Tensor decomposition and tensor rank from the point of view of Classical Algebraic Geometry RTG Workshop
Tensors and their Geometry in High Dimensions
(September 26-29, 2012)
UC Berkeley

Giorgio Ottaviani
Università di Firenze

Content of the three talks

- Wednesday Rank and symmetric rank. Tensor decomposition. Classical apolarity and Sylvester algorithm. Secant varieties. Clebsch quartics. Sum of squares, sum of k-th powers.
- Thursday Cases where classical apolarity fails. Vector bundles and non abelian apolarity. Equations for secant varieties, infinitesimal criterion for smoothness. Scorza map and Lüroth quartics.
- Friday Actions of $S L(2)$. The complexity of Matrix Multiplication Algorithm.

The rank of a matrix

Let A be a $m \times n$ matrix with entries in a field K.

Basic Fact

A has rank one \Longleftrightarrow there exist nonzero $x \in K^{m}, y \in K^{n}$ such that $A=x \cdot y^{t}$, that is $a_{i j}=x_{i} y_{j}$

Proposition

A has rank $\leq r \Longleftrightarrow$ there exist A_{i} such that rank $A_{i}=1$ and $A=A_{1}+\ldots+A_{r}$.

Proof \Longleftarrow trivial
\Longrightarrow There are $G \in G L(m), H \in G L(n)$ such that
$G A H=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & 1 & \vdots \\ 0 & \cdots & 0\end{array}\right]=$

end of the proof

$=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0\end{array}\right]+\left[\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0\end{array}\right]+\ldots+\left[\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & & 1 & \vdots \\ 0 & \cdots & 0\end{array}\right]=$
$=G A_{1} H+G A_{2} H+\ldots+G A_{r} H$
Then $A=A_{1}+\ldots+A_{r}$.

Gaussian elimination

Operation $A \mapsto G A H$ where $G \in G L(m), H \in G L(n)$ is essentially Gaussian elimination (on both rows and columns).
It reduces every matrix to its canonical form where there are r entries equal to 1 on the diagonal, otherwise zero.

Not uniqueness

The expression $A=\sum_{i=1}^{r} A_{i}$ where rank $A_{i}=1$ is far to be unique.
The reason is that there are infinitely many G, H such that
$G A H=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & 1 & \vdots \\ 0 & \cdots & 0\end{array}\right]$
The only invariant is the number of summands, the individual summands are not uniquely determined.

Symmetric matrices

Let A be a $n \times n$ symmetric matrix with entries in the field $K=\mathbb{R}$ or \mathbb{C}.

Basic Fact

A has rank one \Longleftrightarrow there exist nonzero $x \in K^{n}$, such that $A= \pm x \cdot x^{t}$, that is $a_{i j}= \pm x_{i} x_{j}$

Proposition

A has rank $\leq r \Longleftrightarrow$ there exist symmetric A_{i} such that rank $A_{i}=1$ and $A=A_{1}+\ldots+A_{r}$.

Proof is the same, with symmetric gaussian elimination $A \mapsto G^{t} A G$. Works in every field where any element is a square or the opposite of a square.

Let V_{i} be complex (or real) vector spaces. A tensor is an element $f \in V_{1} \otimes \ldots \otimes V_{k}$, that is a multilinear map $V_{1}^{\vee} \times \ldots \times V_{k}^{\vee} \rightarrow K$ A tensor can be visualized as a multidimensional matrix.

Entries of f are labelled by k indices, as $a_{i_{1} \ldots i_{k}}$

Definition

A tensor is decomposable if there exist $x^{i} \in V_{i}$ for $i=1, \ldots, k$ such that $a_{i_{1} \ldots i_{k}}=x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}$

For a nonzero usual matrix, decomposable \Longleftrightarrow rank one.

Decomposition in $2 \times 2 \times 2$ case

Theorem (Segre)

A general tensor t of format $2 \times 2 \times 2$ has a unique decomposition as a sum of two decomposable tensors

Sketch of proof

Assume we have a decomposition (with obvious notations)
$t=x_{1} \otimes y_{1} \otimes z_{1}+x_{2} \otimes y_{2} \otimes z_{2}$
Consider t as a linear map $A_{t}: \mathbb{C}^{2 \vee} \otimes \mathbb{C}^{2 \vee} \rightarrow \mathbb{C}^{2}$
Let $\left(x_{1}^{\prime}, x_{2}^{\prime}\right),\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ be dual basis.
ker A_{t} is a two dimensional subspace of the source, which contains $x_{1}^{\prime} \otimes y_{2}^{\prime}$ and $x_{2}^{\prime} \otimes y_{1}^{\prime}$, hence it is equal to their linear span.
In the source space there is the quadratic cone of decomposable elements given by det $=0$. Cutting with the kernel get just the two lines spanned by $x_{1}^{\prime} \otimes y_{2}^{\prime}$ and $x_{2}^{\prime} \otimes y_{1}^{\prime}$. These are two linear functions with common zero locus (on decomposable elements in $\left.\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$ given by $\left(x_{1} \otimes y_{1}\right),\left(x_{2} \otimes y_{2}\right)$ (and their scalar multiples), that can be found uniquely from t.

Why geometry?

Corrado Segre in XIX century understood the previous decomposition in terms of projective geometry.
The tensor t is a point of the space $\mathbb{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.
The decomposable tensors make the "Segre variety"

$$
\begin{aligned}
X=\mathbb{P}\left(\mathbb{C}^{2}\right) \otimes \mathbb{P}\left(\mathbb{C}^{2}\right) \otimes \mathbb{P}\left(\mathbb{C}^{2}\right) & \rightarrow \\
\left(\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right),\left(c_{0}, c_{1}\right)\right) & \mapsto\left(a_{0} b_{0} c_{0}, a_{0} b_{0} c_{1}, \ldots, a_{1} b_{1} c_{1}\right)
\end{aligned}
$$

From t there is a unique secant line meeting X in two points. This point of view is extremely useful also today.
J.M. Landsberg, Tensors: Geometry and Applications, AMS 2012

Just as matrices can be cutted in rows or in columns, higher dimensional tensors can be cut in slices

The three ways to cut a $3 \times 2 \times 2$ matrix into parallel slices For a tensor of format $a_{1} \times \ldots \times a_{d}$, there are a_{1} slices of format $a_{2} \times \ldots \times a_{d}$.

Multidimensional Gauss elimination

We can operate adding linear combinations of a slice to another slice, just in the case of rows and columns.
This amounts to multiply A of format $n_{1} \times \ldots \times n_{k}$ for $G_{1} \in G L\left(n_{1}\right)$, then for $G_{i} \in G L\left(n_{i}\right)$.
The group acting is quite big $G=G L\left(n_{1}\right) \times \ldots \times G L\left(n_{k}\right)$.

Canonical form in the format $2 \times 2 \times 2$

Theorem

For a tensor A of format $2 \times 2 \times 2$ such that $\operatorname{Det}(A) \neq 0$, (hyperdeterminant) then there exist $H_{0}, H_{1}, H_{2} \in G L(2)$ such that (with obvious notations) $H_{0} * A * H_{1} * H_{2}$ has entries 1 in the red opposite corners and 0 otherwise.

Basic computation of dimensions. Let $\operatorname{dim} V_{i}=n_{i}$ $\operatorname{dim} V_{1} \otimes \ldots \otimes V_{k}=\prod_{i=1}^{k} n_{i}$ $\operatorname{dim} G L\left(n_{1}\right) \times \ldots \times G L\left(n_{k}\right)=\sum_{i=1}^{k} n_{i}^{2}$
For $k \geq 3$, the dimension of the group is in general much less that the dimension of the space where it acts.
This makes a strong difference between the classical case $k=2$ and the case $k \geq 3$.

case $3 \times 2 \times 2$ has canonical form

For a tensor A of format $3 \times 2 \times 2$ such that $\operatorname{Det}(A) \neq 0$, (hyperdeterminant) then there exist $G \in G L(3)$ $H_{1}, H_{2} \in G L(2)$ such that (with obvious notations) $G * A * H_{1} * H_{2}$ is equal to the "identity matrix".
The "identity matrix" corresponds to polynomial multiplication $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow S^{2}\left(\mathbb{C}^{2}\right)$ represented by $3 \times 2 \times 2$ matrix which in
convenient basis is the "identity".

Few cases where multidimensional Gaussian elimination works

There are finitely many orbits for the action of $G L\left(k_{1}\right) \times G L\left(k_{2}\right) \times G L\left(k_{3}\right)$ over $\mathbb{C}^{k_{1}} \otimes \mathbb{C}^{k_{2}} \otimes \mathbb{C}^{k_{3}}$ just in the following cases ([Parfenov])

$\left(k_{1}, k_{2}, k_{3}\right)$	$\#$ orbits
$(2,2,2)$	7
$(3,2,2)$	9
$(n \geq 4,2,2)$	10
$(3,3,2)$	18
$(4,3,2)$	24
$(5,3,2)$	26
$(n \geq 6,3,2)$	27

Tensor Decomposition and Rank

Let V_{1}, \ldots, V_{k} be complex vector spaces. A decomposition of $f \in V_{1} \otimes \ldots \otimes V_{k}$ is

$$
f=\sum_{i=1}^{r} c_{i} v_{i, 1} \otimes \ldots \otimes v_{i, k} \quad \text { with } c_{i} \in \mathbb{C}, \quad v_{i, j} \in V_{j}
$$

Definition

$\operatorname{rk}(f)$ is the minimum number of summands in a decomposition of f. A minimal decomposition has $\operatorname{rk}(f)$ summands and it is called CANDECOMP or PARAFAC.

Note that for usual matrices, this definition of rank agrees with the classical one.
We may assume $c_{i}=1$, although in practice it is more convenient to determine $v_{i, k}$ up to scalars, and then solve for c_{i}.

Rank from slices, in three dimensional case

Let $A=\left[A_{1}, \ldots A_{m}\right]$, where A_{i} are its two-dimsnional slices. Note that

$$
A=\sum_{i=1}^{r} x_{i} \otimes y_{i} \otimes z_{i}
$$

if and only if

$$
<A_{1}, \ldots, A_{m}>\subseteq<x_{1} y_{1}, \ldots, x_{r} y_{r}>
$$

We get

Rank from slices

The rank of $A=\left[A_{1}, \ldots A_{m}\right]$ is the minimum r such that there exists a span of r matrices of rank one containing $<A_{1}, \ldots, A_{m}>$.

Symmetric tensors $=$ homogeneous polynomials

In the case $V_{1}=\ldots=V_{k}=V$ we may consider symmetric tensors $f \in S^{d} V$.
Elements of $S^{d} V$ can be considered as homogeneous polynomials of degree d in $x_{0}, \ldots x_{n}$, basis of V.
So polynomials have rank (as all tensors) and also symmetric rank (next slides).

Symmetric Tensor Decomposition (Waring)

A Waring decomposition of $f \in S^{d} V$ is

$$
f=\sum_{i=1}^{r} c_{i}\left(l_{i}\right)^{d} \quad \text { with } l_{i} \in V
$$

with minimal r

Example: $7 x^{3}-30 x^{2} y+42 x y^{2}-19 y^{3}=(-x+2 y)^{3}+(2 x-3 y)^{3}$ rk $\left(7 x^{3}-30 x^{2} y+42 x y^{2}-19 y^{3}\right)=2$

Symmetric Rank and Comon Conjecture

The minimum number of summands in a Waring decomposition is called the symmetric rank

Comon Conjecture

Let t be a symmetric tensor. Are the rank and the symmetric rank of t equal ? Comon conjecture gives affirmative answer.

Known to be true when $t \in S^{d} \mathbb{C}^{n+1}, n=1$ or $d=2$ and few other cases.

Apolarity and Waring decomposition, I

For any $I=\alpha x_{0}+\beta x_{1} \in \mathbb{C}^{2}$ we denote $I^{\perp}=-\beta \partial_{0}+\alpha \partial_{1} \in \mathbb{C}^{2 \vee}$. Note that

$$
\begin{equation*}
I^{\perp}\left(I^{d}\right)=0 \tag{1}
\end{equation*}
$$

so that I^{\perp} is well defined (without referring to coordinates) up to scalar multiples. Let e be an integer. Any $f \in S^{d} \mathbb{C}^{2}$ defines $C_{f}^{e}: S^{e}\left(\mathbb{C}^{2 \vee}\right) \rightarrow S^{d-e} \mathbb{C}^{2}$
Elements in $S^{e}\left(\mathbb{C}^{2 \vee}\right)$ can be decomposed as $\left(I_{1}^{\perp} \circ \ldots \circ I_{e}^{\perp}\right)$ for some $l_{i} \in \mathbb{C}^{2}$.

Apolarity and Waring decomposition, II

Proposition

Let I_{i} be distinct for $i=1, \ldots, e$. There are $c_{i} \in K$ such that
$f=\sum_{i=1}^{e} c_{i}\left(l_{i}\right)^{d}$ if and only if $\left(I_{1}^{\perp} \circ \ldots \circ I_{e}^{\perp}\right) f=0$
Proof: The implication \Longrightarrow is immediate from (1). It can be summarized by the inclusion
$<\left(I_{1}\right)^{d}, \ldots,\left(I_{e}\right)^{d}>\subseteq \operatorname{ker}\left(I_{1}^{\perp} \circ \ldots \circ I_{e}^{\perp}\right)$. The other inclusion follows by dimensional reasons, because both spaces have dimension e. \square The previous Proposition is the core of the Sylvester algorithm, because the differential operators killing f allow to define the decomposition of f, as we see in the next slide.

Sylvester algorithm for Waring decomposition

Sylvester algorithm for general f Compute the decomposition of a general $f \in S^{d} U$

- Pick a generator g of $\operatorname{ker} C_{f}^{a}$ with $a=\left\lfloor\frac{d+1}{2}\right\rfloor$.
- Decompose g as product of linear factors, $g=\left(I_{1}^{\perp} \circ \ldots \circ I_{r}^{\perp}\right)$
- Solve the system $f=\sum_{i=1}^{r} c_{i}\left(I_{i}\right)^{d}$ in the unknowns c_{i}.

Remark When d is odd the kernel is one-dimensional and the decomposition is unique. When d is even the kernel is two-dimensional and there are infinitely many decompositions.

$$
\left.\begin{array}{l}
\text { If } f(x, y)=a_{0} x^{4}+4 a_{1} x^{3} y+6 a_{2} x^{2} y^{2}+4 a_{3} x y^{3}+a_{4} y^{4} \text { then } \\
C_{f}^{1}=\left[\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
a_{3} \\
a_{1} & a_{2} & a_{3}
\end{array} a_{4}\right.
\end{array}\right] .
$$

The catalecticant algorithm at work

The catalecticant matrix associated to
$f=7 x^{3}-30 x^{2}+42 x-19=0$ is

$$
A_{f}=\left[\begin{array}{rrr}
7 & -10 & 14 \\
-10 & 14 & -19
\end{array}\right]
$$

ker A_{f} is spanned by $\left[\begin{array}{l}6 \\ 7 \\ 2\end{array}\right]$ which corresponds to
$6 \partial_{x}^{2}+7 \partial_{x} \partial_{y}+2 \partial_{y}^{2}=\left(2 \partial_{x}+\partial_{y}\right)\left(3 \partial_{x}+2 \partial_{y}\right)$
Hence the decomposition

$$
7 x^{3}-30 x^{2} y+42 x y^{2}-19 y^{3}=c_{1}(-x+2 y)^{3}+c_{2}(2 x-3 y)^{3}
$$

Solving the linear system, we get $c_{1}=c_{2}=1$

Application to the solution of the cubic equation

$$
\begin{gathered}
7 x^{3}-30 x^{2}+42 x-19=0 \\
7 x^{3}-30 x^{2}+42 x-19=(-x+2)^{3}+(2 x-3)^{3} \\
\left(\frac{-x+2}{-2 x+3}\right)^{3}=1
\end{gathered}
$$

three linear equations

$$
\begin{gathered}
-x+2=(-2 x+3) \omega^{j} \text { for } j=0,1,2 \quad \omega=\exp \frac{2 \pi i}{3} \\
x=\frac{3 \omega^{j}-2}{2 \omega^{j}-1}
\end{gathered}
$$

Secant varieties give basic interpretation of rank of tensors in Geometry.
Let $X \subset \mathbb{P} V$ be irreducible variety.

$$
\sigma_{k}(X):=\overline{\bigcup_{x_{1}, \ldots, x_{k} \in X}<x_{1}, \ldots, x_{k}>}
$$

where $\left.<x_{1}, \ldots, x_{k}\right\rangle$ is the projective span.
There is a filtration $X=\sigma_{1}(X) \subset \sigma_{2}(X) \subset \ldots$
This ascending chain stabilizes when it fills the ambient space.
So $\min \left\{k \mid \sigma_{k}(X)=\mathbb{P} V\right\}$ is called the generic X-rank.

Examples of secant varieties

$X=\mathbb{P} V \otimes \mathbb{P} W$
Then $\sigma_{k}(X)$ parametrizes linear maps $V^{\vee} \rightarrow W$ of rank $\leq k$. In this case the Zariski closure is not necessary, the union is already closed.
$X=v_{2} \mathbb{P} V$ quadratic Veronese embedding of $\mathbb{P} V$.
Then $\sigma_{k}(X)$ parametrizes symmetric linear maps $V^{\vee} \rightarrow V$ of rank $\leq k$.
Also in this case the Zariski closure is not necessary, the union is already closed.

The skew-symmetric case is parametrized by secants of a Grassmannian.

Rank of tensors has wild behaviour

$\operatorname{rk}\left(x^{3}\right)=1$
$\operatorname{rk}\left(x^{3}+y^{3}\right)=2$
$\operatorname{rk}\left(x^{2} y\right)=3$ because $x^{2} y=\frac{1}{6}\left[(x+y)^{3}-(x-y)^{3}-2 y^{3}\right]$, but.....
$x^{2} y=\lim _{t \rightarrow 0} \frac{(x+t y)^{3}-x^{3}}{3 t}$
so that a polynomial of rank 3 can be approximated by polynomials of rank 2. In this case we say that the border rank of $x^{2} y$ is 2 . $t \in \sigma_{r}(X) \Longleftrightarrow$ border rank $(t) \leq r$
Similar phenomena happen in the nonsymmetric case.

Sylvester algorithm for rank of binary forms

Sylvester algorithm to compute the rank Comas and Seiguer prove that if the border rank of $f \in S^{d} \mathbb{C}^{2}$ is $r(r \geq 2)$, then there are only two possibilities, the rank of f is r or the rank of f is $d-r+2$. The first case corresponds to the case when the generator of C_{f}^{r} has distinct roots, the second case when there are multiple roots.

Veronese variety parametrizes symmetric tensors of

(symmetric) rank one

Let V be a (complex) vector space of dimension $n+1$. We denote by $S^{d} V$ the d-th symmetric power of V. The d-Veronese embedding of \mathbb{P}^{n} is the variety image of the map

$$
\begin{aligned}
\mathbb{P} V & \rightarrow \mathbb{P} S^{d} V \\
v & \mapsto v^{d}
\end{aligned}
$$

We denote it by $v_{d}(\mathbb{P} V)$.

Theorem

A linear function $F: S^{d} V \rightarrow K$ is defined if and only if it is known on the Veronese variety. So knowing $F\left(x^{d}\right)$ for every x linear allows to define $F(f)$ for every $f \in S^{d} V$.

Geometric interpretation of border rank

A tensor t has border rank $\leq r \Longleftrightarrow t \in \sigma_{r}$ (Segre variety)

A symmetric tensor t has symmetric border rank $\leq r \Longleftrightarrow$ $t \in \sigma_{r}$ (Veronese variety)

Terracini Lemma describes the tangent space at a secant variety

```
Lemma
Terracini Let z\in< x , ,., \mp@subsup{x}{k}{}>>\mathrm{ be general. Then}
Tz}\mp@subsup{\sigma}{k}{}(X)=< T\mp@subsup{T}{\mp@subsup{x}{1}{}}{}X,\ldots,\mp@subsup{T}{\mp@subsup{x}{k}{}}{}X
```


Dual varieties

If $X \subset \mathbb{P} V$ then

$$
X^{\vee}:=\overline{\left\{H \in \mathbb{P} V^{\vee} \mid \exists \text { smooth point } x \in X \text { s.t. } T_{x} X \subset H\right\}}
$$

is called the dual variety of X. So X^{\vee} consists of hyperplanes tangent at some smooth point of X.
By Terracini Lemma

$$
\sigma_{k}(X)^{\vee}=\left\{H \in P V^{\vee} \mid H \supset T_{x_{1}} X, \ldots, T_{x_{k}} X \text { for smooth points } x_{1}, \ldots, x_{k}\right\}
$$

namely, $\sigma_{k}(X)^{\vee}$ consists of hyperplanes tangent at $\geq k$ smooth points of X.

Examples of dual to secant varieties

$\sigma_{1}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$	β^{3}
$\sigma_{2}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$	three concurrent lines
$\sigma_{3}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$	Aronhold hypersurface, orbit of Fermat cubic
$\sigma_{1}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)^{\vee}$	discriminant (singular cubics)
$\sigma_{2}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)^{\vee}$	reducible cubics
$\sigma_{3}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)^{\vee}$	triangles (split variety)

Sum of k-th powers

Problem Write a homogeneous polynomial of degree $d k$ as a sum of k-th powers of degree d homogeneous polynomials.
$f=\sum_{i=1}^{r}\left(f_{i}\right)^{k}, \operatorname{deg} f_{i}=d$
$k=2$ is sum of squares.
$d=1$ is Waring decomposition.

Theorem (Fröberg - O - Shapiro)

Let $k \geq 2$. Any generic form f of degree $k d$ in $n+1$ variables is the sum of at most $k^{n} k$-th powers. Moreover, for a fixed n, this number is sharp for $d \gg 0$.

Indeed

$$
\frac{\operatorname{dim} S^{k \prime} \mathbb{C}^{n+1}}{\operatorname{dim} S^{\prime} \mathbb{C}^{n+1}}<k^{n} \quad \text { and } \quad \lim _{l \rightarrow \infty} \frac{\operatorname{dim} S^{k l} \mathbb{C}^{n+1}}{\operatorname{dim} S^{\prime} \mathbb{C}^{n+1}}=k^{n}
$$

Configuration of points with roots of unity

Let $\xi_{i}=e^{2 \pi i / k}$ for $i=0, \ldots k-1$ be the k-th roots of unity.
In the proof it is crucial to consider the grid of points

$$
\left(1, \xi_{i_{1}}, \xi_{i_{2}}, \ldots, \xi_{i_{n}}\right)
$$

Sum of squares in the real case.

Let
$\operatorname{SOS}^{n, d}=\left\{p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{2 d} \mid p=\sum_{i=1}^{k} l_{i}^{2}\right\}$
$C_{+}^{n, d}\left\{p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{2 d} \mid p \geq 0\right\}$
SOS=Sum Of Squares
There is an inclusion of convex cones

$$
\mathrm{SOS}^{n, d} \subseteq C_{+}^{n, d}
$$

Theorem (Hilbert)

The inclusion is an equality if and only if $n \leq 2, d=1$ or $(n, d)=(3,2)$

Clebsch quartics

A plane quartic $f \in S^{4} V$ is called Clebsch if it has an apolar conic, that is if there exists a nonzero $q \in S^{2} V^{\vee}$ such that $q \cdot f=0$.
One defines, for any $f \in S^{4} V$, the catalecticant map $C_{f}: S^{2} V^{\vee} \rightarrow S^{2} V$ which is the contraction by f. If

$$
\begin{aligned}
f= & a_{00} x^{4}+4 a_{10} x^{3} y+4 a_{01} x^{3} z+6 a_{20} x^{2} y^{2}+12 a_{11} x^{2} y z+6 a_{02} x^{2} z^{2}+4 a_{30} x y^{3} \\
& 4 a_{03} x z^{3}+a_{40} y^{4}+4 a_{31} y^{3} z+6 a_{22} y^{2} z^{2}+4 a_{13} y z^{3}+a_{04} z^{4}
\end{aligned}
$$

then the matrix of C_{f} is

$$
C_{f}=\left[\begin{array}{llllll}
a_{00} & a_{10} & a_{01} & a_{20} & a_{11} & a_{02} \\
a_{10} & a_{20} & a_{11} & a_{30} & a_{21} & a_{12} \\
a_{01} & a_{11} & a_{02} & a_{21} & a_{12} & a_{03} \\
a_{20} & a_{30} & a_{21} & a_{40} & a_{31} & a_{22} \\
a_{11} & a_{21} & a_{12} & a_{31} & a_{22} & a_{13} \\
a_{02} & a_{12} & a_{03} & a_{22} & a_{13} & a_{04}
\end{array}\right]
$$

Computation of the catalecticant for plane quartics

This matrix has been computed acting with the following differential operators
To any quartic we can associate the catalecticant matrix constructed in the following way

	$\partial_{00} \partial_{01}$	∂_{02}	∂_{11}	∂_{12}	∂_{22}
∂_{00}					
∂_{01}					
∂_{02}					
∂_{11}					
∂_{12}					
∂_{22}					

$\operatorname{rank}(f)=\operatorname{rank}\left(C_{f}\right)$ it relates the rank of a tensor with the rank of a usual matrix.

Clebsch quartics have border rank five

We get that a plane quartic f is Clebsch if and only if $\operatorname{det} C_{f}=0$. The basic property is that if $f=I^{4}$ is the 4-th power of a linear form, then C_{f} has rank 1 . It follows that if $f=\sum_{i=1}^{5} l_{i}^{4}$ is the sum of five 4-th powers of linear forms, then

$$
\operatorname{rk} C_{f}=\operatorname{rk} \sum_{i=1}^{5} C_{l_{i}^{4}} \leq \sum_{i=1}^{5} \operatorname{rk} C_{l_{i}^{4}}=\sum_{i=1}^{5} 1=5
$$

Theorem (Clebsch)

A plane quartic f is Clebsch if and only if there is an expression $f=\sum_{i=0}^{4} l_{i}^{4}$ (or a limit of such an expression)

In conclusion, $\operatorname{det} C_{f}=0$ is the equation (of degree six) of $\sigma_{5}\left(v_{4}\left(\mathbb{P}^{2}\right)\right)$, which is called the Clebsch hypersurface.

Expected dimension for secant varieties

Let $X \subset \mathbb{P}^{N}$ be an irreducible variety. The naive dimensional count says that

$$
\operatorname{dim} \sigma_{k}(X)+1 \leq k(\operatorname{dim} X+1)
$$

When $\operatorname{dim} \sigma_{k}(X)=\min \{N, k(\operatorname{dim} X+1)-1\}$ then we say that $\sigma_{k}(X)$ has the expected dimension. Otherwise we say that X is k-defective.
Correspondingly, the expected value for the general X-rank is

$$
\left\lceil\frac{N+1}{\operatorname{dim} X+1}\right\rceil
$$

In defective cases, the general X-rank can be bigger than the expected one.

Defectivity of plane quartics

It is expected by naive dimensional count that the general rank for a plane quartic is five.
On the contrary, the general rank is six. Five summands are not sufficient, and describe Clebsch quartics.
A general Clebsch quartic f can be expressed as a sum of five 4-th powers in ∞^{1} many ways. Precisely the 5 lines I_{i} belong to a unique smooth conic Q in the dual plane, which is apolar to f and it is found as the generator of $\operatorname{ker} C_{f}$.

Dual of Clebsch hypersurface

Question What is the dual of the Clebsch hypersurface in $\mathbb{P}^{14}=\mathbb{P}\left(S^{4} \mathbb{C}^{3}\right)$?
It consists of quartics that are singular in five points. $\sigma_{5}\left(v_{4}\left(\mathbb{P}^{2}\right)\right)^{\vee}=C C$, variety of squares
Every general $f \in S^{4} \mathbb{C}^{3}$ can be expressed as a sum $f=q_{1}^{2}+q_{2}^{2}+q_{3}^{2}$ in ∞^{3} ways. These different ways describe a variety with exactly 63 components.

The theta locus

Generalization to sextics

Proposition

Let Y_{10} be the determinantal hypersurface in the space $\mathbb{P} S^{6} \mathbb{C}^{3}$ of sextics having a apolar cubic.
(i) $Y_{10}=\sigma_{9}\left(v_{6}\left(\mathbb{P}^{2}\right)\right.$
(ii) The dual variety Y_{10}^{\vee} is the variety of sextics whic are square of a cubic(double cubics).

Proposition[Blekherman-Hauenstein-Ottem-Ranestad-Sturmfels]

The variety of 3-secant to Y_{10}^{\vee} consists in sextics which are sum of three squares. It is an hypersurface of degree 83200.

Such a hypersurface coincides with the locus of sextic curves which admit an effective theta-characteristic (theta locus).
The question of computing the degree of the theta locus is interesting and open for all the even plane curves.

The general $f \in S^{d} \mathbb{C}^{n+1}(d \geq 3)$ has rank

$$
\left\lceil\frac{\binom{n+d}{d}}{n+1}\right\rceil
$$

which is called the generic rank, with the only exceptions

- $S^{4} \mathbb{C}^{n+1}, 2 \leq n \leq 4$, where the generic rank is $\binom{n+2}{2}$
- $S^{3} \mathbb{C}^{5}$, where the generic rank is 8 , sporadic case

Toward an Alexander-Hirschowitz Theorem in the non symmetric case

Defective examples

$\operatorname{dim} V_{i}=n_{i}+1, n_{1} \leq \ldots \leq n_{k}$
Only known examples where the general $f \in V_{1} \otimes \ldots \otimes V_{k}(k \geq 3)$ has rank different from the generic rank

$$
\left\lceil\frac{\prod\left(n_{i}+1\right)}{\sum n_{i}+1}\right\rceil
$$

are

- unbalanced case, where $n_{k} \geq \prod_{i=1}^{k-1}\left(n_{i}+1\right)-\left(\sum_{i=1}^{k-1} n_{i}\right)+1$, note that for $k=3$ it is simply $n_{3} \geq n_{1} n_{2}+2$
- $k=3,\left(n_{1}, n_{2}, n_{3}\right)=(2, m, m)$ with m even [Strassen],
- $k=3,\left(n_{1}, n_{2}, n_{3}\right)=(2,3,3)$, sporadic case [Abo-O-Peterson]
- $k=4,\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(1,1, n, n)$

Theorem (Strassen-Lickteig)

there are no exceptions (no defective cases) $\mathbb{P}^{n} \times \mathbb{P}^{n} \times \mathbb{P}^{n}$ beyond the variety $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$

Theorem

- The unbalanced case is completely understood [Catalisano-Geramita-Gimigliano].
- The exceptions listed in the previous slide are the only ones in the cases:
(i) $k=3$ and $n_{i} \leq 9$
(ii) $s \leq 6$ [Abo-O-Peterson]
(iii) $\forall k, n_{i}=1$ (deep result,
[Catalisano-Geramita-Gimigliano])
Proof uses an inductive technique, developed first for $k=3$ in [Bürgisser-Claussen-Shokrollai].

Asymptotical behaviour

[Abo-O-Peterson]

Asymptotically $(n \rightarrow \infty)$, the general rank for tensors in $\mathbb{C}^{n+1} \otimes \ldots \otimes \mathbb{C}^{n+1}(k$ times $)$ tends to

$$
\frac{(n+1)^{k}}{n k+1}
$$

as expected.

Gesmundo result

For any n_{1}, \ldots, n_{k} there is Θ_{k} such that for $s \leq \Theta_{k} \frac{\prod n_{i}}{1+\sum_{i}\left(n_{i}-1\right)}$ then σ_{s} has the expected dimension.

In case $n_{i}=2^{d_{i}}$ then $\Theta_{k} \rightarrow 1$ for $k \rightarrow \infty$

