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Abstract. The mathematical analysis to achieve everywhere regularity in the interior of
weak solutions to nonlinear elliptic systems usually starts from their local boundedness.
Having in mind De Giorgi’s counterexamples, some structure conditions must be imposed
to treat systems of partial differential equations. On the contrary, in the scalar case of a
general elliptic single equation a well established theory of regularity exists. In this paper we
propose a unified approach to local boundedness of weak solutions to a class of quasilinear
elliptic systems, with a structure condition inspired by Ladyzhenskaya–Ural’tseva’s work
for linear systems, as well as valid for the general scalar case. Our growth assumptions on
the nonlinear quantities involved are new and general enough to include anisotropic systems
with sharp exponents and the p, q-growth case.

1. Introduction

The study of regularity for generalized solutions of second order quasilinear (i.e.,
linear with respect to second derivatives) elliptic systems has been strongly moti-
vated and at the same time conditioned by the De Giorgi’s example of existence of
the nonsmooth weak solution

u (x) = x

|x |γ , x = (x1, x2, . . . , xn) ∈ R
n, (1.1)

to the linear elliptic system

n∑

i, j=1

∂

∂xi

⎛

⎝
n∑

β=1

aαβ
i j (x) uβ

x j

⎞

⎠ = 0, ∀ α = 1, 2, . . . , n.
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Here n ≥ 3 and the measurable coefficients aαβ
i j are bounded discontinuous at

x = 0. The exponent γ in (1.1) is given by

γ = n

2

(
1 − 1√

(2n − 2)2 + 1

)

and, being greater than one, the solution u in (1.1) is unbounded around the ori-
gin. De Giorgi’s example was published in [8], while a modification of it, due by
Giusti and Miranda [17], deals with continuous (in fact analytic) coefficients aαβ

i j (u)

depending on u instead than of x . We also mention the extensions due to Frehse
[10,11], Nečas [34], Hildebrant–Widman [18], up to the recent contribution by
Šverák Yan [38]. For a description of this lack of regularity and related questions
we also refer the reader to Giaquinta [14] and Giusti [16].

Motivated by these examples we find in the mathematical literature at least two
directions of research about regularity of generalized solutions of elliptic systems:
(i) partial regularity, i.e., smoothness of solutions up to a set of zero measure, or
up to a better mathematically characterized set, see Mingione [32] for a detailed
discussion; (ii) everywhere regularity in the interior of the given domain � of R

n ,
starting—as usual in this context—from the local boundedness of the solution. In
the last case, having in mind the above counterexamples, some structure assump-
tions must be considered to treat systems of partial differential equations, in contrast
with the scalar case of a single equation, where a well established theory of regu-
larity exists since the work of De Giorgi, Moser, Morrey, Nash, Serrin and many
others.

Ladyzhenskaya and Ural’tseva [21, Chap. 7] first proposed the local bounded-
ness of solutions u = (

u1, u2, . . . , um
)

to the linear elliptic system

n∑

i=1

∂

∂xi

⎛

⎝
n∑

j=1

ai j (x) uα
x j

+
m∑

β=1

bαβ
i (x) uβ + f α

i (x)

⎞

⎠ (1.2)

+
n∑

i=1

m∑

β=1

cαβ
i (x) uβ

xi
+

m∑

β=1

dαβ (x) uβ = f α (x) , ∀ α = 1, 2, . . . , m,

with bounded measurable coefficients ai j , bαβ
i , cαβ

i , dαβ and given functions f α
i ,

f α . Here the structure condition is stated in terms of the positive definite n × n
matrix

(
ai j

)
, which does not depend on α, β.

Meier [31] extended these results to a class of quasilinear elliptic systems, intro-
ducing a structure condition based on a so called indicator function and assuming
natural growth conditions on the quantities involved; i.e., assuming polynomial
p-growth on the nonlinear coefficients (instead of p = 2). Quasilinear elliptic
equations have been previously studied by Serrin [35,36]. Meier’s motivations
were based on some related researches by the Bonn school in pde’s, mainly by
Hildebrandt–Widman [18,19] and Frehse [11]. More recently sufficient conditions
for boundedness of weak solutions have been given by Landes [22,23] and by
Krömer [20]. In the nonlinear case one is led to consider W 1,p ∩ L∞ as the natural
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Sobolev class where to start to get regularity of weak solutions; see for example
Hildebrandt [19] (see also [2,24,25]).

In this paper we consider a generalization of the linear case by Ladyzhenskaya
and Ural’tseva in (1.2) to quasilinear elliptic systems of the form

n∑

i=1

∂

∂xi

⎛

⎝
n∑

j=1

ai j (x, u, Du) uα
x j

+ bα
i (x, u, Du)

⎞

⎠

= f α (x, u, Du) , ∀ α = 1, 2, . . . , m. (1.3)

It is worth remarking that systems of this type, even with a linear principal part as
in (1.2), arise in many problems in differential geometry such as harmonic map-
pings between manifolds or surfaces of prescribed mean curvature; see for instance
[14]. Contrary to many papers in the mathematical literature about regularity for
systems, the elliptic scalar case m = 1 is included in full generality in our context.
A relevant example for m > 1 which enters in our analysis is given by the Euler’s
first variation of integrals of the calculus of variations such as, for instance, below
in (1.10).

Let us enter in more details about our assumptions. Here we allow some general
growth conditions, which we list in this introduction in a simplified version, for the
sake of simplicity. Precisely, we assume that there exist exponents p1, p2, . . . , pn ∈
(1,+∞) and positive constants M1, M2 such that, for almost every x ∈ � ⊂ R

n

and for every u ∈ R
m, ξ ∈ R

m×n, ξ = (ξi )i=1,...,n = (ξα
i ) i=1,...,n

α=1,...,m
, and λ =

(λi )i=1,...,n ∈ R
n ,

n∑

i, j=1

ai j (x, u, ξ)λiλ j ≥ M1

n∑

i=1

λ2
i

(
m∑

α=1

(
ξα

i

)2

) pi −2
2

, (1.4)

∣∣∣∣∣∣

n∑

j=1

ai j (x, u, ξ) ξα
j

∣∣∣∣∣∣
≤ M2

⎧
⎨

⎩

n∑

j=1

∣∣ξ j
∣∣p j + |u|γ + 1

⎫
⎬

⎭

1− 1
pi

, ∀ i, α,

∣∣bα
i (x, u, ξ)

∣∣ ≤ M2

⎧
⎨

⎩

n∑

j=1

∣∣ξ j
∣∣p j (1−ε) + |u|γ + 1

⎫
⎬

⎭

1− 1
pi

, ∀ i, α,

∣∣ f α (x, u, ξ)
∣∣ ≤ M2

⎧
⎨

⎩

n∑

j=1

|ξ j |p j (1−δ) + |u|γ−1 + 1

⎫
⎬

⎭ , ∀ α,

for suitable γ , ε and δ. Note that (1.4) is a weaker assumption with respect to the
usual ellipticity and it reduces to the ordinary ellipticity condition only if p1 =
p2 = · · · = pn = 2.

Our analysis unifies the scalar case (one single equation) and the vector val-
ued one (system of pde’s) with special structure. In fact, as we already said, the
elliptic scalar case m = 1 is a special case which enters in the above assumptions.
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More precisely this means that we can consider a general quasilinear elliptic equa-
tion of the form

n∑

i=1

∂

∂xi
(ai (x, u, Du)) = f (x, u, Du) , (1.5)

with ai of class C1 in the gradient variable. In fact we have

ai (x, u, Du) − ai (x, u, 0) =
1∫

0

d

dt
ai (x, u, t Du) dt

=
1∫

0

⎧
⎨

⎩

n∑

j=1

∂ai

∂ξ j
(x, u, t Du) ux j

⎫
⎬

⎭ dt =
n∑

j=1

ux j

1∫

0

∂ai

∂ξ j
(x, u, t Du) dt.

Therefore, if we pose

bi (x, u) = ai (x, u, 0) , ai j (x, u, ξ) =
1∫

0

∂ai

∂ξ j
(x, u, t ξ) dt,

then the pde in (1.5) becomes a particular case of the system in (1.3) and the ellip-
ticity assumption (1.4) on ai j , in terms of the vector field (ai )i=1,2,...,n , is satisfied,

with constant M1 · min
{

1
pi −1 : i = 1, . . . , n

}
, when

n∑

i, j=1

∂ai

∂ξ j
(x, u, ξ)λiλ j ≥ M1

n∑

i=1

|ξi |pi −2 λ2
i . (1.6)

Corollary 2.4 below gives specific conditions in order to get local boundedness of
weak solutions to the Eq. (1.5) with anisotropic growth.

Let us go back to the general system (1.3). We need a restriction on the expo-
nents {pi } to achieve the local boundedness of the solutions. Let us denote by p
the harmonic average of the {pi } and by p∗ the Sobolev exponent of p; i.e.,

1

p
:= 1

n

n∑

i=1

1

pi
, p∗ :=

{
n p

n−p if p < n
any μ > p if p ≥ n.

(1.7)

Theorem 1.1. Under the previous assumptions, if

max {p1, p2, . . . , pn} < p∗, 1 < γ < p∗, 0 < ε < 1,
1

p∗ < δ < 1, (1.8)

then every weak solution u to the quasilinear elliptic system (1.3) is locally bounded
and for every R such that BR(x0) ⊂ � there exist constants c and θ ≥ 0 such that

sup
BR/2(x0)

|u| ≤ c

⎧
⎪⎨

⎪⎩

∫

BR(x0)

(|u| + 1)p∗
dx

⎫
⎪⎬

⎪⎭

1+θ
p∗

. (1.9)
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Assumption (1.8) is sharp, in the sense that even in the scalar case m = 1 (and n
large) is possible to produce examples of unbounded generalized solutions when
the reverse inequality max {pi : i = 1, 2, . . . , n} > p∗ is satisfied; see Giaquinta–
Marcellini [15,26–28]. In the case of a single equation (m = 1) the local bounded-
ness of weak solutions has been widely investigated; see for instance [3,5,12,13,
27,28,37,39] and, more recently, [6]. About partial regularity for systems (m > 1)
see for instance [1,4,9,32,33]. In the last years there has been a large amount of
papers dealing with the regularity under p, q-growth and we refer the interested
reader to the survey by Mingione [32].

We emphasize that systems under consideration include the first variation of
integrals of the calculus of variations of the form

∫

�

g (x, u, |Du|) dx (1.10)

and the local boundedness result of Theorem 1.1 can be applied to the minimizers.
In fact they are weak solutions to the system (1.3) when we define

ai j (x, u, ξ) = 1

|ξ |
∂g (x, u, |ξ |)

∂ |ξ | δi j , ∀ i, j = 1, 2, . . . , n,

and as usual for the lower order terms. Under a nonstandard growth condition the
local boundedness of minimizers of vectorial integral functionals as in (1.10) has
been studied by Dall’Aglio–Mascolo [7] when g = g(x, |Du|) is a N-function in
the �2-class. For Lipschitz and higher regularity see Marcellini [29] and Marcellini
Papi [30], who extended to general growth condition the regularity results obtained
by Uhlenbeck [41] for the p-Laplacian.

Finally in the last section we deal with systems satisfying a p, q-growth condi-
tion. We assume ellipticity and growth conditions of p, q-type, see (4.5), (4.6) for
precise assumptions. We prove that weak solutions u ∈ W 1,q to (1.3) satisfy an a
priori estimate as in (1.9).

2. The anisotropic growth

Let us consider the nonlinear system of pde’s
n∑

i, j=1

∂

∂xi

(
ai j (x, u, Du) uα

x j
+ bα

i (x, u, Du)
)

= f α (x, u, Du) , ∀ α = 1, 2, . . . , m (2.1)

on an open set � of R
n, n ≥ 2, m ≥ 1. We assume that ai j : �×R

m ×R
m×n → R

and bi , f : � × R
m × R

m×n → R
m are Carathé odory functions, i, j = 1, . . . , n.

We need some notations. If ξ ∈ R
m×n we write ξ = (ξ1, . . . , ξn), where

ξi = (ξ1
i , . . . , ξm

i ) ∈ R
m for i = 1, . . . , n. In particular, Du = (ux1 , . . . , uxn ) and

uxi = (u1
xi

, . . . , um
xi

). Analogously, bi = (b1
i , . . . , bm

i ) and similarly for f . Given
p1, . . . , pn exponents greater than 1, we define

p := min{p1, . . . , pn} and q := max{p1, . . . , pn}.
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As usual p′ is the conjugate exponent of p; i.e., 1/p + 1/p′ = 1. Moreover, p
stands for the harmonic average of {pi } and p∗ is the Sobolev exponent of p as
defined in (1.7).

We assume the following conditions for almost every x ∈ � and for every
u ∈ R

m, ξ ∈ R
m×n and λ = (λi )i=1,...,n ∈ R

n ,

(H1) (ellipticity condition)

n∑

i, j=1

ai j (x, u, ξ)λiλ j ≥ M1

n∑

i=1

λ2
i |ξi |pi −2, (2.2)

(H2) (growth conditions)

∣∣∣∣∣∣

n∑

j=1

ai j (x, u, ξ)ξ j

∣∣∣∣∣∣
≤ M2

⎧
⎨

⎩

n∑

j=1

|ξ j |p j + b1(x)|u|γ + a1(x)

⎫
⎬

⎭

1− 1
pi

, ∀ i (2.3)

|bi (x, u, ξ)| ≤ M2

⎧
⎨

⎩

n∑

j=1

|ξ j |p j (1−ε) + b2(x)|u|γ + a2(x)

⎫
⎬

⎭

1− 1
pi

, ∀ i (2.4)

| f (x, u, ξ)| ≤ M2

n∑

j=1

|ξ j |p j (1−δ) + b3(x)|u|γ−1 + a3(x), (2.5)

where

M1, M2 > 0, 1 < γ < p∗, 0 < ε < 1,
1

p∗ < δ < 1 (2.6)

and, for i = 1, 2, 3,

bi ∈ Ls
loc(�) with

(
p∗
γ

)′
< s ≤ +∞ and ai ∈ Lt

loc(�) with

(
p∗
q

)′
< t ≤ +∞.

(2.7)

Our aim is to prove the local boundedness of weak solutions to (2.1). We con-
sider the following anisotropic Sobolev space

W 1,(p1,...,pn)(�; R
m) :=

{
u ∈ W 1,1(�; R

m) : uxi ∈ L pi (�; R
m), for all i=1, . . . , n

}
,

endowed with the norm

‖u‖W 1,(p1,...,pn )(�) := ‖u‖L1(�) +
n∑

i=1

‖uxi ‖L pi (�).

We write W 1,(p1,...,pn)
0 (�; R

m) in place of W 1,1
0 (�; R

m) ∩ W 1,(p1,...,pn)(�; R
m).

For some properties of these spaces we refer to [40]; in particular the following
embedding result holds.
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Theorem 2.1. Let � ⊂ R
n be a bounded open set and consider u ∈ W 1,(p1,...,pn)

0
(�; R

m), pi ≥ 1 for all i = 1, . . . , n. Let max{pi } < p∗, with p∗ as in (1.7). Then
u ∈ L p∗

(�; R
m). Moreover, there exists c, depending on n, p1, . . . , pn, such that

‖u‖n
L p∗

(�)
≤ c

n∏

i=1

‖uxi ‖L pi (�).

Thanks to the imbedding theorem above and to Hölder inequality, the growth
conditions (H2) allow a meaningful definition of weak solutions.

Definition 2.2. A function u ∈ W 1,(p1,...,pn)
loc (�; R

m) is a weak solution to (2.1) if

∫

�

⎧
⎨

⎩

n∑

i, j=1

(
ai j (x, u, Du)uα

x j
+ bα

i (x, u, Du)
)

ϕα
xi

+ f α(x, u, Du)ϕα

⎫
⎬

⎭ dx = 0

(2.8)

for all α = 1, . . . , m and all ϕ ∈ C1
c (�; R

m) (or equivalently ϕ ∈ W 1,(p1,...,pn)
0

(�; R
m)).

Theorem 2.3. Assume (H1) and (H2) and let 1 < p ≤ q < p∗. Then every weak
solution u ∈ W 1,(p1,...,pn)

loc (�; R
m) to (2.1) is locally bounded. Moreover, for every

BR(x0) ⊂ � there exists a positive constant c such that

sup
BR/2(x0)

|u| ≤ c

⎧
⎪⎨

⎪⎩

∫

BR(x0)

(|u| + 1)p∗
dx

⎫
⎪⎬

⎪⎭

1+θ
p∗

, (2.9)

where θ = q̃
p

q̃−p
p∗−q̃ with q̃ = max

{ 1
δ
, γ s′, qt ′

}
.

The above theorem also gives the local boundedness of weak solutions to the general
quasilinear equation (m = 1)

n∑

i=1

∂

∂xi
(ai (x, u, Du)) = f (x, u, Du) , (2.10)

where ai (x, u, ξ),
∂ai
∂ξ j

(x, u, ξ) are Carathéodory functions. Let us assume

n∑

i, j=1

∂ai

∂ξ j
(x, u, ξ)λiλ j ≥ M1

n∑

i=1

λ2
i |ξi |pi −2, ∀ λ ∈ R

n (2.11)

|ai (x, u, ξ)| ≤ M2

⎧
⎨

⎩

n∑

j=1

|ξ j |p j + b1(x)|u|γ + a1(x)

⎫
⎬

⎭

1− 1
pi

, ∀ i (2.12)
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and

| f (x, u, ξ)| ≤ M2

n∑

j=1

|ξ j |p j (1−δ) + b3(x)|u|γ−1 + a3(x), (2.13)

where M1, M2, γ, δ, ai , bi (i = 1, 3) satisfy (2.6) and (2.7).

Corollary 2.4. Under assumptions (2.11)–(2.13), if 1 < p ≤ q < p∗, then every
weak solution u ∈ W 1,(p1,...,pn)

loc (�) to the pde (2.10) is locally bounded and the
estimate (2.9) holds.

3. Proof of Theorem 2.3

First we give two preliminary results.

Lemma 3.1. Under the ellipticity condition (2.2), for almost every x ∈ � ⊂ R
n,

for every u ∈ R
m and ξ ∈ R

m×n, we have

m∑

α=1

n∑

i, j=1

ai j (x, u, ξ)ξα
i ξα

j ≥ M3

n∑

i=1

(
m∑

α=1

(
ξα

i

)2

) pi
2

, (3.1)

with M3 = M1m1−q .

Proof. For fixed α ∈ {1, 2, . . . , m} we pose λ = (
ξα

i

)
i=1,...,n ∈ R

n and we get

n∑

i, j=1

ai j (x, u, ξ)ξα
i ξα

j ≥ M1

n∑

i=1

(
ξα

i

)2

⎛

⎝
m∑

β=1

(
ξ

β
i

)2

⎞

⎠

pi −2
2

≥ M1

n∑

i=1

∣∣ξα
i

∣∣pi .

(3.2)

Fixed i ∈ {1, . . . , n}, by the convexity of the function t ∈ R+ → t pi we have the
inequality

(
1

m

m∑

α=1

∣∣ξα
i

∣∣
)pi

≤ 1

m

m∑

α=1

∣∣ξα
i

∣∣pi .

If we sum up both sides of (3.2) with respect to α = 1, 2, . . . , m we obtain

m∑

α=1

n∑

i, j=1

ai j (x, u, ξ)ξα
i ξα

j ≥ M1

n∑

i=1

m∑

α=1

∣∣ξα
i

∣∣pi ≥ M1

n∑

i=1

m1−pi

(
m∑

α=1

∣∣ξα
i

∣∣
)pi

.

The conclusion (3.1) follows from the fact that
∑m

α=1

∣∣ξα
i

∣∣ ≥
(∑m

α=1

(
ξα

i

)2
)1/2

.
�
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Lemma 3.2. Let ν, γ, δ, σ be positive numbers, and assume that there exists τ ∈
(1,+∞] such that γ τ ′, δτ ′ ≤ σ . Let v ∈ Lσ(ν+1)(�), v ≥ 1, and let a ∈ Lτ (�),
where � ⊂ R

n is a measurable set with finite Lebesgue measure. Then

∫

�

|a(x)|[v(x)]γ+δν dx ≤ ‖a‖Lτ ‖v‖
σ−δτ ′

τ ′
Lσ

⎛

⎝
∫

�

[v(x)]σ(ν+1) dx

⎞

⎠

δ
σ

.

Proof. By Hölder inequality

∫

�

|a| vγ+δν dx ≤ ‖a‖Lτ

⎛

⎝
∫

�

vγ τ ′+δτ ′ν dx

⎞

⎠

1
τ ′

.

Let us consider the two cases separately: γ ≤ δ and γ > δ. In the first case, since
γ τ ′ ≤ δτ ′ and v ≥ 1 we have

∫
vγ τ ′+δτ ′ν dx ≤ ∫

vδτ ′(ν+1) dx .
If δτ ′ = σ we conclude; otherwise, we proceed with the chain of inequalities:

∫

�

vδτ ′(ν+1) dx ≤
⎛

⎝
∫

�

vσ(ν+1) dx

⎞

⎠

δτ ′
σ

|�| σ−δτ ′
σ ≤

⎛

⎝
∫

�

vσ(ν+1) dx

⎞

⎠

δτ ′
σ

⎛

⎝
∫

�

vσ dx

⎞

⎠

σ−δτ ′
σ

.

Let us now deal with the case γ > δ. We have
∫

vγ τ ′+δτ ′β dx ≤ ∫
vσ−δτ ′

v(β+1)δτ ′

dx and if δτ ′ = σ we have done; otherwise, by Hölder inequality

∫

�

vσ−δτ ′
v(β+1)δτ ′

dx ≤
⎛

⎝
∫

�

vσ dx

⎞

⎠

σ−δτ ′
σ

⎛

⎝
∫

�

v(ν+1)σ dx

⎞

⎠

δτ ′
σ

and we get the thesis. �
Proof of Theorem 2.3 We split the proof into steps. Without loss of generality we
assume that the functions ai , bi , i = 1, 2, 3, in (H2) are a.e. greater than or equal
to 1.

Step 1. We define a sequence of test functions (ϕk)k to insert in (2.8), with
ϕk ∈ W 1,(p1,...,pn)(�; R

m) and supp ϕk � �. Fix a ball BR0(x0) � �. Notice that
when it is obvious by the context, we write Br and W 1,(p1,...,pn)(Br ) in place of
Br (x0) and W 1,(p1,...,pn)(Br (x0); R

m). Let us assume 0 < ρ < R ≤ R0 and let
η ∈ C∞

c (�) be a cut-off function, satisfying the following assumptions:

0 ≤ η ≤ 1, η ≡ 1 in Bρ, supp η � BR, |Dη| ≤ 2

R − ρ
. (3.3)

Let us approximate the identity function id : R+ → R+ with an increasing
sequence of C1 functions gk : R+ → R+, such that

gk(t) =
{

0 for all t ∈ [0, 1
k+1 ]

k for all t ≥ k,
0 ≤ g′

k(t) ≤ 2 and g′
k(t)t ≤ gk(t) + 2

k
in R+.

(3.4)
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Notice that the last inequality can be assumed since the restriction of gk to the

interval
[

1
k+1 , k

]
can be seen as a smooth approximation of the linear function

Gk(t) = k(k+1)
k(k+1)−1

(
t − 1

k+1

)
, whose graph is the line of the plane connecting

( 1
k+1 , 0) and (k, k) and Gk satisfies G ′

k(t)t ≤ Gk(t)+ 1
k . Fixed h = 1, . . . , n, k ∈ N

and ν > 0, let �
(h)
k,ν : R+ → R+ be the increasing function defined as

�
(h)
k,ν(t) := gk(t

phν).

By (3.4) we obtain

(�
(h)
k,ν)

′(t)t ≤ phν

{
�

(h)
k,ν(t) + 2

k

}
≤ qν

{
�

(h)
k,ν(t) + 2

k

}
. (3.5)

Finally, define ϕ
(h)
k,ν : BR0 → R

m ,

ϕ
(h)
k,ν(x) := �

(h)
k,ν(|u(x)|)u(x)[η(x)]q for every x ∈ BR0 . (3.6)

From now on, we write ϕ
(h)
k and �

(h)
k instead of ϕ

(h)
k,ν and �

(h)
k,ν . We claim that

ϕ
(h)
k ∈ W 1,(p1,...,pn)(BR0; R

m), supp ϕ
(h)
k � BR .

Indeed, �(h)
k is in C1(R+), bounded, because ‖�(h)

k ‖L∞(R+) ≤ k, and with bounded

derivative. Precisely, if a(h)
k = (k + 1)

− 1
phν and b(h)

k = k
1

phν , then

(�
(h)
k )′(s) =

{
0 if s ∈ R+ \ [a(h)

k , b(h)
k ]

phνg′
k(s

phν)s phν−1 if s ∈ [a(h)
k , b(h)

k ]
and

‖(�(h)
k )′‖L∞(R+) ≤ 2phν ‖s phν−1‖

L∞(a(h)
k ,b(h)

k )
= 2phν max

{[
a(h)

k

]phν−1
,
[
b(h)

k

]phν−1
}

<∞.

As a consequence, taking into account that u ∈ W 1,(p1,...,pn)(BR0) we have that
�

(h)
k (|u|)u is in W 1,(p1,...,pn)(BR0) and the claim follows. By density arguments,

we can use ϕ
(h)
k in (3.6) as a test function in (2.8).

Step 2. Assume that η is the cut-off function in Step 1. We aim to prove that
for every h = 1, . . . , n and every ν > 0

M3

4

∫

BR

n∑

i=1

|uxi |pi |u|phν ηq dx

≤ c max{ν, 1} p′
ε

(R − ρ)q

∫

BR

⎧
⎨

⎩|u|q + |u|1/δ +
3∑

j=1

b j |u|γ + a3|u| +
2∑

j=1

a j

⎫
⎬

⎭ |u|phν dx,

(3.7)
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where M3 = M1m1−q and c is a positive constant depending on the data and R0,
but is independent of ν, R and ρ.
Insert ϕ

(h)
k in (2.8) as test function. Notice that

(
ϕ

(h)
k,ν

)

xi
(x) =

m∑

β=1

(�
(h)
k )′(|u|)uβ

|u|uβ
xi

uηq+�
(h)
k (|u|)uxi η

q+q�
(h)
k (|u|)uηq−1ηxi .

We recall that (�
(h)
k )′(s) = 0 in [0, a(h)

k ]. Then (2.8) implies

I1 + I2 :=
∫

BR

〈ã(x, u, Du), Du〉�(h)
k (|u|) ηq dx

+
∫

BR

n∑

i=1

m∑

α,β=1

ãα
i (x, u, Du) uα uβ

|u| uβ
xi

(�
(h)
k )′(|u|) ηq dx

= q
∫

BR

〈ã(x, u, Du),−u ⊗ Dη〉�(h)
k (|u|) ηq−1 dx

−
∫

BR

〈 f (x, u, Du), u〉�(h)
k (|u|) ηq dx =: I3 + I4, (3.8)

where ã = (ãα
i ) i=1,...,n

α=1,...,m
is the matrix with entries

ãα
i (x, u, ξ) =

n∑

j=1

ai j (x, u, ξ) ξα
j + bα

i (x, u, ξ) (3.9)

and we used the following notation: u ⊗ Dη := (
uαηxi

)
i=1,...,n
α=1,...,m

. Separately we

consider and estimate Ii , i = 1, . . . , 4.

Estimate of I1

By (2.2) and Lemma 3.1 we easily get

〈ã(x, u, Du), Du〉 =
n∑

i, j=1

m∑

α=1

ai j (x, u, Du)uα
x j

uα
xi

+
n∑

i=1

m∑

α=1

bα
i (x, u, Du)uα

xi

≥ M3

n∑

i=1

|uxi |pi −
n∑

i=1

|bi (x, u, Du)||uxi |.

By (2.4) and the Young inequality (applied first with exponent pi and then with
exponent 1

1−ε
) we obtain

|bi (x, u, Du)||uxi | ≤ M3

8n
|uxi |pi + c1

⎧
⎨

⎩

n∑

j=1

|ux j |p j (1−ε) + b2(x)|u|γ + a2(x)

⎫
⎬

⎭

≤ M3

4n

n∑

j=1

|ux j |p j + c2
{
b2(x)|u|γ + a2(x) + 1

}
(3.10)
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with c2 depending also on ε. Therefore, defining c3 = 2nc2 we get (recall that
ai , bi ≥ 1)

I1 ≥ 3M3

4

∫

BR

n∑

i=1

|uxi |pi �
(h)
k (|u|)ηq dx − c3

∫

BR

{
b2|u|γ + a2

}
�

(h)
k (|u|) dx .

(3.11)

Estimate of I2

For a.e. x ∈ {|u| > 0}
n∑

i=1

m∑

α,β=1

ãα
i (x, u, Du) uα uβ

|u| uβ
xi

=
n∑

i, j=1

m∑

α,β=1

ai j (x, u, Du)uα
x j

uα uβ

|u| uβ
xi

+
n∑

i=1

m∑

α,β=1

bα
i (x, u, Du) uα uβ

|u| uβ
xi

.

By (2.2), with λi = ∑m
α=1 uα uα

xi
, we have that

n∑

i, j=1

m∑

α,β=1

ai j (x, u, Du)uα
x j

uαuβ uβ
xi

=
n∑

i, j=1

ai j (x, u, Du)

{
m∑

α=1

uα uα
x j

}{
m∑

α=1

uα uα
xi

}

≥ 0. (3.12)

Thus, by (�
(h)
k )′ ≥ 0 we have

∫

BR

n∑

i, j=1

m∑

α,β=1

ai j (x, u, Du)uα
x j

uα uβ

|u| uβ
xi

(�
(h)
k )′(|u|) ηq dx ≥ 0. (3.13)

The above inequality and (3.5) imply

I2 ≥
∫

BR

n∑

i=1

m∑

α,β=1

bα
i (x, u, Du) uα uβ

|u| uβ
xi

(�
(h)
k )′(|u|) ηq dx

≥ −
∫

BR

n∑

i=1

|bi (x, u, Du)||uxi | (�(h)
k )′(|u|)|u| ηq dx

≥ −qν

∫

BR

n∑

i=1

|bi (x, u, Du)||uxi |
{
�

(h)
k (|u|) + 2

k

}
ηq dx .

Reasoning as done in (3.10), since a2 ≥ 1

qν|bi (x, u, Du)||uxi | ≤ M3

8n
|uxi |pi + c4 M2 max{ν, 1}p′

×
⎧
⎨

⎩

n∑

j=1

|ux j |p j (1−ε) + b2(x)|u|γ + a2(x)

⎫
⎬

⎭

≤ M3

4n

n∑

j=1

|ux j |p j + c5 max{ν, 1} p′
ε
{
b2(x)|u|γ + a2(x)

}
. (3.14)
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Thus, we obtain

I2 ≥ − M3

4

∫

BR

n∑

j=1

|ux j |p j

{
�

(h)
k (|u|) + 2

k

}
ηq dx

−c5 n max{ν, 1} p′
ε

∫

BR

{
b2|u|γ + a2

} {
�

(h)
k (|u|) + 2

k

}
dx . (3.15)

Estimate of I3

For a.e. x ∈ BR0 |ux j |p j (1−ε) ≤ max{|ux j |, 1}p j (1−ε) ≤ |ux j |p j + 1 ≤ |ux j |p j +
a2(x); therefore (2.4) implies

|bi (x, u, Du)| ≤ 2M2

⎧
⎨

⎩

n∑

j=1

|ux j |p j + b2(x)|u|γ + a2(x)

⎫
⎬

⎭

1− 1
pi

∀ i.

Thus, the above inequality and (2.3) imply that for a.e. x

|ãi (x, u, Du)| ≤ 3M2

⎧
⎨

⎩

n∑

j=1

|ux j |p j + (b1(x) + b2(x))|u|γ + a1(x) + a2(x)

⎫
⎬

⎭

1− 1
pi

.

By (2.3) and the properties of η in (3.3) we obtain

q〈ã(x, u, Du),−u ⊗ Dη〉ηq−1 ≤
n∑

i=1

2qηq−1

R − ρ
|u||ãi (x, u, Du)|

≤
n∑

i=1

6M2qηq−1

R − ρ
|u|

⎧
⎨

⎩

n∑

j=1

|ux j |p j +(b1(x)+b2(x))|u|γ +a1(x)+a2(x)

⎫
⎬

⎭

1− 1
pi

.

Using the Young inequality and η ≤ 1 we get

6M2qηq−1

R − ρ
|u|

⎧
⎨

⎩

n∑

j=1

|ux j |p j + (b1 + b2)|u|γ + a1 + a2

⎫
⎬

⎭

1− 1
pi

= 6M2qη
q−pi

pi

R − ρ
|u|

⎧
⎨

⎩ηq

⎛

⎝
n∑

j=1

|ux j |p j + (b1 + b2)|u|γ + a1 + a2

⎞

⎠

⎫
⎬

⎭

1− 1
pi

≤ M3

8n
ηq

⎧
⎨

⎩

n∑

j=1

|ux j |p j + (b1 + b2)|u|γ + a1 + a2

⎫
⎬

⎭ +
{

c6

R − ρ
|u|

}pi

,



300 G. Cupini et al.

with c6 depending on n, m, M1, M2, q. Since

n∑

i=1

{
c6

R − ρ
|u|

}pi

≤
n∑

i=1

(
max

{
c6

R − ρ
|u|, 1

})pi

≤ n

({
c6

R − ρ
|u|

}q

+ 1

)

≤ n

({
c6

R − ρ
|u|

}q

+ a2

)

we conclude that there exists c7 > 0, possibly depending on R0, such that

q〈ã(x, u, Du),−u ⊗ Dη〉ηq−1 ≤

≤ M3

8
ηq

n∑

i=1

|uxi |pi +
{

c7

R − ρ

}q {|u|q + (b1 + b2)|u|γ + a1 + a2
}

and the following estimate of I3 follows:

I3 ≤ M3

8

∫

BR

n∑

i=1

|uxi |pi �
(h)
k (|u|) ηq dx

+
{

c7

R − ρ

}q ∫

BR

{|u|q + (b1 + b2)|u|γ + a1 + a2
}
�

(h)
k (|u|) dx . (3.16)

Estimate of I4

Let us now deal with I4. Using (2.5) we obtain

I4 ≤
∫

BR

{
M2

n∑

i=1

|uxi |pi (1−δ)|u| + b3|u|γ + a3|u|
}

�
(h)
k (|u|) ηq dx

≤
∫

BR

{
M2η

q
n∑

i=1

|uxi |pi (1−δ)|u| + b3|u|γ + a3|u|
}

�
(h)
k (|u|) dx .

By the Young inequality

M2

n∑

i=1

|uxi |pi (1−δ)|u| ≤ M3

8

n∑

i=1

|uxi |pi + c8|u| 1
δ ,

with c8 ≥ 1 depending on M1, M2, m, q, δ, we get

I4 ≤ M3

8

∫

BR

n∑

i=1

|uxi |pi �
(h)
k (|u|) ηq dx + c8

∫

BR

{
|u| 1

δ + b3|u|γ + a3|u|
}

�
(h)
k (|u|) dx .

(3.17)
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Conclusion of Step 2.

Collecting (3.11), (3.15), (3.16) and (3.17), the equality (3.8) gives

M3

4

∫

BR

n∑

i=1

|uxi |pi

{
�

(h)
k (|u|) − 2

k

}
ηq dx ≤ c3

∫

BR

{
b2|u|γ + a2

}
�

(h)
k (|u|) dx

+c5 max{ν, 1} p′
ε

∫

BR

{
b2|u|γ + a2

} {
�

(h)
k (|u|) + 2

k

}
dx

+
{

c7

R − ρ

}q ∫

BR

{|u|q + (b1 + b2)|u|γ + a1 + a2
}
�

(h)
k (|u|) dx

+c8

∫

BR

{
|u| 1

δ + b3|u|γ + a3|u|
}

�
(h)
k (|u|) dx .

Since the sequence �k is increasing and, by Theorem 2.1, |u| ∈ L p∗
, we get (3.7)

when k goes to ∞.

Step 3. In this step we prove that
⎧
⎪⎨

⎪⎩

∫

Bρ

v p∗(ν+1) dx

⎫
⎪⎬

⎪⎭

1
p∗

≤
⎧
⎨

⎩
c[ν + 1]q+ p′

ε

[R − ρ]q

⎫
⎬

⎭

1
p

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

v p∗

⎫
⎪⎬

⎪⎭

q̃−p
p∗ p

⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

1
q̃

,

(3.18)

where

v := max{|u|, 1}, q ≤ q̃ := max

{
1

δ
, γ s′, qt ′

}
< p∗

and c is a positive constant depending on the data, R0 and on the Lebesgue norms
of bi and ai , i = 1, 2, 3. We point out that c is independent of ν, R and ρ. We begin
noticing that

∫

BR

∣∣∣∣
[
ηq(|u|ν+1 + 1)

]

xh

∣∣∣∣
ph

dx ≤ 2q−1[ν + 1]q
∫

BR

{|u|ν |uxh | ηq}ph dx

+2q−1
∫

BR

{∣∣∣
[
ηq]

xh

∣∣∣ (|u|ν+1 + 1)
}ph

dx = J1 + J2. (3.19)

By (3.7) we can estimate J1 as follows:

J1 ≤ 2q−1[ν + 1]q
∫

BR

{|u|ν |uxh |}ph ηq dx ≤ 2q−1[ν + 1]q
∫

BR

n∑

i=1

|uxi |pi |u|phν ηq dx

≤ c9[ν + 1]q+ p′
ε

[R − ρ]q
∫

BR

⎧
⎨

⎩vq̃ +
3∑

j=1

b j v
γ + a3v + a1 + a2

⎫
⎬

⎭ |u|phν dx

(3.20)
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where we used that ηqph ≤ ηq . Moreover, by the assumptions on η, see (3.3),
ph ≤ q and the Hölder inequality we have

J2 ≤ c10

[R − ρ]q

⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1) dx

⎫
⎪⎬

⎪⎭

ph
q̃

. (3.21)

By (3.19)–(3.21) we obtain

∫

BR

∣∣∣∣
[
ηq(|u|ν+1 + 1)

]

xh

∣∣∣∣
ph

dx ≤ c10

(R − ρ)q

⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1) dx

⎫
⎪⎬

⎪⎭

ph
q̃

+c9[ν + 1]q+ p′
ε

[R − ρ]q

∫

BR

⎧
⎨

⎩vq̃ +
3∑

j=1

b jv
γ + a3v + a1 + a2

⎫
⎬

⎭ v phν dx . (3.22)

We remark that

b1, b2, b3 ∈ Ls(BR0) with

(
p∗

γ

)′
< s ≤ +∞ and γ s′ ≤ q̃,

a1, a2, a3 ∈ Lt (BR0) with

(
p∗

q

)′
< t ≤ +∞ and qt ′ ≤ q̃.

Thus, since ph ≤ q ≤ q̃ , we can repeatedly use Lemma 3.2 with δ = ph, σ = q̃
and suitable exponents γ and τ :

∫

BR

3∑

j=1

b jv
γ+phν dx

≤ c(‖b1‖s, ‖b2‖s, ‖b3‖s)

⎧
⎪⎨

⎪⎩

∫

BR0

vq̃

⎫
⎪⎬

⎪⎭

1
s′ −

ph
q̃
⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

ph
q̃

(γ = γ, τ = s)

∫

BR

(a1 + a2)v
phν dx

≤ c(‖a1‖t , ‖a2‖t )

⎧
⎪⎨

⎪⎩

∫

BR0

vq̃

⎫
⎪⎬

⎪⎭

1
t ′ −

ph
q̃
⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

ph
q̃

(γ = 0, τ = t)

∫

BR

a3v
1+phν dx

≤ c(‖a3‖t )

⎧
⎪⎨

⎪⎩

∫

BR0

vq̃

⎫
⎪⎬

⎪⎭

1
t ′ −

ph
q̃
⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

ph
q̃

(γ = 1, τ = t)



Local boundedness of solutions to quasilinear elliptic systems 303

and, by Hölder inequality,

∫

BR

vq̃+phν dx =
∫

BR

vq̃−ph v ph(ν+1) dx ≤

⎧
⎪⎨

⎪⎩

∫

BR0

vq̃

⎫
⎪⎬

⎪⎭

1− ph
q̃
⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

ph
q̃

.

Collecting these inequalities, by max{ 1
t ′ ,

1
s′ , 1} = 1 there exists c11 depending on

R0 and the Lebesgue norms of ai , bi , i = 1, 2, 3, such that

∫

BR

∣∣∣∣
[
ηq (|u|ν+1 + 1)

]

xh

∣∣∣∣
ph

dx ≤ c11[ν + 1]q+ p′
ε

[R − ρ]q

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

vq̃

⎫
⎪⎬

⎪⎭

1− ph
q̃

⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

ph
q̃

.

If we choose c12 ≥ c11 large so that c12[ν+1]q+ p′
ε

Rq
0

≥ 1 the above inequality, together

with ph ≥ p, implies

⎧
⎪⎨

⎪⎩

∫

BR

∣∣∣∣
[
ηq(|u|ν+1 + 1)

]

xh

∣∣∣∣
ph

dx

⎫
⎪⎬

⎪⎭

1
ph

≤
⎧
⎨

⎩
c12[ν + 1]q+ p′

ε

[R − ρ]q

⎫
⎬

⎭

1
p

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

vq̃

⎫
⎪⎬

⎪⎭

q̃−p
pq̃

⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

1
q̃

.

This inequality holds for every h = 1, . . . , n; therefore, we get

n∏

h=1

⎧
⎪⎨

⎪⎩

∫

BR

∣∣∣∣
[
ηq(|u|ν+1 + 1)

]

xh

∣∣∣∣
ph

dx

⎫
⎪⎬

⎪⎭

1
ph

≤
⎧
⎨

⎩
c12[ν + 1]q+ p′

ε

[R − ρ]q

⎫
⎬

⎭

n
p

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

vq̃

⎫
⎪⎬

⎪⎭

n q̃−p
pq̃

⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

n
q̃

.
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By Theorem 2.1 we get

⎧
⎪⎨

⎪⎩

∫

Bρ

v p∗(ν+1) dx

⎫
⎪⎬

⎪⎭

1
p∗

≤

⎧
⎪⎨

⎪⎩

∫

Bρ

{
|u|ν+1 + 1

}p∗
dx

⎫
⎪⎬

⎪⎭

1
p∗

≤

⎧
⎪⎨

⎪⎩

∫

BR

{
ηq

(
|u|ν+1 + 1

)}p∗
dx

⎫
⎪⎬

⎪⎭

1
p∗

≤
⎧
⎨

⎩
c13[ν + 1]q+ p′

ε

[R − ρ]q

⎫
⎬

⎭

1
p

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

vq̃

⎫
⎪⎬

⎪⎭

q̃−p
pq̃

⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

1
q̃

(3.23)

and by the Hölder inequality we get the conclusion (3.18).

Step 4. We prove the boundedness of u and the estimate (2.9), using Moser’s

iteration technique. For all h ∈ N define νh = −1+
(

p∗
q̃

)h
, ρh = R0/2+ R0/2h+1

and Rh = R0/2 + R0/2h . Notice that ρh = Rh+1 and p∗(νh + 1) = q̃(νh+1 + 1);
therefore, by (3.18), replacing ν, R and ρ with νh , Rh and ρh , respectively, we have
that v ∈ Lq̃(νh+1)(BRh ) implies v ∈ Lq̃(νh+1+1)(BRh+1). Precisely,

‖v‖νh+1

Lq̃(νh+1+1)(BRh+1 )
=

⎧
⎪⎨

⎪⎩

∫

BRh+1

vq̃(νh+1+1) dx

⎫
⎪⎬

⎪⎭

1
p∗

=

⎧
⎪⎨

⎪⎩

∫

BRh+1

v p∗(νh+1) dx

⎫
⎪⎬

⎪⎭

1
p∗

≤

⎧
⎪⎪⎨

⎪⎪⎩

c142(h+1)q
[

p∗
q̃

]h
(

q+ p′
ε

)

Rq
0

⎫
⎪⎪⎬

⎪⎪⎭

1
p ⎧
⎪⎨

⎪⎩
1 +

∫

BR0

v p∗

⎫
⎪⎬

⎪⎭

q̃−p
p∗ p

⎧
⎪⎨

⎪⎩

∫

BRh

vq̃(νh+1) dx

⎫
⎪⎬

⎪⎭

1
q̃

≤ [c15]h

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

v p∗

⎫
⎪⎬

⎪⎭

q̃−p
p∗ p

‖v‖νh+1
Lq̃(νh+1)(BRh )

. (3.24)

Thus,

‖v‖Lq̃(νh+1+1)(BRh+1 )
≤ [c15]h

(
q̃
p∗

)h

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

v p∗

⎫
⎪⎬

⎪⎭

q̃−p
p∗ p

(
q̃
p∗

)h

‖v‖Lq̃(νh+1)(BRh )
.
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Taking into account that q̃(ν1 + 1) = p∗ and that q̃−p
p∗ p

∑∞
h=1

(
q̃
p∗
)h = q̃

p∗ p
q̃−p
p∗−q̃ ,

an iterated use of (3.24) implies

‖v‖L∞(BR0/2) ≤ c16

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

v p∗

⎫
⎪⎬

⎪⎭

q̃
p∗ p

q̃−p
p∗−q̃

‖v‖L p∗
(BR0 ).

Therefore, since v = max{|u|, 1} then

sup
BR0/2(x0)

|u| ≤ c17

⎧
⎪⎨

⎪⎩

∫

BR0

(|u| + 1)p∗
dx

⎫
⎪⎬

⎪⎭

1+θ
p∗

with θ = q̃
p

q̃−p
p∗−q̃ and we get the thesis. �

4. Boundedness under p, q-growth

In this section we deal with the system (2.1), assuming a suitable p, q-growth with
1 < p ≤ q. For the sake of simplicity we use the following notations

a = (aα
i ) i=1,...,n

α=1,...,m
, aα

i (x, u, ξ) :=
n∑

j=1

ai j (x, u, ξ)ξα
j ∀ i = 1, . . . , n, α = 1, . . . , m

and similarly for b = (bα
i ). We assume that the following inequalities hold for a.e.

x ∈ � and for every u ∈ R
m, ξ ∈ R

m×n , λ = (λi )i=1,...,n ∈ R
n

(A1) (ellipticity condition)

n∑

i, j=1

ai j (x, u, ξ)λiλ j ≥ M1

n∑

i=1

λ2
i |ξi |p−2, (4.1)

(A2) (growth conditions)

|a(x, u, ξ)| ≤ M2

{
|ξ |q−1 + b1(x)|u|

γ

p′ + a1(x)
}

, (4.2)

|b(x, u, ξ)| ≤ M2

{
|ξ |(p−1)(1−ε) + b2(x)|u|

γ

p′ + a2(x)
}

, (4.3)

| f (x, u, ξ)| ≤ M2

{
|ξ |p(1−δ) + b3(x)|u|γ−1 + a3(x)

}
, (4.4)

for some positive constants M1, M2, 1 < γ < p∗, 0 < ε < 1, 1
p∗ < δ < 1 and,

for i = 1, 2, 3,

bp′
1 , bp′

2 , b3 ∈ Ls
loc(�) with

(
p∗

γ

)′
< s ≤ +∞,

a p′
1 , a p′

2 , a3 ∈ Lt
loc(�) with

(
p∗

p

)′
< t ≤ +∞.
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Theorem 4.1. Let (A1) and (A2) hold. Assume also that either

〈a(x, u, ξ)−a(x, u, η), ξ−η〉 ≥ 0 ∀ ξ, η ∈ R
n×m and q < p

n−1

n−p
if p < n,

(4.5)

or there exists a Carathéodory function A : �×R
m ×R+ → R+, t → A(x, u, t)t

increasing, such that

ai j (x, u, ξ) = A(x, u, |ξ |)δi j ∀ i, j = 1, . . . , n, ∀ ξ ∈ R
n×m and q < p∗ if p < n.

(4.6)

Then any weak solution u ∈ W 1,q
loc (�; R

m) to (2.1) is locally bounded. Moreover,
for every BR(x0) � � there exists a constant c > 0 such that

sup
BR/2(x0)

|u| ≤ c

⎧
⎪⎨

⎪⎩

∫

BR(x0)

(|u| + 1)p∗
dx

⎫
⎪⎬

⎪⎭

1+θ
p∗

, (4.7)

where θ = q̃
p

q̃−p
p∗−q̃ with q̃ = max

{
q p′

q ′ , 1
δ
, γ s′, pt ′

}
if (4.5) holds, otherwise

q̃ = max
{
q, 1

δ
, γ s′, pt ′

}
if (4.6) holds.

Remark 4.2. Inequality (4.1) implies

〈a(x, u, ξ), ξ 〉 =
n∑

i, j=1

m∑

α=1

ai j (x, u, ξ)ξα
j ξα

i ≥ M1n1−p|ξ |p ∀ ξ ∈ R
m×n . (4.8)

Notice that if (4.6) holds then

〈a(x, u, ξ), η〉 = A(x, u, |ξ |)〈ξ, η〉 ∀ ξ, η ∈ R
m×n, (4.9)

so the inequality (4.8) is equivalent to

A(x, u, |ξ |)|ξ |2 ≥ M1n1−p|ξ |p. (4.10)

Moreover, under the structure assumption (4.6) we have that the growth condition
(4.2) is equivalent to

A(x, u, |ξ |)|ξ | ≤ M2

{
|ξ |q−1 + b1(x)|u|

γ

p′ + a1(x)
}

. (4.11)

By the monotonicity assumption on A it is easy to prove that

A(x, u, |ξ |)〈ξ, η〉 ≤ A(x, u, |ξ |)|ξ ||η| ≤ A(x, u, |ξ |)|ξ |2 + A(x, u, |η|)|η|2
(4.12)

or equivalently
n∑

i, j=1

m∑

α=1

ai j (x, u, ξ)ξα
j ηα

i ≤
n∑

i, j=1

m∑

α=1

ai j (x, u, ξ)ξα
i ξα

j

+
n∑

i, j=1

m∑

α=1

ai j (x, u, η)ηα
i ηα

j ∀ ξ, η ∈ R
m×n .
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Proof of Theorem 4.1 The scheme of the proof is analogous to the proof of
Theorem 2.3. Also in this case, without loss of generality we assume that the
functions ai , bi , i = 1, 2, 3, in (4.2)–(4.4) are a.e. greater than or equal to 1. We
split the proof into steps.

Step 1. We define a sequence of test functions (ϕk)k . Consider BR0(x0) �
�, 0 < r ≤ R ≤ R0, η ∈ C∞

c (BR) and the increasing sequence of C1 functions
gk : R+ → R+ as in the proof of Theorem 2.3. Fixed k ∈ N and ν ≥ 0, let
�k,ν : R+ → R+ be the increasing function �k,ν(t) := gk(t pν). Notice that as in
(3.5) we have

(�k,ν)
′(t)t ≤ pν

{
�k,ν(t) + 2

k

}
. (4.13)

Finally, define ϕk,ν(x) := �k,ν(|u(x)|)u(x)[η(x)]μ for every x ∈ BR0 , with μ =
q p′

q ′ ≥ q. Notice that ϕk,ν is in W 1,q(BR0; R
m), supp ϕ � BR .

Step 2. We aim to prove that for every ν ≥ 0, k ∈ N,

5

8

∫

BR

〈a(x, u, Du), Du〉
{
�k(|u|) − 1

5k

}
ημ dx

≤ μ

∫

BR

〈ã(x, u, Du),−u ⊗ Dη〉�k(|u|) ημ−1 dx

+c max{ν, 1} p′
ε

∫

BR

{
|u| 1

δ +
(

b p′
2 + b3

)
|u|γ + a3|u| + a p′

2

}{
�k(|u|) + 2

k

}
dx,

(4.14)

where we used the notations in Step 2 of the proof of Theorem 2.3, see in particular
(3.9). Using ϕk as a test function in (2.8) we get

I1 + I2 :=
∫

BR

〈ã(x, u, Du), Du〉�k(|u|) ημ dx

+
∫

BR

n∑

i=1

m∑

α,β=1

ãα
i (x, u, Du) uα uβ

|u| uβ
xi

(�k)
′(|u|) ημ dx

= μ

∫

BR

〈ã(x, u, Du),−u ⊗ Dη〉�k(|u|) ημ−1 dx

−
∫

BR

〈 f (x, u, Du), u〉�k(|u|) ημ dx =: I3 + I4. (4.15)

Now, we separately consider and estimate Ii , i = 1, 2, 4.
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Estimate of I1
By (4.3) the Young inequality (applied first with exponent p and then with

exponent 1
1−ε

) and (4.8) we have that for some positive τ << 1

|〈b(x, u, Du), Du〉| ≤ M2

{
|Du|(p−1)(1−ε) + b2|u|

γ

p′ + a2(x)
}

|Du|
≤ τ |Du|p + cτ

{
|Du|p(1−ε) + bp′

2 (x)|u|γ + a p′
2 (x)

}

≤ M1

4n p−1 |Du|p + c1

{
bp′

2 (x)|u|γ + a p′
2 (x) + 1

}

≤ 1

4
〈a(x, u, Du), Du〉 + c2

{
bp′

2 (x)|u|γ + a p′
2 (x)

}

(4.16)

with c2 depending also on ε. Thus,

I1 ≥ 3

4

∫

BR

〈a(x, u, Du), Du〉�k(|u|)ημ dx − c2

∫

BR

{
bp′

2 |u|γ + a p′
2

}
�k(|u|) dx .

(4.17)

Estimate of I2
As in the proof of Theorem 2.3, using (3.12) and (4.13) we have

I2 ≥
∫

BR

n∑

i=1

m∑

α,β=1

bα
i (x, u, Du) uα uβ

|u| uβ
xi

(�k)
′(|u|) ημ dx

≥ −
∫

BR

pν|b(x, u, Du)||Du|
{
�k(|u|) + 2

k

}
ημ dx .

Reasoning as in (3.14) and in (4.16), by (4.3) and the Young inequality it follows
that

pν|b(x, u, Du)||Du| ≤ 1

16
〈a(x, u, Du), Du〉 + c3 max{ν, 1} p′

ε

{
b p′

2 (x)|u|γ + a p′
2 (x)

}
.

Thus, we obtain

I2 ≥ − 1

16

∫

BR

〈a(x, u, Du), Du〉
{
�k(|u|) + 2

k

}
ημ dx

−c3 max{ν, 1} p′
ε

∫

BR

{
bp′

2 (x)|u|γ + a p′
2 (x)

}{
�k(|u|) + 2

k

}
dx . (4.18)

Estimate of I4
Let us now deal with I4. Using (4.4) we obtain

I4 ≤ M2

∫

BR

{
ημ|Du|p(1−δ)|u| + b3|u|γ + a3|u|

}
�k(|u|) dx .



Local boundedness of solutions to quasilinear elliptic systems 309

Now, let us estimate the right-hand side using the Young inequality and (4.8). We
have that there exists c4, depending on M1, M2, n, p, δ, such that for a.e. x

M2|Du|p(1−δ)|u| ≤ M1

16n p−1 |Du|p + c4|u| 1
δ ≤ 1

16
〈a(x, u, Du), Du〉 + c4|u| 1

δ .

Therefore,

I4 ≤ 1

16

∫

BR

〈a(x, u, Du), Du〉�k(|u|)ημ dx + c4

∫

BR

{
|u| 1

δ + b3|u|γ + a3|u|
}

�k(|u|) dx .

(4.19)

Collecting (4.15), (4.17), (4.18) and (4.19) we get

5

8

∫

BR

〈a(x, u, Du), Du〉
{
�k(|u|) − 1

5k

}
ημ dx

≤ I3 + c5 max{ν, 1} p′
ε

∫

BR

{
|u| 1

δ +
(

b p′
2 + b3

)
|u|γ + a3|u| + a p′

2

}{
�k(|u|) + 2

k

}
dx

(4.20)

and the claim follows.

Step 3. In this step we provide two different estimates of I3 depending on
whether (4.5) or (4.6) holds true. We recall that

I3 = μ

∫

BR

〈a(x, u, Du) + b(x, u, Du),−u ⊗ Dη〉�k(|u|) ημ−1 dx .

Estimate of I3 under assumption (4.5) For a.e. x ∈ BR0 ∩ {η �= 0} by (4.5) with
ξ = Du(x) and η = −8μu(x) ⊗ Dη(x)

η(x)
, we obtain

μ 〈a(x, u, Du),−u ⊗ Dη〉 ημ−1 = ημ

8

〈
a(x, u, Du),−8μu ⊗ Dη

η

〉

≤ ημ

8
〈a(x, u, Du), Du〉 + ημ

8

〈
a

(
x, u,−8μu ⊗ Dη

η

)
,−8μu ⊗ Dη

η

〉

−ημ

8

〈
a

(
x, u,−8μu ⊗ Dη

η

)
, Du

〉
. (4.21)

By (4.2) and the assumptions on η, see (3.3),

ημ

8

〈
a

(
x, u, −8μu ⊗ Dη

η

)
, −8μu ⊗ Dη

η

〉

≤ 8q−1μqημM2

{∣∣∣∣u ⊗ Dη

η

∣∣∣∣
q

+
(

b1|u|
γ

p′ + a1

) ∣∣∣∣u ⊗ Dη

η

∣∣∣∣

}

≤ c6

(R − ρ)q

{
|u|q + b1|u|

γ

p′ +1 + a1|u|
}

≤ c7

(R − ρ)q

{
|u|q + |u|p + b p′

1 |u|γ + a p′
1

}

(4.22)
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with c7 depending on M2, p, q and R0. Notice that we used that μ ≥ q and
1

(R−ρ)a ≤ Rb−a
0

(R−ρ)b if 0 < a < b. Let us now estimate the last term in (4.21) using
(4.2) once more. We get

−ημ

8

〈
a

(
x, u,−8μu ⊗ Dη

η

)
, Du

〉

≤ c8

(R − ρ)q−1 ημ−q+1|Du|
{
|u|q−1 + b1|u|

γ

p′ + a1

}

(4.23)

with c8 depending on M2, p, q. To estimate the term at the right-hand side of (4.23)

we use the Young inequality and (4.8) (notice that ημ−q+1 = η
μ
p η

μ
p−1

p −q+1 and
that μ

p−1
p − q + 1 ≥ 0). Thus, for a.e. x

{
η

μ
p |Du|

}{
c8

(R − ρ)q−1 η
μ

p−1
p −q+1

(
|u|q−1 + b1|u|

γ

p′ + a1

)}

≤ M1

16n p−1 ημ|Du|p + c9

(R − ρ)(q−1)p′
{
|u|(q−1)p′ + bp′

1 |u|γ + a p′
1

}

≤ 1

16
ημ〈a(x, u, Du), Du〉 + c9

(R − ρ)(q−1)p′
{
|u|(q−1)p′ + bp′

1 |u|γ + a p′
1

}
.

(4.24)

As far as the integral

μ

∫

BR

〈b(x, u, Du),−u ⊗ Dη〉�k(|u|) ημ−1 dx

is concerned, reasoning as in (4.16) and using (4.3) and (4.8) we get

μ〈b(x, u, Du),−u ⊗ Dη〉ημ−1

≤ M1

16n p−1 ημ|Du|p + c10

(R − ρ)p

{
|u|p + bp′

2 |u|γ + a p′
2

}

≤ 1

16
ημ〈a(x, u, Du), Du〉 + c10

(R − ρ)p

{
|u|p + bp′

2 |u|γ + a p′
2

}
. (4.25)

Collecting (4.21)–(4.25) we get the following estimate of I3 ((q − 1)p′ ≥ q ≥ p)

I3 ≤ 1

4

∫

BR

〈a(x, u, Du), Du〉�k(|u|) ημ dx

+ c11

(R − ρ)(q−1)p′

∫

BR

{
|u|(q−1)p′ + (bp′

1 + bp′
2 )|u|γ + a p′

1 + a p′
2

}
�k(|u|) dx .

(4.26)
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Estimate of I3 under assumption (4.6) By definition of ã(x, u, Du) in (3.9) and
(4.9)

μ〈ã(x, u, Du),−u ⊗ Dη〉ημ−1 ≤ μA(x, u, |Du|)〈Du,−u ⊗ Dη〉ημ−1

+μ|b(x, u, Du)||u ⊗ Dη|ημ−1. (4.27)

By applying (4.12), with ξ = Du(x) and η = −8μu(x) ⊗ Dη(x)
η(x)

,

μA(x, u, |Du|)〈Du,−u ⊗ Dη〉ημ−1 = ημ

8
A(x, u, |Du|)

〈
Du, −8μu ⊗ Dη(x)

η(x)

〉

≤ ημ

8

{
A(x, u, |Du|)|Du|2 + A

(
x, u,

∣∣∣∣8μu ⊗ Dη

η

∣∣∣∣

) ∣∣∣∣8μu ⊗ Dη

η

∣∣∣∣
2
}

. (4.28)

Now, by (4.11) and the Young inequality

ημ

8
A

(
x, u,

∣∣∣∣8μu ⊗ Dη

η

∣∣∣∣

) ∣∣∣∣8μu ⊗ Dη

η

∣∣∣∣
2

≤ μημM2

{
(8μ)q−1

∣∣∣∣u ⊗ Dη

η

∣∣∣∣
q−1

+ a1(x)|u|
γ

p′ + a1(x)

} ∣∣∣∣u ⊗ Dη

η

∣∣∣∣

≤ c12

(R − ρ)q
|u|q + c12

R − ρ

{
b1(x)|u|

γ

p′ +1 + a1(x)|u|
}

≤ c13

(R − ρ)q

{
|u|q + |u|p + bp′

1 (x)|u|γ + a p′
1 (x)

}
(4.29)

with c13 depending on M2, p, q and R0. Taking into account (4.3) and reasoning
as in (4.16) we get

μ|b(x, u, Du)||u ⊗ Dη|ημ−1 ≤ M1η
μ

8n p−1 |Du|p+ c14

(R − ρ)p

{
|u|p+bp′

2 |u|γ +a p′
2

}

which implies, by using (4.9) and (4.10),

μ|b(x, u, Du)||u ⊗ Dη|ημ−1 ≤ ημ

8
〈a(x, u, Du), Du〉

+ c15

(R − ρ)(q−1)p′
{
|u|p + bp′

2 |u|γ + a p′
2

}
. (4.30)

Collecting (4.27)–(4.30) we get the following estimate of I3

I3 ≤ 1

4

∫

BR

〈a(x, u, Du), Du〉�k(|u|) ημ dx

+ c16

(R − ρ)(q−1)p′

∫

BR

{
|u|q + |u|p +

2∑

i=1

bp′
i |u|γ +

2∑

i=1

a p′
i

}
�k(|u|) dx,

(4.31)
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which implies an inequality analogous to (4.26):

I3 ≤ 1

4

∫

BR

〈a(x, u, Du), Du〉�k(|u|) ημ dx

+ c17

(R − ρ)(q−1)p′

∫

BR

{
|u|q + (bp′

1 + bp′
2 )|u|γ + a p′

1 + a p′
2

}
�k(|u|) dx .

(4.32)

Eventually, by (4.14), (4.26) and (4.32) we have

3

8

∫

BR

〈a(x, u, Du), Du〉
{
�k(|u|) − 1

3k

}
ημ dx

≤ c18[ν + 1] p′
ε

(R − ρ)(q−1)p′

∫

BR

{
|u|θ + |u| 1

δ +
(

2∑

i=1

bp′
i + b3

)
|u|γ + a3|u|

+
2∑

i=1

a p′
i

}{
�k(|u|) + 2

k

}
dx,

where

θ :=
{

(q − 1)p′ = q p′
q ′ if (4.5) holds

q if (4.6) holds.

Since �k(|u|) → |u|pν as k go to +∞, passing to the limit and using (4.8) we
obtain

∫

BR

|Du|p|u|pν ημ dx

≤ c19[ν+1] p′
ε

(R−ρ)(q−1)p′

∫

BR

⎧
⎨

⎩|u|θ+|u| 1
δ +

⎛

⎝
2∑

i=1

b p′
i +b3

⎞

⎠ |u|γ +a3|u|+
2∑

i=1

a p′
i

⎫
⎬

⎭ |u|pν dx

(4.33)

where c is a suitable positive constant depending on the data and R0, but not on ν.

Step 4. In this step we conclude. We follow the scheme of Steps 3 and 4 of the
proof of Theorem 2.3, taking into account that now ph = p and that ai and bi are

now replaced by a p′
i and bp′

i , i = 1, 2, respectively. We limit ourselves to outline
the main first inequalities. First we estimate the left-hand side in (4.33) proceeding
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as in (3.19):
∫

BR

∣∣∣D
[
η

μ
p

(
|u|ν+1 + 1

)]∣∣∣
p

dx

≤ c20

∫

BR

ημ−p|Dη|p[|u|ν+1 + 1]p dx + c20[ν + 1]p
∫

BR

|Du|p|u|pνημ dx

≤ c21

(R − ρ)p

∫

BR

[max{|u|, 1}]p+pν dx + c20[ν + 1]p
∫

BR

|Du|p|u|pνημ dx

≤ c22

(R − ρ)(q−1)p′

∫

BR

[max{|u|, 1}]p+pν dx + c20[ν + 1]p
∫

BR

|Du|p|u|pνημ dx

with c20 depending only on p and c22 depending also on q and R0. Then, defining
v := max{|u|, 1} and using the classical Sobolev imbedding theorem and (4.33)
we get

⎛

⎜⎝
∫

Bρ

v p∗(ν+1) dx

⎞

⎟⎠

p
p∗

≤
⎛

⎜⎝
∫

BR

∣∣∣η
μ
p

(
|u|ν+1 + 1

)∣∣∣
p∗

dx

⎞

⎟⎠

p
p∗

≤ c23

∫

BR

∣∣∣D
[
η

μ
p

(
|u|ν+1 + 1

)]∣∣∣
p

dx ≤ c24[ν + 1]p+ p′
ε

(R − ρ)(q−1)p′

∫

BR

{
|v|θ+pν+|v| 1

δ
+pν+

(
2∑

i=1

bp′
i +b3

)
vγ+pν+a3v

1+pν+
2∑

i=1

a p′
i v pν

}
dx .

By Lemma 3.2 with δ = p, σ = q̃ and a suitable choice of γ and τ , taking into
account that max{ 1

t ′ ,
1
s′ , 1} = 1, we obtain

⎛

⎜⎝
∫

Bρ

v p∗(ν+1) dx

⎞

⎟⎠

1
p∗

≤ c25 [ν + 1]1+ 1
(p−1)ε

(R − ρ)
q−1
p−1

⎧
⎪⎨

⎪⎩
1 +

∫

BR0

vq̃ dx

⎫
⎪⎬

⎪⎭

q̃−p
pq̃

⎧
⎪⎨

⎪⎩

∫

BR

vq̃(ν+1)

⎫
⎪⎬

⎪⎭

1
q̃

the analogue of (3.23). Taking into account that q̃ < p∗, from now on the proof
goes as in the previous section. �
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