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This lecture deals with the everywhere regularity for local minimizers of integral
functionals of the type:

I(v,Ω) =

∫
Ω

f(x, v(x), Dv(x))dx,

where Ω is an open regular set of Rn, f : Ω×RN ×RnN → R is a Carathéodory
function and v is a vector field and Dv(x) =

(
∂vα

∂xi

)
, 1 ≤ α ≤ N , 1 ≤ i ≤ n is

the Jacobian matrix of v.
The central problem of Calculus of Variations consists to find ũ among all func-
tions in a class U such that:

I(ũ,Ω) ≤ I(v,Ω) ∀u ∈ U .

The Dirichlet boundary value problem is given when

U =
{
u ∈W 1,p(Ω, RN ) : u = u0on∂Ω

}
.

The arguments of Direct Methods are based on the sequentially lower semicon-
tinuity of the functional I(v,Ω), as example in the weak topology of W 1,p, and
the coercivity of I with respect to the norm of W 1,p, which implies the weak
compactness of the minimizing sequences.
The convexity of f = f(x, s, z) with respect to the variable z is implies the lower
semicontinuity in the weak topology of W 1,1. The following natural growth
conditions

|z|p − c1 ≤ f(x, s, z) ≤ c2(1 + |z|p),

where c1, c2 > 0 and p > 1, allows to say that I(v,Ω) is well defined, indeed
since f is a Carathéodory function, the upper bound implies that f(x,Du(x))
is integrable in Ω and I(v,Ω) is finite in W 1,p.
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In 1952, Morrey [9] introduced the notion of quasi convexity: a function f is
quasiconvex when for every (x0, s0, z0 and ϕ ∈ C∞0

|Ω|f(x0, s0, z0) ≤
∫

Ω

f(x0, s0, z0 +Dϕ)dx

and showed that if the functional I is sequentially lower semicontinuous with
respect to the weak ∗ topology of W 1,∞, then f is quasiconvex.
Acerbi and Fusco [10] and Marcellini [23] proved that if f is quasiconvex and
satisfies the natural growth conditions, then I(v,Ω) is lower semicontinuous in
the weak topology of W 1,p.
Moreover, the quasiconvex functions can not satisfy the natural growth condi-
tions, but the following p − q growth conditions: there exist 1 < p < q and
c1, c2 > 0 such that

|z|p − c1 ≤ f(x, s, z) ≤ c2(1 + |z|q),

More general, we can also consider the non standard or general growth condi-
tions: there exists g1 and g2 convex functions such that

g1(z)− c1 ≤ f(x, s, z) ≤ c2(1 + g2(z)),

In the last years a great interest has raised around the study of the semicontinu-
ity for functionals I(v,Ω) satisfying general and p−q growth, by obtaining some
conditions on the mutual dependence on p and q and g1 and g2 respectively.
There are many functionals that can be considered in the Calculus of Variations,
whose integrand functions don’t satisfy natural growth condition

• small perturbation of polynomial growth

f(z) = |z|p logα(1 + |z|) p ≥ 1, α > 0

• large perturbation of polynomial growth (exponential)

f(z) = e|z|
α

α > 0

• anisotropic growth

f(z) = (1 + |z|2)
p
2 +

∑
iα

|zi,α|pi pi ≥ p ∀i = 1, . . . , n

f(x, z) = |z|q + a(x)|z|p 0 ≤ a(x) ≤M

• variable growth
f(z) = |z|p(x)

f(z) = [h(|z|)]p(x)

where 1 < p ≤ p(x) ≤ q and h is a convex function in IR.
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The theory of regularity for minimizers of integral functionals has been widely
studied in scalar case N = 1 under natural growth, p = q, starting by the paper
of E. De Giorgi in 1957 [27].
The study of the regularity for the p − q growth started by some papers of P.
Marcellini ([52],[53],[54],[55]) and a restriction between p and q needs: q ≤ c(n)p
with c(n) close to 1. In the last years, there are many contributions on this
subjects and below we present a (far from being complete) list of references.
In the vectorial case N > 1 there are some well known counterexamples to the
continuity of the minimizers (see De Giorgi, Giusti and Miranda [34]). Under
natural growth the regularity has been investigated and in general one can
aspect only partial regularity i.e. the minimizers is smooth in some open subset
Ω0 ⊂ Ω with an estimate of the measure of the singular set. Nevertheless, in the
case f(x, ξ) = |ξ|p, (p ≥ 2), Uhlenbeck [36] proved that the minimizers are in
C1,α
loc , a result which was later extended to more general integrands which grow

like |z|p by Giaquinta and Modica [33] for p ≥ 2 and Acerbi and Fusco, when
1 < p < 2.
In [56], Marcellini considers integrals without growth conditions and proves the
everywhere Hölder continuity of the gradient for minimizers when f(x, z) =

g(|z|) with g positive and convex, satisfying: g′(t)
t is positive and increasing in

(0,+∞) and a non oscillatory condition at infinity, i.e. for every α > 1 there
exists a constant c = c(α) such that

g′′(t)t2α ≤ c[g(t)]α, ∀t > 1;

these conditions imply at least quadratic growth but they allow exponential
behaviour. The subquadratic case is studied by Leonetti, Mascolo and Siepe in
[51].
Here, we are interested in the everywhere regularity for local minimizers in the
non homogeneous case f = f(x, z) and then we need the special structure on
the density energy:

f = g(x, |z|).

We recall that u is a local minimizer of I(v,Ω) if u ∈W 1,1
loc (Ω, RN ), f(x,Du(x)) ∈

L1
loc(Ω) and ∫

spt(ψ)

f(x,Du)dx ≤
∫
spt(ψ)

f(x,Du+Dψ)dx,

for every ψ ∈W 1,1(Ω, RN ) with spt(ψ) ⊂⊂ Ω, therefore u is also a weak solution
of an elliptic system of the form

n∑
i=1

∂

∂xi
aαi (x,Du) = 0, ∀α = 1, . . . , N (1)

where the vector field a = (aαi ) : Ω× IRnN → IRnN is the gradient with respect
to z of the function f .
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We present two different situations, in some sense complementary each other:
the case in which f(x, z) can have fast behavior, for example exponential, with
respect to z and a case of p− q growth, and then the behaviour of f can be also
slow (q < 2).
In the article Everywhere regularity for vectorial functionals with general growth,
[57], written in collaboration with A.P.Migliorini, we consider non homogeneous
densities, with the non oscillatory condition at infinity and we obtain the fol-
lowing result:
Assume that g = g(x, t) : Ω×[0,+∞)→ [0,+∞) is of class C2, convex in t, such

that ∀x ∈ Ω, gt(x,t)
t is positive and increasing with respect to t and for every

Ω0 ⊂⊂ Ω and α > 1 there exist two positive constants c1 and c2, depending on
α and on Ω0, such that ∀x ∈ Ω0 and ∀t > 1

gtt(x, t)t
2α ≤ c1[g(x, t)]α

and ∀t > 0 and ∀s = 1, . . . , n

|gtxs(x, t)| ≤ c2gt(x, t)[1 + gα−1
t (x, t)].

Then every local minimizer u of

I(Ω, u) =

∫
Ω

g (x, |Du|) dx

is in W 1,∞
loc

(
Ω, IRN

)
and there exist c > 0 and σ > 0 such that for every

BR ⊂⊂ Ω:

sup
BR/2

|Du| ≤ c
{∫

BR

[1 + g (x, |Du|)] dx
}1+σ

.

Actually we prove the theorem under weak assumptions on g. (Theorem 2.1 of
[57]).
The most relevant fact is that the integrand f(x, ξ) may have exponential growth
with respect to ξ, which involves systems (1) non uniformly elliptic.
Our result includes energy densities with variable growth as∫

Ω

a(x)[h (|Du|)]p(x)dx,

where h is a C2([0,+∞)) positive convex function satisfying previous conditions
with a, p ∈W 1,∞

loc (Ω), a(x), p(x) ≥ c > 0 a.e. x ∈ Ω. In particular we can take

h(t) ∼ exp(tm)

for t→ +∞ and m > 0.
Recently, this kind of system, with variable growth, has been used by Rajagopal
and Růžička ([62] and [61]) , in their model for the behaviour of special viscous,
non-Newtonian, fluids with the ability to change their mechanical properties in
dependence on an applied electric field, the so-called electrorheological fluids.
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In the model proposed by Rajagopal and Růžička, the interaction between the
electric field and the fluid in motion is expressed in the coefficients of the system
by a variable exponent.
The case f(x, ξ) = |ξ|p(x) has been studied in the scalar case by ZhiKov [63],
Mascolo and Papi [58] and Chiadò Piat and Coscia [41] (see also Marcellini [54]
and Dall’Aglio, Mascolo and Papi [44]). In the vectorial case, the regularity
result is due to Coscia and Mingione [42] and regularity results on the systems
related with of electrorheological fluids are contained in Acerbi and Mingione
[37], [38].
Moreover, the result includes also more general cases as energies of the form

g(x, t) = exp(tp(x))

t near +∞ and even every other finite composition of exponentials as for example

g(x, t) = exp(exp(tp1(x)))p2(x)

with pi(x) ≥ 2, (i = 1, 2),
The interest in functionals with general exponential growth and non uniformly
elliptic systems is also motivated by different models which arise from problems
in mathematical physics as combustion theory and reaction of gases.
We are able to improve to fast behaviour the previous regularity results by using
different technique, indeed we do not control the stored energy g(x, t) by means
of power functions but we use directly its particular structure and properties
(in the same direction Dall’Aglio and Mascolo [45] for L∞-regularity).
We give an idea of the proof. We consider first functionals

I(v,Ω) =

∫
Ω

f(x,Dv(x))dx,

with controllable growth i.e. there exist positive constants m, M and N , such
that

m |λ|2 ≤
∑
i,j,α,β

fzα
i
zβ
j

(x, z)λαi λ
β
j ≤M |λ|

2
,

and
|fξα

i
xs(x, z)| ≤ N(1 + |ξ|2)

1
2 , a.e. x ∈ Ω0, ∀z ∈ IRnN .

i.e. uniform elliptic systems (1). Previous inequalities imply that function g
satisfies:

m ≤ gt(x, t)

t
≤ gtt(x, t) ≤M

and
|gtxs(x, t)| ≤ N(1 + t2)

1
2 ,

∀t > 0 and for a.e. x ∈ Ω0.
Under these assumptions we prove that all local minimizers are in W 1,∞

loc and
the following a-priori estimate

sup
Bρ

|Du| ≤ c
{∫

BR

[1 + g(x, |Du|)] dx
}1+σ
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where 0 < ρ < R < 1 such that BR ⊂⊂ Ω0, σ = σ(n) > 0 where c and β do not
depend on m, M and N , which appear in the controllability assumptions.
In the second part we carry out the estimate to the general case by means of
a suitable approximation argument. More precisely, we construct a sequence of
functions gk ≤ g which converges to g, with gk satisfying the same assumptions
of g and such that the corresponding functionals have controllable growth with
constants , Mk,mk and Nk, depending on k.
Let u be local minimizers of I(v,Ω). For each k, consider the Dirichlet problems
in BR ⊂⊂ Ω0 ⊂⊂ Ω:

inf

{∫
BR

gk (x, |Dv|) dx, v ∈ u+W 1,2
0

(
BR, IR

N
)}

and denote by uk the unique solution.
We prove that, up to a subsequence, (uk) converges weakly in u+W 1,2

0

(
BR, IR

N
)

to a function w. Moreover, by applying the a priori estimate to uk, there exist
σ > 0 and c independent of k, such that ∀ρ < R:

sup
Bρ

|Duk| ≤ c
{∫

BR

[1 + gk (x, |Duk|)]dx
}1+σ

.

By the minimality of uk, we have

sup
Bρ

|Duk| ≤ c
{∫

BR

[1 + g (x, |Du|)]dx
}1+σ

.

The last inequality gives that (uk), up to a subsequence, converges to the func-
tion w in the weak* topology of W 1,∞

loc (BR, IR
N ). By lower semicontinuity and

using the dominated convergence theorem, as k → +∞ we have∫
BR

g (x, |Dw|) dx ≤
∫
BR

g (x, |Du|) dx.

Therefore w is a local minimizer of I and the strictly convexity of the functional
gives u = w. A procedure of passage to the limit gives estimate for the local
minimizer u.

In the article ,[43], Regularity of minimizers of vectorial integrals with p−growth,
in collaboration with G. Cupini and M. Guidorzi, the regularity of local mini-
mizers is studied in the framework of the p-uniform convexity.
Define

I(v,Ω) =

∫
Ω

f(x,Dv(x))dx,

Let N = 1 and f satisfy natural p-growth condition. In 1988 Manfredi in [35]
proves that when f = f(z) with f ∈ C2 satisfies the ellipticity condition

ν(1 + |z|2)
p−2
2 |λ|2 ≤ (D2f(z)λ, λ) ≤ L(1 + |z|2)

p−2
2 |λ|2 (2)
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for z and λ in IRnN , the local minimizers are in C1,β .
In 1997, Fonseca and Fusco [29] introduced, for f = f(z), the following notion
of p-uniform convexity: there exist p > 1 and ν > 0 such that, for a.e. x ∈ Ω
and for every z1, z2 ∈ RnN

1

2
[f(z1) + f(z2)] ≥ f

(
z1 + z2

2

)
+ ν(1 + |z1|2 + |z2|2)(p−2)/2|z1 − z2|2, (3)

for all z1, z2 ∈ IRnN .
They proved that a p-uniform convex and continuous function can be approx-
imate by means a sequence of C2 which satisfy (2). Moreover if f ∈ C2 ellip-
ticity condition (2) is equivalent to the p-uniformly convexity. For integrand
p-uniformly convex, Fonseca and Fusco showed that the local minimizers are
W 1,∞.
The result was generalized by Fonseca, Fusco and Marcellini in [28] to non
homogeneous densities f = f(x, z), in order to study the existence of minimizers
of some non convex variational problems, under the less restrictive assumption
p-uniform convexity at infinity: there exist p > 1 and ν > 0 such that

1

2
[f(x, z1)+f(x, z2)] ≥ f

(
x,
z1 + z2

2

)
+ν(1+ |z1|2 + |z2|2)(p−2)/2|z1−z2|2, (4)

for a.e. x ∈ Ω and for every z1, z2 ∈ IRnN \ BR(0) endpoints of a segment
contained in the complement of BR(0).
In the vectorial case N > 1 and p− q-growth, Esposito, Leonetti and Mingione
[48], study the case f p-uniformly convex and f = g(|z|). In [43], we consider
the more general f = f(x, z) = g(x, |z|) p-uniformly convex at infinity. In the

both results, the W 1,∞-regularity is obtained under the restriction q > p (n+1)
n .

We give now the precise statement of the regularity theorem contained in The-
orem 1.1 of [43]:
Assume that f : Ω× IRnN → [0,+∞) is a Carathéodory function, convex with
respect to the last variable, satisfying the following conditions

(A1) there exist R > 0 and a function g such that for a.e. x ∈ Ω and every
z ∈ IRnN \BR(0)

f(x, z) = g(x, |z|) ,

(A2) f is p-uniformly convex at infinity,

(A3) there exist L > 0 and q with p < q < p (n+1)
n , such that for a.e. x ∈ Ω and

z ∈ IRnN ,
0 ≤ f(x, z) ≤ L(1 + |z|)q,

(A4) for a.e. x ∈ Ω and every z ∈ IRnN \BR(0) let D+
t f̃(x, |z|) be the right-side

derivative of f̃ with respect to t and denote D+
zα
i
f(x, z) = D+

t f̃(x, |z|) z
α
i

|z| .

Then for every z ∈ IRnN \BR(0), the vector field x 7→ D+
z f(x, z) is weakly

differentiable and

|DxD
+
z f(x, z)| ≤ L(1 + |z|)q−1.
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Let u be a local minimizer of

I(v,Ω) =

∫
Ω

f(x,Dv(x))dx,

whose integrand f satisfies the assumptions (A1)–(A4), 1 < p ≤ q < p(n+1)/n.
Then u is locally Lipschitz continuous and for all Br(x0) ⊂⊂ Ω

sup
Br/4(x0)

|Du| ≤ c

[∫
Br(x0)

(1 + f(x,Du)) dx

]β
,

where c = c(n, p, q, L,R, ν), and β = β(n, p, q).
Assumption (A2) imply that f is p-coercive i.e. there exist two positive con-
stants c0, c1 such that

−c0 + c1|z|p ≤ f(x, z)

so f satisfies the p− q growth condition.
Observe that the restriction between p and q is in some sense sharp. Indeed
Esposito, Leonetti and Mingione in [48] provide an example where q > pn+1

n ,
and local minimizers may not belong to W 1,q.
The regularity conditions (A4) with respect to x are also needed. A functional
I exists, with f only measurable with respect to x, such that its minimizers do
not belong to W 1,q(Ω) (see Zhikov [63]).
The proof consists in two steps. First we consider regular elliptic and p-growth
functionals((2 holds) and by known regularity results the local minimizers u
are in W 1,∞. A particular application of Moser’s iteration method, permits to
prove the following sharp a-priori estimate

sup
Bρ(x0)

|Du|p ≤ c

[∫
Br(x0)

(1 + f(x,Du) dx

]β
where c and β are indipendent of the constants ν and L of the ellipticity condi-
tion.
In the second part we consider a suitable sequence of approximating variational
problems by means of the construction of a sequence of C2-functions fkh :
Ω× IRnN → [0,+∞), with fkh ≤ f such that

lim
h,k→∞

fkh = f

and

• fkh satisfies the same assumptions of f ,(A1)–(A4), with constant inde-
pendent of k and h;

• fkh has p-growth, with constant depending on k;

• fkh ∈ C2 and satisfies the ellipticity condition 2 with constants depending
on h.
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Let u be a local minimizer of the original functional I and for h and k consider
the following problem in Br(x0), with boundary datum u:

min

{
Ikh(w;Br(x0)) :=

∫
Br(x0)

fkh(x,Dw) dx : w ∈ u+W 1,p
0 (Br(x0))

}
.

Let vkh be the unique solution, by applying the a priori estimate of the first
part we obtain

sup
Bρ(x0)

|Dvkh|p ≤ c

[∫
Br(x0)

(1 + fkh(x,Dvkh)) dx

]β
.

with the same c and β for all h and k.
Then we show that vkh converges locally weakly ∗ in W 1,∞(Br(x0)) to v, which
is a minimizer of

min

{
I(w;Br(x0)) :=

∫
Br(x0)

f(x,Dw) dx : w ∈ u+W 1,p
0 (Br(x0))

}
.

and moreover

sup
Br/4(x0)

|Dv|p ≤ c

[∫
Br(x0)

(1 + f(x,Du)) dx

]β
Since function f is not suppose to be stricly convex, in general v 6= u. However,
by taking in account (A2) and (A3), a comparation methods gives that there
exists R0(p, q, ν, R, L) > R such that the Lebesgue measure of the set

{x ∈ Br(x0) : |Du(x) +Dv(x)| > 2R0 and |Du(x)−Dv(x)| > 0}

is zero. Therefore

sup
Br/4(x0)

|Du| ≤ sup
Br/4(x0)

|Dv|+ sup
Br/4(x0)

|Du+Dv| ≤ 3 sup
Br/4(x0)

|Dv|+ 2R0

and the estimate holds also for the local minimizer u.

It would be interesting to ask if the convexity of f in BR is necessary to get
the W 1,∞ regularity of the minimizer. In the recent paper [39], Regularity of
minimizers for non convex vectorial integrals with p − q growth via Relaxation
Methods, in collaboration with I. Benedetti, we give a partial positive answer.
More precisely, we prove a W 1,∞-regularity result for a special class of non
convex and non homogeneous density energies with p− q growth.
Observe that when f = f(x, z) is not convex to respect to z the functional
I(v,Ω) is not lower semicontinuous, then the lower semicontinuous envelope of
I(v,Ω) is introduced:

F (u,Ω) = inf
uk

{
lim inf
k→∞

∫
Ω

f(x,Duk) dx,

(uk) ∈W 1,p(Ω, IRm), uk ⇀ u in W 1,p(Ω, IRN )

}
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Functional F is called relaxed functional of I and it holds

inf

{
F (v,Ω)

}
= inf

{
I(v,Ω)

}
.

When p = q and N = 1, F has an integral representation

F (v,Ω) =

∫
Ω

f∗∗(x,Dv) dx = I∗∗(v,Ω)

where f∗∗ is the convex envelope of f with respect to z (see for example [17],
[60]). Therefore, all local minimizers of I(v,Ω) are also local minimizers of
I∗∗(v,Ω). In this case it is sufficient to prove the regularity only for convex f ,
as in [28].
In the vectorial case N > 1 and p− q-growth the relaxed functional of I has the
form

F p,q(u,Ω) = inf
uk

{
lim inf
k→∞

∫
Ω

f(x,Duk) dx,

(uk) ∈W 1,q(Ω, IRN ), uk ⇀ u in W 1,p(Ω, IRN )

}
and no general result of integral representation holds.
In Theorem 2.6 of [39], under suitable assumption on f = f(x, z), we give an
integral reppresentation for F p,q.
More precisely, assume

(H1) there exist q > 1 and L > 0 such that

c1|z|p − c0 ≤ f(x, z) ≤ L(1 + |z|q);

for a.e. x ∈ Ω and for every z ∈ IRnN and p < q < p (n+1)
n

(H2) there exists a modulus of continuity λ(t) (i.e. λ(t) is a nonnegative in-
creasing function that goes to zero as t→ 0+) such that for every compact
subset Ω0 ⊂ Ω, there exists x0 ∈ Ω0 such that:

|f(x0, z)− f(x, z)| ≤ λ(|x− x0|)(1 + f(x, z));

for all x ∈ Ω0 and z ∈ IRnN .

(H3) the quasiconvex envelope of f , with respect to the second variable, i.e.

Qf(x, z) = sup {g ≤ f : g quasiconvex with respect to z} .

is a convex function with respect to z i.e. Qf(x, z) = f∗∗(x, z).

Then, for all u ∈ W 1,p(Ω, IRN ) such that Qf(x,Du) ∈ L1
loc(Ω), we have the

following relaxation identity:

F p,q(u, U) =

∫
U

Qf(x,Du) dx (5)
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for all open set U ⊂⊂ Ω.
The case f(z) is contained in [19].
The previous relaxation result permits to obtain the W 1,∞ regularity for local
minimizers of non convex functionals. We give a sketch of the proof.
Let f(x, z) be not convex in BR and satisfy (H2)-(H3) and in IRnm/BR. the
assumptions (A1)–(A4) of the regularity theorem of Cupini, Guidorzi and Mas-
colo.
Let u be a local minimizer of I and then, for all U ⊂⊂ Ω, u is a solution of the
following boundary value problem:

I(u) = inf
{
I(v, U), v ∈W 1,p

0 (U, IRN ) + u
}
.

Consider the associate relaxed problem:

inf
{
I∗∗(v, U), v ∈W 1,p

0 (U, IRm) + u
}
,

By the convexity of I∗∗, the problem has at least a solution ū ∈W 1,p
0 (U, IRm)+u.

Observe that since f is p-uniformly convex at infinity (see[43]), there exists R0

depending on ν, p, q, L such that:

f∗∗(x, z) = f(x, z),

so f∗∗ satisfies (A1)− (A4) (with R replaced by R0).
Since ū is also a local minimizer of I∗∗, by applying the regularity result of [43],
we obtain that ū ∈W 1,∞

loc (U, IRN ).
The regularity of ū, the method introduced by De Giorgi in [15] and the related
arguments contained in Marcellini [52] permit to prove that for every (uk) ⊂
W 1,q(U, IRN ), with uk ⇀ ū in the weak topology of W 1,p(U, IRN )∫

U

f(x,Du) dx ≤ lim inf
k→∞

∫
U

f(x,Duk) dx.

Taking the infimum over the sequences (uk):∫
U

f(x,Du) dx ≤ F p,q(ū, U).

Since Qf(x, z) = f∗∗(x, z), by the relaxation equality (5) and by the minimality
of ū, we get∫

U

f(x,Du) dx ≤
∫
U

f∗∗(x,Dū) dx ≤
∫
U

f∗∗(x,Du) dx.

and then: ∫
U

f(x,Du) dx =

∫
U

f∗∗(x,Dū) dx =

∫
U

f∗∗(x,Du) dx,
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which implies that u is also a solution of the relaxed problem and again by the
result of Cupini,Guidorzi Mascolo, u ∈ W 1,∞

loc (U, IRN ). For the arbitrariness of

U , we get u ∈W 1,∞
loc (Ω, IRN ).

We exhibit a class of energy density f , for which Qf(x, z) = f∗∗(x, z). More
precisely: Let g : Ω× IR+ −→ IR be such that for every x ∈ Ω :

g(x, t) = g(x,−t),

and for every t > 0 and there exists a measurable, non negative function α :
Ω −→ IR+ such that for all t with |t| < α(x):

g∗∗(x, t) = g(x, α(x)),

and for all t ≥ α(x)
g∗∗(x, t) = g(x, t),

Then, if
f(x, z) = g(x, |z|).

the following inequalities hold

g∗∗(x, |z|) = f∗∗(x, |z|) = Qf(x, |z|).
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[61] Růžička M., Flow of shear dependent electrorheological fluids, C. R. Acad.
Sci. Paris, 329 (1999) 393–398.
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