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0 

Consider the problem 

Min f(x, Du(x)) dx, u E Hk2(~) + U, (0.1) 

where f (x, p) is a continuous function on G x RN, G bounded open set in 
RN, satisfying 

Cl IP12-c2fmPKc, IP12+L peRN,xcG, 

and u0 E H’,2, ci b 0. 
In general, if f(x, p) is not convex in p, problems of type (0.1) may be 

studied by means of the relaxed problem 

Min dx, Du(x)) dx, UE Hk2(G) + u. 
> 

, (0.2) 

where g(x, p) =f**(x, p) is the lower convex envelope off with respect 
to p. 

In our previous papers [14, 15, 163, (see also [7] for Neumann 
problems), we prove the existence of solutions for particular cases of 
non convex problems, by finding an a.e. differentiable solution w of the 
related relaxed problem such that Dw(x) belongs to the set 
{P:.& ~)=f**b, PI>. In Cl61 we state existence theorems in Co-’ for 
problem (0.2) with hypotheses on the boundary data strictly related to the 
techniques used. 
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In the present paper our aim is to find sufficient conditions on g to 
obtain Co, ’ -solutions for problem (0.2) with general boundary data. More 
precisely, in Section 1 we consider problem (0.2) with g(x, p) E C”(G x RN) 
convex in p, which is, for (pi large enough, a C2-function in (x, p) and 
strictly convex in p. 

We prove that every solution of (0.2) is in C:;:(G) if u. E H’,‘(G) n L” 
and in C’,‘(G) if u. E C’*‘(G). The main tools are classical regularity results 
and the barrier-technique [3,4, 5, 9, 171. 

In Section 2 we consider problem (0.1) where, for p large enough, j’ is 
strictly convex in p and regular in (x, p). By applying the results of Section 
1, every solution of the relaxed problem is differentiable a.e. in G. Then, if 

f**(x, p) is an afline function in p on the bounded connected set 
K(x)= {~~R~:S(x,p)>f**(x,p)}, we prove that every solution w of the 
relaxed problem verifies Lhv(x)~R~- K(x) a.e. in G, so that M: is also a 
solution of (0.1). If K(x) is not a connected set, we can obtain existence 
with the same arguments, by supposing that f** is an afline function on 
each connected component of K(x). 

For N= 1, f** is always an affine function in p for p~K(x) and first 
Marcellini in [lo] used this property in order to find solutions of the non- 
convex problem. For N > 1 we have to assume the affinity off ** to get 
existence. On the other hand, in [ 111 and [ 121, Marcellini proves some 
nonexistence results when the affrnity off* * in p is lacking. For N > 1 non- 
convex problems have been investigated by Aubert and Taharaoui in [I]. 

1 

Let G be a bounded open subset of RN, N 3 2, with a smooth boundary 
aG. Let f (x, p) E C”(C x RN) be convex in p for every x E G. Moreover we 

XEG,~ER~ (1.1) 

/ >t}, tER,, we sup- 

assume that .f> 0 satisfies: 

c, IP12-C2~fbdd6G+G IPI for a.e. 

with C, positive constants. Defining S, = (p E RN: (p 
pose that: 

(i) f E C2(G x S,); moreover’ 

I f,CX? P)ls I,f,..~;(x~P)I~~(1+lPl~ Ifpp(X,P)I~I 1, xEG,pES,; (1.2) 

1 For a function h = h(x,p) we denote by h&x, p) and h,(x, p), respectively, the vector 
gradient of h(x,p) with respect to x, i.e., h,(x,~) = (h,,(x, P). . . . . h,“(x, P)), h,,(x,p) = 
Wdx,(.x, PI. and the vector gradient of h(x,p) with respect to p, i.e., h,(x,p) = 
(h,,(x, p).... h,,“(x, p)). h,(x, p) = (ah/dp,)(x, p). For a functionf=f(x) we denote by Df(x) the 
vector gradient Qf= (II,,/.. o,,f), D,J= af/ax,. 
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there exists v > 0 such that 

fp,p,tx9 P) 5,5j2 v ItI x&,p~S,, teRN. (1.3) 

Let ~EC~(R~), O<&p)d 1, (b(p)= 1 in RN-S,+l and $(p)=O in Srt2. 
We define 

fn(x7 P) =f(x, P)(l -d(P)) i- II(f#) * r*lGG P), 

where y,, are mollifiers. Obviously f,,c C’(I$X RN), { fn } converges to f 
uniformly in G x C, with C any compact subset of RN. Moreoverf, is con- 
vex in p for pERN-S,+, and strictly convex in p for p E S, + z. We show 
now that there exists n, such that for n > n,, f, is strictly convex in 
S 1+1 -S,+*. 

Sincef E c’@ x S,L f,,,p,p, =f,,, + (fd),,,*uln - WJ&, andf,c,p,p, conww 
to fP,Pf uniformly in G x C with C any compact subset of S,. Thus for 
T E [0, v] there exists no such that for n > no, 

f “.P,P, tx3 P) titj3(v-5) ItI XGPG+,-S,+2. 

So f,, is a convex function in p E RN. 
Setting, for n > no, F,,(x, p) =fJx, p)+ (l/n) lp12, XE G, PE RN, F,, is 

strictly convex in p and F,, E C*(G x RN). We consider the problem 

Min F,Jx, Dw(x)) dx, w E Hk2(G) + u. , 

where USE H’,*(G) n L”(G). Via direct methods there exists a unique 
solution u,, of problem (1.4). By Theorem 3.2 of Chap. V in [9], there 
exists M > 0 such that 

since, for n large enough, F, satisfies a condition of type (1.1) with con- 
stants independent of n. Moreover from Theorem 3.1 in [4] the function u, 
are locally equi-H6lder continuous, i.e., there exists a, 0 < cx < 1, such that 
for any Go c G the norms jJu,)J c~.z(cO, are bounded independently of n. 

PROPOSITION 1.1. Assume that ( 1.1) and (i) hold, let u, be the solution of 
(1.4). Then for each X~E G fhere exists Ro, O< Ro<d(xo)=dist(xo, 8G) 
such that for R -C R,, R c id, 

sup IL&l +J- (1 +IDu,12)dx+c~, 
BR/Z ( -%I ) &R( WI 

(1.6) 
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where B,(x,) denotes the ball of radius r, centered at x0 and C, and c, are 
independent of n. 

Proof: The proof of ( 1.6) relies on classical arguments (see [ 5, 91). 
However, we refer to [3] to give a sketch of the proof. Let U, be the 
solution of ( 1.4), obviously U, satisfies the Euler-Lagrange equation 

D, F,,,& Du, I= 0 in G. (1.7) 

Since F,, verities conditions of type (1.2) and (1.3) in G x RN, from the 
results of Sections 5, 6 of Chap. IV in [9], it follows that U, E Hz: n C:;f. 
Then, set b,,(x) = max{ IDu, I* - 1, 0}, for 1~ (t + 2)*, b, is a continuous 
function and for r E C?(G) the functions 

CL.,(x) = { 
Y-’ D, U, min(b,(x), 1 1 
.F* D, u,b; 

if s = 0, 
if s = 1, 2, 3 ,...) 

for r E { I ,..., N}, are in HA,*(G). 
In the weak form of (1.7), 

s F,.,,(.u, Du,,) D&x) dx = 0, d E ff;.2, (1.8) 
G 

choose 4 = #,,,,,$. Let us observe that, since $,,r, = 0 and Dd,,,,,, = 0 where 
IDu, 1 d t + 2, the integral in (1.8) is just over the set where f,, =f: 

So we can proceed as in the proof of Lemma 1.2 in [3]. We remark 
explicitly that the constants involved in the proof are, in the present case, 
independent of n, also taking into account the locally equi-Holder-con- 
tinuity of the functions u,. 

Definitively we get: 
For every X~E G there exists R, > 0, R, i d(x,) such that for every 

R<R,, 

s DunI *+*‘dx<C (l+(Du,(*)dx, 
s s B 0, (1.9) 

B/3/2 BR 

where C is a constant independent of n. Now let be X~E G, 
R < min{ RO, $d(x,)} and 5 E C,“(B,), 5 = 1 in BRj2 and 1041 < C/R. 

Set r,,,(x) = r’D,u, max {t2 lDu,I*-K,O}, K>(t+2)*, since 
5 IDu,( <JDu,l, we have that u],,=O, Dq,,,=O where IDu,l <t+2. In 
(1.8) choose now 4 = qn,r. Also in this case the integral is just over the set 
where f = f,, so by using the properties of F,, and the well known inequality 
ab<&a’+ l/&b2 we get 
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where A,,, K = {xEG:~2\Du,~*>K}. 
Now we proceed as in the proof of Theorem 1.3 of [3]. From (1.10) the 

function w,,(x) = t2 1 Du, 1 2 verities 

s 
C 

(Dw,,l*dx<-- 
R2 s (1 + P,04~x, 

A,,. h 4I.K 

where C is independent of n; moreover by Holder inequality 

j lDwnl'dr<${j (l+,Du,\)“~x~ 
4jn 

(meas A,,,)’ -(4/a). 
A&K AI.* 

For c such that G > 2N, by applying a classical truncation lemma,’ we 
get 

sup ,Du,,12& 
R2 BR,Z 

410 

(1 + ID~nlY 
> 

(meas An,K) O/N)- (4/o) + Cons& 

moreover, since A,,, K c B, for every n, we get 

sup lDu,12$~j (1 + lDu,I)“dx+Const. 
BR!2 RN B,q 

This estimate together with (1.9) gives (1.6). 
Now consider the problem 

Min 
{j 

f(x, Dv) dx, u E Hi* + uO . (1.11) 
G > 

THEOREM 1.2. Assume (1.1) and (i). Then every solution of (1.8) is in 
C::(G). 

Proof. Since, for n large enough, f, verifies inequalities of type (1.1) 

‘Truncation Lemma. If weH,$l(G) and for kzk,, E>O, j~x:H,~,,kr\D~12d~~ 
y(meas{x: w(x) > k}‘-(2’N)+F then ‘I(’ E L”(G) and \lwll L=,C, < k. +c[y(meas{w>k,})“]‘/*. 
(See, e.g., C8, 91). 



190 MASCOLO AND SCHIANCHI 

with constants independent of n, we get, from the dominated convergence 
theorem, 

lim j f,Jx, Du) dx = j f(x, Dv) dx, 
II G‘ ti 

Now, for fixed v E Hi* + q,, we have 

v E H’,2. (1.12) 

Cl? G lDu,,l*dx</ f;,(x,nu,)dx+~~~lou,12dx+C2measG 
G 

6 s Gf;,(~, Du) dx + t jG jDv(’ d-x + C2 meas G. 

Therefore, from ( 1.12) 

s (Du,J2dx<c, for n large enough. (1.13) 
G 

So, passing eventually to a subsequence, u,, converges weakly in H’.’ to a 
function U. Inequalities ( 1.6) and ( 1.13), give for G, c G, 

for n large enough, 

where the constant c depends only on G,. Thus, from Sobolev embedding 
theorem, u,, converges uniformely in G, to u and u E C:;:(G). From the 
definition of ,f,, we have, for x E G and p in a compact subset of R”, 

f,,(X? PI =.f‘(x, PI-G,, with E,, --f 0. 

Let G,, c G such that lJh G,, = G, from lower semicontinuity, taking also 
into account the last inequality, we get 

5 ,f‘(x, Du) dx d lim j .0x, Dun) d !hj W-x, Dun) dx + E,,) dx 
G/T fI Gh t, G/I 

then for h -+ co, 

j f(x,Du)dx<lim 
G n 1 

j I,(x;Du,,)dx+~j~IDu.,12dx] 
G 

<I&I fn(x, Dv)dx+;jG IDvl’dx], VEH$~+U~. 
n 
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From (1.12) we obtain 

So ( 1.11) has at least one solution u in C$!( G). 
Now fixed G, r~ G, let 

ess sup (DuJ < 2c(G,). 
Go 

Suppose that there exist a solution u of (1.11) and co E Go with meas 
c”, > 0 such that 

IN > 2(t + c(Go)) a.e. XEGo. 

Setting u’ = (U + 0)/2, we have Dw(x) E S, a.e. in Go, and so from the strict 
convexity offin S,, we get a contradiction. In fact, 

j 
G 

./lx, Dx) dx = j 
Go 

f(x, Dw) dx + j-&(x. Dw) dx < {J-(x, Du) dx. 

Consequently every solution 0 of (1.11) satisfies 

essGyp lDul <2(t+c(G,). 

To obtain the regularity of the solution up to the boundary, we now 
construct the barriers relative to (1.4). With this objective, we need further 
assumptions: 

(ii) G has boundary of class C2, 
(iii) z40E C’,‘(G). 

Denoting by d(x) the distance of x from aG, for h > 0 small enough, we set 

G,,= {xeG:d(x)<h), 

I-,,= {x~G:d(x)=h}. 

Note that (ii) implies that d(x) is of class C2 in Gh and for every XE Gh 
there exists only one y of least distance from aG. 

Defining 

L”(w) = DiF,,&, Dw), 

505;67:2-4 
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an upper (lower) barrier v+ (zj -) is a Co*‘-f uric ion in some Ghr such that t’ 

V 
t- 

-%, (u ~~ = uo) on aG, 

Vi 3M, (u 6 -M) on f,, 

L”(v+)<o, (L”(v- ) 20) in G,, 

where A4 is the positive constant in (1.5). With classical methods of barriers 
(see [9, 171) we can prove that 

4-x) = uo(x) + $(4x)), (1.14) 

where $ is a smooth function satisfying $(O) = 0, $‘(t) > 0 and $“(t) < 0, is 
an upper barrier for each L”. 

Introduce the Bernstein function 

E”(4 PI =.Lp,& P)P,P,> XEG,pER”. 

Obviously, for x E G and p E S,+*, E”(A P) = E(T P) =fp,,,,(x, P) Pip,. Set 
A;;.=j;,,,,,,(x, Dv), by = D;,f;,(x, Dv), we have 

L”(v) = A;;D,,u, + $‘A;; D,, d 

6’ 
+ m (E” + A;; D,u, -2A;;D,vD,u,j+h:‘. 

) and (1.3) imply that there exists SinceforxEGandpES,+z,.L,=f; (1.2 
A E R + such that 

v ItI2 ~.LpIpp’ P) r,t, 6 (A + 1) 151’7 

lm.,(x~P)l G/d1 + IPI) uniformly with respect to ~1. 

Then if $’ is large enough, 

L”(u)<(l + lDul)(l +A)+ &{+2cA~, 

and therefore, because E(x, p) 3 c ) p ) (A + 1 ), for x E G and Ip ( sufficiently 
large we have that L”(v) < 0. 

Choosing $(s) = c log( 1 + OS), fi E R + , it is easy to check that v, defined 
as in (1.14) is VL” an upper barrier in Gho, for a suitable ho. In the same 
way one can prove the existence of a lower barrier. 

THEOREM 1.3. Assume ( 1.1) and (i)-(iii). Then every solution of ( 1.11) is 
in CO.‘(G). 
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Proqf: First we prove that there exists L > 0 such that 

sup I&, I 6 L for n large enough. 
G 

(1.15) 

Let r and s be the functions 

r(x) = 
inf( u + , M), x E G,, 
M, x E G - G,,“, 

s(x) = 
supto , -M), XE GhO’ 

-M, x E G - Gho, 

where v+ and c’- are the upper and lower barrier and A4 is the constant in 
(1.5). 

Since for n large enough, from the maximum principle, 

s(x) d u,,(x) 6 r(x), x E G, 

we get 

lu,,(-~) - u,,(Y)~ G K lx -Y/, XEG, yEaG. (1.16) 

On the other hand, the Cacciopooli inequality holds (see, e.g., [4]), 

s IDu,,l’dxd< /U,,-u~,,R 
BR 

where B, = B,(x,) c G and U,,.R = (l/meaS BR) je, u,(y) dy. 
From (1.6) and (1.16) we get 

c Ikl(xoY 2 G - RN+Z s /U,1--U,,R/2dx+c. 
BdR 

(1.17) 

Let R = d(x,)/4, from (1.16) we have 

1 u,,(X) - u,,, R I d k’R> XE B,,. (1.18) 

Then (1 .17) and ( 1.18) imply (1.15). Consequently u, converges uniformly 
to a function u in C’,‘(G). Now we can complete the proof by proceeding 
as in Theorem 1.2. 

2 

In this section we apply the previous results to obtain existence theorems 
for a class of nonconvex problems. 
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Let f(x, p) E C”( G x RN) satisfy ( 1.1). Consider the problem 

Mm J(u) = 1 .f(x, Du(x)) dx, 1: E Hi2 + u. , 
G 

(2.1) 

where uoEH’,2nLr. 
Letf**(x, p) be the lower convex envelope off(x, p) with respect to p. 

The relaxed problem of (2.1) is 

Min J**(u) = 1 f**(x, Du(x)) dx, UE HA.2 + u. . (2.2) G 

Define for x E G 

K(x) = {P E RN:f**(& PI <.f(*\-, PI}. 

We assume 

(iv) For x E G, K(x) is a connected bounded subset of RN and there 
exist N+ 1 functions defined on G, m,, i= I,..., N, and q(x) such that 

.f**b,~)= f m,(-x)p,+q(.K), vp E K(x). (2.3) 
,= 1 

(v) For i=l,..., N, m,EC’(G) and meas{xEG:C,D,mj(x)=O}=O. 

THEOREM 2.1. Assume (l.l)(iv) and (v). Every solution of (2.2) which is 
a.e. dlfferentiahle in G is also a solution qf (2. I ) 

Proof: Let u be a solution of (2.2) a.e. differentiable in G. We shall 
prove that k(x) E RN - K(x) a.e. in G, so J**(u)=J(u), then u is also a 
solution of (2.1). Let u be differentiable in x0 and Du(x,) E K(x,). From 
lemma 4 of the Appendix in [2], there exist two functions Ic/ + and Ic/ in 
CA(G) such that 

* * (*yo) = 4x0); * (xl < u(x), ti + lx) > U(X)> 

Vx E B,(x,) - { xg } for some r > 0. (2.4) 

In the following we use I+- when we assume &D,m,(x,) >O and It/+(x) 
when we assume xi D;m,(x,) < 0. 

If xi Dimi > 0, from (v) there exists $ such that 

C Dim,(x) > 0, Vx E B5( x0) = Bx. (2.5) 
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Moreover K(x) is an open set for a.e. XE G, in fact, sincefe C”(G x RN) 
and satisfies (1.1) we havef**EC’(Gx RN) (see, e.g., [12]). 

Consequently there exists 6 E ] 0, b[ such that 

Dlcl I E K(x), 

Let cp E C,;C ( BR) satisfy 

VXE B,. (2.6) 

O<q<l, cpbo) = 1 (2.7) 

and consider the function $ ~ + 8~. By (2.6) for E small, 
D(+ - +&v)(x) E K(x), Vx E B,. 

Moreover there exists an open subset A c B, such that $ ~ + E(P = u on 
?A. Define 

x(-u) = 
$-(x) + V(X), x E A 

u(x), XEG-A. 

Now we prove that J**(U) >J**(x). In fact, by using the inequality 
.f’**(-?P)3C,N_, m,(x) pi+ q(x), VP E RN and by applying the divergence 
theorem, we get 

J**(u) -J**(x) = JAf**(x, Du)-f**(x, Dx) dx 

where v is the unit outward normal to 8B, and ds the (n - 1)-dimensional 
area element on as,. Since u(x) = x(x) on aB, and u(x) c x(x) for x E A, 
(2.5) and (2.8) imply J**(u)>J**(x). This contradicts that u(x) is a 
solution of (2.2), and so Du(x,) cannot belong to &x0). 

Now, if Ci Dimi < 0, with the same argument as above, by using II/ + 
instead of Ic/ _, we can prove that Du(x,) F$ K(x,). 

Remark. Let us make a comparison between the above assumptions 
and the ones made in [ 161. In that paper we assume f(., p) E C’,‘(G) for 
each p~lW~ (we mean uniformly with respect to p), which implies 
.f**(., p)~ C’,‘(G), in order to obtain that the functions m,(x) in (2.3) are 
a.e. differentiable in G. Here f(x, p) is only in C”(G x RN) but to prove 
Theorem 2.1 we need a stronger condition on f**(x, p) for p in K(x), i.e., 
on the functions m,(x). 
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Remark. The idea of the above proof is also present in Lemma 2.2 of 
[ 161 where we prove that, for a particular solution w of the relaxed 
problem (see definition (2.5) in [16]), DW(X)E RN-K(x) for a.e. XE G. In 
that proof we consider $ ~ E CO.‘(B,) and q~ E C; (B,) satisfying (2.4) and 
(2.7) and we claim the existence of 6’ < 6 such that $ _ + E(P = u’ on dB,,. 
This is not acceptable in generaL3 However, Lemma 2.2 continues to be 
true: the arguments of Theorem 2.1 can be also used with the assumptions 
made in [ 161. In fact we can only say that there exists an open subset A of 
B, such that II, + ELI > IV in A and I,+ + E(P = M’ on (-7A. Then we define 

j(x) = ‘f- (x)+w(x), x E A 

w(x), .\-EG-A 

and, by proceeding as in the above formula (2.8) we get 

j ,f**(x, Di(x)) dx</ ,f**(x, h(x)) dx, 
G G 

which contradicts the definition of u’. 

Now we state existence theorems for problem (2.1). 

THEOREM 2.2. Assume that f(x, p) uerifies (1.1) und (i) in some S,,. Zf 
(iv) and (v) hold, every solution qf (2.2) is also a C’ZL-solution qf‘(2.1). 

Proof: From theorem 1.2, every solution u of (2.2) is in CP;J(G), then. 
from theorem 2.1, u is a solution of (2.1). 

Proceeding as before, if we apply Theorem 1.3 instead of Theorem 1.2, 
we get 

THEOREM 2.3. Assume that f(x, p) verijies ( 1.1) and (i) in some S,, and 
that G and u. verifjl (ii) and (iii). rf (iv) and (v) hold, every solution of (2.2) 
is a Co. ’ (G)-solution qj” (2.1). 

The following existence theorem is proved under different assumptions on 
the functions m,(x). Suppose 

(vi) For each i= l,..., N, m,ECz,!(G) and C;D,m,(x)=O a.e. in G. 

THEOREM 2.4. Assume that f (x, p) ver$es ( 1.1) and (i) in some S,,. 
Moreover G and u. verifv (ii) and (iii). Z’(iv) and (vi) hold, 2.1 has at least 
one solution in C”,‘(C). 

3 We wish to thank the referee of the present paper for pointing this out 
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Pro@ Consider, for L > 0, the set 

M, = {u E Co. ‘(G), u solution of (2.2), \Du(x)J < L a.e. in G}. 

From Theorem 1.3, for a suitable L, M, # 0; moreover (see [ 151) the 
function U(X) = sup{u(x), UE ML} EM,. Define x as in Theorem 2.1, by 
proceeding as in (2.8) from (vi) we get 

J**(u) -J**(x) 2 i;,, c m,(x)(u - x) vi ds = 0, 
( I 

i.e., J**(u)>J**(x). Therefore XEM~. Since x(x,) > u(xo) by construction, 
we get a contradiction with the definition of U. 

Theorem 2.4 can be considered an extension of Theorem 1.4 in [ 163 to 
more general boundary data. 
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