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Abstract. The points at a fixed distance t from an affine variety X in a Eu-
clidean space make an “offset variety”, whose algebraic closure is a hypersurface
with equation a polynomial in t2 called EDpolyX(t2) (Euclidean Distance polyno-
mial). Its degree is the Euclidean distance degree, and measures the complexity
to compute the closest point lying in X from a given general one. We see the
main properties of the Euclidean Distance degree (EDdegree) of an affine variety
X. As an application, we describe the d-singular d-ples of tensors.

1. Introduction

Let V be finite dimensional spaces over R equipped with a nonsingular positive
definite quadratic form q. The pair (V, q) is called a Euclidean space.

Let X ⊂ V be a closed subset. The (Euclidean) distance function from u ∈ V to
X is

dX(u) := min
x∈X

√
q(u− x).

We are interested mainly in critical points of the distance function dX . They
do not change if we square it as d2X . This is an advantage because the square
root disappears and we may work with a polynomial function, allowing the tools of
Algebraic Geometry.

1.1. The critical points of the distance function from u on X.

• If X is a smooth subvariety, the minimum of the distance from u is attained
among the points x such that TxX ⊥ (u−x). Checking the distance of all of
the critical points guarantees to compute the global distance from u to X.

X

xu

TxX

Figure 1. A critical point x ∈ X for the distance function from u on X.
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Let X = black curve. The red curves are offset curves of X, i.e. loci of points at
a given distance from X.

All the curves of the same family have the same evolute.

Offset varieties are obtained as envelopes of spheres, centered on the variety itself,
they have striking engineering applications, in CAD/CAM manifacturing tools.

Given X, how to compute dX ?
There are two trivial cases:

1) X = affine subspace

2) X = sphere

Definition 1.1. The Euclidean Distance polynomial EDpolyX,u(t2) defines the off-
set hypersurface of all points u with squared distance from X being equal to t2 and,
more generally, its algebraic closure contains all points u having a critical point for
the squared distance function from u, with value t2. If X is algebraic, it can be
explicitly computed by elimination, see [OS20] and the following 1.4.

In the next sections 1.2, 1.4 we make explicit the case when X is an affine conic.

1.2. The ED polynomial of a conic, a classical story. For an ellipse E, the
distance function was found in XIX century with the help of invariant theory (see
[20]).

The following Proposition gives the idea how to attack algebraically the problem.
It is an elementary case of a more general result regarding pencil of quadrics. It is
instructive to give an elementary direct proof, which needs the reader to revisit the
concept of discriminant of a polynomial.

Proposition 1.2. Let C, D be two smooth conics in the projective plane. The
following are equivalent

• (i) C and D are not tangent
• (ii) the intersection C ∩D is given by 4 distinct points
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• (iii) the pencil of conics αC + βD contains three distinct singular conics.

Proof. The equivalence of (i) and (ii) follows from Bezout Theorem. Let C ∩ D =
{P1, P2, P3, P4}, note no three of them are collinear by the smoothness of C. (ii)
implies (iii) since the three distinct singular conics through P1, P2, P3, P4 may be
constructed directly as

P1P2 ∪ P3P4, P1P3 ∪ P2P4, P1P4 ∪ P2P3.

In order to prove that (iii) implies (ii) we may assume that C and D meet in (1, 0, 0)
with common tangent x1 = 0, then their matrices are

Ai =

 0 ai 0
ai ∗ ∗
0 ∗ ∗


for i = 0, 1, so that the determinant det(αA0 + βA1) contains the factor (αa0 +

βa1)
2 against the assumption. �

Cayley computation, in Salmon “Treatise on Conics” (1879 edition)
Let E be the matrix of the ellipse and B the matrix of the circle (x− u1)2 + (y−

u2)
2 − t2.

Proposition 1.2 implies that E and B are tangent if and only if the determinant
det(E + λB) has a double root in λ. The discriminant of the polynomial in λ

det(E + λB)

is EDpolyE,u(t2), whose roots correspond to the distances of the critical points con-
sidered above, EDpoly stands for Euclidean Distance polynomial.

EDpolyX,u(t2) allows to compute the distance from X.

Theorem 1.3 (Cayley). • deg EDpolyE,u(t2) = 2⇐⇒ E is a circle.
• deg EDpolyE,u(t2) = 3⇐⇒ E is a parabola.
• deg EDpolyE,u(t2) = 4 for all other smooth conics.

In projective case, EDdegree(conic)=4 unless A has multiple eigenvalues, where
EDdegree=2. To be precise, unless det(A + λE) has multiple eigenvalues, that is
unless the conic is tangent to the isotropic quadric. It gives a orthogonally invariant
family of projective conics, which has affine forms given by circles and equilateral
hyperbolas.
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Parabola

Ellipse

Remark 1.4. Note that, posing Xt0 = EDpolyX,u(t20), since distances can be added,
then

EDpolyXt0 ,u
(t2) = EDpolyX,u((t+ t0)

2)EDpolyX,u((t− t0)2)
The formula is true for small values of t and, beibg a polynomial identity, it is true
for any t.

1.3. The dual variety. In a metric setting, the dual variety X∨ lives in the same
space where X lives, and it can be defined by orthogonality.

Let X be a cone, as given by a projective variety.

X∨ :=
⋃

y∈Xsm
(TyX)⊥ “union of normal spaces”.

A conic with 3× 3 matrix A has dual conic with matrix A−1.

The main result on dual varieties is the Biduality Theorem

(X∨)
∨

= X

Example 1.5. The dual variety (Pn×Pm)∨ is the locus of matrices of corank ≥ 1, it
is a hypersurface when n = m (square case), namely the determinant hypersurface.

For tensors, the dual variety of the Segre variety is a hypersurface when the
triangle inequality (1.2) is satisfied, it defines the hyperdeterminant.

Example 1.6. The dual variety of the Veronese variety vd(Pn) is the discriminant
hypersurface, whose members correspond to singular hypersurfaces of degree d in
Pn. It has degree given by (n+ 1)(d− 1)n, it is classically called the Boole formula.

1.4. Duality property of ED polynomial and first computations.

Theorem 1.7 (Draisma-Horobeţ-O-Sturmfels-Thomas, O-Sodomaco). Let X be a
projective variety and X∨ its dual. Let q(u) be the Euclidean quadratic form. Then
for any data point u ∈ V

EDpolyX,u(t2) = EDpolyX∨,u(q(u)− t2).
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Proof. x ∈ X is a critical point for dX at u if and only if u−x ∈ X∨ is a critical point
for dX∨ at u, as it is clear from the figure. The squared length of u − x is t2, then
by the Pythagorean Theorem it follows that the squared length of x = u− (u− x)
is q(u)− t2.

�

The Theorem means that projective duality corresponds to variable reflection for
the ED polynomial.

Reformulation of EDdegree Given an affine real variety X ⊂ RN , the number
of complex critical regular points for the distance function from y ∈ RN to X is
constant for general y ∈ RN .

Definition 1.8 (Draisma, Horobeţ, O., Sturmfels, Thomas). [3] The number of
critical points for the distance function from a general y ∈ RN to X is called the
Euclidean distance degree of X, denoted by EDdegree(X).

Indeed the degree of EDpolyX,u(t2) is EDdegree(X) (Horobeţ-Weinstein, [HW]).
The reason is clear. Fixing a point u, the positive roots {t1, . . . , tk} of EDpolyX,u(t2)
correspond to the critical points of the squared distance function from u to X. This
means that u belongs to the “offset varieties” at distance ti for i = 1, . . . , k form X.
Here k = EDdegree(X). By the duality property seen, we get

EDdegree(X) = EDdegree(X∨)

Steps to compute the ED polynomial with a Computer Algebra System like Macaulay2,
Singular, CoCoA, Sage,. . .

(1) Pick the ring Q[u0, . . . , un, x0, . . . , xn, t]
(2) Input is the ideal IX with generators f = f1, . . . , fm
(3) Let c = codim X
(4) Compute IXsing

singular locus, by c-minors of Jac(f).

(5) Compute the critical ideal as Iu :=

(
IX + (c+ 1)-minors of

(
u− x
Jac(f)

))
:
(
IXsing

)∞
(6) Eliminate x0, . . . , xn in Iu + (t2 − q(x− u)), get EDpolyX,u(t2).

The ED polynomial of an ellipse Let X be the projective ellipse with equation
4x2 + y2 − z2 = 0.
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Figure 2. The Lamé sextic, evolute of the ellipse, sometimes called
an astroid.

Then EDpolyX,(x,y,z)(t
2) = (4x2 + y2 − z2)2(64x4 + 80x2y2 + 25y4 + 48x2z2 −

30y2z2 + 9z4)+

(2048x6+2208x4y2+540x2y4−25y6+1184x4z2−224x2y2z2+185y4z2+324x2z4−
207y2z4 + 63z6)(−2t2)+

(6016x4 + 2960x2y2 − 275y4 + 3312x2z2 − 810y2z2 + 621z4)t4+

(64x2 + 5y2 + 21z2)(−60)t6+

900t8.

Given (x, y, z), get 4 roots in t2, the minimum positive value of t is the distance
from X.

We may substitute t2 → −t2+(x2+y2+z2) in the above polynomial EDpolyX,(x,y,z)(t
2)

, get
EDpolyX∨,(x,y,z)(t

2) = (x2 + 4y2 − 4z2)2(4x4 + 20x2y2 + 25y4 − 12x2z2 + 30y2z2 +

9z4)+

. . .+

900t8.

Note the equation in red of the ellipse (x2+4y2−4z2) which is dual to (4x2+y2−z2).
Compute the discriminant of EDpoly.

The discriminant of ED polynomial of the ellipse x2

a2
+ y2

b2
− 1 is

L3x2y2,

where c2 = a2 − b2, L is the evolute with equation the Lamé sextic (see Figure 1.4)

L = (a2x2 + b2y2 − c4)3 + 27a2b2c4x2y2

Note the two symmetry axis x, y appear in the discriminant.
In [OS20, Prop. 2.5] it is proved that the evolute of a curve C always divides the

discriminant of EDpolyC,u(t2). The EDdiscriminant [3] generalizes the evolute to
any variety X.

This is another general phenomenon, the ED polynomial contains informations
on the symmetry axis.
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1.5. Catanese-Trifogli formula. Let X smooth projective, dimX = m

Theorem 1.9 (Catanese-Trifogli). If X is transversal to Q then

EDdegree(X) =
m∑
i=0

(−1)i(2m+1−i − 1) deg ci(X)

where ci are Chern classes.

If X is affine, transversality is needed with both the hyperplane at infinity and
the quadric at infinity. This explains the different behaviour proved by Cayley
concerning circle, parabola and general conic.

1.6. Matrices, SVD, Spectral Theorem. There is a significant case where the
ED polynomial has a nice form.

In the space of n×m matrices equipped with the Bombieri-Weyl norm (according
to **) q(A) = tr(AAt) , let X = variety of corank one matrices.

Proposition 1.10.

EDpolyX,A(t2) = det(AAt − t2I)

For general matrices A of size n × m, with n ≤ m, there are n critical points
σivi⊗wi (singular pairs) of the distance function to the variety of rank one matrices.

A =
∑

i σivi ⊗ wt
i is the Singular Value Decomposition (SVD) of A.

If A is a symmetric matrix, we get a splitting

(1.1) det(AAt − t2I) = det(A− tI) det(A+ tI),

the critical points are viv
t
i where vi are eigenvectors of A.

This allows to define the spectrum of u with respect to X the set of roots of
EDpolyX,u(t2).

We get the spectral decomposition

A =
∑
i

λivi ⊗ vti

where λi are the eigenvalues of A.

Remark 1.11. A general symmetric matrix of size n has n critical points of the
distance functions to the variety of rank one symmetric matrices, which is a cone
over v2(Pn−1). This means that EDdegreev2(Pn−1) = n with respect to the Bombieri-
Weyl metric. We emphasize that the quadric Q ⊂ P(SymdCn) of isotropic vectors
is not transversal to v2(Pn−1) . Indeed Q cuts the Veronese variety in the quartic
hypersurface corresponding to q2 (here q is the quadric in Pn−1), which is not reduced.
In particular the formula by Catanese-Trifogli in Theorem 1.9 cannot be applied.
This formula predicts the value 3n−1

2
in this example, which is the correct value with

respect to a general metric (note the value n obtained with respect to the Bombieri-
Weyl metric is much smaller).
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1.7. The Eckart-Young Theorem. Best rank k approximation for matrices.

Theorem 1.12 (Eckart-Young, 1936). Let A =
∑n

i=1 σiui ⊗ vi be the SVD of A,
with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

Then for any k = 1, . . . n− 1,
∑k

i=1 σiui ⊗ vi is the best rank k approximation of
A.

Let Xr = {M ∈ Mn×t|rk(M) ≤ r}. It is closed, so for matrices, border rank =
rank.

Theorem 1.13 (All critical points). Let A =
∑n

i=1 σiui ⊗ vi be the SVD of A. All
critical points of the distance function from A to Xk are

∑
i∈Ik σiui ⊗ vi, for any

Ik ⊂ {1, . . . , n} of cardinality k. It follows EDdegree(Xk) =
(
n
k

)
.

Since (Xk)∨ = Xn−k, the duality statement for EDdegree is confirmed.

1.8. The critical space. Let V = Symd1V1 ⊗ . . . ⊗ SymdkVk, let G = SO(V1) ×
. . .× SO(Vk).

The critical space of f ∈ V is

Hf := [(Lie G) · f ]⊥

For a matrix A, HA = {B|AtB,ABt are symmetric}

Theorem 1.14. [DOT18, O22] All the critical points for f lie in Hf .

The critical points span the critical space if triangle inequality

(1.2) dimVi ≤
∑
j 6=i

dimVj

is satisfied for all i such that di = 1. It is the condition such that the dual variety
of the Segre-Veronese variety is a hypersurface, called the hyperdeterminant. For
square matrices it is the classical determinant.

Theorem 1.15 (Banach 1938). Let t be a symmetric tensor. The closest rank one
tensor to t may be chosen symmetric.

There are other critical points for the distance function, beyond the symmetric
ones.

1.9. Decomposable (rank one) tensors. Multidimensional version of matrices
are tensors.
V = V1 ⊗ . . .⊗ Vk is a tensor space.
The set of decomposable tensors is closed , it is the cone over the Segre variety.

For k = 2 it is the variety of matrices of rank ≤ 1, aij = xiyj

The symmetric setting In the symmetric setting SymdW ⊂ W ⊗ . . . ⊗W , sym-
metric tensors are identified with homogeneous polynomials of degree d.

The set of decomposable symmetric tensors is the cone over the Veronese variety.
For d = 2 it is the variety of symmetric matrices of rank ≤ 1, aij = xixj.
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1.10. The singular k-ples. Any tensor t ∈ Rm1+1⊗ . . .⊗Rmk+1 defines a distance
function ft : X = Pm1 × . . . × Pmk → R over the Segre variety X of decomposable
tensors.

Theorem 1.16 (Lim, Qi). The critical points of ft corresponds to tensors (x1, . . . , xk) ∈
X such that

t(x1, . . . , x̂i, . . . , xk) = λixi ∀i = 1, . . . , k

which are called singular d-ples.

Reference book: [18] Qi, Luo, “Tensor Analysis and Spectral Theory”, SIAM,
2017.

Theorem 1.17 (Friedland-O, EDdegree of Segre variety). The number of singular
k-ples of a general tensor t over C of format (m1+1)×. . .×(mk+1) is the coefficient

of
∏k

i=1 t
mi
i in the polynomial

k∏
i=1

t̂i
mi+1 − tmi+1

i

t̂i − ti

where t̂i =
∑

j 6=i tj. This number is EDdegree(Pm1 × . . . × Pmk) with respect to
Bombieri-Weyl product.

Theorem 1.18 (Special case of binary tensors).

EDdegree(P1 × . . .× P1︸ ︷︷ ︸
k

) = k!

Theorem 1.19 (Friedland-O, EDdegree of Segre-Veronese variety). The number
of singular k-ples of a general tensor t ∈ Symd1Cm1+1 ⊗ . . . ⊗ SymdkCmk+1 is the
coefficient of

∏k
i=1 t

mi
i in the polynomial

k∏
i=1

t̂i
mi+1 − tmi+1

i

t̂i − ti

where t̂i =
∑k

j=1 djtj− ti. This number is EDdegree of the variety (Pm1× . . .×Pmk)

embedded with O(d1, . . . , dk), with respect to Bombieri-Weyl product.

Theorem 1.17 is the special case of Theorem 1.19 when all di = 1.
The proof of Theorem 1.19 is geometrical. It can be shown that the singu-

lar t-ples correspond to the zero loci of a general section of the bundle E de-
fined in the following way. Consider the projections πi : X → Pni , then E =
⊕k

i=1π
∗
iQ (d1, . . . , di−1, di − 1, di+1, . . . , dk). The rank of E coincides with the di-

mension of X. The formula in Theorem 1.19 computes the top Chern class of E.

The following result by Aluffi and Harris makes transparent the dependency of
EDdegree on the quadratic form chosen.
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Theorem 1.20. [Aluffi-Harris] Let X ⊂ Pn be smooth of dimension m. Let Q be
the quadric which defines the distance function. Then

EDdegreeQ(X) = (−1)m (χ(X)− χ(Q ∩X)− χ(H ∩X) + χ(Q ∩H ∩X))

Corollary 1.21. The formula in Theorem 1.17 works for any SO-invariant sym-
metric bilinear form that does not contain the variety of decomposable tensors.

Proof. On each factor, the epression q(v, w)d−2iq(v, v)iq(w,w)i collapses, when v =
w, to q(v, v)d. So Q ∩X is the same and we may apply Theorem 1.20. �

1.11. The generating function and a first asymptotics.

Theorem 1.22 (Zeilberger). Let ak(m1, . . . ,mk) be the number of critical points of

format
∏k

i=1(mi + 1) , then

∑
m∈Nk

ak(m1, . . . ,mk)xm =
1(

1−
∑k

i=2(i− 1)ei(x)
) k∏

i=1

xi
1− xi

where ei is the i-th elementary symmetric function.

Theorem 1.23 (Zeilberger, Pantone).

a3(n, n, n) ∼ 2√
3π

8n

n
for n→∞

Pantone finds similar asymptotical formulas for any multidimensional format.

1.12. Tensor Eigenvectors in the symmetric case. The critical points of the
distance function from a symmetric tensors A ∈ SymdV to the Veronese variety of
decomposable tensors have the form λvd, v is eigenvector with eigenvalue λ.

Theorem 1.24. )Fornaess-Sibony, Cartwright-Sturmfels, [7, 1]) The number of
eigenvectors of a symmetric tensor A ∈ SymdCm+1 is (for d ≥ 2)

(d− 1)m+1 − 1

d− 2

This number is EDdegree of d-Veronese embedding of Pm−1 with respect to Bombieri-
Weyl product.

As in Theorem 1.19, the proof of Theorem 1.24 follows by the computation of the
top Chern class of the bundle Q(d− 1) [13].

The last result we present generalizes (1.1) from matrices to tensors.

Theorem 1.25. (Qi, [17]) If X = discriminant hypersurface, and d is even,

EDpolyX,f (t2) = ∆d

(
f(x)− tq(x)d/2

)
∆d

(
f(x) + tq(x)d/2

)
.
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