"Una proposta didattica per un approccio geometrico alle equazioni di secondo e terzo grado"
\[\frac{b^2}{4} - c = 0 \]
\(b^2/4 - c = 0 \)
\[b^2/4 - c = 0 \]
$b^2/4 - c = 0$
\(b^2/4 - c = 0 \)

\((b, c) \)

\((a_1, a_1^2/4) \)
\[b^2/4 - c = 0 \]
\[b^2/4 - c = 0 \]
\[b^2 - c = 0 \]
\[b^2/4 - c = 0 \]
\[\frac{b^2}{4} - c = 0 \]

The diagram shows a parabola opening upwards with a point labeled \(F \) and a circle centered at \((5/2, -3/2)\).
\[\frac{b^2}{4} - c = 0 \]

Point: \((5/2, -3/2)\)
The graph shows the equation $b^2/4 - c = 0$. The point $(5/2, -3/2)$ is marked on the graph, indicating a solution to the equation. The graph also includes a line and a circle, which may represent additional constraints or conditions related to the equation.
The point F is located at $\left(-\frac{5}{4}, -\frac{3}{2}\right)$. The circle's radius can be determined by the distance from F to any point on the circle.
The diagram shows a circle centered at point F with coordinates $(1/2, 1/4)$. The circle passes through the point $(1/2, 0)$ on the horizontal axis. The circle's radius is determined by the distance from point F to this point on the axis.
\(b^2 - c = 0 \) at \(c = 3 \)
\(b^2 - c = 0\)
\[b^2 - c = 0 \]

\[b = \frac{5}{2} \]
The equation $b^2 - c = 0$ is plotted on a graph with the line $b = \frac{5}{2}$. The graph shows the relationship between b and c for this equation.
\[b^2 - c = 0 \]

\[c = -2b - 2 \]
$b^2 - c = 0$

- **NO SOL. REALI**
- **SOL. CONCORDI NEGATIVE**
- **SOL. CONCORDI POSITIVE**

- **SOL. DISCORDI (QUELLA NEGATIVA HA MODULO MAGGIORE)**
- **SOL. DISCORDI (QUELLA POSITIVA HA MODULO MAGGIORE)**
\[b^2 - c = 0 \]
\[c = -(1/4)b + 5/4 \]
$d^2 + 4c^3 = 0$
\(d^2 + 4c^3 = 0 \)
\[d^2 + 4c^3 = 0 \]

\[(c, d) \]

\[d^2 + 4c^3 < 0 \]
$4p^3 + 27q^2 = 0$
27q^2 + 4p^3 = 0

\{ q = -px - x^3 \}
\[4p^3 + 27q^2 = 0\]

\[q = -2\]
$4p^3 + 27q^2 = 0$

$p = -4$
$4p^3 + 27q^2 = 0$

- 3 sol. reali: 2 positive e 1 negativa
- 1 sol. reale negativa
- 3 sol. reali: 2 negative e 1 positiva
- 1 sol. reale positiva
$4p^3 + 27q^2 = 0$

$(7, -2)$
$4p^3 + 27q^2 = 0$

Points: $(-10, 8)$ and $(7, -2)$
The equation $4p^3 + 27q^2 = 0$ is plotted on a graph with p on the x-axis and q on the y-axis. The graph shows several points marked with their corresponding t values: $t = 0, 0.5, 1, 0.75, 0.375, 1/2, 3/4, 7/8, -1/2, -3/4, -7/8, -1$. These points are connected by a curve that represents the solution of the equation for different values of t. The curve passes through the origin $(0,0)$ and extends in both positive and negative directions along the p and q axes.
$4p^3 + 27q^2 = 0$
The equation given is $4p^3 + 27q^2 = 0$. The graph shows points on the curve corresponding to different values of t. The points marked on the curve are:

- $t = 3$
- $t = 3/2$
- $t = 9/4$
- $t = -3/2$
- $t = -9/4$
- $t = -21/8$
- $t = -3$

The point $(5, 20)$ is also marked on the graph.
$4p^3 + 27q^2 = 0$

Points:
- $(5, 20)$
- $t = 3$
- $t = 9/4$
- $t = -3/2$
- $t = -9/4$
- $t = -21/8$
- $t = -3$
$4p^3 + 27q^2 = 0$

$(\frac{-7}{5}, -\frac{3}{10})$
\[4p^3 + 27q^2 = 0\]

Points:
- \((-7/5, -3/10)\)
- \(t = 0\)
- \(t = 3/2\)
- \(t = 9/8\)
- \(t = 3/4\)
- \(t = 21/16\)
- \(t = -3/4\)
- \(t = -9/8\)
- \(t = -21/16\)
- \(t = -3/2\)