infty \quad \text { and } \quad \lim _{j \rightarrow+\infty}\left(\frac{p^{*}}{p}\right)^{j} \frac{1}{p^{*} \beta_{j}}=\frac{p^{*}-p}{p^{*}\left(p^{*}-q\right)}
$$

So, taking the limit as $j \rightarrow+\infty$ in (66), we get

$$
\begin{aligned}
\|u\|_{L^{\infty}\left(B_{\frac{\sigma}{2}}\right)} \leq & \left(c_{8}\right)^{\frac{p}{p^{*}\left(p^{*}-q\right)}} e^{\frac{p^{*}-p}{p^{*}-q}\left(\ln \left(\frac{p^{*}}{p}\right)\right) \sum_{k=1}^{+\infty} k\left(\frac{p}{p^{*}}\right)^{k}} \\
& \times e^{\frac{q}{p} \frac{p^{*}-p}{p^{*}-q}\left(\ln \left(\frac{32 m}{\sigma}\right)\right) \sum_{h=1}^{+\infty}\left(\frac{p}{p^{*}}\right)^{h} h}\left(\int_{B_{\sigma}}\left(1+|u|^{p^{*}}\right) d x\right)^{\frac{p^{*}-p}{p^{*}\left(p^{*}-q\right)}} .
\end{aligned}
$$

This ends the proof.
Acknowledgement. We thank MIUR for support.

References

[1] Acerbi, E. and Fusco, N., Regularity for minimizers of non-quadratic functionals: the case $1<p<2$. J. Math. Anal. Appl. 140 (1989), $115-135$.
[2] Apushkinskaya, D., Bildhauer, M. and Fuchs, M., Interior gradient bounds for local minimizers of variational integrals under non standard growth conditions. J. Math. Sci. 164 (2010), $345-363$.
[3] Bildhauer, M. and Fuchs, M., Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals. Manuscripta Math. 123 (2007), 269 - 283.
[4] Bildhauer, M. and Fuchs, M., Variational integrals of splitting type: higher integrability under general growth condition. Ann. Mat. Pura Appl. 188 (2009), 467 - 496.
[5] Cianchi, A., Local boundedness of minimizers of anisotropic functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 147 - 168.
[6] Cupini, G., Marcellini, P. and Mascolo,E., Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 66-86.
[7] Cupini, G., Marcellini, P. and Mascolo, E., Local boudedness of solutions to quasilinear systems. Manuscripta Math. 137 (2012), $287-315$.
[8] Dall'Aglio, A. and Mascolo, E., L^{∞} estimate for a class of nonlinear elliptic systems with nonstandard growth. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 65-83.
[9] De Giorgi, E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico (in Italian). Boll. Un. Mat. Ital. 4 (1968), 135 - 137.
[10] D'Ottavio, A., A remark on a paper by Bhattacharya and Leonetti. Comment. Math. Univ. Carolinae 36 (1995), $489-491$.
[11] Esposito, L., Leonetti, F. and Mingione, G., Regularity for minimizers of functionals with p-q growth. NoDEA Nonlinear Diff. Equs. Appl. 6 (1999), $133-148$.
[12] Esposito, L., Leonetti, F. and Mingione, G., Regularity results for minimizers of irregular integrals with (p,q) growth. Forum Math. 14 (2002), 245-272.
[13] Frehse, J., An irregular complex valued solution to a scalar uniformly elliptic equation. Calc. Var. 33 (2008), 263-266.
[14] Fusco, N. and Hutchinson, J., Partial regularity for minimizers of certain functionals having non quadratic growth. Ann. Mat. Pura Appl. 155 (1989), 1-24.
[15] Fusco, N. and Sbordone, C., Local boundedness of minimizers in a limit case. Manuscripta Math. 69 (1990), 19 - 25.
[16] Fusco, N. and Sbordone, C., Some remarks on the regularity of minima of anisotropic integrals. Comm. Partial Diff. Equs. 18 (1993), 153 - 167.
[17] Giaquinta, M., Growth conditions and regularity, a counterexample. Manuscripta Math. 59 (1987), 245 - 248.
[18] Giaquinta, M. and Modica, G., Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986), 55-99.
[19] Hong Min Chung, Some remarks on the minimizers of variational integrals with nonstandard growth conditions. Boll. Un. Mat. Ital. A(7) 6 (1992), 91 - 101.
[20] Leonetti, F., Mascolo, E. and Siepe, F., Everywhere regularity for a class of vectorial functionals under subquadratic general growth conditions. J. Math. Anal. Appl. 287 (2003), 593-608.
[21] Lieberman, G. M., Gradient estimates for anisotropic elliptic equations. Adv. Diff. Equs. 10 (2005), 767 - 812.
[22] Marcellini, P., Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), $267-284$.
[23] Marcellini, P., Regularity for elliptic equations with general growth conditions. J. Diff. Equs. 105 (1993), 296 - 333.
[24] Marcellini, P., Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23 (1996), 1 - 25.
[25] Marcellini, P. and Papi, G., Nonlinear elliptic systems with general growth. J. Diff. Equs. 221 (2006), $412-443$.
[26] Mascolo, E. and Papi, G., Local boundedness of minimizers of integrals of the Calculus of Variations. Ann. Mat. Pura Appl. 167 (1994), 323-339.
[27] Meier, M., Boundedness and integrability properties of weak solutions of quasilinear elliptic systems. J. Reine Angew. Math. 333 (1982), 191 - 220.
[28] Moscariello, G. and Nania, L., Hölder continuity of minimizers of functionals with nonstandard growth conditions. Ricerche Mat. 40 (1991), 259 - 273.
[29] Moser, J., A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13 (1960), 457-468.
[30] Nečas, J., Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity. In: Theory Nonlinear Operators. (Proceedings Berlin 1975). Abh. Akad. Wiss. DDR, Abt. Math. - Natur. Tech. 1. Berlin: Akademie-Verlag 1977, pp. 197 - 206.
[31] Rao, M. M. and Ren, Z. D., Theory of Orlicz Spaces. Monogr. Textbooks Pure Appl. Math. 146. New York: Marcel Dekker 1991.
[32] Sveràk, V. and Yan, X., Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA 99 (2002), 15269 - 15276.
[33] Tolksdorf, P., Everywhere regularity for some quasilinear systems with a lack of ellipticity. Ann. Mat. Pura Appl. 134 (1983), 241 - 266.
[34] Uhlenbeck, K., Regularity for a class of elliptic systems. Acta Math. 138 (1977), 219-240.

Received March 2, 2011

