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On 3-Folds in P5 which are Scrolls

GIORGIO OTTAVIANI1

Introduction

A smooth 3-fold X C P~ is called a scroll over a surface B if there exists
a morphism p : X - B such that c ]p5 is a projective line for every point
b E B. In equivalent way X = P (E) i S where E is a rank 2 vector bundle
over B. X is embedded as a P1-scroll by the line bundle = H. We set

d = deg X. There are four examples, all classical, of such scrolls in P~:

(a) d = 3, Segre scroll P~ over B = P, with E = A

resolution of the ideal sheaf is

with 0 generic. This is the only scroll in over a curve with a linear
as fiber [ 16].

(b) d = 6, Bordiga scroll over B = P2 with E stable bundle on with

c 1 (E) = 4, c2 (E) = 10. A resolution is

with 0 generic.

(c) d = 7 Palatini scroll ([20], pag. 381) (studied also by Okonek [18])
over B = cubic surface in P~ with E bundle on the cubic surface with
c 1 (E) = 0 (2), c2 (E) = 5. A resolution is

with 0 generic.

I 
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(d) d = 9, K3 scroll over B = P) n p8 1, which is K3 by the adjunction
formula. X is formed by the lines corresponding to the points of B,
then E = U* where U is the universal bundle on Gr( 1, 5), ci(E) = 0(1),
c2 (E) = 5. A resolution is ([9]):

with 0 generic.

(a) is linked to (b) in the complete intersection of two cubics, (c) is linked
to (d) in the complete intersection of two quartics.

The aim of this paper is to prove the following theorem, which solves
problem 8 of Schneider’s list [22]:

THEOREM. Let X be a smooth 3-fold in which is a scroll over a surface.
Then X is one of the examples (a), (b), (c), (d).

Partial results about scrolls in P5 were obtained by Beltrametti, Schneider
and Sommese [6], [5]. In particular in [5] it is proved that deg X  24 and a
list of possible invariants is given. Our approach is independent.

One motivation for such a classification is the main result of [2]: there are
only finitely many families of 3-folds in p5 which are not of general type. So,
theoretically, one could ask for the complete list of non-general type 3-folds
in p5.

Moreover, scrolls occurr as special cases in adjunction theory [23]. More
precisely, apart from a small list of well known examples, the only 3-folds X
such that the adjunction map (H = hyperplane divisor) drops dimension
are scrolls over surfaces and quadric bundles over curves. There is only one
quadric bundle in p5 over a curve: its degree is 5 [3]. In [3] it is considered
also the case when drops dimension.

Surfaces embedded in p4 which are scrolls are classified by Lanteri and
Aure ([15], [1]) (this classification implies in particular that the only p2-scroll
in p5 is P1 x p2). Codimension two submanifolds in pn for n &#x3E; 6 have

H2(X, C) = C, hence they cannot be scrolls. So we obtain

COROLLARY. The following is the complete list of all codimension two
projective submanifolds which are 

(i) the rational cubic ruled surface
with resolution

(ii) the elliptic quintic scroll in JP4 with resolution

or
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where F is the (normalized) Tango bundle on JP4 [19].

(iii) one of the examples (a), (b), (c), (d).

REMARK. Beltrametti and Sommese [4] have shown that, when X c JP&#x3E;5
and deg X &#x3E; 4, the definition of scroll over a surface B is equivalent to the
following one (more natural in adjunction theory): there exists a morphism
p : X --~ B over a normal surface and an ample line bundle L on B such that
Kx + 2H = p*L. Hence our theorem applies as well in the adjunction theoretic
setting.

The proof of the theorem is given in Section 2. More informations about
the four examples are contained in Section 3. In Section 4 we give some results
concerning the number of the equations defining these examples. In particular
we exhibit some examples of surfaces in p4 and 3-folds in JP5 that are defined
by the maximum number of equations and not less. In the last section we study
the case of the general embedding of a P1-bundle in p5.

I wish to thank C. Ciliberto for stimulating discussions and for pointing
to me the classical papers [7] and [20].

1. - Preliminaries

We work over the field of complex numbers.

1.1 Riemann-Roch. Let X be a 3-fold in p5, L be a line bundle on X

The following smoothing criterion is well known and relies on generic
smoothness. It was essentially noticed in [14]. A proof of a more general
statement can be found in [8].

1.2 (Kleiman). Let E, F be vector bundles on P’, n  5. If rank F =
rank E + 1 and E* 0 F is globally generated, then the generic morphism
4&#x3E; : E -+ F degenerates on a smooth codimension two subvariety X, and
we have the exact sequence

1.2 is a basic tool that allows to construct many projective submanifolds. In
particular it applies to the examples (a), ...,(d).

1.3 Resolutions of Linked Subvarieries [21]. Let V, W be two smooth
subvarieties of codimension two in P’, n  5, which are linked in the complete
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intersection of two hypersurfaces of degree a, b. If Iv has the locally free
resolution

then we obtain

1.4 (Severi). Let S be a smooth surface in JF4. We have = 0

unless S is the Veronese surface of degree 4, image of 

The following lemma is a special case of a theorem of Roth (see also 5.4).

LEMMA 1.5. Let S be a surface in JF4 of degree &#x3E; 5. If the generic
hyperplane section C is contained in a quadric of JF3, then S is contained in
a quadric of JF4.

PROOF. Consider the cohomology sequence associated to the sequence

By 1.4, H 1 ( 1’s ( 1 )) = 0. Hence implies HO(Is(2))fO.
1.6 (Halphen) (see e.g. [10]). If a curve in 1~3 of degree d and genus g is

not contained in a quadric, then we have

LEMMA 1.7 (Ellingsrud-Peskine) ([10], Lemma 1). If a surface in I~4 of
degree d is contained in a quadric, and g is the genus of the hyperplane section,
we have 

.,/., L-’B.

2. - Proof of the theorem

PROPOSITION 2.1. Let X = The Chern classes of X are the
following 

- -- - , -. - --
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PROOF. We have

(this is sometimes called the Leray-Hirsch equation).
Now we compute the Chem classes from the sequence

PROPOSITION 2.2. Let X C 1~5 be a PI -scroll, and C be the generic curve
section of genus g. We have

PROOF. Consider the exact sequence

The Proposition 2.1 and the self-intersection formula c2(Nxps) = dH2 give

After substituting the formulas of Proposition 2.1, the equation (2.1) becomes

Intersecting respectively with the cycles H, p*ci(E), p*ci(jB), we get the three
equations

In the same way, (2.2) gives
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Moreover, the Leray-Hirsch equation is

Intersecting respectively with the cycles p*ci(E’), p*ci(B), we get the two

equations

Now we solve the system (L 1 ), ...,(L6). Substituting (L5) and (L6) in

(LI), (L2), (L3) and (L4), we get

Hence from (2.5) and (2.6):

and substituting these values into (2.4) and (2.7), we get the two equations
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We eliminate H . p*c2(B) from these two last equations and we get

that is, after simplifications,

Now from the adjunction formula we have

PROOF OF THE THEOREM. We may suppose d &#x3E; 6. Suppose first that C is
not contained in a quadric. Then from 1.6 and Proposition 2.2 we have

that is

which gives d  24. But it is easy to check that is an

integer in this bound only for d = 6, 7, 9, 21. But for, d = 21, H2 . p* c 1 (E) = 31
from (2.11) and in this case the solution of that we obtain from

(2.10) is not an integer.
If otherwise C is contained in a quadric, from 1.5 we get that also the

surface section of X is contained in a quadric. Hence the Lemma 1.7 gives

that is 3d - 19  0. Now the classification in [6] concludes the proof.
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REMARK 2.3. The complete solution of the system (LI), ...,(L6) and Rie-
mann-Roch formula 1.1 give, after some computations, the equality 

This shows immediately the role of the four

values d = 3, 6, 7, 9.

3. - More on the four examples

The geometrical description of the scroll structure of the example (a) is

clear, and is given by Chang [9] for the example (d). We give here an explicit
description of the scroll structure of the examples (b) and (c), which is different
from the adjunction method employed by Okonek [18]. We follow strictly the
ideas of G. Castelnuovo [7].

3.1. In example (b) (Bordiga scroll) the morphism F : 0(-4)3 -+ 0 (-3)4
is given by a generic 4 x 3 matrix F = where f2~ E HOef5, 0 ( 1)). The four
3 x 3 minors of F are the equations of X. If x’ E X then rk F  2 and there
exists (~1, ~2, ~3) such that

The morphism p : X -~ JP2 defined by P(X’) = (A 1, ~2, A3) gives the structure of
scroll and (3.1 ) are the equations of the fiber of p over (a 1, a2, a3 ).

3.2. In example (c) (Palatini scroll), let I~5 = P (V). With the help of the
twisted dual Euler sequence on p5

2

we have the natural identification i V*, where a morphism
0 (-4) --&#x3E; S21 (-2) is given (after choosing a basis in V and its dual basis in

V*) by a skew-symmetric 6 x 6 matrix A = [aij] ] (ai j E C) and corresponds to
the morphism V --W’ * given by

This morphism defines a linear line complex in p5.
The map 0 : 0 (-4)4 --&#x3E; S21 (-2) of the example (c) is given by four ge-

neric skew-symmetric matrixes A = B = C = D = [dij]. The
equations of the degeneracy locus X of 0 are the fifteen 4 x 4 minors of the
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4 x 6 matrix

If x’ E X then there exist (A, j,L, v, 1/J) such that

Hence has to be a degenerate skew-symmetric matrix, and
its pfaffian has to vanish. Let (A, it, v, 0) be homogeneous coordinates in JP5 and
set

S = ~(~, J.L, v, V)) I Pfaf6(AA + J.LB + vC + 1/;D) = 0} C p3.

,S is a cubic surface. The morphism p : X -; ,S defined by p(x’) _ (A, 
gives the structure of scroll because (3.2) are the equations of the fiber of

p over (A, J.L, v, ~) and a skew-symmetric matrix has always even rank, hence
every fiber of p is a line in p5. X is in fact (as in [20]) the locus of the lines
which are center of the degenerate linear complexes in the system spanned by
the four complexes corresponding to A, B, C, D.

It is interesting to remark that the Palatini scroll is the only known smooth
3-fold in p5 such that the hyperquadrics cut on it a non-complete linear system
(see [22], Problem 5).

3.3. In the examples (b), (c) and (d) the morphism Q : X - B is
associated to the line bundle Kx + 2H. In the example (a) is associated to

-Kx - 2H, while X - P .
In the natural embedding f : B - Gr(l,5), f (B) has bidegree (a,,3) where

a = n P~0, P2 fixed} = d, ~3 = C P4, P4 fixed hyperplane} =
number of points blown-up in the morphism plxnh : X n H -~ B. For example
the hyperplane sections of the Bordiga scroll are Bordiga surfaces which are
isomorphic to the plane blown-up in ten points. From the Leray-Hirsch equation
(2.3) we have ~3 = c2(E).

We summarize the numerical invariants of the four examples in the

following table (see also [18], [9]). The Hilbert polynomials can be computed
from the resolutions of the ideal sheaves.
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Table 1

4. - On the number of equations defining codimension two submanifolds

DEFINITION 4.1. A subvariety X c I~n is said to be the scheme-theoretic

intersection of the p hypersurfaces with equations f 1, ... , f p if

In equivalent way, we have that f l , ... , f~ generate the ideal sheaf Ix, that is

4.2. Any subvariety X C P’ is the scheme-theoretic intersection of at
most n + 1 hypersurfaces ( [ 11 ], Example 9.1.3). The number of generators of
IX should not be confused with the number of generators of the homogeneous
ideal IX C C [xo, ... , which is unbounded.
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4.3. In the case X is locally Cohen-Macaulay of codimension two,
the kernel of the morphism in (4.1) is locally free. Hence varieties defined by
a small number of equations give vector bundles of small rank. We will see in
the following that all the bundles obtained by the examples considered in this
paper are well known.

EXAMPLE 4.4. The Segre scroll I~1 x p2 is the scheme-theoretic intersection
of three quadrics, which are the three minors of the matrix

This matrix defines a morphism 0 like in the introduction (example (a)).
In the same way the Bordiga scroll (example (c)), is the scheme-theoretic

intersection of 4 cubics.
There are many examples of curves in p3 which cannot be the scheme-theo-

retic intersection of only 3 surfaces (e.g. [ 11 ], Example 9.1.2). These curves
are the "most general" considering 4.2.

In this section we present a surface in I~4, Example 4.10, (respectively a
threefold in Example 4.12) which cannot be the scheme-theoretic intersection
of 4 (respectively 5) hypersurfaces. We prove these facts as a straightforward
application of the Segre-Fulton formula for the equivalence of a component in
an intersection product ([11] ] Proposition 9.1.1, see also [12]). The following
theorems 4.5, 4.6, 4.7 are special cases of the Segre-Fulton formula.

THEOREM 4.5 ([11], Example 9.1.1; [12] 1.10). Let C C smooth
curve of degree d and genus g which is the scheme-theoretic intersection of
three surfaces of degree ni, n2, n3. We have

THEOREM 4.6 (see [ 11 ], Example 9.1.5). Let S C JP’4 be a smooth surface
of degree d and let g be the genus of S n H.

(i) If S is the scheme-theoretic intersection of four hypersurfaces of degree
ni, n2, n3, n4, we have

(ii) If S is the scheme-theoretic intersection of three hypersurfaces of degree
ni, n2, n3, we have
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THEOREM 4.7. Let X C p5 be a smooth 3-fold of degree d. Let K be the
canonical bundle and g the genus of X n H2.

(i) If X is the scheme-theoretic intersection of five hypersurfaces of degree
n 1, n2, n3, n4, ns, we have

(ii) If X is the scheme-theoretic intersection of four hypersurfaces of degree
n 1, n2, n3, n4, we have

(iii) If X is the scheme-theoretic intersection of three hypersurfaces of degree
n 1, n2, n3, we have
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REMARK 4.8. In order to apply the previous theorem in concrete cases, it
is useful the formula (set S = X n H)

1

EXAMPLE 4.9. The Veronese surface S in IP4 is the scheme-theoretic in-
tersection of four cubics. We have

where F is the Tango bundle on ]p4, in fact ,S is linked to the elliptic quintic
scroll in the complete intersection of two cubics (apply 1.3).

From Theorem 4.3 it follows that ,S is not the scheme-theoretic intersection

of three hypersurfaces, and if four hypersurfaces define S, then they must be
all cubics. In fact, let us suppose that there exist four hypersurfaces defining S
of degrees ni, n2, n3, n4. By the resolution (4.4) H°(Is(2)) = 0, hence we have

3. The equation obtained by (4.2) is

that, with the substitution ni = A; + 3, becomes

that has the only nonnegative solution Ài = 0.

EXAMPLE 4.10. The elliptic quintic scroll is not the scheme-theoretic in-
tersection of four hypersurfaces. In fact the equation obtained by (4.2) is
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that, with the substitution ni = Ai + 3, becomes

that has no nonnegative solutions.

EXAMPLE 4.11. The Palatini scroll is not the scheme-theoretic intersection

of four hypersurfaces, and if five hypersurfaces define it, they must be all

quartics.

In fact the equation obtained by (4.3) is

that, with the substitution ni = Ai + 4, becomes

which has the only nonnegative solution Ai = 0.
The Palatini scroll X is really the scheme-theoretic intersection of five

quartics: we have the sequence

where F is the Tango bundle on p5 (the argument is analog to that of Exam-
ple 4.9).

The same statement as above applies as well at the K3 scrool (Exam-
ple (d)) which is defined by five quartics by the sequence (N = nullcorrelation
bundle):

EXAMPLE 4.12. The 3-fold in defined by the resolution

is not the scheme-theoretic intersection of five hypersurfaces. In fact from the

resolution one computes the Hilbert polynomial which is 5 t3 - 5t + 25 t - 4.p y 2 2
The numerical invariants are: d = 15, H2K = 20, HK2 = 15, K3 = 6, g = 26,
c3 = -306. The equation obtained by (4.3) is



465

that, with the substitution ni + 5, becomes

that has no nonnegative solutions.
The examples of this section should be compared with the following

higher-dimensional result of Netsvetaev [17], which in turn is related to the
well known Hartshorne conjecture on complete intersections.

THEOREM 4.13 (Netsvetaev). Let X c codimension two submani-

fold, n &#x3E; 6. If X can be defined by p equations with p  n - 1, then X is a

complete intersection.

Hence Netsvetaev theorem cannot hold in I~4 or p5 even with the weaker
assumption p  n, while Hartshorne conjecture would be equivalent to prove
Netsvetaev theorem with the assumption p  n + 1.

5. - p1-bundles in p5

We consider now any possible embedding of a P1 -bundle over

a surface B in P~. We set J = Any line bundle on P (E) is of the form
n J + p* L, with n &#x3E; 1 and L some line bundle on B. In this case the fibers of
P (E) are embedded as rational curves of degree n. Our result is the following

THEOREM 5.1. Let X = P (E) be embedded in by some line bundle
n J + p* L. Then we have one of the following cases:

(i) n = 1 ; X is a scroll, that is one of the four examples (a), (b), (c), (d).

(ii) n = 2, d = 12; X is a conic bundle over a quartic surface of 

REMARK 5.2. In [3] it is constructed a 3-fold in p5 with d = 12 which is
a conic bundle over a quartic surface of 1~3 with all the fibers smooth. We do
not know if such an example is a P1-bundle.

REMARK 5.3. It seems that the analog problem to find the possible em-
beddings of surfaces in p4 which are P1-bundle over a curve is open, see [13].

The proof of Theorem 5.1 is analog to the proof of the classification of
scrolls given in Section 2. The main difference is that, in order to exclude
some numerical possibilities, we need a computer. Moreover the computations
are much heavier and we will only sketch the main steps.

We have first to collect the following facts, which are analogous to 1.5,
1.6, 1.7, that were stated separately only to ease the proof of the theorem in
the introduction.
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5.4 (Roth) (see e.g. [10]). Let S be a -surface in of degree &#x3E; 10. If the
generic hyperplane section C is contained in a cubic then S is contained
in a cubic of 

5.5 (Halphen) (see e.g. [10]). If a curve in of degree d and genus g is
not contained in a cubic, then we have

LEMMA 5.6 (Ellingsrud-Peskine) ([10], Lemma 1). If a surface in of
degree d is contained in a cubic, and g is the genus of the hyperplane section,
we have 

_,, - .

PROOF OF THEOREM. 5.1. We have as in Proposition 2.1:

The Leray-Hirsch equation is

and intersecting respectively with the cycles p*ci(B), p*ci(E), p*L, it gives the
three equations

Exactly as in Section 2 we get, from the sequence

the two equations:
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(term of third degree).

Now cut (5.3) respectively with J, p*ci(J9), p*cl(E), p* L, and obtain the
four new equations:

Consider these four equations, (5.1 ) and (5.4) and eliminate from these six

equations J ~ p* c 1 (E), J. (P*c¡(E))2, J. p* L using (5.2). Now
eliminate J. p*c2(B) from (5.4) and (5.5). Set J3 = x, J2. p*L = y, J. (p*L)2 = Z,
j2 . p*cl (E) = w, J2. p*cl (B) = u, Jp*cl (B) ’ p*L = a, J. (P*cl(B))2 = b. We get
the system of five equations
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Now consider that from the adjunction formula

The system (8*) is linear in the seven unknowns x, y, z, u, w, a, b. Luckily
the informations are enough to express g only in terms of d, n. We will see
this fact in elementary way.

We consider first the case

The only pairs of (d, n) satisfying these equality are (9,1), (12,2), (13,3) and
(14,6). We want to exclude the case (14,6). We have a = b = u = 0 and the
remaining equations of (S * ) are

Moreover from (5.6)

Consider that i

which is a contradiction.

In the same way we exclude the case (13,3).
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For d = 12, n = 2, we have in the same way the equations

Moreover, from (5.6),

Hence considering -

that gives g = 15 and H2K = 4. In the same way we can compute HK2 = -12,
K3 = 12. Hence = 0, (Kx+H)2 H = 4 (compare with [3]). This means
that the morphism associated to the line bundle Kx + H maps X onto a quartic
surface of p3.

If - 15n + dn + 6 ~ 0, we sketch how to solve the system (S*).
First solve (Sl) and (S5) in y, z. Now solve (S3), (S4) in u, w and

substitute y in the expression of w. Substitute the expressions obtained of y,
z and w in terms of d, n, x, a, b in (5.6). We find that x and a disappear
(this should not be suprising because the unknowns of the system (,S*) are not
determined by X, for example we can tensor E with a line bundle). Substitute
again the values obtained of u, y, z and w in (S2). x and a disappear once
again. In order to solve now (S2) in b we need

but this is easily checked to be true. At last substitute in (5.6) the value of b
obtained. We obtain the expression:

We remark that, when d --~ oo,

Now we distinguish two cases.
Suppose first that C is not contained in a cubic. Then from fact 5.5 and

(5.7) we have
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that is, after some computations,

If otherwise C is contained in a cubic, from (5.4) we get that also Y is contained
in a cubic. Hence Lemma 5.6 and (5.7) give

that is, after some computations,

By Section 2 we may suppose n &#x3E; 2. It is easy to check that for
n = 2 the bounds (5.8) and (5.9) give d  72, while for n &#x3E; 3 they give
d  37. In the case n = 2, the only values of d  72 such that g is
an integer (see (5.7)) are d = 12, 22. But we can check that, for d = 22,

the expression of X( DB ) - - whichthe expression of X B 12 = 12 which

can be derived from (,S*) is not an integer (see also [3]). Let now n &#x3E; 3.

For every d = 11, ... , 37, we can check with the help of a computer that the
expression of g cannot be integer for any n (for d fixed, g approaches finite
values when n goes to infinity!). This concludes the proof.
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