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Abstract. The space of homogeneous polynomials of degree d splits according
to the natural SO-action into irreducible summands that contain polynomial of
the form qkg where g is harmonic. This is called the harmonic decomposition.

1. Harmonic decomposition and harmonic part

Let V be a (n+ 1)-dimensional real vector space on K (where K = R or C). Fix a
nondegenerate q ∈ Sym2V , we have the group SO(V, q) = SO(V ) of endomorphisms
preserving q and the corresponding action of SO(V ) on V . It is convenient to choose
from the beginning a coordinate system such that q has the standard Euclidean
expression

q =
n∑

i=0

x2i .

Let ∆ =
∑n

i=0
∂2

∂x2
i

be the Laplace operator, which corresponds to q in the dual

coordinates ∂0, . . . , ∂n. As usual a polynoial f is called harmonic if ∆f = 0.

Proposition 1.1. The group SO(V, q) has exactly two orbits on PC(V ), namely the
quadric Qn−1 = {q = 0} and its complement PC(V ) \ Qn−1. The real group SO(VR
acts transitively on PR(V ).

Proof. An orthogonal transformation on C takes any non isotropic v to e1 and any
isotropic v to e1 +

√
−1e2. An orthogonal transformation on R takes any non zero

v to e1. �

The natural way to define the action of SO(V ) to polynomials , is to consider
polynomials as functions. In this way, if f(x) is the function associated to the
polynomial f , then for any g ∈ SO(V ) we define the function gf by (gf)(x) =
f(g−1x) which can be written as (gf)(x) = f(gtx). In the case of powers of linear
forms, if f(x) = (

∑
vixi)

d = (vtx)d then f(gtx) = (vt(gtx))d = ((gv)tx)d. In
conclusion, we may identify v with the linear form vtx and we get that g(vd) = (gv)d.
This is coherent with the inclusion SymdV ⊂ V ⊗ . . .⊗ V and the action extended
from V to the tensor product as g(v1⊗ . . .⊗ vd) = gv1⊗ . . .⊗ gvd on decomposable
elements. For polynomials that are powers of linear forms the action is very simple,
namely g · ld = (g · l)d, ∀l ∈ V .

Remark 1.2. By the unitary trick [22, 2.7], there is an equivalence of categories
between holomorphic representations of SO(n+1,C) and continuous representations
of its real form SO(n + 1,R). In particular it is equivalent to prove harmonic
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decomposition over C and over R. The unitary trick shows also an equivalence
of categories between holomorphic representations of SL(n + 1,C) and continuous
representations of its real form SU(n+ 1).

The Laplace operator ∆ is invariant and the space of harmonic polynomials is
an SO-module, which means that f is harmonic if and only if g · f is harmonic
∀g ∈ SO(V ) . The following proposition gives a geometric point of view on this
basic fact. It also enlights the fact that to understand real polynomials it is useful
looking at the larger space of complex ones.

Proposition 1.3. (i) Let d ≥ 2. Given a linear form l, the power ld is harmonic if
and only if l is isotropic.

(ii) The space Hd = ker ∆ of harmonic polynomials of degree d is spanned by
powers vd with v isotropic.

(iii) Any space Hd is irreducible as SO-module.

Proof. Compute ∆(ld) = d(d − 1)q(l, l)ld−2, which proves (i). Regarding (ii), as-
sume the span of vd with v isotropic is contained in a hyperplane of Hd with equa-
tion g. Then g corresponds to a harmonic polynomial which vanishes over the
isotropic quadric q, then it is divisible by q and it follows g = 0 by Lemma 1.5,
which proves (ii). An alternative argument is that the span of powers vd with v
isotropic is the span of vd(Qn−1) where Qn−1 is the quadric of isotropic vectors
and H0(vd(Qn−1),O(1)) corresponds to H0(Qn−1,O(d)) which can be computed by
taking cohomology of the exact sequence

0−→OPn(d− 2)−→OPn(d)−→OQn−1(d)−→ 0

and turns out to have dimension h0(OPn(d)) − h0(OPn(d − 2)), which is the same
dimension of the space of harmonic polynomials of degree d. (iii) follows because
SO acts transitively on vd with v isotropic. �

Lemma 1.4. Let f ∈ C[x0, . . . , xn] be a homogeneous polynomial of degree d.

(1) i)
∆(qf)− q∆f = [∆, q]f = (4d+ 2n+ 2)f

(2) ii)

∆(qkf)− qk∆f = (2k(n+ 2d+ 2k − 1))qk−1f

(3) iii)

∆k(qf)− q∆kf = (2k(n+ 2d− 2k + 3))∆k−1f

Proof. In order to prove (i), we may assume f = ld. Compute
∂x(qld) = 2xld + dqld−1lx
∂xx(qld) = 2ld + 4dxlxl

d−1 + d(d− 1)qld−2l2x
q∂xxl

d = d(d− 1)qld−2l2x
so that summing over all the variables
∆(qld) = 2(n+ 1)ld + 4dld + q∆(ld), which proves (i).
(ii) is proved by induction on k, the case k = 1 being item i). Indeed

∆(qkf) = ∆qk−1(qf) = qk−1∆(qf)+qk−2(4(k−1)(d+2)+2(k−1)n+2(k−1)(2k−3))(qf) =
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qk−1q∆(f) + qk−1 (4d+ 2n+ 2 + 4(k − 1)(d+ 2) + 2(k − 1)n+ 2(k − 1)(2k − 3)) f

(iii) is proved by induction on k, the case k = 1 being item i). Indeed

∆k(qf) = ∆(∆k−1(qf) = ∆(q∆k−1(f)+(4(k − 1)d+ 2(k − 1)n− 2(k − 1)(2k − 5)) ∆k−2(f) =

= q∆k(f)+(4(d− 2k + 2) + 2n+ 2 + 4(k − 1)d+ 2(k − 1)n− 2(k − 1)(2k − 5)) ∆k−1(f)

�

Lemma 1.5. ∆(qf) = 0 if and only if f = 0

Proof. Assume f 6= 0 and let f = qkf ′ with maximal k. Lemma 1.4 implies 0 =
∆qk+1f ′ = qk+1∆f ′ + cqkf ′ = qk(q∆f ′ + cf ′) for a nonzero scalar c. It follows that
q divides f ′, which is a contradiction. �

Proposition 1.6 (Harmonic Part). For any f there are unique f0 harmonic and f1
such that

f = f0 + qf1
The polynomial f0 is called the harmonic part of f .

If q is real then (f)0 = f0.
If f and q are real then also f0 is real.

Proof. The two subspaces Hd, qSym
d−2V of SymdV have empty intersection by

Lemma 1.5, hence by dimensional reasons there is a direct sum

SymdV = Hd ⊕ qSymd−2V

We will see in *** that the two summands are orthogonal, so that the two summands
f0 ∈ Hd and qf1 ∈ qSymd−2V in the statement are unique and they correspond to
two orthogonal projections. We explain now a naive way to get them. Consider
the square system ∆f = ∆(qf1), in the unknown f1. The associated homogeneous
system is ∆(qf1) = 0 which has only the zero solution by Lemma 1.5. Hence there is
a solution f1 such that ∆f = ∆(qf1) and f0 = f − qf1 is harmonic. The uniqueness
is now obvious. The statement on the conjugation follows from the uniqueness and
also from the explicit construction. �

Theorem 1.7 (Harmonic Decomposition). For any f there are unique fi harmonic
of degree d− 2i such that

f =

bd/2c∑
i=0

qifi

If q is real then (f)i = fi.
If f and q are real then also fi are real. The decomposition corresponds to the

splitting of SO(V )-modules

SymdV = ⊕i≥0Hd−2i.

Proof. By iterating the Proposition 1.10. �

Corollary 1.8. Let K = R or C.

• When d is odd the only homogeneous polynomial of degree d in SymdKn+1

which is SO(n+ 1)-invariant is zero.
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• When d is even the only homogeneous polynomial of degree d in SymdKn+1

which are SO(n+ 1)-invariant are scalar multiples of qd/2.

Remark 1.9. Harmonic decomposition is a multi-variable generalization of Fourier
expansion. Indeed for n = 1 each space Hd is two dimensional, spanned by (x0 +
ix1)

d, (x0−ix1)d or, in real polar coordinates x0 = ρ cos θ, x1 = ρ sin θ, by ρd cos(dθ), ρd sin(dθ).
Restricting to the unit circle we get the standard Fourier expansion.

Remark 1.10. The proof of Proposition gives an algorithm to compute explicitly
the harmonic decomposition of f .

The first step is to compute g1 such that ∆(f − qg1) = 0, then pose f0 = f − qg1
is the harmonic part and the step can be iterated with g1 at the place of f . So
compute g2 such that ∆(g1 − qg2) = 0, pose f1 = g1 − qg2. Compute g3 such that
∆(g2 − qg3) = 0, pose f2 = g2 − qg3, and so on. At the end

f =

bd/2c∑
i=0

qifi deg fi = d− 2i

Luckily, there is a more efficient way to compute the harmonic decomposition, due
to the fact that fi is linear combination of ∆if, q∆i+1f, . . . , qd/2−i∆d/2f when d is
even and it is a linear combination of ∆if, q∆i+1f, . . . , q(d−1)/2−i∆(d−1)/2f when d is
odd. We will see this fact in the section on scalar products.

1.1. Some special cases.

Lemma 1.11. ∆(qf) is harmonic if and only if f is harmonic.

Proof. If f is harmonic then ∆2(qf) = ∆(q∆(f)+cf) = 0. Conversely, let ∆2(qf) =
0. Assume ∆(f) 6= 0 and let ∆(f) = qkf ′ with f ′ not divisible by q, deg f ′ = d−2−
2k ≥ 0. Then 0 = ∆2(qf) = ∆(q∆(f))+∆((4d+2n+2)f) = ∆(qk+1f ′)+(4d+2n+
2)qkf ′ = qk+1∆f ′+(4(k+1)(d−2−2k)+2(k+1)n+2(k+1)(2k+1)+4d+2n+2)qkf ′

which implies that q divides f ′ which is a contradiction. �

Lemma 1.12. Let l be a linear form.

∆(fl) = l∆f + 2∂l(f)

Proof.

∂xx(fl) = (∂xxf)l + 2∂xf∂xl

�

Proposition 1.13. Let f harmonic and l be a linear form. Then we have the
harmonic decomposition fl = f0 + qf1 with f1 harmonic.

Proof. Let f1 such that ∆qf1 = ∆(fl) = 2∂l(f). Since ∂l(f) is harmonic we get
from Lemma 1.11 that f1 is harmonic. �

For d = 2 we have the harmonic decomposition

f = (f − q ∆f

2n+ 2
) + q

∆f

2n+ 2
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Note if deg l = 1 ∆(ql) = (6 + 2n)l. Hence for d = 3 the harmonic decomposition
is

f =

(
f − q 1

6 + 2n
∆f

)
+ q

1

6 + 2n
∆f

2. Exercises

(1) Prove that ∆i(qk) = cqk−i for a scalar factor c ∈ R.
(2) Prove that [∆i, qk]f = ∆i(qkf)− qk∆if = ∗ ∗ ∗.
(3) Prove that ker ∆i = ⊕i−1

j=0Hd−2j

(4) Prove that mq : SymdV → Symd+2V maps Hd−2i to H(d+2)−2(i+1) ***
(5) ∆ maps Hd−2i to H(d−2)−2(i+1) ***

(6) Consider the operator L = q∆: SymdV → SymdV , prove that the sum-
mands of harmonic decomposition are eigenspaces of L, with some integer
eigenvalues. The kernal of L is the space Hd.
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