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Let Ω be a smooth domain in R2, we prove that if g : [0, +∞) → [0, +∞] is convex 
with g(0) < g(t) whenever t > 0 then there exists an unique minimizer u ∈ C0,1(Ω)
of the functional u �→

´
Ω g(|∇u|) dxdy among all Lipschitz-continuous functions that 

assume the same value of u on ∂Ω.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider an integral of the Calculus of Variations

F (u) =
ˆ

Ω

f(x, u(x),∇u(x)) dx (1.1)

where Ω is an open subset of Rn, u is a real function defined on Ω in a Sobolev space, say W 1,p(Ω), and 
f (x, s, ξ) is a Caratheodory function, i.e. measurable in x and continuous in s, ξ. The study of the existence 
of minimizers of F in a Dirichlet class u ∈ u0 + W 1,p(Ω) via Direct Methods is based on the (sequential) 
lower semicontinuity of F in the weak topology of W 1,p(Ω). It is well known, starting by the classical work 
of Tonelli, that the lower semicontinuity of F is linked to the convexity of the integrand f with respect to 
the variable ξ. However, for integrand function not strictly convex uniqueness is not guaranteed.
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In this paper we are interested to uniqueness of minimizers of functionals of the form

G(u) =
ˆ

Ω

g(|∇u(x)|) dx (1.2)

with suitable prescribed boundary conditions, when g is convex but not necessarily strictly convex. The 
problem of uniqueness of minimizers for non-strictly convex functionals (1.2) appears when one deals with a 
non-convex problem and applies the relaxation methods. In fact, the existence or not existence for non-convex
integrals is related to the non-uniqueness of minimizers of the (not strictly) convexified problem. The 
mathematical literature on non-convex problems is quite large starting by the results of Bogolyubov [3]
and later by Marcellini [12] in one dimension. For n ≥ 2 we recall Aubert–Tahraoui [2], Mascolo–Schianchi 
[14–16], Cellina [7], Friesecke [9], Zagatti [19], Sychev [18], Celada–Perrotta [6] and Fonseca–Fusco–Marcellini 
[8] and Celada–Cupini–Guidorzi [5], through Lipschitz-continuous regularity results for minimizers. We refer 
to the previous articles for the detailed bibliography on the subject. On the other hand, the uniqueness for 
non-strictly convex functionals is a classical question and it is however interesting in his own right.

A first uniqueness result is due to Parks [17] which shows the uniqueness of mimimizer for the functional
ˆ

Ω

|∇u| dx (1.3)

i.e. g(t) = t provided that the boundary datum satisfies the bounded slope condition. The arguments 
of Parks’s Theorem utilize the fact that since u has the least gradient property, the level sets Eλ =
{x ∈ Ω : u(x) ≥ λ} have the oriented boundary of least area, by the results of Bombieri–De Giorgi–Giusti in 
[4]. Unfortunately, the elegant approach of Parks does not work for general functionals of type (1.2). Indeed, 
the integral (1.3) can be reconstructed starting from what happens on the level sets by means of the coarea 
formula, but for more general non-linear functionals of the form (1.2) the coarea formula does not hold.

A very interesting uniqueness result for non-strictly convex functionals under the assumption

g(0) < g(t) for t > 0 (1.4)

is due to Marcellini [13]. In dimension n ≥ 2, he proved that if G in (1.2) has a minimizer u such that

u ∈ C1(Ω) and Du �= 0 everywhere on Ω (1.5)

then u is the unique minimizer of G in the class of all Lipschitz continuous functions that assume the same 
value of u on ∂Ω. Let us remark that the strict inequality in (1.4) is crucial in order to have uniqueness of 
the minimizer. Indeed, let us consider the boundary condition constant, say c, then the constant function 
u = c is a minimizer of G. But, if there exists t0 > 0 such that g(t) = g(0) for any t ∈ [0, t0] then for any 
φ ∈ C∞

c (Ω) with ||∇φ||∞ < t0 we get G(u) = G(u + φ) so that the function c + φ is still a minimizer of G.
For completeness, we mention also the partial uniqueness result by Kawohl–Stara–Wittum [11].
Inspired by the fundamental contributions of Parks and Marcellini, we show, at least when n = 2, that it 

is possible to remove assumptions (1.5), thus we answer the long standing open question which Marcellini 
placed in [13]. Precisely, we prove the following theorem.

Theorem 1.1. Let Ω ⊂ R
2 be a bounded and open set and let g : [0, +∞) → [0, +∞] be convex and such that 

(1.4) holds true. Let G : C0,1(Ω) → R be given by

G(u) :=
ˆ

g(|∇u(x, y)|) dxdy (1.6)

Ω
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If u ∈ C0,1(Ω) is a minimizer of G among all Lipschitz continuous functions that assume the same value of 
u on the boundary ∂Ω, then u is the unique minimizer in that class.

We observe that in order to apply the Direct Method of the Calculus of Variations, C0,1(Ω) is the 
proper competitor class for the convex functional G in (1.6). In fact, the well known theorem of Hartmann–
Stampacchia [10] ensures that there is at least one minimizer of G in the class of Lipschitz-continuous 
functions, when the boundary datum satisfies the so-called bounded slope condition. Moreover, it is essential 
to assume that the boundary condition is continuous, at least if we look for solutions in BV (Ω) i.e. in the 
class of L1-functions with derivatives which are measures with bounded total variation. Indeed, Marcellini 
in [13] gives the following example, that for completeness we briefly describe. Take g(t) = t and extend the 
functional G to be the total variation functional. Then, consider Ω := B1(0) in R2 and take u1, u2 : Ω → R

given by

u1(x, y) :=
{

1 if |x| ≤
√

2/2
−1 if |x| >

√
2/2

, u2(x, y) :=
{

1 if |y| ≤
√

2/2
−1 if |y| >

√
2/2.

Then, u1 and u2 have the same discontinuous boundary condition and both u1 and u2 minimize the total 
variation among all BV -functions with the same boundary condition.

The arguments of the proof of Theorem 1.1 are similar to those of Marcellini in [13]. The structure of level 
sets of Lipschitz functions is crucial in order to obtain the proof without assuming (1.5). The assumption 
n = 2 permits us to apply directly the result obtained by Alberti–Bianchini–Crippa in [1], where are 
established significant and fine properties of the level sets of general Lipschitz-continuous map from Rd to 
R

d−k, d ≥ 2 and k < d.
Finally, we remark that to study the higher dimension case, it could be really necessary to insert the 

problem in the framework of rectifiable currents, this is under investigation and it will be the subject of a 
forthcoming paper in collaboration with G. Alberti.

2. Proof of Theorem 1.1

In what follows for any A ⊂ R
2 open and bounded the notation C0,1(A) stands for the class of Lipschitz-

continuous functions on A. For any w ∈ C0,1(R2) we will denote by S(w) the set of all points (x, y) ∈ R
2

where w is either not differentiable at (x, y) or ∇w(x, y) = 0; notice that the set of all points where w is not 
differentiable is negligible by Rademacher’s Theorem. For any s ∈ R we denote by ws the s-level set of w, 
that is ws := w−1(s), and by ws

∗ the union of all connected components C of ws such that H1(C) > 0; it 
turns out that ws

∗ is a Borel set [1, Prop. 6.1].
In order to prove uniqueness of the minimizer following the idea of Marcellini [13] we apply the charac-

terization of the level sets of Lipschitz-continuous functions of [1, Thm. 2.5]. More precisely:

Theorem 2.1. [1, Thm. 2.5, (iii)–(iv)] Let f ∈ C0,1(R2) with compact support. For a.e. s ∈ R the following 
statements hold:

(i) H1(fs \ fs
∗ ) = 0;

(ii) every connected component C of fs is either a point or a closed simple curve with a Lipschitz 
parametrization γ : [a, b) → C which is injective and satisfies γ(t) /∈ S(f) and |γ′(t)| = 1 for a.e. 
t ∈ [a, b).

The following proposition is a very easy variant of Theorem 2.1.
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Proposition 2.2. Fix w ∈ C0,1(R2) with compact support and a negligible set Ω0 ⊂ R
2. Then, for a.e. s ∈ R

the following statements hold:

(i) H1(ws \ ws
∗) = 0;

(ii) every connected component C of ws is either a point or a closed simple curve with a Lipschitz and 
injective parametrization γ : [a, b) → C which satisfies γ(t) /∈ S(w) ∪ Ω0 and |γ′(t)| = 1 for a.e. 
t ∈ [a, b).

Proof. First of all (i) follows from Theorem 2.1. Let us denote by A the set of all s ∈ R such that every 
connected component C of ws is either a point or a closed simple curve with a Lipschitz and injective 
parametrization γ : [a, b) → C which satisfies γ(t) /∈ S(w) and |γ′(t)| = 1 for a.e. t ∈ [a, b). Then, (ii) of 
Theorem 2.1 says that |R \ A| = 0. Now, notice that if χ denotes the characteristic function of S(w) ∪ Ω0, 
namely χ(x, y) = 1 if (x, y) ∈ S(w) ∪ Ω0 and χ(x, y) = 0 otherwise, then the coarea formula implies 
that

ˆ

R2

χ(x, y)|∇w(x, y)| dxdy =
+∞ˆ

−∞

H1(ws ∩ (S(w) ∪ Ω0)) ds.

Since χ|∇w| = 0 a.e. in R2 we can deduce that H1(ws ∩ (S(w) ∪ Ω0)) = 0 for a.e. s ∈ R. Let 
B := {s ∈ R : H1(ws ∩ (S(w) ∪ Ω0)) = 0}. We immediately have |R \ (A ∩ B)| = 0, and A ∩ B is 
the set of all s ∈ R such that every connected component C of ws is either a point or a closed simple curve 
with a Lipschitz and injective parametrization γ : [a, b) → C which satisfies γ(t) /∈ S(w) ∪Ω0 and |γ′(t)| = 1
for a.e. t ∈ [a, b), which yields the conclusion. �

From now on, let u ∈ C0,1(Ω) be a minimizer of G among all Lipschitz-continuous functions Ω → R that 
assume the same value of u on ∂Ω.

Lemma 2.3. Let (x0, y0) ∈ Ω and s0 := u(x0, y0). Assume that the connected component C of us0 which 
contains (x0, y0) is a closed simple curve. Then C ∩ ∂Ω �= ∅.

Proof. Assume by contradiction that C ⊂ Ω. By Jordan’s Theorem C is the boundary of a non-empty, 
open and bounded region V ⊂ Ω; in particular |V | > 0. Let w : Ω → R be given by

w(x, y) :=
{

u(x, y) if (x, y) ∈ Ω \ V
s0 if (x, y) ∈ V .

It is easy to see that w remains Lipschitz-continuous and by construction u = w on ∂Ω. But ∇w = 0 on V
and |V | > 0, hence G(w) < G(u) because we are assuming that g(0) < g(t) for every t > 0, and this is a 
contradiction since u is a minimizer for G. �
Remark 2.4. We notice that if u is constant on ∂Ω then u must be constant on Ω by condition (1.4). Thus, 
in what follows we can restrict the analysis to the case |Ω \ S(u)| > 0.

From now on v ∈ C0,1(Ω) denotes a different minimizer of G among all Lipschitz-continuous functions 
Ω → R that assume the same value of u on ∂Ω. The following lemma is contained in the proof of Theorem 3 
of [13], for the sake of completeness we give the proof.
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Lemma 2.5. It turns out that

∇v(x, y) = λ(x, y)∇u(x, y) for a.e. (x, y) ∈ Ω \ S(u) (2.1)

for some measurable function λ : Ω → R.

Proof. Using the convexity of g for a.e. (x, y) ∈ Ω we have

g

(
|∇u(x, y) + ∇v(x, y)|

2

)
≤ g(|∇u(x, y)|) + g(|∇v(x, y)|)

2 .

Then from the minimality of u and v we get

G(u) ≤
ˆ

Ω

g

(
|∇u(x, y) + ∇v(x, y)|

2

)
dxdy ≤ 1

2

ˆ

Ω

g(|∇u(x, y)|) + g(|∇v(x, y)|) dxdy = G(u).

Hence
ˆ

Ω

g

(
|∇u(x, y) + ∇v(x, y)|

2

)
− g(|∇u(x, y)|) + g(|∇v(x, y)|)

2 dxdy = 0

which means that

g

(
|∇u(x, y) + ∇v(x, y)|

2

)
= g(|∇u(x, y)|) + g(|∇v(x, y)|)

2 , for a.e. (x, y) ∈ Ω.

It follows that there exist real valued functions m = m(x, y), q = q(x, y) such that

m(x, y)
2 |∇u(x, y) + ∇v(x, y)| + q(x, y) = 1

2(m(x, y)|∇u(x, y)| + m(x, y)|∇v(x, y)| + 2q(x, y))

for a.e. (x, y) ∈ Ω, that is

m(x, y)|∇u(x, y) + ∇v(x, y)| = m(x, y)(|∇u(x, y)| + |∇v(x, y)|), a.e. (x, y) ∈ Ω. (2.2)

Notice now that since g is convex and we are assuming g(0) < g(t) whenever t > 0 we can also say that 
m(x, y) > 0. Hence, simplifying (2.2) we deduce that ∇u(x, y) and ∇v(x, y) are linearly dependent for a.e. 
(x, y) ∈ Ω \ S(u) and since ∇u(x, y) �= 0 everywhere on Ω \ S(u) we obtain (2.1). �

We are ready to prove the main theorem.

Proof of Theorem 1.1. Let v ∈ C0,1(Ω) be a minimizer of G among all Lipschitz-continuous functions Ω → R

that assume the same value of u on ∂Ω.

Step 1. It turns out that u = v everywhere on Ω \ S(u).

For the sake of convenience, we extend both u and v to functions in C0,1(R2) with compact support 
and we do not relabel it: observe that this is always possible using, for instance, the McShane’s Extension 
Theorem.

Let us regularize v by convolution: given a family of mollifiers {ρε}ε>0 let vε := v ∗ ρε. Then, vε and ∇vε
have compact support, vε → v uniformly and ∇vε → ∇v a.e. in Ω as ε → 0. Let
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Ω0 := Ω \ {(x, y) ∈ Ω : ∇vε(x, y) → ∇v(x, y)}.

Observe that Ω0 is negligible. Let Y be the set of all (x, y) ∈ Ω \ S(u) which are Lebesgue point for |∇u|. 
Since ∇u ∈ L∞(R2) we have |(Ω \S(u)) \Y | = 0, hence it is sufficient to show that u = v everywhere on Y . 
Take (x̄, ȳ) ∈ Y . By definition,

lim
ρ→0

−
ˆ

Bρ(x̄,ȳ)

|∇u(x, y)| dxdy > 0. (2.3)

Denote by L the Lipschitz constant of u. Fix r > 0 and take s ∈ u(Br(x̄, ȳ)); then s = u(x, y) for some 
(x, y) ∈ Br(x̄, ȳ). Thus |s − u(x̄, ȳ)| = |u(x, y) − u(x̄, ȳ)| ≤ Lr which means that

u(Br(x̄, ȳ)) ⊂ (u(x̄, ȳ) − Lr, u(x̄, ȳ) + Lr). (2.4)

Assume that for a.e. s ∈ u(Br(x̄, ȳ)) the set us ∩Br(x̄, ȳ) reduces to points. Then

us ∩Br(x̄, ȳ) = (us ∩Br(x̄, ȳ)) \ us
∗

and therefore by (i) of Theorem 2.2 we also have

H1(us ∩Br(x̄, ȳ)) = H1(us ∩Br(x̄, ȳ)) \ us
∗) = 0

for a.e. s ∈ u(Br(x̄, ȳ)). Thus, by the coarea formula

ˆ

Br(x̄,ȳ)

|∇u(x, y)| dxdy =
+∞ˆ

∞

H1(us ∩Br(x̄, ȳ)) ds = 0.

Therefore, |∇u| = 0 a.e. on Br(x̄, ȳ) which contradicts (2.3). Combining Proposition 2.2 with (2.4) we have 
that there exists a sequence sh → u(x̄, ȳ) such that for all h > 0 at least one connected component Ch of ush

satisfies the following properties: Ch is a closed simple curve with a Lipschitz and injective parametrization 
γh : [ah, bh) → Ch, γh(t) /∈ S(u) ∪ Ω0 and |γ′

h(t)| = 1 for a.e. t ∈ [ah, bh), and Ch ∩ B1/h(x̄, ȳ) �= ∅. In 
particular, we find (xh, yh) ∈ Ch with (xh, yh) → (x̄, ȳ). Applying Lemma 2.3 we get Ch ∩ ∂Ω �= ∅.

Let αh ∈ [ah, bh) be such that γh(αh) = (xh, yh) and

βh := min{t ∈ (αh, bh) : γh(t) ∈ ∂Ω}

and define

γ̄h : [αh, βh] → Ω, γ̄h := γh|[αh,βh]
.

Then γ̄h is a Lipschitz curve inside Ω connecting (xh, yh) with ∂Ω, with γ̄h(t) /∈ S(u) ∪Ω0 and with |γ̄′
h(t)| = 1

for a.e. t ∈ [αh, βh] and for any h > 0.
Since vε ◦ γ̄h is still Lipschitz-continuous and vε ∈ C∞

c (R2), we have

vε(xh, yh) − vε(γ̄h(βh)) =
αhˆ
∇vε(γ̄h(t)) · γ̄′

h(t) dt. (2.5)

βh
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Observe that |∇vε(γ̄h(t)) · γ̄′
h(t)| ≤ c for some constant c > 0 since vε are uniformly Lipschitz and |γ̄′

h(t)| = 1
for a.e. t ∈ [αh, βh]. Therefore, using the Dominated Convergence’s Theorem and (2.1) since γ̄h(t) /∈ S(u) ∪Ω0

a.e. on [αh, βh] we can pass to the limit as ε → 0 in (2.5) obtaining

v(xh, yh) − v(γ̄h(βh)) =
αhˆ

βh

∇v(γ̄h(t)) · γ̄′
h(t) dt

=
αhˆ

βh

λ(γ̄h(t))∇u(γ̄h(t)) · γ̄′
h(t) dt

=
αhˆ

βh

λ(γ̄h(t)) d
dt

u(γ̄h(t)) dt = 0

where the last equality follows since u is constant along γ̄h. Hence, for any h > 0 we get v(xh, yh) =
v(γ̄h(βh)) = u(γ̄h(βh)) = u(xh, yh) because γ̄h(βh) ∈ ∂Ω, and u = v on ∂Ω and again u is constant along 
γ̄h. Passing to the limit as h → +∞ we conclude that u(x̄, ȳ) = v(x̄, ȳ).

Step 2. It turns out that u = v everywhere on S(u).

First of all we claim that also ∇v = 0 a.e. on S(u). Indeed, on the contrary assume that |{(x, y) ∈ S(u) :
∇v(x, y) �= 0}| > 0. Then, since g(0) < g(t) whenever t > 0 and since by step 1 we have u = v on Ω \ S(u), 
we obtain

G(v) =
ˆ

Ω

g(|∇v(x, y)|) dxdy

=
ˆ

Ω\S(u)

g(|∇u(x, y)|) dxdy +
ˆ

S(u)

g(|∇v(x, y)|) dxdy

>

ˆ

Ω\S(u)

g(|∇u(x, y)|) dxdy +
ˆ

S(u)

g(|∇u(x, y)|) dxdy = G(u)

which is a contradiction since both u and v are minimizers of G.
By Step 1 we thus have that ∇u = ∇v a.e. on Ω and this implies that u − v is constant a.e. on each 

connected component of Ω. As u and v are Lipschitz-continuous functions which coincide at the boundary 
of Ω, they must be equal and this ends the proof. �
Remark 2.6. Observe that the uniqueness is still true if g = g(x, y, t) is a Caratheodory’s function with 
g(x, y, ·) convex and g(x, y, 0) < g(x, y, t) for a.e. (x, y) ∈ Ω and any t > 0. However, in this case there are 
no general results of existence of Lipschitz-continuous minimizers.
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