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Abstract. Two different "relaxed problems" associated with a problem of 
optimal control theory, governed by an ODE, are considered: the first is 
obtained by Young's methods and the second by semicontinuity arguments. 
A formula which relates the two relaxed functionals to each other is given. 

1. Introduction 

Consider the following minimum problem: 

min{F(u) ,  u e X}, (1.1) 

where F is a real functional on the topological space X. If  X is not compact or 
F is not lower semicontinuous, problem (1.1) may not have a solution. However, 
from the point of view of application, it is interesting to study the asymptotic 
behavior of  the minimizing sequences. For this purpose another problem, the 
so-called "relaxed problem," has been associated with (1.1). 

Le t  W be a topological space and G a functional on W so that: 

(i) X is identified with a subspace of  W, which is dense in W; 
(ii) for every sequence (uj) c X, which converges to w in W, we have 

G(w) <- lim inf F(uj);  
J 

(iii) for every we  W there exists a sequence (u j ) c  X, which converges to w 
and 

G(w) = lim F(uj). 
J 

Then the following problem 

min{G(u):  we W} (1.2) 

is the relaxed problem of  (1.1). 



98 E. Mascolo and L. Migliaccio 

From the definition it follows that (1.1) and (1.2) have the same infimum 
value. Moreover, every minimizing sequence of (1.1) has, as only cluster points, 
the possible solutions of (1.1) and for every solution w of  (1.2) there exists a 
minimizing sequence of  (1.1) which converges to w. 

We note that the construction of the relaxed problem is not unique. Relaxation 
in problems of  variational calculus has been used many times for various purposes 
and under different names. In particular, in optimal control theory, two major 
approaches have been used: one based on the notion of  relaxed control as a 
parametrized measure as intended by Young (see [6], [10]-[12], [14], and [15]), 
the other consists in considering the lower semicontinuous envelope of  the original 
functional (see [2], [7], and [9]). Within optimal control theory, the application 
of the second method is very recent (see [1] and [3]). In particular, in [1], some 
sufficient conditions are given in order that the relaxed problem obtained by 
semicontinuity arguments should still be a control problem. 

In this note, starting from an optimal control problem governed by an ordinary 
differential equation, we investigate the relationship between these two types of 
relaxed problem. In spite of the apparent difference in formulation, we demon- 
strate that they are strictly connected. More precisely we obtain a formula which 
relates the two relaxed functionals to each other. 

° 

Let, m, n be positive integers, p e ] 1, +oo], and 0-< T-< +oo. Let I = [0, T], consider 
the space of  states Y = WI"P(I, R"),  endowed with the L°°(/, R " )  topology, and 
the space U of measurable functions u: ! --> K, with K compact set in R ' ,  endowed 
with the weak LPoc-topology (weak-* if p = +oo). Let f :  (s, y, A) • I x R "  × K 
[0, + ~ ]  be a function measurable in s and continuous in (y, A). 

Consider the following cost functional: 

J(u, y) = f f(s, y(s), u(s)) as; (2.1) 
d I 

the admissible set A is defined by 

A = {(u, y) • U x Y: y(s) = g(s, u(s), y(s)), y(0) = 0}, (2.2) 

where g: I x R m x K ~ R m is a function measurable in s, continuous in (y, A). Set 

0 if (u, y) e A, 
XA(tI'Y)= +oo if ( u , y )~A.  

The problem of optimal control is 

(P) min{F(u, y): (u, y) • U x Y}, 

where F denotes 

F(u, y) = J(u, y)+ XA(U, y). (2.3) 
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We assume that f and g satisfy 

If(s,y',h)-f(s,y",A)l<-cly'-y"l, If(s,y,x)l<-a(s), (2.4) 

[g(s,y',A)-g(s,y",A)l<--dly'-y"[, tg(s,y,x)l<-~(s), (2.5) 

for all y', y" in a bounded subset of R m, y ~ R m, A ~ K, s e I and with a, fl ~ L1(I). 
Under the above assumptions, it is not obvious that (P) has any solutions. 

We introduce two problems (/5) and (/5) that are relaxed problems of (P), 
in the sense specified above. 

Relaxed Problem (/5). Let P be the lower semicontinuous envelope of F in the 
topology of U x Y, i.e., 

F(u, y) = Inf{lim inf F(uj, yj)}, 
J 

where the infimum is in the set of all sequences (uj, yj) converging to (u, y) in 
U x Y. Consider 

(/5) Min{F(u,y):  (u,y)~ Ux Y}. 
From the definition of P it follows that (i)-(iii) of Section 1 are verified and 

therefore (/5) is a relaxed problem of (P). 
In [1] it is proved that, for a large class of control problems, the functional 

/3 can be split into a new cost functional f and the characteristic function of a 
new set A of admissible pairs. 

Relaxed Problem (/5). Assume T<+oo.  For the construction of (/5) we follow 
[14] (see also [5], [10], and [14]). We denote by M(K)  the space of Random 
measures on K. Identifying d~(K) with the dual space (C(K))* of C(K), which 
is the space of the continuous functions on K, we can endow d~(K) with the 
weak-* topology of (C(K))*. Let t~ be the space of measurable mappings 
o': s ~ I ~  o'S~ d/t(K) such that the value of or in s, o -s, is a probability measure 
for almost every s c L 

We call the elements of U relaxed controls. We observe that U c ~. In fact, 
any u c U can be identified with the relaxed control trY: s ~ I ~  ~u~s), where 8A 
denotes the Dirac measure concentrated at h. Moreover, we identify or ~ U with 
the following functional on L1(I, C(K)), 

I I I K 

and endow /) with the weak-* topology of L~(I, C(K))*. Consequently, a 
sequence (c#) converges to o" in 0 if and only if 

lim(c#, ¢) = (tr, ~0) for ¢cLI(I,C(K)). (2.6) 

From Theorems IV.2.1 and IV.2.6 of [14] it follows that U is a compact 
space and is the closure of U. Moreover, for any sequence (uj) c U there exists 
o'~ 0 and a subsequence (uj,,) such that o-%, converges to o-, i.e., 

l i m f  q~(s, uA(s))dt= f d s f  ~p(s,A)dcrS(A). (2.7, 
h I I K 
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Consider the following functional in t~ x Y, 

J(o',y)= f ds IKf(s,y(s),A)dtrS(A), 

and the following set of  admissible pairs, 

for A= (o',y)~UxY:y(t)= ds rg(s,y(s),A)do'S(A) . 

The set A is the closure of A in U x Y. In fact, let us consider (o-j, y j ) c  ~ 
converging to (cr, y). By (2.6), in particular, we obtain 

limfldtfj K g(s,y(s),A)do-](A)=fl dtIK g(s'y(s)'A)dcrS(A)" (2.8) 

Hence, by assumption (2.5) and by the uniform convergence of yj to y, we have 

limf dtfKg(s, yj(s),A)dtr](A)=limf dtL=g(s,y(s),A)dtrj(A), (2.9) 

consequently (tr, y) ~ A and so A is closed. Furthermore, by the properties of U, 
there exists (u j )c  U such that (o-U0 c ~ converges to or in U. Define 

Io yj(t)= g(s, yj(s), us(s)) ds, 

obviously (us, y j ) c  A. By (2.5) and the Ascoli-Arzela compactness theorem, we 
can extract, from (yj), a subsequence which converges uniformly in I to some 
continuous function )7. By proceeding a s  above we obtain y(t)=fi(t) almost 
everywhere in / .  Moreover, if (trj, yj) c U x X converges to (tr, y), by proceeding 
as in (2.8) and (2.9), with f instead of g, we obtain 

li m J(o-, yj) = j(tr, y). (2.10) 
J 

Let us consider 

(/5) min{/~(tr, y): (o-,y)c U x  Y}, 

where 

F(o-, y) = ](cr, y) + X~(tr, y). 

We point out that, for every (u, y ) e  U x Y, 

F(o'", y) = F(u, y). (2.11) 

The functional ,~ is lower semicontinuous in U x Y. In fact, let (%, yj) c /~" x Y 
converge to (o-, y). If l im infj F(%, yj) < +oo there exists a subsequence (%,., y2,.) c 

for which 

lim F(oz ,  y2,) = lim inf F(%, yj), 
h j 

then (o-, y) ~ 3_ and (2.10) implies the semicontinuity of F. 
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Now we establish that (/3) is a relaxed problem of (P). Part (i) comes from 
the properties of U. Part (ii) is a direct consequence of  the lower semicontinuity 
of F. Finally, part (iii) comes from the density of A in A and from (2.10) and 
(2.11) if (o', y) c A; otherwise it comes from the semicontinuity of/3. 

The relationship between (/5) and (/3) is contained in the following: 

Theorem. Assume that f and g satisfy (2.4) and (2.5). For all (u, y) ~ U × Y, we 
have 

F(u,  y) = min{/5(cr, y): cr ~ B(u)}, (2.12) 

where B(u) denotes the set of measures cr ~ (5 which have u as barycenter, i.e., 

B(u)={o'E [J: u(s)= fKAdO'S(A) ). 

Proof. First we prove that, for every (u, y) c U x Y and cr c B(u),  

F(u,  y)--< F(cr, y). (2.13) 

For measures such that (or, y )~  A, (2.13) is obvious. Let (tr, y )~  A and o-c B(u). 
By taking into account the density of A in A, there exists (uj, h ) c  A such 
that ( t rY,y j) converges to (o-, y). By considering in (2.7), ~(s, 4 ) =  ~(s)A with 

e LI(I) ,  we obtain 

limfs , ~(s)us(s)dt= f ,  ~(s)fK )tdcrS('~)ds' 

i.e., (us) converges to the barycenter u of o-. Since, from (2.10) and (2.11 ), we obtain 

lim F(us, Ys) = lim F( t rS ,  Ys) = F(o-, y), 
s J 

inequality (2.13) easily follows from the definition of/~. Now let (u, y ) c  U x Y 
so that F(u,  y) ¢ +oo, there exists (us, yj) c A which converges to (u, y) and 

F(u,  y) = lim F(uj, Ys). (2.14) 
J 

Since definitely (us, ys )~A,  there exists o - c U  such that (o- ,y)~A and a 
subsequence of (o-5)c  U which converges to o- in U with o'~B(u). From 
(2.10), (2.11), and (2.14) we get 

F(u,  y) = lim F(us, Ys) = F(o-, y) 
J 

and the proof  is completed. [] 

Formula (2.13) also gives the relationship between the minima of (/3) and 
(/3). In fact, if (u, y) is a solution of (/5) there exists tr ~ B(u) such that (o-, y) is 
a solution of  (P). Conversely, if (or, y) is a solution of (/3), the barycenter u of 
o- is such that the pair (u, y) is a solution of (/5). 
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We observe that, if T = +oo, the result of the theorem is still true if we make 
some suitable modifications. In particular, defining U and Y as before, we say 
that trj converges to or if, for each ~ ~ L1([0, T], C(K)) and T >  0, 

fo ; fo f lim ds ¢(s, A) dtr](A) = ds ¢(s, A) do'~(A), 
J K K 

and that yj converges to y in Y if yj converges uniformly on the compact set of 
[0, +~[. 

Finally, we would like to point out that /~ is the lower semicontinuous 
envelope of the following functional in / ) x  Y: 

[F(u,y) if c r=o  "u, u ~ U ,  
~'(tr, y) = ( +oo otherwise. 

After this paper was completed, T. Zolezzi brought paper [ 10] to our knowl- 
edge. When particularized to problems in the calculus of variations the theorem 
stated above gives a result which is comparable to those of [10] (see Example 2.5). 
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