Polynomial Interpolation and Sums of Powers SIAM Conference on Applied Algebraic Geometry, Fort Collins, August 2013
Colorado State University MS76, Formulas in Interpolation

Chiara Brambilla, Giorgio Ottaviani ${ }^{1}$
Università di Firenze ${ }^{1}$

Interpolation in one variable

The first result on polynomial interpolation goes back to Newton and Lagrange.

Given distinct points $x_{1}, \ldots, x_{d+1} \in \mathbf{A}^{1}$ there is a unique polynomial $p(x)$ of degree $\leq d$ which has assigned values y_{i} on these points, namely

$$
p\left(x_{i}\right)=y_{i}
$$

Hermite interpolation

The Lagrange interpolation can be generalized by considering derivatives.

Given distinct points $x_{1}, \ldots, x_{k} \in \mathbf{A}^{1}$, one looks for a polynomial p of degree $\leq d$ satisfying

$$
p^{(j)}\left(x_{i}\right)=y_{i, j} \quad \text { for } j=0, \ldots d_{i}-1
$$

where $y_{i, j}$ are given scalars.
The assigned $\sum_{i=1}^{k} d_{i}$ conditions are independent, so that there is a unique solution of $\operatorname{deg} \leq d$ if $d+1=\sum_{i=1}^{k} d_{i}$.

Many variables

The extension to many variables is more difficult. The space $R_{d, n}$ of polynomials of degree $\leq d$ in n variables have dimension $\binom{n+d}{d}$.
First of all, the conditions of assigned values at distinct points may be dependent.

Example If $d+2$ among the points x_{i} are on a line then in general there is no solution, unless the assigned values y_{i} satisfy special conditions.

Luckily, if the points x_{i} are general and their number is $\leq\binom{ n+d}{d}$, then there is a polynomial p of degree $\leq d$ satisfying $p\left(x_{i}\right)=y_{i}$ for every assigned values y_{i}.

Classical geometers of XIX century expressed this fact by saying that "general points impose independent conditions".

Many variables and derivatives

If we assign the values of partial derivatives, up to some order, at some points, again we need that the points are general; indeed for points on a line we meet the same phenomenon as in previous slide. Something new here happens. Even if the points are general, there may be situations where there is no solution to the interpolation problem.

Alexander and Hirschowitz solved the case where the values of all the first partial derivatives at some general points are assigned.

Theorem (Alexander-Hirschowitz)

Let $d \neq 2$ and $\operatorname{char}(K)=0$. For a general choice of points p_{i} $i=1, \ldots, k$ the space of polynomials having assigned values of all the first partial derivatives at p_{i} has codimension in $R_{d, n}$ equal to

$$
\min \left\{(n+1) k, \operatorname{dim} R_{d, n}\right\}
$$

with the following list of exceptions
a) $n=2, d=4, k=5$,
b) $n=3, d=4, k=9$,
c) $n=4, d=3, k=7$,
d) $n=4, d=4, k=14$.

The first exceptional case: two points on the plane

The first nontrivial exception is the following. Consider $k=2$ and $\left(a_{1}, a_{2}\right)=(n, n)$. Then the interpolating affine space is given by quadratic polynomials with assigned tangent spaces A_{1}, A_{2} at two points p_{1}, p_{2}. The interpolating space is not empty if and only if the intersection space $A_{1} \cap A_{2}$ is not empty and its projection on K^{n} contains the midpoint of $p_{1} p_{2}$, which is a codimension one condition. In order to prove this fact restrict to the line through p_{1} and p_{2} and use a well known property of the tangent lines to the parabola.

The link with sums of powers of linear forms

The orthogonal space to the space of polynomials of degree d, having a double point at $\left(a_{0}, \ldots, a_{n}\right)$, is the degree d part of the ideal generated by $\left(a_{0} x_{0}+\ldots+a_{n} x_{n}\right)^{d-1}$. This remark and the Terracini Lemma allow to reformulate the Alexander-Hirschowitz theorem, in terms of sum of powers, which is the version more widely known (see [larrobino-Kanev]).

Originally Alexander and Hirschowitz worked on the interpolation problem!

The Alexander-Hirschowitz Theorem in terms of sums of

powers

Theorem (Alexander-Hirschowitz)

Let $d \neq 2$ and char $(K)=0$. The variety of polynomials in $R_{d, n}$ which are sum of k powers of linear forms has dimension equal to

$$
\min \left\{(n+1) k, \operatorname{dim} R_{d, n}\right\}
$$

with the following list of exceptions
a) $n=2, d=4, k=5$,
b) $n=3, d=4, k=9$,
c) $n=4, d=3, k=7$,
d) $n=4, d=4, k=14$,
where the corresponding varieties are hypersurfaces.

Beyond Alexander-Hirschowitz

With Chiara Brambilla we studied the case of any general linear combination of first partial derivatives. (Asking just some partial derivatives is "coordinate dependent")
So we assign a general subspace of dimension d_{i} inside $\left\langle\frac{\partial}{\partial x_{1}} \ldots \frac{\partial}{\partial x_{n}}\right\rangle$

General setting

Let $p_{1}, \ldots, p_{k} \in K^{n}$ be k general points and assume that over each of these points a general affine proper subspace $A_{i} \subset K^{n} \times K$ is given. Assume that $\operatorname{dim} A_{1} \geq \ldots \geq \operatorname{dim} A_{k}$. Let $\Gamma_{f} \subseteq K^{n} \times K$ be the graph of $f \in R_{d, n}$ and $T_{p_{i}} \Gamma_{f}$ be its tangent space at the point $\left(p_{i}, f\left(p_{i}\right)\right)$. Consider the conditions

$$
A_{i} \subseteq T_{p_{i}} \Gamma_{f}, \text { for } i=1, \ldots, k
$$

Explanation of the conditions.

- When $\operatorname{dim} A_{i}=0$, the assumption (11) means that the value of f at p_{i} is assigned.
- When $\operatorname{dim} A_{i}=n$, (11) means that the value of f at p_{i} and the values of all first partial derivatives of f at p_{i} are assigned.
- In the intermediate cases, (11) means that the value of f at p_{i} and the values of some linear combinations of first partial derivatives of f at p_{i} are assigned.

The interpolation space.

Consider now the affine space

$$
\begin{equation*}
V_{d, n}\left(p_{1}, \ldots, p_{k}, A_{1}, \ldots, A_{k}\right)=\left\{f \in R_{d, n} \mid A_{i} \subseteq T_{p_{i}} \Gamma_{f}, \quad i=1, \ldots, k\right\} \tag{1}
\end{equation*}
$$

we may call the interpolation space with data p_{i}, A_{i}, because its elements correspond to interpolating polynomials.

The Main Theorem

Theorem (Brambilla-O)

Let $d \neq 2$ and char $(K)=0$. For a general choice of points p_{i} and subspaces A_{i}, the interpolation space $V_{d, n}\left(p_{1}, \ldots, p_{k}, A_{1}, \ldots, A_{k}\right)$ has codimension in $R_{d, n}$ equal to

$$
\min \left\{\sum_{i=1}^{k}\left(\operatorname{dim} A_{i}+1\right), \operatorname{dim} R_{d, n}\right\}
$$

with the following list of exceptions
a) $n=2, d=4, k=5, \operatorname{dim} A_{i}=2$ for $i=1, \ldots 5$
b) $n=3, d=4, k=9, \operatorname{dim} A_{i}=3$ for $i=1, \ldots 9$
$\left.b^{\prime}\right) n=3, d=4, k=9, \operatorname{dim} A_{i}=3$ for $i=1, \ldots 8, \operatorname{dim} A_{9}=2$
c) $n=4, d=3, k=7, \operatorname{dim} A_{i}=4$ for $i=1, \ldots 7$
d) $n=4, d=4, k=14, \operatorname{dim} A_{i}=4$ for $i=1, \ldots 14$

In particular, when $\sum_{i=1}^{k}\left(a_{i}+1\right)=\binom{n+d}{d}$ there is a unique polynomial f in $V_{d, n}\left(p_{1}, \ldots, p_{k}, A_{1}, \ldots A_{k}\right)$, with the above exceptions a), b'), c), d).
In the exceptional cases the space $V_{d, n}\left(p_{1}, \ldots, p_{k}, A_{1}, \ldots A_{k}\right)$ is empty.

The case of quadrics

Assume now $d=2$. We set $a_{i}=-1$ for $i>k$. For any $1 \leq i \leq n$ we denote

$$
\delta_{a_{1}, \ldots, a_{k}}(i)=\max \left\{0, \sum_{j=1}^{i} a_{j}-\sum_{j=1}^{i}(n+1-j)\right\}
$$

Theorem (Brambilla-O)

Let K be an infinite field. For a general choice of points p_{i} and subspaces A_{i} of dimension a_{i}, the interpolation space $V_{2, n}\left(p_{1}, \ldots, p_{k}, A_{1}, \ldots A_{k}\right)$ has codimension in $R_{2, n}$ equal to $\min \left\{\sum_{i=1}^{k}\left(a_{i}+1\right), \operatorname{dim} R_{2, n}\right\}$ if and only if one of the following conditions takes place:
(1) either $\delta_{a_{1}, \ldots, a_{k}}(i)=0$ for all $1 \leq i \leq n$;
(2) or $\sum_{i}\left(a_{i}+1\right) \geq\binom{ n+2}{2}+\max \left\{\delta_{a_{1}, \ldots, a_{k}}(i): 1 \leq i \leq n\right\}$.

The perfect case for quadrics

In particular when $\sum_{i=1}^{k}\left(a_{i}+1\right)=\binom{n+2}{2}$ there is a unique polynomial f in $V_{2, n}\left(p_{1}, \ldots, p_{k}, A_{1}, \ldots A_{k}\right)$ if and only if, for any $1 \leq i \leq n$, we have

$$
\sum_{j=1}^{i} a_{j} \leq \sum_{j=1}^{i}(n+1-j)
$$

With two variables, the only exceptional case for quadrics is when X is given by two double points. In the 3dimensional space, we have the following lists of subschemes which do not impose independent conditions on quadrics.

X	$\operatorname{deg} X$	$\max \left\{\delta_{X}(i)\right\}$	$\left(m_{1}, \ldots, m_{4}\right)$	$\operatorname{dim} I_{X}(2)$
$4,4,4$	12	3	$(0,0,0,3)$	1
$4,4,3$	11	2	$(0,0,1,2)$	1
$4,4,2$	10	1	$(0,1,0,2)$	1
$4,4,1,1$	10	1	$(2,0,0,2)$	1
$4,4,1$	9	1	$(1,0,0,2)$	2
4,4	8	1	$(0,0,0,2)$	3
$4,3,3$	10	1	$(0,0,2,1)$	1

Open problem

Study the dimension of the interpolation spaces with assigned values of partial derivatives of higher order.

Many partial results are known (Ciliberto, Miranda, Harbourne, Hirschowitz, Gimigliano, Bocci, Dumitrescu, Carlini, Ballico, Brambilla, Laface, Ugaglia, Orecchia, Cioffi, Chiantini, ...)

Thanks!!

