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INDUCTION FOR SECANT VARIETIES OF SEGRE VARIETIES

HIROTACHI ABO, GIORGIO OTTAVIANI, AND CHRIS PETERSON

Abstract. This paper studies the dimension of secant varieties to Segre va-
rieties. The problem is cast both in the setting of tensor algebra and in the
setting of algebraic geometry. An inductive procedure is built around the ideas
of successive specializations of points and projections. This reduces the cal-
culation of the dimension of the secant variety in a high dimensional case to
a sequence of calculations of partial secant varieties in low dimensional cases.
As applications of the technique: We give a complete classification of defec-
tive p-secant varieties to Segre varieties for p ≤ 6. We generalize a theorem
of Catalisano-Geramita-Gimigliano on non-defectivity of tensor powers of Pn.
We determine the set of p for which unbalanced Segre varieties have defec-

tive p-secant varieties. In addition, we completely describe the dimensions of
the secant varieties to the deficient Segre varieties P1 × P1 × Pn × Pn and
P2 × P3 × P3. In the final section we propose a series of conjectures about
defective Segre varieties.

1. Introduction

If Q1, . . . , Qp are points, then we let 〈Q1, . . . , Qp〉 denote their linear span. Let
X1, . . . , Xp ⊆ P

m be projective varieties of dimensions d1, . . . , dp. The join of the
varieties, J(X1, . . . , Xp), is defined to be the Zariski closure of the union of the
linear span of p-tuples of points (Q1, . . . , Qp) where Qi ∈ Xi. In other words

J(X1, . . . , Xp) =
⋃

Q1∈X1,...,Qp∈Xp

〈Q1, . . . , Qp〉.

The expected dimension (and the maximum possible dimension) of J(X1, . . . , Xp)
is min{m, p − 1 +

∑
di}. If X ⊆ P

m is a variety of dimension r, then the p-secant
variety of X is defined to be the join of p copies of X. We will denote this by
σp(X). Hence σ1(X) = J(X) = X while σ2(X) = J(X, X) is the variety of secant
lines to X. The expected dimension (and the maximum possible dimension) of
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σp(X) is min{m, pr + (p − 1)}. X is said to have a defective p-secant variety if
dim σp(X) < min{m, pr + (p − 1)}. X is called defective if there exists a p such
that dimσp(X) < min{m, pr + (p − 1)}. In other words, X is defective if for some
p, X has a defective p-secant variety. For instance, a classical theorem in algebraic
geometry states that the Veronese surface V ⊂ P

5 is defective since the dimension
of σ2(V ) is 4 (instead of the expected dimension of 5).

Let P
ni = P(Vi) where Vi is a vector space of dimension ni + 1 over a field of

characteristic zero, not necessarily algebraically closed. The aim of this note is to
compute the dimension of σp(X) when X is a Segre variety P

n1×. . .×P
nk embedded

in P(V1⊗ . . .⊗Vk). We say that (n1, . . . , nk) is defective if there exists a p such that
dim σp(X) is less than the expected dimension min {

∏
(ni + 1)−1, s(

∑
ni)+s − 1}.

If W1, . . . , Wp ⊆ X ⊆ P
m, then J(W1, . . . , Wp) is called a partial secant variety of

X. In Section 2, we describe the basic tensor algebra that will be used throughout
the paper. In Section 3, we give an inductive procedure that reduces the computa-
tion of dimσp(Pn1×. . .×P

nk) to the computation of the dimension of a collection of
partial secant varieties of low dimensional Segre varieties. Thus, a high dimensional
problem is reduced, inductively, to a collection of easily computable low dimensional
problems. In Section 4, we apply this procedure to give a complete classification
of defective p-secant varieties to Segre varieties for p ≤ 6. In the process of carry-
ing out the classification, we characterize the set of p for which unbalanced Segre
varieties have defective p-secant varieties. Modulo the unbalanced Segre varieties,
there seem to be very few defective cases. However, we show that the Segre vari-
eties P

1 × P
1 × P

n × P
n and P

2 × P
3 × P

3 are defective (and completely describe
the dimensions of their secant varieties). In Section 5, we generalize a theorem of
Catalisano-Geramita-Gimigliano on the non-defectivity of tensor powers of P

n. We
close the paper with a series of conjectures on the existence and classification of
defective Segre varieties. In addition to evidence provided by the theorems of this
paper, further evidence in support of the conjectures can be obtained via Monte
Carlo techniques in a computer algebra system such as CoCoA, Macaulay 2 or
Singular [Co, GS, GPS05].

The interest in this subject comes from several different sources. In algebraic
geometry, the Segre varieties form an important class of geometric objects. In
one guise, points on a Segre variety, V , are viewed as parametrizing rank one (or
decomposable) tensors. A tensor is said to have rank r if it can be written as a
linear combination of r rank one tensors (but not fewer). A tensor is said to have
border rank r if it can be expressed as the limit of rank r tensors but not as the
limit of rank r − 1 tensors. With this notation, σp(V ) parametrizes tensors with
border rank at most p. Alternatively, these same ideas can be expressed in terms of
decomposition of multidimensional matrices as linear combinations of simpler “rank
1” multidimensional matrices ([GKZ], [CGG1]). In numerical analysis a thorough
understanding of the dimension of σp(V ) has applications to complexity theory, for
example to algorithms for matrix multiplication ([BCS], [La]). More recently this
topic appears, through its relationship with algebraic statistics and higher order
correlations, in connection with computational biology ([ERSS]). The special case
X = P

1 × . . . × P
1 ([CGG2]) has made several appearances in the recent physics

literature (see for example [LT] and the literature quoted therein). The interested
reader should also consider the accessible articles ([BM],[C]) for an overview of some
related topics.
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INDUCTION FOR SECANT VARIETIES OF SEGRE VARIETIES 769

2. Basic tensor algebra for Segre varieties

In this section, questions about secant varieties to Segre varieties are reinter-
preted as questions in tensor algebra. We begin by introducing the notation that
will be used throughout this paper.

Definition 2.1. Let Y be a subspace of a vector space V . Let V ∨ denote the dual
vector space of V . The orthogonal, Y ⊥ of Y , is defined by

Y ⊥ := {ω ∈ V ∨ |ω(v) = 0 ∀ v ∈ Y }.

It is worth noting that the dimension of Y in V is the same as the codimension of
Y ⊥ in V ∨. The symmetric algebra of a vector space V , Sym(V ) =

⊕∞
i=0 Symi(V ),

comes equipped with a natural grading. Let S(Vi) = C ⊕ Vi be the truncated
symmetric algebra arising as the quotient of the symmetric algebra by the ideal of
elements whose degree is greater than or equal to 2 (in the natural grading). Given
vector spaces V1, . . . , Vk, the commutative algebra T = S(V1) ⊗ . . . ⊗ S(Vk) has a
multi-gradation indexed by k-tuples of non-negative integers where the summand
corresponding to n = (n1, . . . , nk) is zero if some ni ≥ 2. We will let Tn1,...,nk

denote
the summand of T with multi-degree (n1, . . . , nk). In particular T0,...,1,...,0 = Vi and
T1,...,1 = V1⊗ . . .⊗Vk are direct summands of T with multi-degrees (0, . . . , 1, . . . , 0)
and (1, . . . , 1) respectively. Since (A ⊗ B)∨ = A∨ ⊗ B∨, we have

T∨ = S(V ∨
1 ) ⊗ . . . ⊗ S(V ∨

k ), T∨
0,...,1,...,0 = V ∨

i and T∨
1,...,1 = V ∨

1 ⊗ . . . ⊗ V ∨
k .

Let 〈vi〉⊥ denote the homogeneous ideal in T∨ which is generated by the subspace
〈vi〉⊥ ⊆ V ∨

i . Though 〈vi〉⊥ denotes both a homogeneous ideal and a subspace, in
this paper there will be no danger of ambiguity. The following lemma is analogous
to the well-known cases of projective spaces and Grassmann varieties [CGG3]. Let
TpX be the affine cone over the projective tangent space to X at p.

Lemma 2.2. Let p = v1 ⊗ . . . ⊗ vk be a point of X = P(V1) × . . . × P(Vk). Then
(i) TpX = V1 ⊗ v2 ⊗ . . . ⊗ vk + v1 ⊗ V2 ⊗ . . . ⊗ vk + . . . + v1 ⊗ v2 ⊗ . . . ⊗ Vk,
(ii) TpX

⊥ =
[
(〈v1〉⊥ + . . . + 〈vk〉⊥)2

]
1,...,1

⊆ V ∨
1 ⊗ . . . ⊗ V ∨

k .

Proof. (i) Take the derivative of the parametric curve (v1 + εv′1) ⊗ . . . ⊗ (vk + εv′k)
at ε = 0 and let v′1, v

′
2, . . . , v

′
k vary over V1, V2, . . . , Vk.

(ii) Consider that

(v1 ⊗ . . . ⊗ vi−1 ⊗ Vi ⊗ vi+1 ⊗ . . . ⊗ vk)⊥ =

⎛
⎝∑

j �=i

〈vj〉⊥
⎞
⎠

1,...,1

;

hence

TpX
⊥ =

k⋂
i=1

⎛
⎝∑

j �=i

〈vj〉⊥
⎞
⎠

1,...,1

.

Complete vi = vi,1 to a basis {vi,1, . . . , vi,ni+1} of Vi. We label the dual basis of V ∨
i

by {vi,1, . . . , vi,ni+1}. In the dual basis, 〈vj〉⊥ is generated by {vj,2, . . . , vj,nj+1}.
Now

(∑
j �=i〈vj〉⊥

)
1,...,1

contains all monomials with multi-degree (1, . . . , 1) with

the exception of the following ni + 1:

{v1,1 ⊗ v2,1 ⊗ . . . ⊗ vi−1,1 ⊗ vi,j ⊗ vi−1,1 ⊗ . . . ⊗ vk,1 | 1 ≤ j ≤ ni + 1}.
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770 HIROTACHI ABO, GIORGIO OTTAVIANI, AND CHRIS PETERSON

Hence
⋂k

i=1

(∑
j �=i〈vj〉⊥

)
1,...,1

is generated by all basis elements α1 ⊗ . . .⊗αk with

αj �= vj,1 for at least two different values of the index j. These are exactly the
generators of

[
(〈v1〉⊥ + . . . + 〈vk〉⊥)2

]
1,...,1

. �

A subspace Y ⊆ V1⊗ . . .⊗Vk is called monomial if there exist bases of V1, . . . , Vk

such that a basis of Y can be expressed in terms of monomials in the bases of
V1, . . . , Vk.

Corollary 2.3. Let p = v1 ⊗ . . .⊗ vk be a point of X = P(V1)× . . .× P(Vk). Then
TpX and TpX

⊥ are monomial subspaces.

Now fix a subspace H ⊆ V1 of dimension h. For any p = v1 ⊗ . . . ⊗ vk, we have
either v1 /∈ H or v1 ∈ H.

Let
f : V ∨

1 ⊗ V ∨
2 ⊗ . . . ⊗ V ∨

k −→H∨ ⊗ V ∨
2 ⊗ . . . ⊗ V ∨

k ,

be the natural projection and let

(2.1) 0−→K−→TpX
⊥−→f

(
TpX

⊥)−→0

be the restriction exact sequence, where K = TpX
⊥ ∩ [(V1/H)∨ ⊗ V ∨

2 ⊗ . . . ⊗ V ∨
k ].

Clearly both f
(
TpX

⊥) and K depend heavily on whether v1 /∈ H or v1 ∈ H. This
dependence is captured in the following:

Lemma 2.4. Consider a point v1 ∈ V and a subspace H ⊆ V .

(i) If v1 /∈ H, let [v1] ∈ V/H denote its quotient class. We have

f
(
TpX

⊥) =
[
〈v2〉⊥ + . . . + 〈vk〉⊥

]
1,...,1

,

which has codimension h in H∨ ⊗ V ∨
2 ⊗ . . . ⊗ V ∨

k , and

K =
[
(〈[v1]〉⊥ + 〈v2〉⊥ + . . . + 〈vk〉⊥)2

]
1,...,1

,

which has codimension 1+
∑k

i=2 ni +(n1−h) in (V1/H)∨⊗V ∨
2 ⊗ . . .⊗V ∨

k .
(ii) If v1 ∈ H, we have

f
(
TpX

⊥) =
[
(〈v1〉⊥ + 〈v2〉⊥ + . . . + 〈vk〉⊥)2

]
1,...,1

,

which has codimension h +
∑k

i=2 ni in H∨ ⊗ V ∨
2 ⊗ . . . ⊗ V ∨

k , and

K =
[
〈v2〉⊥ + . . . + 〈vk〉⊥

]
1,...,1

,

which has codimension n1 + 1 − h in (V1/H)∨ ⊗ V ∨
2 ⊗ . . . ⊗ V ∨

k .

Proof. We first consider the case where v1 /∈ H. In this setting, (〈v1〉⊥) projects
to the entire subspace H∨. Hence every element in

[
〈v2〉⊥ + . . . + 〈vk〉⊥

]
1,...,1

is
the projection of an element of (〈v1〉⊥) ∩ (〈vi〉⊥) for some i. Both the assertion
about K and the inclusion f

(
TpX

⊥) ⊆ [
〈v2〉⊥ + . . . + 〈vk〉⊥

]
1,...,1

are clear. From
(ii) of Lemma 2.2, we have

[
〈v2〉⊥ + . . . + 〈vk〉⊥

]
1,...,1

⊆ f
(
TpX

⊥). The proof for
the case where v1 ∈ H is analogous and is left to the reader. Note that TpX

⊥ has
codimension 1 +

∑k
i=1 ni in V ∨

1 ⊗ . . . ⊗ V ∨
k . From this fact, the statements about

the codimension of K follow. �
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INDUCTION FOR SECANT VARIETIES OF SEGRE VARIETIES 771

We now look at the connection with the secant varieties of X = P
n1 × . . .×P

nk .
The expected dimension of σp(X) is

min

{
k∏

i=1

(ni + 1) − 1, p

(
k∑

i=1

ni

)
+ (p − 1)

}
.

There is a unique integer s such that σs(X) fills the ambient space and σs−1(X)
does not. The expected value for such an s is

(2.2) S(n1, . . . , nk) :=

⌈ ∏k
i=1(ni + 1)

(
∑k

i=1 ni) + 1

⌉
.

A standard application of Terracini’s lemma, as in [CGG2], shows that σs(X)
has the expected dimension if and only if for s generic points p1, . . . , ps, the linear
space

[
Tp1X

⊥ ∩ . . . ∩ Tps
X⊥] has the expected codimension in T∨

1,...,1, that is,{
s(
∑k

i=1 ni) + 1 for s < S(n1, . . . , nk),∏k
i=1(ni + 1) for s ≥ S(n1, . . . , nk).

Consider again the point p = v1 ⊗ . . . ⊗ vk. Lemma 2.4 suggests we focus our
attention on the subspaces Gi

pX ⊆ T1,...,1 defined by

Gi
pX

⊥ =

⎡
⎣
⎛
⎝∑

j �=i

〈vj〉⊥
⎞
⎠
⎤
⎦

1,...,1

.

It is easy to check that

Gi
pX = (v1 ⊗ . . . ⊗ vi−1 ⊗ Vi ⊗ vi+1 ⊗ . . . ⊗ vk)

has dimension ni + 1 in T1,...,1 (and that Gi
pX

⊥ has codimension ni + 1 in T∨
1,...,1).

Remark 2.5. We sketch the geometrical construction which is behind the tensor
algebra of this section. We have denoted by P(V1) the projective space of lines in V1,
so that H0(P(V1),O(1)) = V ∨

1 . The subvariety X ′ = P(H)×P(V2)×. . .×P(Vk) ⊂ X
is the zero locus of a section of the vector bundle (V1/H) ⊗ OX(1, 0, . . . , 0). Let
0 = (0, . . . , 0) ∈ N

k−1. We get the Koszul complex

(2.3) · · · → ∧2(V1/H)∨ ⊗OX(−2,0) → (V1/H)∨ ⊗OX(−1,0) → OX → OX′ → 0.

After tensoring (2.3) by OX(1, 1 . . . , 1) and taking cohomology we get

0 → (V1/H)∨ ⊗
(

k⊗
i=2

V ∨
i

)
→

k⊗
i=1

V ∨
i → H∨ ⊗

(
k⊗

i=2

V ∨
i

)
→ 0.

Let p be a double point on X. After tensoring (2.3) by I2
p ⊗ OX(1, 1 . . . , 1) and

taking cohomology we get exactly sequence (2.1):

0 → K → TpX⊥ → f(TpX⊥) → 0
∩ ∩ ∩

0 → (V1/H)∨ ⊗
(⊗k

i=2 V ∨
i

)
→

⊗k
i=1 V ∨

i → H∨ ⊗
(⊗k

i=2 V ∨
i

)
→ 0.

Hence, in the language of [AH], f(TpX
⊥) plays the role of trace and K plays the

role of residual.
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3. Induction for secant varieties of Segre varieties

In this section, we develop a method of induction for secant varieties of Segre
varieties.

Notation 3.1. We now fix the notation that will be used throughout this section.
• X = P

n1 × P
n2 × · · · × P

nk .
• If n = (n1, . . . , nk), then P

n = P
n1 × P

n2 × · · · × P
nk .

• For s generic points p1, . . . ps ∈ X let TsX = Tp1X + . . . + Tps
X.

• For t generic points q1, . . . , qt ∈ X let Gi
tX = Gi

q1
X + . . . + Gi

qt
X.

This notation leads to the following fundamental definition.

Definition 3.2. Let s, a1, a2, . . . , ak be non-negative integers and let X = P
n.

• If for s + a1 + a2 + · · · + ak generic points, the linear space spanned by
TsX + G1

a1
X + G2

a2
X + · · · + Gk

ak
X ⊆ T(1,...,1) has dimension

D = min{s(1 +
k∑

i=1

ni) +
k∑

i=1

(ai(ni + 1)),
k∏

i=1

(ni + 1)},

then we say that T (n1, . . . , nk; s; a1, . . . , ak) is true. At times we will abbre-
viate this by T (n, s,a). By duality, we have the equivalent definition that
T (n, s,a) is true if and only if for s +

∑
ai generic points, the intersection

TsX
⊥ ∩ G1

a1
X⊥ ∩ G2

a2
X⊥ ∩ · · · ∩ Gk

ak
X⊥ ⊆ T∨

(1,...,1) has codimension D.
• If s(1 +

∑
ni) +

∑
(ai(ni + 1)) ≤

∏
(ni + 1), then (n, s,a) is called sub-

abundant.
• If s(1 +

∑
ni) +

∑
(ai(ni + 1)) ≥

∏
(ni + 1), then (n, s,a) is called super-

abundant.
• If s(1+

∑
ni)+

∑
(ai(ni+1)) =

∏
(ni + 1), then (n, s,a) is called equiabun-

dant.
• If (n, s,0) is equiabundant and T (n, s,0) is true, then P

n is called perfect.
• If (

∏k
i=1(ni + 1))/(1 +

∑k
i=1 ni) is an integer, then n is called numerically

perfect.

For efficiency, we will often write statements such as T (n, s,a) is true and sub-
abundant when we really mean T (n, s,a) is true and (n, s,a) is subabundant.

Remark 3.3. Given two k-dimensional vectors n,n′, we say n′ ≤ n if n′
i ≤ ni for

each 1 ≤ i ≤ k. We make three simple remarks:
(i) T (n1, . . . , nk; s; 0, . . . , 0) is true if and only if σs(Pn1 ×P

n2 × · · · ×P
nk) has

the expected dimension.
(ii) If T (n, s,a) is true and subabundant, then T (n, s′, a′) is true and subabun-

dant for any choice of s′, a′ with s′ ≤ s and a′ ≤ a.
(iii) If T (n, s,a) is true and superabundant, then T (n, s′, a′) is true and super-

abundant for any choice of s′, a′ with s ≤ s′ and a ≤ a′.

A main goal of this paper is to demonstrate how induction can be used to show
that T (n, s,0) is true for many choices of n and s. For this purpose it is enough to
show that

dim
[
Tp1X

⊥ ∩ . . . ∩ Tps
X⊥]

is less than or equal to the expected value for some choice of points p1, . . . , ps. By
semicontinuity, establishing that the expected dimension holds in a particular case
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INDUCTION FOR SECANT VARIETIES OF SEGRE VARIETIES 773

forces the expected dimension to hold in the general case. We reduce the size of a
given problem through the specialization of sets of points. For instance, if H ⊆ V1

is a subspace, then we may specialize t points among the points p1, . . . , ps such
that pi ∈ H for i = 1, . . . , t and then make our computation in this setting. If non-
defectivity holds for a set of specialized points, then it will hold for a set with the
same number of general points. This allows us to develop the following induction
theorem.

Theorem 3.4 (Subabundance Theorem). Let n1 = n′
1 + n′′

1 + 1, let s = s′ + s′′,
a2 = a′

2 + a′′
2 , . . . , ak = a′

k + a′′
k. Suppose

(i) T (n′
1, n2, . . . , nk; s′; a1 + s′′, a′

2, . . . , a
′
k) is true and subabundant,

(ii) T (n′′
1 , n2, . . . nk; s′′; a1 + s′, a′′

2 , . . . , a′′
k) is true and subabundant.

Then T (n1, . . . , nk; s; a1, . . . , ak) is true and subabundant.

Proof. Let H ⊆ V1 be a subspace of dimension n′
1 + 1 and let X ′ = P(H) ×

P(V2) × · · · × P(Vk) be embedded in P(H ⊗ V2 ⊗ · · · ⊗ Vk). In the same way let
X ′′ = P(V1/H) × P(V2) × · · · × P(Vk) be embedded in P(V1/H ⊗ V2 ⊗ · · · ⊗ Vk).
Consider s points p1, . . . , ps and specialize pi = v1,i ⊗ v2,i ⊗ · · · ⊗ vk,i in such a way
that v1,i ∈ H for i = 1, . . . , s′. Let f : V ∨

1 ⊗ V ∨
2 ⊗ · · · ⊗ V ∨

k −→H∨ ⊗ V ∨
2 ⊗ · · · ⊗ V ∨

k

be the natural projection.
By Lemma 2.4 we have f(Tpi

X⊥) = Tpi
X ′⊥ for i = 1, . . . , s′ and f(Tpi

X⊥) =
G1

pi
X⊥ for i = s′ + 1, . . . , s. More precisely we have the exact sequences

0−→G1
pi

X ′′⊥−→Tpi
X⊥−→Tpi

X ′⊥−→0,

for i = 1, . . . , s′ and the exact sequences

0−→T[pi]X
′′⊥−→Tpi

X⊥−→G1
pi

X⊥−→0,

for i = s′ + 1, . . . , s (where [pi] denotes the quotient class of pi).
Combining these exact sequences yields

0−→
⋂
i≤s′

G1
pi

X ′′⊥ ∩
⋂
i>s′

T[pi]X
′′⊥−→

s⋂
i=1

Tpi
X⊥

−→
⋂
i≤s′

Tpi
X ′⊥ ∩

⋂
i>s′

G1
pi

X⊥.

We want to compute the dimension of the middle term
⋂s

i=1 Tpi
X⊥. This ex-

plains why we have to include the spaces Gi
pj

in the inductive procedure from the
very beginning.

Consider a1 generic points q1,1, . . . , q1,a1 ∈ X. We get the exact sequences

0−→G1
q1,i

X ′′⊥−→G1
q1,i

X⊥−→G1
q1,i

X ′⊥−→0,

for i = 1, . . . , a1.
Consider a2 generic points q2,1, . . . , q2,a2 ∈ X and specialize q2,i = v1,2,i⊗v2,2,i⊗

· · · ⊗ vk,2,i in such a way that v1,2,i ∈ H for i = 1, . . . , a′
2.

We get that
G2

q2,i
X � G2

q2,i
X ′,

for i = 1, . . . , a′
2 and that

G2
[q2,i]

X ′′ � G2
q2,i

X,

for i = a′
2 + 1, . . . , a2 (where [q2,i] denotes the quotient class of q2,i).
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In the same way, for at generic points qt,1, . . . , qt,at
∈ X we get that

Gt
qt,i

X � Gt
qt,i

X ′,

for i = 1, . . . , a′
t and that

Gt
[qt,i]

X ′′ � Gt
qt,i

X,

for i = a′
t + 1, . . . , at.

Putting all of this together, we get the fundamental exact sequence

0−→Ts′′X ′′⊥ ∩ G1
a1+s′X ′′⊥ ∩ G2

a′′
2
X ′′⊥ ∩ · · · ∩ Gk

a′′
k
X ′′⊥−→

TsX
⊥ ∩ G1

a1
X⊥ ∩ G2

a2
X⊥ ∩ · · · ∩ Gk

ak
X⊥−→Ts′X ′⊥ ∩ G1

a1+s′′X ′⊥ ∩ G2
a′
2
X ′⊥

∩ · · · ∩ Gk
a′

k
X ′⊥.

By assumption (1), the right term has codimension s′(1 + n′
1 + n2 + · · · + nk) +

(a1+s′′)(n′
1+1)+a′

2(n2+1)+· · ·+a′
k(nk+1) in H∨⊗V ∨

2 ⊗· · ·⊗V ∨
k , meaning that all

the intersections are transverse. By assumption (2), the left term has codimension
s′′(1 + n′′

1 + n2 + · · · + nk) + (a1 + s′)(n′′
1 + 1) + a′′

2(n2 + 1) + · · · + a′′
k(nk + 1) in

(V1/H)∨ ⊗V ∨
2 ⊗ · · ·⊗V ∨

k . It follows that the middle term has codimension greater
than or equal to s(1 +

∑
ni) +

∑
(ai)(ni + 1). Since this is the expected value, we

have equality. �

In the same way we have

Theorem 3.5 (Superabundance Theorem). Let n1 = n′
1 + n′′

1 + 1, let s = s′ + s′′,
a2 = a′

2 + a′′
2 , . . . , ak = a′

k + a′′
k. Suppose

(i) T (n′
1, n2, . . . , nk; s′; a1 + s′′, a′

2, . . . , a
′
k) is true and superabundant,

(ii) T (n′′
1 , n2, . . . nk; s′′; a1 + s′, a′′

2 , . . . , a′′
k) is true and superabundant.

Then T (n1, . . . , nk; s; a1, . . . , ak) is true and superabundant.

Proof. We proceed as in the previous theorem until we get to the fundamental exact
sequence. By assumption (i), the right term is zero. By assumption (ii), the left
term is zero. It follows that the middle term is zero, as required. �

Corollary 3.6. If the following statements are both true and equiabundant:

T (n′
1, n2, . . . , nk; s′; a1 + s′′, a′

2, . . . , a
′
k), T (n′′

1 , n2, . . . , nk; s′′; a1 + s′, a′′
2 , . . . , a′′

k),

then T (n1, . . . , nk; s; a1, . . . , ak) is true and equiabundant.

Remark 3.7. A simple but useful fact is that if T (n1, . . . , nk; s; a1, . . . , ak) is true,
then T (n1, . . . , nk, 0; s; a1, . . . , ak, A) is true for any value of A.

It is important to note that if n1 = 1, then we may take n′
1 = n′′

1 = 0 in
Theorem 3.4 and Theorem 3.5. This allows us to reduce to a lower number of
factors. Due to the importance of these cases, we state them explicitly as corollaries.

Corollary 3.8. Let s = s′ +s′′ and let aj = a′
j +a′′

j , for j = 2, . . . , k. Suppose that
(0, n2, . . . , nk; s; a1, . . . , ak) is subabundant. Then T (0, n2, . . . , nk; s; 0, a2, . . . , ak) is
true if and only if T (0, n2, . . . , nk; s; a1, a2, . . . , ak) is true.

Proof. We reduce to Theorem 3.4 because the corresponding condition G1⊥ is of
codimension one and is independent from the other conditions provided subabun-
dancy is satisfied. If a1 is such that (1, n2, . . . , nk; s; a1, . . . , ak) is superabundant,
then T (1, n2, . . . , nk; s; a1, . . . , ak) is also true as the ambient space is filled. �
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Corollary 3.9. Let s = s′ + s′′ and let aj = a′
j + a′′

j , for j = 2, . . . , k. If
both T (n2, . . . , nk; s′; a′

2, . . . , a
′
k) and T (n2, . . . , nk; s′′; a′′

2 , . . . , a′′
k) are true and su-

perabundant, then T (1, n2, . . . , nk; s; a1, a2, . . . , ak) is true (and superabundant).

Remark 3.10. Theorem 3.4 and Theorem 3.5 should be viewed as a generalization
of the Splitting Method of Bürgisser, Clausen and Shokrollahi from the case of 3
factors to the case of k factors [BCS]. The proof given in the present paper takes a
more geometric and homological point of view and mirrors the ideas of Alexander-
Hirschowitz and Terracini in the use of degeneration arguments [AH, T]. A proof
written purely in the language of tensor algebra would also be natural following the
approach of Bürgisser et al. This would have the advantage of conciseness, but the
geometry would be pushed more to the background.

Recall that if X ⊆ P
m is a variety and if W1, . . . , Wp are subvarieties of X,

then J(W1, . . . , Wp) is called a partial secant variety to X. In the particular
case when X is the Segre variety P

n1 × · · · × P
nk , the linear space L spanned

by TsX + G1
a1

X + G2
a2

X + · · · + Gk
ak

X ⊆ T(1,...,1) should be seen as the tangent
space to a particular partial secant variety of X. The expression TsX corresponds
to computing the tangent space to X at s general points. The expression G1

pX
corresponds to computing the tangent space at a general point, p = v1×· · ·×vk, of
a subvariety of X of the form P

n1 × v2 × · · ·× vk. Such a subvariety is a P
n1 sitting

inside X. The expression G1
a1

X corresponds to computing the span of the tangent
spaces to a1 different such subvarieties for a1 different choices of p. Similarly, each
of the other Gi

ai
represent the span of tangent spaces to ai different varieties in the

family of P
ni ’s obtained by fixing all but the ith coordinate. Thus viewing L as a

tangent space at a general point of the join of a collection of s + a1 + · · ·+ ak sub-
varieties of X follows as an immediate application of Terracini’s Lemma as stated
in [A]. Furthermore, a1 + · · · + ak of the subvarieties are linear spaces inside X.

Theorem 3.4 should be viewed as a way of computing the dimension of a secant
variety by applying semicontinuity arguments to the computation of the dimension
of smaller partial secant varieties arising from specializations of points. It is clear
that after a finite number of applications of the previous two theorems, we may
reduce ourselves to the four projective varieties:

P
1 × P

1 × P
1, P

1 × P
1 × P

2, P
1 × P

2 × P
2 and P

2 × P
2 × P

2.

The importance of this reduction is emphasized in the following proposition, which
was essentially proved by Strassen:

Proposition 3.11 ([S]). Suppose T (n, s,a) is true.

(i) If T (n, s,a) is subabundant and if n′ ≥ n, then T (n′, s,a) is true and
subabundant.

(ii) If T (n, s,a) is superabundant and if n′ ≤ n, then T (n′, s,a) is true and
superabundant.

Proof. In order to prove the first statement we can reduce to the case where ni = n′
i

for i = 1, . . . , k − 1 and nk + 1 = n′
k. Fix a splitting V ′

k = Vk ⊕ 〈v〉. This induces
an inclusion X = P

n1 × . . . × P
nk ⊂ P

n′
1 × . . . × P

n′
k = X ′ corresponding to the

splitting

(3.1) V ′
1 ⊗ . . . ⊗ V ′

k = (V1 ⊗ . . . ⊗ Vk) ⊕ (V1 ⊗ . . . ⊗ Vk−1 ⊗ 〈v〉).
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Pick a point p = v1 ⊗ . . . ⊗ vk ∈ P
n1 × . . . × P

nk . In affine notation we have

TpX
′ = TpX ⊕ 〈v1 ⊗ . . . ⊗ vk−1 ⊗ v〉,

Gi
pX

′ = Gi
pX for i = 1, . . . , k − 1,

Gk
pX ′ = Gk

pX ⊕ 〈v1 ⊗ . . . ⊗ vk−1 ⊗ v〉,

and these splittings are compatible with (3.1). Now it is easy to check that if Tpi
X

and Gt
qt,i

X are transversal, then Tpi
X ′ and Gt

qt,i
X ′ are also transversal. The second

statement proceeds in an analogous manner. �

Remark 3.12. We can utilize Proposition 3.11 for higher dimensional Segre vari-
eties by “padding with zeroes”. For instance, if T (n1, n2, n3; s; 0, 0, 0) is true and
subabundant, then we can pad with a zero to obtain that T (n1, n2, n3, 0; s; 0, 0, 0, 0)
is true and subabundant. Thus, by Proposition 3.11, T (n1, n2, n3, n4; s; 0, 0, 0, 0) is
true and subabundant for any n4 (being sure to keep s fixed).

Notation 3.13. We introduce the notation b ∗ T (n; s; a) to denote b identical state-
ments of the form T (n; s;a).

For P
1 × P

1 × P
1, P

1 × P
1 × P

2, P
1 × P

2 × P
2 and P

2 × P
2 × P

2, we list the
4-tuples (s; a1, a2, a3) where the statement T (n1, n2, n3; s; a1, a2, a3) is not true. For
the varieties P

1 × P
2 × P

2 and P
2 × P

2 × P
2, we divide the list into the minimal

cases and the non-minimal cases. The defectivity of each of the non-minimal cases
follows directly from the defectivity of one of the minimal cases. The defectivity
of the minimal cases are all established by the elementary arguments given in the
following four lemmas. The non-defectivity of the cases not appearing on these lists
can be established by explicit computation.

For a given 4-tuple (n1, n2, n3, a3), we define the following three integers:

F0 =
{

a3 + 1 +
∑2

i=1 ni −
∏2

j=1(nj + 1) if a3 + 1 +
∑2

i=1 ni >
∏2

j=1(nj + 1)
0 otherwise

and

Fi =
{

(ni + 1) + a3 −
∏2

j=1(nj + 1) if (ni + 1) + a3 >
∏2

j=1(nj + 1)
0 otherwise

for each i ∈ {1, 2}.

Lemma 3.14. Let X = P
n1×P

n2×P
n3 . Then

∑s
i=1 Ts(X)+G1

a1
X+G2

a2
X+G3

a3
X

has dimension at most

min

{
s

(
1 +

3∑
i=1

ni − F0

)
+

3∑
i=1

ai(ni + 1) −
2∑

i=1

Fi,

3∏
i=1

(ni + 1)

}
.

Proof. Note that X can be viewed as a (Pn1×P
n2)-fibration over P

n3 . Let q1, . . . , qa3

be general points of X. For each i ∈ {1, . . . , a3}, the projectivization of G3
qi

X is
a horizontal n3-plane, which meets each fiber at a single point. The a3 points
as obtained above span a P

a3−1 ⊂ P
(n1+1)(n2+1)−1. Then the intersection of the

tangent space to P
n1 × P

n2 ⊂ P
(n1+1)(n2+1)−1 with P

a3−1 has at least dimension
F0 − 1.

Similarly, for each i ∈ {1, 2}, the projectivization of Gi
pX, p ∈ X, lies in a

P
(n1+1)(n2+1)−1, and its intersection with P

a3−1×P
(n1+1)(n2+1)−1 has dimension at
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least Fi − 1. Thus
∑s

i=1 Ts(X) + G1
a1

X + G2
a2

X + G3
a3

X has dimension at most

s

(
1 +

3∑
i=1

ni − F0

)
+

3∑
i=1

ai(ni + 1) −
2∑

i=1

Fi

if s
(
1 +

∑3
i=1 ni − F0

)
+
∑3

i=1 ai(ni + 1) −
∑2

i=1 Fi ≤
∏3

i=1(ni + 1). �

Lemma 3.15. T (n; s;a) is false for (n; s; a) = (1, 22; 2; 0, 0, 2), (23; 2; 0, 0, 4) and
(23; 3; 0, 1, 1).

Proof. The main idea of this lemma is to use the contrapositive of Theorem 3.4.
Note that (1, 2, 5; 4; 0, 0, 0) is unbalanced (see Lemma 4.1 and Definition 4.2). Thus
the statement T (1, 2, 5; 4; 0, 0, 0) is equiabundant, but not true. One can reduce
this statement to the equiabundant statement 2 ∗ T (1, 2, 2; 2, 0, 2). So the fact that
T (1, 2, 5; 4; 0, 0, 0) is not true implies that T (1, 2, 2; 2, 0, 2) is not true.

In a similar manner, we can prove that T (2, 2, 2; 2, 0, 4) is not true. Note
that (2, 2, 8; 6; 0, 0, 0) is unbalanced (see Proposition 4.1) and T (2, 2, 8; 6; 0, 0, 0)
is false. One can reduce this statement to 3 ∗ T (2, 2, 2; 2; 0, 0, 4). So the fact that
T (2, 2, 8; 6; 0, 0, 0) is not true implies that T (2, 2, 2; 2; 0, 0, 4) is not true.

By Proposition 4.10, the subabundant statement T (2, 3, 3; 5; 0, 0, 0) is false. This
implies that one of the statements T (2, 2, 3; 4; 0, 1, 0) and T (2, 0, 3; 1; 0, 4, 0) is false.
Clearly the second statement is true, and so T (2, 2, 3; 4; 0, 1, 0) cannot be true. Since
T (2, 2, 3; 4; 0, 1, 0) can be reduced to the subabundant statements T (2, 2, 2; 3; 0, 1, 1)
or T (2, 2, 0; 1, 0, 0, 3), we can say that either T (2, 2, 2; 3; 0, 1, 1) or T (2, 2, 0; 1, 0, 0, 3)
is false. Since the second statement is true, we can conclude that T (2, 2, 2; 3; 0, 1, 1)
is false, which completes the proof. �
Lemma 3.16. T (2, 2, 2; 4; 0, 0, 0) is false.

Proof. This case is well known. The geometrical explanation is the following. Given
four points in X = P

2 × P
2 × P

2 ⊂ P
26, we can project on each factor, and get

isomorphisms that identify the three factors. The diagonal surface, after this identi-
fication, is the 3-Veronese embedding of P

2, which contains the four original points
and spans a linear P

9. The four tangent spaces to X at these points meet the P
9

in dimension ≥ 2, and the dimension of σ4(X) is at most 9 + 4 · 4 = 25. �
Lemma 3.17. T (n1, n2, n2; s; a1, a2, a3) is false if (n1, n2, n2; s; a1, a2, a3) is one of
the following eight cases:

(1) (1, 1, 2; 2; 0, 0, 1), (1, 2, 2; 2; 0, 0, 3), (2, 2, 2; 2; 0, 0, 5), (2, 2, 2; 2; 0, 0, 6);
(2) (1, 1, 2; 1; 0, 1, 2), (1, 2, 2; 1; 0, 1, 4), (1, 2, 2; 1; 1, 0, 4), (2, 2, 2; 1; 0, 1, 7).

Proof. Consider a statement of the form T (n1, n2, n3; s; 0, 0, a3). Suppose that the
following three conditions are satisfied:

(i) (n1, n2, n3; s; 0, 0, a3) is superabundant;
(ii)

∏2
i=1(ni + 1) −

∑2
i=1 ni < s + a3 <

∏2
i=1(ni + 1);

(iii) (n1, n2, s + a3 − n3 − 1; a3; 0, 0, s) is superabundant.
Then (n1, n2, s + a3) is unbalanced (see Definition 4.2) and T (n1, n2, s + a3; s +
a3; 0, 0, 0) is false (see Proposition 4.1). Thus if T (n1, n2, s + a3 −n3 − 1; a3; 0, 0, s)
is true, then T (n1, n2, n3; s; 0, 0, a3) should fail. One can prove that every 7-
tuple in (1) satisfies (i), (ii) and (iii), and the above argument can be used to
prove that T (n1, n2, n3; s; a1, a2, a3) is false if the 7-tuple is in (1). For instance,
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T (1, 1, 3; 3; 0, 0, 0) is not true, because (1, 1, 2; 2; 0, 0, 1) satisfies the three condi-
tions as given above. Thus T (1, 1, 3; 3; 0, 0, 0) can be reduced to T (1, 1, 0; 1; 0, 0, 2)
and T (1, 1, 2; 2; 0, 0, 1). We can conclude that T (1, 1, 2; 2; 0, 0, 1) is false, because
T (1, 1, 0; 1; 0, 0, 2) is true.

Next consider a statement of the form T (n1, n2, n3; s; 0, a2, a3). Suppose that
the following three conditions are satisfied:

(iv) (n1, n2, n3; s; 0, a2, a3) is superabundant;
(v) (n1 + 1)(2n2 + 2) − (n1 + 2n2 + 1) < s + a2 + 2a3 < (n1 + 1)(2n2 + 2) −

(n1 + 2n2 + 1);
(vi) (n1, 2n2 + 1, s + a2 + 2a3 − n3 − 1; 2a3; 0, 0, s + a2) is superabundant.

Then (n1, n2, s + a2 + 2a3) is unbalanced and T (n1, 2n2 + 1, s + a2 + 2a3; s + a2 +
2a3; 0, 0, 0) is false. Suppose that T (n1, 2n2 + 1, s + a2 + 2a3 − n3 − 1; 2a3; 0, 0, s +
a2) is true. One can reduce T (n1, 2n2 + 1, s + a2 + 2a3; s + a2 + 2a3; 0, 0, 0) to
T (n1, 2n2 + 1, s + a2 + 2a3 − n3 − 1; 2a3; 0, 0, s + a2) and T (n1, 2n2 + 1, n3; s +
a2; 0, 0, 2a3). So if T (n1, 2n2 +1, s+ a2 +2a3 −n3 − 1; 2a3; 0, 0, s+ a2) is true, then
T (n1, 2n2+1, n3; s+a2; 0, 0, 2a3) is false. Note that T (n1, 2n2+1, n3; s+a2; 0, 0, 2a3)
can be reduced to 2 ∗T (n1, n2, n3; s; 0, a2, a3). Thus T (n1, n2, n3; s; 0, a2, a3) is also
false. This argument can be used to prove the remaining cases. For instance,
(1, 1, 2; 1; 0, 1, 2) satisfies (iv), (v) and (vi). Thus T (1, 3, 6; 6; 0, 0, 0) is not true.
T (1, 3, 6; 6; 0, 0, 0) can be reduced to T (1, 3, 2; 2; 0, 0, 4) and T (1, 3, 3; 4; 0, 0, 2). The
statement T (1, 3, 3; 4; 0, 0, 2) is true. Indeed, T (1, 3, 3; 4; 0, 0, 2) can be reduced to
4 ∗ T (1, 1, 1; 1; 0, 2, 2), and T (1, 1, 1; 1; 0, 2, 2) is true. Since T (1, 3, 3; 4; 0, 0, 2) is
true, T (1, 3, 2; 2; 0, 0, 4) is false. Now we can conclude that T (1, 1, 2; 2; 0, 0, 1) is
false, because T (1, 3, 2; 2; 0, 0, 4) can be reduced to 2 ∗ T (1, 1, 2; 2; 0, 0, 1). �

Proposition 3.18. The following is a complete list of the defective (n, s,a) with
n = (n1, n2, n3) and 1 ≤ n1, n2, n3 ≤ 2. The list is given as (s; a1, a2, a3).

(i) P
1 × P

1 × P
1 Up to permutation of the three factors the list is

Minimal: (0; 0, 1, 3), (1; 0, 0, 2).

(ii) P
1 × P

1 × P
2 Up to permutation of the first two factors the list is

Minimal: (0; 0, 1, 3), (0; 0, 4, 1), (0; 1, 5, 0), (1; 0, 3, 0), (1; 0, 0, 2),
Non-minimal: (0; 0, 2, 3), (0; 0, 5, 1), (0; 1, 1, 3), (1; 0, 1, 2), (1; 0, 4, 0),

(2; 0, 0, 1).

(iii) P
1 × P

2 × P
2 Up to permutation of the last two factors the list is

Minimal: (0; 0, 1, 4), (0; 7, 0, 1), (0; 1, 0, 5), (1; 0, 0, 3), (1; 5, 0, 0)
(2; 0, 0, 2),

Non-minimal: (0; 0, 1, 5), (0; 0, 2, 4), (0; 0, 2, 5), (0; 1, 1, 5), (0; 2, 0, 5),
(0; 8, 0, 1), (0; 1, 1, 4), (1; 0, 0, 4), (1; 0, 1, 3), (1; 1, 0, 3),
(1; 0, 1, 4), (1; 1, 0, 4), (1; 6, 0, 0), (1; 7, 0, 0), (2; 0, 0, 3).

(iv) P
2 × P

2 × P
2 Up to permutation of the three factors the list is

Minimal: (0; 0, 1, 7), (1; 0, 0, 5), (2; 0, 0, 4), (3; 0, 1, 1), (4; 0, 0, 0),
Non-minimal: (0; 0, 2, 8), (0; 1, 1, 7), (0; 1, 1, 8), (0; 0, 2, 7), (0; 0, 1, 8),

(1; 0, 0, 6), (1; 0, 0, 7), (1; 0, 1, 5), (1; 0, 1, 6), (1; 0, 1, 7),
(2; 0, 0, 5), (2; 0, 0, 6).

Proof. The defectivity of the minimal cases follows from the previous four lemmas.
The non-minimal cases follow from the minimal cases or again Lemmas 3.14 and
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3.17. The non-defectivity of the (n, s,a) not appearing on the list can be shown by
explicit computation. �

We will now illustrate the inductive method of Theorem 3.4 and Theorem 3.5
in a series of examples. The strategy is to reduce a problem involving a more
complicated variety to known cases on simpler varieties. By Remark 3.3, in order
to establish the non-defectivity of all secant varieties to a given Segre variety, it is
enough to check the truth of statement T (n, s,0) for the largest s for which (n, s,0)
is subabundant and for the smallest s for which (n, s,0) is superabundant.

Example 3.19. In this example we show that X = P
3 × P

3 × P
3 has no defective

secant varieties (already known by Lickteig). This is reduced to showing that
dim σ6(X) = 59 and that σ7(X) fills the ambient space.

In order to prove that dimσ6(X) = 59, we need to establish T (3, 3, 3; 6; 0, 0, 0).
We have

T (1, 3, 3; 3; 3, 0, 0) and T (1, 3, 3; 3; 3, 0, 0) ⇒ T (3, 3, 3; 6; 0, 0, 0),

T (1, 1, 3; 2; 1, 1, 0) and T (1, 1, 3; 1; 2, 2, 0) ⇒ T (1, 3, 3; 3; 3, 0, 0),

T (1, 1, 1; 1; 1, 0, 1) and T (1, 1, 1; 1; 0, 1, 1) ⇒ T (1, 1, 3; 2; 1, 1, 0),

T (1, 1, 1; 1; 1, 1, 0) and T (1, 1, 1; 0; 1, 1, 1) ⇒ T (1, 1, 3; 1; 2, 2, 0).

But, T (1, 1, 1; 1; 1, 0, 1), T (1, 1, 1; 1; 0, 1, 1), T (1, 1, 1; 1; 1, 1, 0) and T (1, 1, 1; 0; 1, 1, 1)
are all true; thus T (3, 3, 3; 6; 0, 0, 0) is true and dimσ6(X) = 59.

In order to prove that σ7(X) fills the ambient space we need T (3, 3, 3; 7; 0, 0, 0)
to be true. We have

T (1, 3, 3; 4; 3, 0, 0) and T (1, 3, 3; 3; 4, 0, 0) ⇒ T (3, 3, 3; 7; 0, 0, 0),

T (1, 1, 3; 2; 1, 2, 0) and T (1, 1, 3; 2; 2, 2, 0) ⇒ T (1, 3, 3; 4; 3, 0, 0),

T (1, 1, 3; 2; 1, 1, 0) and T (1, 1, 3; 1; 3, 2, 0) ⇒ T (1, 3, 3; 3; 4, 0, 0),

T (1, 1, 1; 1; 1, 1, 1) and T (1, 1, 1; 1; 0, 1, 1) ⇒ T (1, 1, 3; 2; 1, 2, 0),

T (1, 1, 1; 1; 1, 1, 1) and T (1, 1, 1; 1; 1, 1, 1) ⇒ T (1, 1, 3; 2; 2, 2, 0),

T (1, 1, 1; 1; 1, 0, 1) and T (1, 1, 1; 1; 0, 1, 1) ⇒ T (1, 1, 3; 2; 1, 1, 0),

T (1, 1, 1; 1; 1, 1, 0) and T (1, 1, 1; 0; 2, 1, 1) ⇒ T (1, 1, 3; 1; 3, 2, 0).

The proof follows from the last 4 implications; thus T (3, 3, 3; 7; 0, 0, 0) is true and
σ7(X) fills the ambient space.

Example 3.20. In this example we show that X = P
5 × P

5 × P
5 has no defective

secant varieties (already known by Lickteig). This is reduced to showing that
dim σ13(X) = 207 and that σ14(X) fills the ambient space. The example is shown
in some detail to emphasize that the strategy of reduction can be tricky.

To prove that dim σ13(X) = 207, we need to establish that T (5, 5, 5; 13; 0, 0, 0)
is true. If we use Theorem 3.4 to reduce to T (2, 5, 5; 7; 6, 0, 0), T (2, 5, 5; 6; 7, 0, 0),
then we find that the 7-tuple (2, 5, 5; 7; 6, 0, 0) is not subabundant!

We modify our strategy and reduce to

T (1, 5, 5; 4; 9, 0, 0) and T (3, 5, 5; 9; 4, 0, 0).

Then T (1, 5, 5; 4; 9, 0, 0) can reduce to

T (1, 2, 5; 2; 5, 2, 0) and T (1, 2, 5; 2; 4, 2, 0).
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Since T (1, 2, 5; 2; 5, 2, 0) ⇒ T (1, 2, 5; 2; 4, 2, 0) (see Remark 3.3 (ii)), it is enough to
consider T (1, 2, 5; 2; 5, 2, 0). This reduces to

T (1, 2, 2; 1; 3, 1, 1) and T (1, 2, 2; 1; 2, 1, 1).

Both of these statements are true.
Now we reduce T (3, 5, 5; 9; 4, 0, 0) to

T (3, 3, 5; 6; 3, 3, 0) and T (3, 1, 5; 3; 1, 6, 0),

which reduce respectively to

(1) T (3, 3, 2; 3; 1, 2, 3) and T (3, 3, 2; 3; 2, 1, 3),
(2) T (3, 1, 2; 2; 0, 3, 1) and T (3, 1, 2; 1; 1, 3, 2).

(1) consists of two equivalent cases. We reduce T (3, 3, 2; 3; 1, 2, 3) to

T (1, 3, 2; 1; 3, 2, 1) and T (1, 3, 2; 2; 2, 0, 2)

and finally to

T (1, 1, 2; 0; 3, 3, 0) and T (1, 1, 2; 1; 0, 2, 1),

T (1, 1, 2; 1; 1, 1, 1) and T (1, 1, 2; 1; 1, 1, 1).

These last four statements are true.
(2) reduces to

T (1, 1, 2; 1; 1, 1, 1), T (1, 1, 2; 1; 1, 2, 0),
and

T (1, 1, 2; 1; 1, 1, 1), T (1, 1, 2; 0; 2, 2, 1),
respectively. These last four statements are true. Thus we have proved that
dim σ13(X) = 207.

In order to prove that σ14(X) fills the ambient space, we reduce by Theorem 3.5
to

T (2, 5, 5; 7; 7, 0, 0) and T (2, 5, 5; 7; 7, 0, 0).
Then T (2, 5, 5; 7; 7, 0, 0) reduces to

T (2, 2, 5; 4; 2, 3, 0) and T (2, 2, 5; 3; 5, 4, 0),

which reduces to
T (2, 2, 2; 3; 0, 1, 1), T (2, 2, 2; 1; 2, 2, 3),

and
T (2, 2, 2; 2; 2, 2, 1), T (2, 2, 2; 1; 3, 2, 2),

respectively.
Unfortunately the statement T (2, 2, 2; 3; 0, 1, 1) is not true, so we have not proven

anything. We change our strategy and from T (2, 5, 5; 7; 7, 0, 0) we reduce to

T (2, 1, 5; 3; 1, 4, 0) and T (2, 3, 5; 4; 6, 3, 0).

Then T (2, 1, 5; 3; 1, 4, 0) reduces to

T (2, 1, 2; 2; 0, 2, 1) and T (2, 1, 2; 1; 1, 2, 2),

while T (2, 3, 5; 4; 6, 3, 0) reduces to

T (2, 1, 5; 2; 3, 5, 0) and T (2, 1, 5; 2; 3, 5, 0),

and finally to
T (2, 1, 2; 1; 2, 2, 1) and T (2, 1, 2; 1; 1, 3, 1).
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Now all the final reduced statements are true and we have proved that σ14(X)
fills the ambient space.

Let us now show an example which seems to be new.

Example 3.21. Consider X = P
4 × P

4 × P
7 ⊂ P

199. We have �200/16� = 12,
�200/16� = 13. In order to show that σ12(X) has the expected dimension 191, we
reduce T (4, 4, 7; 12; 0, 0, 0) by Theorem 3.4 to

T (2, 4, 7; 7; 5, 0, 0) and T (1, 4, 7; 5; 7, 0, 0).

The first one reduces to

T (2, 2, 7; 4; 3, 3, 0) and T (2, 1, 7; 3; 2, 4, 0),

and the second one reduces to

T (1, 2, 7; 3; 4, 2, 0) and T (1, 1, 7; 2; 3, 3, 0).

These last four statements reduce respectively to

(1) T (2, 2, 1; 1; 1, 0, 3) T (2, 2, 1; 1; 0, 1, 3) T (2, 2, 1; 1; 1, 1, 3) T (2, 2, 1; 1; 1, 1, 3),

(2) T (2, 1, 1; 1; 0, 1, 2) T (2, 1, 1; 1; 1, 0, 2) T (2, 1, 1; 1; 1, 0, 2) T (2, 1, 1; 0; 0, 3, 3),

(3) T (1, 2, 1; 1; 1, 0, 2) T (1, 2, 1; 1; 0, 1, 2) T (1, 2, 1; 1; 0, 1, 2) T (1, 2, 1; 0; 3, 0, 3),

(4) T (1, 1, 1; 1; 1, 0, 1) T (1, 1, 1; 1; 0, 1, 1) T (1, 1, 1; 0; 1, 1, 2) T (1, 1, 1; 0; 1, 1, 2).

These statements are all true and we conclude that dim σ12(X) = 191.
To show that σ13(X) fills P

199, we reduce T (4, 4, 7; 13; 0, 0, 0) by Theorem 3.5 to

T (2, 4, 7; 8; 5, 0, 0) and T (1, 4, 7; 5; 8, 0, 0).

The first one reduces to

T (2, 2, 7; 5; 3, 3, 0) and T (2, 1, 7; 3; 2, 5, 0),

and the second one reduces to

T (1, 2, 7; 3; 5, 2, 0) and T (1, 1, 7; 2; 3, 3, 0).

These last four statements reduce respectively to

(1) T (2, 2, 1; 2; 0, 0, 3) T (2, 2, 1; 1; 1, 1, 4) T (2, 2, 1; 1; 1, 1, 4) T (2, 2, 1; 1; 1, 1, 4),

(2) T (2, 1, 1; 1; 0, 2, 2) T (2, 1, 1; 1; 1, 0, 2) T (2, 1, 1; 1; 1, 0, 2) T (2, 1, 1; 0; 0, 3, 3),

(3) T (1, 2, 1; 1; 2, 0, 2) T (1, 2, 1; 1; 0, 1, 2) T (1, 2, 1; 1; 0, 1, 2) T (1, 2, 1; 0; 3, 0, 3),

(4) T (1, 1, 1; 1; 1, 0, 1) T (1, 1, 1; 1; 0, 1, 1) T (1, 1, 1; 0; 1, 1, 2) T (1, 1, 1; 0; 1, 1, 2).

These last statements are all true, and we conclude that σ13(X) fills the ambient
space.

4. Classification of Segre varieties with defective r-secant

varieties, r ≤ 6

In this section, X = P
n1 × . . . × P

nk with k ≥ 3 and n1 ≤ . . . ≤ nk. We classify
Segre varieties, X, for which σr(X) is defective with r ≤ 6. We recall that no Segre
variety with 3 or more factors has a defective 2-secant variety.

Following [BCS], the typical tensor rank of a format (n1, . . . , nk) is the smallest
integer s such that σs(Pn1 × . . . × P

nk) fills the ambient space, and it is denoted
by R(n1, . . . , nk). Equivalently, the generic tensor in V1 ⊗ . . .⊗ Vk, where dimVi =
ni +1, is the sum of R(n1, . . . , nk) (and not fewer) tensors of rank one. We use the
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projective notation, so that our R(n1, . . . , nk) corresponds to R(n1 + 1, . . . , nk + 1)
of [BCS]. Obviously we have⌈∏

(ni + 1)
1 +

∑
ni

⌉
≤ R(n1, . . . , nk),

and in particular ⌈
(n + 1)k

nk + 1

⌉
≤ R(nk).

The following lemma is well known (see [CGG1, Proposition 3.3]).

Lemma 4.1. Let X = P
n1 × · · · × P

nk , 1 ≤ n1 ≤ · · · ≤ nk. Suppose that
k−1∏
i=1

(ni + 1) −
k−1∑
i=1

ni < d < min

{
k−1∏
i=1

(ni + 1), nk + 1

}
.

Then X has a defective d-secant variety.

Proof. Pick d general points on X where d satisfies the conditions of the lemma.
Since d < nk + 1, there exists a subvariety V = P

n1 × · · · × P
nk−1 × P

d−1 ⊆
X, which contains these d points. Let N(d) = d

∏k−1
i=1 (ni + 1) − 1 and N =∏k

i=1(ni +1)−1. The span of V is P
N(d) ⊆ P

N . Thus, the linear subspace spanned
by the tangent spaces of X at the d points has dimension at most F (d)− 1, where
F (d) = d

[∏k−1
i=1 (ni + 1) + (nk + 1 − d)

]
. Then, by the assumption as given above,

we have

d

(
k∑

i=1

ni + 1

)
− F (d) = d

(
k∑

i=1

ni + 1

)
− d

[
k−1∏
i=1

(ni + 1) + (nk + 1 − d)

]

= d

[
k−1∑
i=1

ni −
k−1∏
i=1

(ni + 1) + d

]
> 0

and
k∏

i=1

(ni + 1) − F (d) = d2 − d

[
k−1∏
i=1

(ni + 1) + (nk + 1)

]
+

k∏
i=1

(ni + 1)

=

[
d −

k−1∏
i=1

(ni + 1)

]
[d − (nk + 1)] > 0.

So F (d) < min
{
d
(∑k

i=1 ni + 1
)

,
∏k

i=1(ni + 1)
}

. An application of Terracini’s
lemma shows that X has a defective d-secant variety. �

Definition 4.2. Suppose n = (n1, . . . , nk) with n1 ≤ · · · ≤ nk.

• n is called balanced if nk ≤
∏k−1

i=1 (ni + 1) −
∑k−1

i=1 ni.
• n is called unbalanced if nk − 1 ≥

∏k−1
i=1 (ni + 1) −

∑k−1
i=1 ni.

Thus Lemma 4.1 states that if n = (n1, . . . , nk) is unbalanced, then P
n is defec-

tive. The following proposition is often useful.

Proposition 4.3. Let n = (n1, . . . , nk) be balanced. If s ≤ nk, then T (n, s, 0k) is
true and subabundant.
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Proof. It is sufficient to check the statement for s = nk. By assumption we have
k∑

i=1

ni ≤
k−1∏
i=1

(ni + 1).

After multiplying by (nk + 1) we obtain

(1 +
k∑

i=1

ni)nk ≤
k−1∑
i=1

ni + (1 +
k∑

i=1

ni)nk ≤
k∏

i=1

(ni + 1).

This implies that (n, nk, 0k) is subabundant. By Theorem 3.4, (n, nk, 0k) reduces
to T (n1, . . . , nk−1, 0; 0, 0k−1, nk) and nk ∗ T (n1, . . . , nk−1, 0; 1, 0k−1, nk − 1). Since
both of these statements are true, we are done. �

The following theorem sets completely the defective behaviour of higher secant
varieties in the unbalanced cases and completes Prop 3.3 in [CGG1]. This has also
been observed as part of Theorem 2.4 in [CGG4].

Theorem 4.4. Let n = (n1, . . . , nk) be unbalanced.

(i) T (n, s, 0k) is true and subabundant if and only if s ≤
∏k−1

i=1 (ni + 1) −∑k−1
i=1 ni.

(ii) R(n) = min{nk + 1,
∏k−1

i=1 (ni + 1)}.

Proof. The “only if” part of (i) is Lemma 4.1. In order to prove the “if” part, set
n′

k =
∏k−1

i=1 (ni + 1) −
∑k−1

i=1 ni. It is enough to check that T (n; n′
k; 0k) is true and

subabundant. By assumption we have n′
k ≤ nk − 1; moreover (n1, . . . , nk−1, n

′
k) is

balanced. By Proposition 4.3, T (n1, . . . , nk−1, n
′
k; n′

k; 0k) is true and subabundant.
The thesis follows by Proposition 3.11.

Statement (ii) follows from Theorem 3.1 in [CGG1]. �

Theorem 4.5. σ3(Pn1 × . . . × P
nk) is non-defective with the following exceptions:

(n1, n2, n3) = (1, 1, a) with a ≥ 3 and (n1, n2, n3, n4) = (1, 1, 1, 1).

Proof. First we prove the theorem for k = 3: Since T (1, 2, 2; 3; 0, 0, 0) is true and
subabundant, from Proposition 3.11, we know that σ3(X) has the expected di-
mension if n1 ≥ 1, n2 ≥ 2, n3 ≥ 2. Hence, we may assume n1 = n2 = 1.
T (1, 1, a; 3; 0, 0, 0) is true for a = 1, 2. T (1, 1, a; 3; 0, 0, 0) is false for a ≥ 3 by
Lemma 4.1.

To prove the theorem for k ≥ 4, it is enough to exhibit three points such that
their tangent spaces are independent. It is known that dimσ3(P1 × P

1 × P
1 × P

1)
is smaller than expected, so with four factors assume that n4 ≥ 2. Then choose
(e0, e0, e0, e0), (e1, e1, e1, e1), (e0 + e1, e0, e1, e2). With at least five factors choose
(e0, e0, e0, e0, e0, ∗), (e1, e1, e1, e0, e0, ∗), (e0, e0, e1, e1, e1, ∗). �

Theorem 4.6. σ4(Pn1 × . . . × P
nk) is non-defective with the following exceptions:

(n1, n2, n3) = (1, 2, a) with a ≥ 4 and (n1, n2, n3) = (2, 2, 2).

Proof. It is known that T (1, 1, 1, 1, 1; 4; 0, 0, 0, 0, 0) is true. Thus there are no ex-
ceptions with k ≥ 5. To treat the case k = 4 we consider that the equiabundant
case (1, 1, 1, 2; 4; 0, 0, 0, 0) is true. By Theorem 3.4, T (1, 1, 1, 2; 4; 0, 0, 0, 0) reduces
to twice T (0, 1, 1, 2; 2; 2, 0, 0, 0). Since this is known to be true, there are no excep-
tions with k = 4.
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To treat the case k = 3, we start with the known fact that dimσ4(P2 ×P
2 ×P

2)
is smaller than expected. So let us begin by proving that T (2, 2, 3; 4; 0, 0, 0) is true
(and subabundant). Indeed we reduce by Theorem 3.4 to T (2, 2, 1; 2; 0, 0, 2), which
is true. Hence if n1 ≥ 2 the theorem holds and we may assume n1 = 1.

Let us now prove that T (1, 3, 3; 4; 0, 0, 0) is true (and subabundant). We reduce
by Theorem 3.4 to 2 ∗ T (1, 1, 3; 2; 0, 2, 0) and then reduce to 4 ∗ T (1, 1, 1; 1; 0, 1, 1).
This is known to be true; hence if n2 ≥ 3, the theorem holds and we may assume
n2 = 2.

T (1, 2, a; 4; 0, 0, 0) with a ≥ 4 is false by Lemma 4.1. To finish the proof, we use
Theorem 3.5 on T (1, 2, 3; 4; 0, 0, 0) to show that σ4(X) fills the ambient space. �
Proposition 4.7. If X = P

1 × P
1 × P

n × P
n, then

(i) X has a defective (2n + 1)-secant variety.
(ii) The codimension of σ2n+1(X) is 2.
(iii) T (1, 1, n, n; 2n; 04) and T (1, 1, n, n; 2n + 2; 04) are true.

Proof. The proof of (i) follows an argument shown to us by Enrico Carlini (see also
[CGG4]). The proofs of (ii) and (iii) use the inductive method.

(i) Write X as (P1 × P
n)× (P1 × P

n). Project the 2n + 1 points into each factor
(P1 × P

n) ⊂ P
2n+1. Consider the hyperplanes H1, H2 in each P

2n+1 which pass
through these projected points. Then the hyperplane defined by H1 ⊗H2 contains
the tangent space to X at each of the 2n + 1 points. We can repeat this argument
by switching the copies of P

n to obtain a second pair of hyperplanes H ′
1, H

′
2. Then

the hyperplane defined by H ′
1 ⊗ H ′

2 also contains the tangent spaces to X at each
of the 2n + 1 points. Thus by Terracini’s Lemma, the codimension of σ2n+1(X) is
at least 2.

(ii) It is enough to show that T (0, 1, 1, n + 1, n + 1; 2n + 3; 2, 04) is true. This is
a superabundant case that reduces by Theorem 3.5 to

T (0, 1, 1, n + 1, n; 2n + 1; 2, 03, 2) and T (0, 1, 1, n + 1, 0; 2; 0, 03, 2n + 1).

The second of these statements is true since no Segre variety has a defective 2-
secant variety. Note that (0, 1, 1, n + 1, n; 2n + 1; 2, 03, 2) is equiabundant, so we
use Corollary 3.8 to reduce T (0, 1, 1, n+1, n; 2n+1; 2, 03, 2) to T (1, 1, n+1, n; 2n+
1; 03, 2). Then use Theorem 3.4 to reduce to

T (1, 1, n, n; 2n; 0, 0, 1, 1) and T (1, 1, 0, n; 1; 0, 0, 2n, 1).

The second statement is true. Theorem 3.4 reduces T (1, 1, n, n; 2n; 0, 0, 1, 1) to

T (0, 1, n, n; n; n, 0, 1, 0) and T (0, 1, n, n; n; n, 0, 0, 1).

These two statements are equivalent. Corollary 3.8 reduces T (0, 1, n, n; n; n, 0, 1, 0)
to T (1, n, n; n; 0, 1, 0). Then we use Theorem 3.4 to reduce to

n ∗ T (1, n, 0; 1; 0, 0, n − 1) and T (1, n, 0; 0; 0, 1, n).

Both these statements are true, so we are done.
(iii) Since T (1, 1, n, n; 2n; 04) is subabundant, we use Theorem 3.4 to reduce

to 2 ∗ T (0, 1, n, n; n; n, 0, 0, 0). Corollary 3.8 reduces T (0, 1, n, n; n; n, 0, 0, 0) to
T (1, n, n; n; 0, 0, 0). Finally, we use Theorem 3.4 to reduce T (1, n, n; n; 0, 0, 0) to
n ∗ T (1, n, 0; 1; 0, 0, n− 1) and T (1, n, 0; 0, 0, 0, n). Both these statements are true.

Since T (1, 1, n, n; 2n + 2; 04) is superabundant, we use Theorem 3.5 to reduce to
(n + 1) ∗ T (1, 1, n, 0; 2; 0, 0, 0, 2n). This statement is true since no Segre variety has
a defective 2-secant variety. �
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Remark 4.8. Proposition 4.7 gives a complete description of the dimensions of the
secant varieties to X = P

1×P
1×P

n×P
n. In particular, X has no defective p-secant

varieties for p ≤ 2n and σ2n+2(X) fills the ambient space, that is, R(1, 1, n, n) =
2n + 2.

It is interesting to compare the following proposition with Proposition 4.7.

Proposition 4.9. For any positive integer n, T (1, 1, n, n+1; 2(n+1), 04) is perfect.

Proof. The statement reduces to T (1, 1, 0, n + 1; 2, 02, 2n, 0), which is true because
T (1, 1, n + 1; 2, 03) is true and subabundant, and the 2n additional conditions are
independent. �

Proposition 4.10. dim σ5(P2 × P
3 × P

3) = 43.

Proof. We first show that P
2 × P

3 × P
3 has a defective 5-secant variety. In other

words, we show that dimσ5(P2 × P
3 × P

3) < 44. Given five general points in
X = P

2 × P
3 × P

3 we want to construct a rational normal curve of degree 8,
C8 ⊂ X, passing through the five points. We project the five points from X
onto each factor. We get on P

2 a conic C2 through five points Q1, . . . Q5, and an
isomorphism g : P

1 → C2 such that g(0) = Q1, g(1) = Q2, g(∞) = Q3, g(x1) = Q4,
g(x2) = Q5 for some points x1, x2 ∈ P

1. In P
3 there is a two dimensional family of

twisted cubics Cs,t through the five projected points P1, . . . , P5 ∈ P
3. This means

we have a family of maps fs,t : P
1 → Cs,t such that fs,t(0) = P1, fs,t(1) = P2,

fs,t(∞) = P3. It is easy to see that the preimage, f−1
s,t (P4), is not constant when

s, t change. This fact can be verified by projecting from P5 on a plane, where we
get a pencil of conics through four points, and it is straightforward to check that
the cross ratio of the four points is not constant in the pencil. Then we can choose
s, t such that fs,t(x1) = P4, fs,t(x2) = P5. Repeating the same argument for the
second copy of P

3 we get a morphism f : P
1 → P

2×P
3×P

3 through the five original
points of degree 2+3+3 = 8. This is the desired C8 which spans a space P

8. Hence
each of the five tangent spaces at the five original points meets this P

8 in a line and
the span of the five tangent spaces has dimension ≤ 8 + 5 · 7 = 43. By Terracini’s
lemma this concludes the proof. �

Remark 4.11. T (2, 3, 3; s; 03) is true if s ≤ 4; moreover R(2, 3, 3) = 6.

Now we show that dim σ5(P2 × P
3 × P

3) = 43. It is enough to show that
T (0, 2, 3, 3; 5; 4, 0, 0, 0) is true. We use Theorem 3.5 to reduce T (0, 2, 3, 3; 5; 4, 0, 0, 0)
to T (0, 2, 3, 0; 1; 2, 0, 0, 4) and T (0, 2, 3, 2; 4; 2, 0, 0, 1). The first of these statements is
true. We use Theorem 3.4 to reduce T (0, 2, 3, 2; 4; 2, 0, 0, 1) to T (0, 2, 1, 2; 2; 2, 0, 2, 0)
and T (0, 2, 1, 2; 2; 0, 0, 2, 1). Both of these statements are true from Proposition 3.18.

Theorem 4.12. σ5(Pn1 × . . .×P
nk) is non-defective with the following exceptions:

(n1, n2, n3) = (2, 3, 3),
(n1, n2, n3) = (1, 2, a) with a ≥ 5,
(n1, n2, n3) = (1, 3, a) with a ≥ 5,
(n1, n2, n3, n4) = (1, 1, 2, 2).

Proof. By [CGG2], T (1, 1, 1, 1, 1; 5; 0, 0, 0, 0, 0) is known to be true. Thus there are
no exceptions for k ≥ 5. To treat the case k = 4 we prove T (1, 1, 1, 4; 5; 0, 0, 0, 0) is
true. By Theorem 3.4 we reduce T (1, 1, 1, 4; 5; 0, 0, 0, 0) to 2∗T (1, 1, 1, 1; 2; 0, 0, 0, 3)
and T (1, 1, 1, 0; 1; 0, 0, 0, 4). All these statements are known to be true. In the same
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manner we prove that T (1, 1, 2, 3; 5; 0, 0, 0, 0) is true. By Theorem 3.5, we show that
T (1, 1, 1, 2; 5; 0, 0, 0, 0) is true. By Proposition 4.7, T (1, 1, 2, 2; 5; 0, 0, 0, 0) is false.

Now we treat the case k = 3. Let us begin by proving that T (2, 2, 4; 5; 0, 0, 0) is
true. Indeed we reduce by Theorem 3.4 to T (2, 2, 1; 2; 0, 0, 3) and T (2, 2, 2; 3; 0, 0, 2),
which are both true. Similarly by Theorem 3.5, T (2, 2, 3; 5; 0, 0, 0) is true. By
Proposition 4.10, T (2, 3, 3; 5; 0, 0, 0) is false. Hence if n1 ≥ 2 the theorem is true
and we may assume n1 = 1.

Let us now prove that T (1, 4, 4; 5; 0, 0, 0) is true. Note that the 7-tuple is
equiabundant. We use Theorem 3.4 and reduce to

T (1, 1, 4; 2; 0, 3, 0) and T (1, 2, 4; 3; 0, 2, 0)

and again to

T (1, 1, 2; 1; 0, 2, 1), T (1, 1, 1; 1; 0, 1, 1)

and

T (1, 2, 2; 2; 0, 1, 1), T (1, 2, 1; 1; 0, 1, 2)

respectively. All these statements are known to be true. Hence if n2 ≥ 4 the
theorem is true and we may assume n2 ≤ 3. The cases (n1, n2, n3) = (1, 2, a) with
a ≥ 5 and (n1, n2, n3) = (1, 3, a) with a ≥ 5 are defective by Lemma 4.1. To finish
the proof, we note that (1, 3, 4; 5; 0, 0, 0) is equiabundant and that T (1, 3, 4; 5; 0, 0, 0)
is true. �

Theorem 4.13. σ6(Pn1 × . . .×P
nk) is non-defective with the following exceptions:

(n1, n2, n3) = (1, 3, a) with a ≥ 6,
(n1, n2, n3) = (1, 4, a) with a ≥ 6,
(n1, n2, n3) = (2, 2, a) with a ≥ 6,
(n1, n2, n3, n4) = (1, 1, 1, a) with a ≥ 6.

Proof. The exceptions all follow from Lemma 4.1. To show there are no more
exceptions, one needs to show that T (n; 6;0) is true for the following values of n:

Subabundant cases: (16), (14, 2), (1, 1, 2, 3), (1, 2, 2, 2), (1, 5, 5), (3, 3, 3), (2, 3, 4),
Superabundant cases: (15), (13, 5), (1, 1, 2, 3), (1, 4, 5), (2, 3, 3), (2, 2, 5), (1, 2, a).
The subabundant cases can all be established using Theorem 3.4 and Corol-

lary 3.8. The case (1, 2, a) follows quickly from the case (1, 4, 5) and Theorem 3.5.
The other superabundant cases can all be established using Theorem 3.5. �

5. Non-defectivity for many copies of P
n

In this section we study Segre varieties of the form X = P
n × · · · × P

n. We
show that for most values of s, σs(X) is non-defective. Before we prove the main
theorem, we need a technical lemma.

Lemma 5.1. Let s̃k = (n+1)k

nk+1 and sk = �s̃k�. Let δk ≡ sk mod (n + 1) with
δk ∈ {0, . . . , n}. Let q = sk−δk

n+1 and q̃ = s̃k−δk

n+1 .

(i) If (k = 4 and n ≥ 12) or if (k = 5 and n ≥ 4) or if (k = 6, 7 or 8 and
n ≥ 2) or if (k ≥ 9 and n ≥ 1), then q + 1 ≤ sk−1 − δk−1.

(ii) (q + 1)(nk − n + 1) + (sk − δk) − q + n ≥ (n + 1)k−1.

Licensed to University Degli Studi di Firenze. Prepared on Fri Feb  8 06:58:48 EST 2013 for download from IP 150.217.33.222.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



INDUCTION FOR SECANT VARIETIES OF SEGRE VARIETIES 787

Proof. We write each proof as a sequence of implications.
(i) The first statement follows from the fact that q + 1 is an integer.

q + 1 ≤ sk−1 − δk−1

⇐⇒ q + 1 ≤ s̃k−1 − δk−1

⇐= q̃ + 1 ≤ s̃k−1 − δk−1

⇐⇒ s̃k − δk + (n + 1) ≤ (n + 1)(s̃k−1 − δk−1)
⇐⇒ (n + 1)δk−1 − δk + (n + 1) ≤ (n + 1)s̃k−1 − s̃k

⇐⇒ (n + 1)δk−1 − δk + (n + 1) ≤ (n + 1)k
(

1
nk+1−n − 1

nk+1

)
⇐⇒ δk−1

n+1 − δk

(n+1)2 + 1
n+1 ≤ (n + 1)k−2

(
1

nk+1−n − 1
nk+1

)
⇐⇒ δk−1

n+1 − δk

(n+1)2 + 1
n+1 ≤ (n + 1)k−4

(
n(n+1)2

(nk+1−n)(nk+1)

)
.

Since δk−1 ≤ n, the last statement is implied by

1 ≤ (n + 1)k−4

(
n(n + 1)2

(nk + 1 − n)(nk + 1)

)
.

Now the conclusions of part (i) are easy.
(ii)

(q + 1)(nk − n + 1) + (sk − δk) − q + n ≥ (n + 1)k−1

⇐⇒ (n + 1)[(q + 1)(nk − n + 1) + (sk − δk) − q + n] ≥ (n + 1)k

⇐⇒ (sk − δk)(nk + 1) + (n + 1)(nk + 1) ≥ (n + 1)k

⇐⇒ (nk + 1)(sk − δk + n + 1) ≥ (n + 1)k.

Now this last statement is implied by

(nk + 1)(s̃k − δk + n) ≥ (n + 1)k,

which is equivalent to
(n − δk)(nk + 1) ≥ 0.

Since δk ≤ n, we are done. �

Theorem 5.2. Let X = (Pn)k, k ≥ 3. Let sk and δk be defined by

sk =
⌊

(n + 1)k

nk + 1

⌋
and δk ≡ sk mod (n + 1) with δk ∈ {0, . . . , n}.

(i) If s ≤ sk − δk, then σs(X) has the expected dimension.
(ii) If s ≥ sk − δk + n + 1, then σs(X) fills the ambient space.

Proof. The proof is by induction on k.
(i) Note that (nk; sk − δk; 0k) is subabundant. We start from the fact that

(Pn)3 is non-defective when n �= 2 [L] and the fact that (P2)4 is non-defective.
Suppose that T (nk−1; sk−1 − δk−1; 0k−1) is true with k ≥ 4. We need to show that
T (nk; sk−δk; 0k) is true. If q = sk−δk

n+1 , then we use Theorem 3.4 to reduce T (nk; sk−
δk; 0k) to T (0, nk−1; q; (sk − δk − q), 0k−1). Since (0, nk−1; q; (sk − δk − q), 0k−1) is
subabundant, we can reduce T (0, nk−1; q; (sk−δk−q), 0k−1) to T (nk−1; q; 0k−1). By
the induction hypothesis we have T (nk−1; sk−1−δk−1; 0k−1) is true. If we can show
that q ≤ sk−1 − δk−1, then we are done. By Lemma 5.1, we have q ≤ sk−1 − δk−1

with a small number of possible exceptions. Using the exact inequality, the only
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true exceptions are (n, k) = (4, 4) or (n, k) = (7, 4). With the aid of a computer,
we can take care of these cases by showing that T (44; 36; 04) and T (74; 136; 04) are
true.

(ii) Note that (nk; sk − δk + n + 1; 0k) is superabundant. We again start from
the fact that (Pn)3 is non-defective when n �= 2 and the fact that (P2)4 is non-
defective. Suppose that T (nk−1; sk−1 − δk−1 + n + 1; 0k−1) is true with k ≥ 4. We
need to show that T (nk; sk − δk + n + 1; 0k) is true. We use Theorem 3.5 to reduce
T (nk; sk − δk + n + 1; 0k) to T (0, nk−1; q + 1; sk − δk − q + n, 0k−1). From the proof
of the first part of this theorem, we know that T (nk−1; q + 1; 0k−1) is true except
for a small number of possible exceptions. Using the exact inequality, the only true
exceptions are (n, k) = (1, 5), (1, 6), (1, 7), (2, 4), (3, 4), (3, 5), (4, 4), (7, 4). With the
aid of a computer, we can show that (Pn)k is non-defective in all of these cases.
Thus we know the dimension of the variety corresponding to T (nk−1; q + 1; 0k−1).
To establish that T (0, nk−1; q + 1; sk − δk − q + n, 0k−1) is true, note that we have
sk − δk − q + n “point conditions”. Such conditions are always independent; they
correspond to adding in sk − δk − q + n general vectors before computing the span.
We want to show that the partial secant variety corresponding to T (0, nk−1; q +
1; sk − δk − q + n, 0k−1) fills the space. In other words, we need to show that

(q + 1)(nk − n + 1) + (sk − δk) − q + n ≥ (n + 1)k−1.

But this statement follows from Lemma 5.1. �
The following corollary applies in the cases considered in Prop 2.2 of [LM].

Corollary 5.3. T ((r − 1)k, r, 0k) is subabundant and true if k ≥ 3, ∀r ≥ 1.

Remark 5.4. The particular case when n = 1 in Theorem 5.2 appears as Theorem
2.3 in [CGG2]. It is worth emphasizing that Theorem 5.2 states that X = (Pn)k

has at most n values of s for which T (nk; s; 0k) is not true. In many cases the
inequalities of the previous theorem can be improved by looking at the arithmetic
of the particular numbers involved. An example of this phenomenon can be seen in
the following corollary and example. See also Proposition 5.9 and Proposition 5.10
which show that in some cases X = (Pn)k has at most one value of s for which
T (nk; s; 0k) is not true.

Corollary 5.5. If X = (Pn)k is numerically perfect and δk = 0, then X is perfect.

Example 5.6. We can apply Corollary 5.5 if and only if (n+1)k−1

nk+1 is an integer.

For instance, if (n + 1 = ph for some prime number p) and (k = pth−1
ph−1

for some
t ≥ 2), then X is perfect. This example appeared in [CGG1] utilizing some ideas
from coding theory.

The following is an easy consequence of Theorem 5.2:

Corollary 5.7. R(nk) ∼ (n+1)k

nk+1 , when n → ∞ or k → ∞.

Let’s take a closer look at the case X = (P3)k. Lickteig showed that (P3)3

is non-defective. Corollary 5.5 shows that (P3)5 is non-defective. According to
Theorem 5.2 we have that T (34; 16; 04) and T (34, 20; 04) are true; in particular
R(34) = 20. We want to show that T (34; 18; 04) is true. This will show that the
inductive technique often goes further than the statement of Theorem 5.2. In order
to study (P3)4 we will need the following lemma.
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Lemma 5.8. T (14; 2; 1, 1, 0, 0), T (14; 1; 2, 1, 1, 1) and T (14; 0; 24) are true.

Proof. Use Corollary 3.8 to reduce to (P1)3. �

Proposition 5.9. T (34; 18; 04) is true; that is, σ18(P3)4 has the expected dimen-
sion.

Proof. We use Theorem 3.4 to reduce to two copies of P
1×(P3)3, then to four copies

of (P1)2×(P3)2, then to eight copies of (P1)3×(P3)1, then to sixteen copies of (P1)4.
In the end we need sixteen 5-tuples (s, a1, a2, a3, a4) such that T (14; s; a1, a2, a3, a4)
is true and such that the vector sum of the sixteen 5-tuples is (18, 18, 18, 18, 18).
Utilizing Lemma 5.8, a solution is accomplished by the following eight vectors
repeated twice:

(2, 1, 1, 0, 0) (2, 0, 0, 1, 1) (1, 2, 1, 1, 1) (1, 1, 2, 1, 1)
(1, 1, 1, 2, 1) (1, 1, 1, 1, 2) (1, 1, 1, 1, 1) (0, 2, 2, 2, 2),

which completes the proof. �

We want to show that the inductive technique goes further than the statement
of Theorem 5.2 also in the superabundant case. Indeed we know that R(23) = 5
(defective case) and R(24) = 9 (Corollary 5.5). According to Theorem 5.2 we have
that T (25; 21; 05) is true and that 23 ≤ R(25) ≤ 24. We can show the following
proposition:

Proposition 5.10. R(25) = 23.

Proof. Since T (25; 22; 05) is subabundant and true and since (25; 23; 05) is
superabundant, it is enough to show that T (25; 23; 05) is true. We use Theo-
rem 3.5 to reduce to T (24, 1; 15; 04, 8) and T (24, 0; 8; 04, 15). Since (P2)4 is per-
fect, T (24, 0; 8; 04, 15) is true. We use Theorem 3.5 to reduce T (24, 1; 15; 04, 8) to
T (23, 0, 1; 5; 03, 10, 2) and 2 ∗ T (23, 0, 1; 5; 03, 10, 3). Since T (23, 0, 1; 5; 03, 10, 2) im-
plies T (23, 0, 1; 5; 03, 10, 3), it is enough to show that T (23, 0, 1; 5; 03, 10, 2) is true.
We use Corollary 3.9 to reduce T (23, 0, 1; 5; 03, 10, 2) to T (23, 1; 5; 03, 2). Now use
Theorem 3.4 to reduce to T (23, 0; 2; 03, 5) and T (23, 0; 3; 03, 4). Both of these state-
ments are true from the classification of Segre varieties with defective 3-secant
varieties. �

We do not currently have a general theorem that shows that every tensor power
of P

n is non-defective. However, if n is odd, we can prove that for each tensor
power of P

n, there exists a Segre product of a projective space with the tensor
power which is not only non-defective but perfect.

Theorem 5.11. If n is odd, then the Segre variety P
k × (Pn)k+1 is perfect.

Proof. First note that T (k, n, . . . , n; (n + 1)k; 0, . . . , 0) is equiabundant.
Since n is odd,

T (k, n, . . . , n; (n + 1)k; 0, . . . , 0)

reduces to (multiple copies of)

T (k, 1, n, . . . , n; 2(n + 1)k−1; 0, (n + 1)k−1(n − 1), 0, . . . , 0)

and then to

T (k, 1, 1, n, . . . , n; 4(n + 1)k−2; 0, 2(n + 1)k−2(n − 1), 2(n + 1)k−2(n − 1), 0, . . . , 0).
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We continue in this manner until we reduce to

T (k, 1, . . . , 1, n; 2k; 0, 2k−1(n − 1), . . . , 2k−1(n − 1), 0).

Now we reduce to n−1
2 copies of

T (k, 1, . . . , 1; 0; 0, 2k, . . . , 2k)

and one copy of
T (k, 1, . . . , 1; 2k; 0, . . . , 0).

Iterating Corollary 3.8 we reduce T (k, 1, . . . , 1; 0; 0, 2k, . . . , 2k) to T (k, 1, 1; 0; 0, 2, 2).
In a similar manner we reduce T (k, 1, . . . , 1; 2k; 0, . . . , 0) to T (k, 1, 1; 2; 0, 0, 0). Both
of these statements are true and we are done. �

6. Closing remarks and open questions

6.1. Classification of defective σs(X). By Lemma 4.1, we know that unbal-
anced Segre varieties are defective. Using a Monte Carlo technique combined with
Terracini’s Lemma (as in [Mc]), we can show there are no balanced t-defective Segre
varieties (t ≤ 8) other than the known cases:

(2, 2, 2), (2, 3, 3), (2, 4, 4), (1, 1, 1, 1), (1, 1, 2, 2), and (1, 1, 3, 3).

The cases (2, 2, 2) and (2, 4, 4) are in a family originally described by Strassen.
The three cases (1, 1, 1, 1), (1, 1, 2, 2) and (1, 1, 3, 3) are in the family covered by
Proposition 4.7. The case (2, 3, 3) seems to fall into its own family and is proven to
be defective in Proposition 4.10. Thus, all known cases of defective Segre varieties
fall into one of the following four families: {unbalanced, (1, 1, n, n), (2, 3, 3), (2, n, n)
with n even}.

With the aid of a computer combined with a Monte Carlo technique, we can
show that every balanced, numerically perfect, 3 odd factor Segre Variety with
n3 ≤ 30 is perfect. It is enough to compute the linear span of the tangent spaces at
s random points, where s is the expected number defined in (2.2) in section 2. By
using Lemma 2.2 this reduces to the computation of the rank of a square matrix of
order (n1 + 1)(n2 + 1)(n3 + 1). With the use of the inductive procedure combined
with computer calculations, most of the balanced, numerically perfect cases with
n3 ≤ 100 can be shown to be perfect.

6.2. Many copies of P
n. Arithmetical properties of n and k often allow Theo-

rem 5.2 to be improved in special cases as we did in Proposition 5.9 and Propo-
sition 5.10. When k ≥ 3, we strongly suspect there are only a finite number of
defective Segre varieties of the form (Pn)k. We somewhat suspect that (P2)3 and
(P1)4 are the only defective cases.

6.3. Open questions.

Question 6.1. Let X = P
n1 ×P

n2 ×P
n3 . If X is numerically perfect and balanced

with n1, n2, n3 odd, then is X perfect?

Question 6.2. If X = P
n1 × P

n2 × P
n3 is numerically perfect and balanced, then

is X perfect?
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Question 6.3. Do all defective Segre varieties of the form X = P
n1 × P

n2 × P
n3

fall into the following 3 classes?
1. X is unbalanced.
2. X = P

2 × P
n × P

n with n even.
3. X = P

2 × P
3 × P

3.

Question 6.4. Let k ≥ 3. Other than (P2)3 and (P1)4, is every Segre variety of
the form (Pn)k non-defective?

Question 6.5. Does there exist a T such that P
n is non-defective whenever

(n1, . . . , nk) is balanced with k > T?

Question 6.6. Do all defective Segre varieties fall into the following 4 classes?
1. X is unbalanced.
2. X = P

2 × P
n × P

n with n even.
3. X = P

2 × P
3 × P

3.
4. X = P

1 × P
1 × P

n × P
n.
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