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Classification of Conic Bundles in P5

R. BRAUN - G. OTTAVIANI - M. SCHNEIDER - F.-O. SCHREYER

1. - Introduction

Smooth threefolds X c P5 which are not of general type have bounded
degree do (cf. [BOSS]). At the moment it is not clear what the best bound do
should be.

The adjunction-theoretic approach leads in a very natural way to the class
of log general type 3-folds (cf. [BBS]).

DEFINITION. A smooth 3-fold X C is said to be of log general type if
Kx + H is big and nef Here H denotes the hyperplane class. We say that X
is log special if X is not of log general type.

The purpose of this paper is to give a complete classification of all log
special 3-folds in P5. It turns out that their degree is bounded by 12.

Note that 3-folds in P5 are classified up to degree 11 ([BSS l, 2]),
uniqueness is known only up to degree 10. For partial results on the classification
in degree 12 see also [E].

By general adjunction theory due to Sommese [S3] the structure of log
special manifolds is well understood and the problem is to decide whether they
live in P5 and up to what degree.

In most cases this is either well known or easy to decide. The two difficult
cases are:

a) X is ruled in lines;

b) X is a conic bundle over a surface.

Case a) has been dealt with in [0]: there are four types of scrolls, all
known classically.

Case b) is more delicate and its analysis is the heart of this paper.
The only classically known example is the Castelnuovo conic bundle X

of degree 9 which is the determinantal variety defined by the maximal minors

Pervenuto alla Redazione il 25 Agosto 1994 e in forma definitiva il 28 Agosto 1995.
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of a 3 x 4-matrix with linear and quadratic entries:

The morphism given by K + H makes X into a conic bundle over P2.
One of the points of this paper is the construction of a classically unknown

example of a conic bundle of degree 12:
Let E be the rank 5 vector bundle on P5, irreducible for the action of

Sp(6), with cl(E) = 5, c.f. [H]. The bundle E is generated by global sections
and four general sections of E define a smooth 3-fold X C P5

The morphism X - P3 given by K + H makes X into a conic bundle
over a quartic surface B C P3-

A resolution of its ideal sheaf is of the form

THEOREM. Let X C P5 be a smooth conic bundle over a surface. Then
deg X = 9 or deg X = 12 and X is as in the above examples.

Putting things together we get the following picture.

THEOREM. Let X c P5 be a non degenerate and log special smooth 3-fold.
Then deg(X)  12 and X is one of the varieties of the following table:

(:1 ~ 9 in the right hand column means that we have an exact sequence
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2. - Notations and Preliminaries

2.1. In the following X is a (smooth) 3-fold of degree d in P5, H is the
hyperplane divisor and Kx is the canonical divisor. We denote by Y a generic
hyperplane section of X; C is a generic hyperplane section of Y and g the
genus of C.

2.2. From the exact sequence

one gets

2.3. Selfintersection formula:

2.4. Double point formula for smooth surfaces in I~4:

2.5. Castelnuovo bound [GP]: If C c P3 is not contained in a hypersurface
of degree s - 1, then 

-

2.6. Roth theorem: If Y C P4 is of degree d &#x3E; s2 and C is contained in
a hypersurface of degree s, then Y is contained in a hypersurface of degree s.

2.7. Ellingsrud-Peskine bound [EP, lemme 1]:
If the minimal degree of a hypersurface containing Y c P4 is s, then
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3. - Reduction to conic bundles

In this section we show via adjunction theory that the degree of log special
3-folds in P5, which are not conic bundles, is bounded by 9. Basically this is
a summary of results contained in [BSS l, 2], [O], [Sch]. For the convenience
of the reader we have also included some proofs.

Let X be a 3-fold of degree d in Ps.

PROPOSITION 3.1 [BSS I ] . Kx + 2H is generated by sections, if d &#x3E; 4.

PROOF. By [S1], [SV] Kx + 2H is generated, unless (X, H) is one of the
following:
1. (P3, 0 (1))
2. (Q, C~4 ( 1 ) ( Q ), Q a smooth quadric in P4
3. (X, H) is a P2-bundle over a curve and = 0(1), where F is a fibre.

In (1) and (2) X is degenerate. In (3) the exact sequence of normal bundles of
F C X C I~5 reads

This implies

which gives d = 3 by 2.3.
From now on assume Kx + 2H to be generated by sections.

PROPOSITION 3.2. If Kx + 2H is not nef and big, then d c 9.

PROOF. By [S2], [SV], [S3], Kx + 2H is nef and big, unless:
1. (X, H) is a del Pezzo variety, i.e. Kx = -2H

2. (X, H) is a scroll over a curve

3. (X, H) is a quadric fibration over a smooth curve
4. (X, H) is a scroll over a surface.

(1) implies that Y is a del Pezzo surface in P4; hence d = 4 and X is a
complete intersection of 2 hyperquadrics.

For (2) the same argument as in Proposition 3.1, case (3), applies, i.e.
d = 3.

In case (3) let F be a smooth fiber, i.e. F is a smooth quadric in P3, and
consider the sequence of normal bundles

This gives

and thus d = 5 by 2.3. (4) is studied in [O], where it turns out that d  9.
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Assume now that is nef and big. Therefore by general adjunction
theory (X, H) has a unique (first) reduction (Z, L), i.e.

is a blow up of a finite number -y of smooth points of the smooth 3-fold Z and

L being ample on Z.

PROPOSITION 3.3 [BSS2]. 7r is an isomorphism, if 

PROOF. If there exists an exceptional linear P2 =: P in X, the normal
bundle sequence of P c X C P5 is (see [Sch])

Hence c2(NxIPslp) = 7 which implies d = 7 by 2.3.
Next we suppose that X coincides with its first reduction. Note that among

the three types of 3-folds of degree 7 there is only ,5~2,2,2&#x3E;(xo) for which X is
different from the first reduction.

PROPOSITION 3.4. If Kx + H is not nef and big and X is not a conic
bundle, then d  8.

PROOF. Under the assumptions above, by [S3], Kx + H is nef and big,
unless:

2. (X, H) = (Q, Q a smooth quadric in P4
3. (X, H) is a Fano variety, i.e. Kx = -H

4. (X, H) is a del Pezzo fibration over a smooth curve, i.e. the general fiber
F is a del Pezzo surface and = -KF

5. (X, H) is a Veronese fibration over a smooth curve, i.e. the general fiber
F is a P2 and = 0(2)

6. (X, H) is a conic bundle over a surface.

(1) and (2) do not occur since X has to be linearly normal.
(3) implies that Ky = Oy; hence x(OY) = 2 and by the adjunction formula

d = 2g - 2. Therefore the double point formula 2.4 gives

Hence d = 4 or 6, from which we deduce that X is a complete intersection of
type (1, 4) or (2, 3).
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In case (4) notice first that for a general fiber F we have

From the exact sequence

we get

2.3 and the exact sequence of normal bundles

yield

Hence

which implies a = 3, 4 or 6 and d = 7, 8 or 9 respectively, furthermore d = 9 is
ruled out by the classification [BSS1].

Case (5) is excluded by calculating as in case (4) which gives:

The rest of the paper is devoted to case (6), i.e. conic bundles over a surface.

4. - Conic bundles I

4.1. Let X c P5 be a conic bundle in the adjunction theoretic sense, i.e.
there exists a morphism p: X -~ B onto a normal surface B and an ample
Cartier divisor L on B such that p* L = Kx + H.

The main result of this section is that the degree of X has to be 9 or 12
(see Theorem 4.18).

First we shall show that B is necessarily smooth and that all the fibres of
p are one-dimensional.

Beltrametti and Sommese have classified the possible fibers of a conic
bundle.
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THEOREM 4.2 ([BS], Theorem 2.3). If p: X --+ B is a conic bundle in the
adjunction theoretic sense, then there are the following possibilities for the fiber
over b E B is the r-th Hirzebruch surface):

with

with

DEFINITION. A 3-fold X is called a geometric conic bundle, if there exists
a morphism p: X ~ B onto a normal surface B such that every fiber p-’(b) is
isomorphic to a conic.

PROPOSITION 4.3. Let X c Ps be a conic bundle in the adjunction theoretic
sense. Then X is a geometric conic bundle.

PROOF. Assume first that there is a divisorial fibre 1Fo with O~o ( 1, 2).
From the sequence

we compute

Substitute

Since Kx + H is trivial on the fibers, we have.
, Now from the sequence

and the self intersection formula o we have

which is a contradiction.
In the same way we exclude Fo with

0(-2, -2). 0(1,1) = -4 which yields

As above we find d = 10. But for d = 10 we know from [BSS 1] that there are
no conic bundles.

NOTATIONS 4.4. Let p: X --~ B be a geometric conic bundle in Ps. We
have a natural morphism f: B - Gr(P2, We set p* OX( 1 ) =: E, a rank 3
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vector bundle on B. We have E = f*(UV), where U is the universal bundle of
in particular det E = f*(/B2UV) is ample. W : = P(E) is a P2-bundle

in the natural incidence variety in P5 x Gr(P2, whose projection r into P 5 is
the hypersurface V given by the union of all the planes containing the conics
of X.

Furthermore X, the strict transform of X under 7r, is smooth and

isomorphic to X. Since the natural projection of X onto B is p o 7r, we denote
the natural projection of W onto B also by p and by H the divisor on W
corresponding to Then X = 2H - p* L for some divisor L on B.

The divisor D c B corresponding to points whose fiber is a singular
conic, is called the discriminant divisor. More precisely, X determines a section
of S2E (D L’, hence a morphism ~: L ® E~ -~ E. D is given by the equation
det ~ = 0. Consequently D = ci(E) - El) = 2c 1 (E) - 3L.

PROPOSITON 4.5. Let X be a geometric conic bundle in 1Ps. Then B is
smooth.

PROOF. The assertion is local in the base B. Therefore we may assume that
X is embedded into B x P2 =: Y as a Cartier divisor, given by the composition

Let p c X be an arbitrary point. We obtain

Hence Y is smooth in p and therefore also B is smooth.

REMARK. Besana proves in [Bes], using Mori theory, that the base surface
of a smooth adjunction theoretic conic bundle is smooth. He observes that a
geometric conic bundle is also an adjunction theoretic one.

From now on let p: X 2013 B in P5 be a geometric conic bundle over the
smooth surface B and let f : B --+ Gr(P2, be the natural morphism.

LEMMA 4.6. Let Y = X nP4 be a generic hyperplane section. Then the
restriction p: Y - B is finite 2: 1.

PROOF. Gr(P2,P4) is embedded in Gr(P2,P5) as a Schubert cycle of
codimension 3. Hence if P4 is generic f (B) 0.

Let us introduce some more notation.

Let 2R c B be the branch divisor of p: Y -~ B.

Recall that we want to show d = 9 or 12. As a first approximation we
prove d  72 (see Proposition 4.17). This follows basically from the three

inequalities D ~ R &#x3E; 0, c2(E) &#x3E; 0 and ci(E)’ D &#x3E; 0. To express these in terms
of x = K1, y = D. R and d we need several preliminary computations.
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PROPOSITION 4.7.

PROOF. Consider the sequence

The Chem polynomial of

Hence we have

Expanding the right-hand side we get the first three equations.
The last equation is the Wu-Chem equation on W = P (E), which is

equivalent to = 0.

PROOF. We have Ky = p*(KB + R) (see 4.4), hence by the adjunction
formula Kx = - H + p* KB + p* R. From Proposition 4.7 Kw = - 3 H + p* c 1 (E) +
p* KB . Putting together with the adjunction formula Kx = 
we get - p* L + p* c 1 (E) + p* KB = p* KB + p* R, that is ci (E) = L + R.

Substituting into ci(E) = (D + 3L)/2 (4.6) we obtain D + 3L = 2L + 2R,
that is L = 2R - D. Hence cl(E) _ (2R - D) + R = 3R - D.

PROPOSITION 4.9.
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PROOF. Straightforward computation from the sequence

using Proposition 4.7.

LEMMA 4.10. Let Z, Z’ be arbitrary divisors on B.

PROOF. (i) is obvious because the fibers are conics. For (ii) note that
H2 ~ p* Z is equal to the intersection product on W

Intersect the Wu-Chem equation with p* Z to obtain

Hence

PROPOSITION 4.11. The surface f (B) in has bidegree (6, c2(E))
where

More and P are respectively a generic line and a generic 
8 = #(P2]P2 n f, f0, f2 E .f(B)}~ c2(E) = n P &#x3E; 1,P2 e f (B)}.
Moreover = 8 + c2(E) is the degree of f(B) in the Plucker embedding.

PROOF. We intersect the Wu-Chem equation in 4.7 with H and we get
H4 - H3 ~ p*cl(E) + H2 . p*c2(E) = 0, that is 8 - + c2(E) = 0. Now cut the

. equation X = 2H + p* R - p* c 1 (E) with H3 and obtain d = 2$ + R . ci(E) - c 1 (E).
From these equalities the expressions of 8 and c2(E) follow. The geometrical
interpretation of s is clear, because s = {V n L}. The other statements are
applications of Schubert calculus.
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PROPOSITION 4.12.

PROOF. Easy computations, using 4.8-4.11, give the formulas for C2(X)
and C3(X).

PROPOSITION 4.13. The following hold:

PROOF. From (2.2) we have
Substituting the values of cl (X), c2(X) of Proposition 4.12 we get

Now cut respectively with p*R, p* KB, p*D, H and obtain the first four equations.
For example cutting with p* R we have

so that by lemmas 4.8 and 4.10

and simplifying
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For the last equation consider the second formula of 2.2:

Substituting the values of Proposition 4.12 we get the assertion by a straight-
forward calculation.

PROPOSITION 4.14. Set

The following hold:

PROOF. Solve the system of Proposition 4.13 which is linear with coeffi-
cients rational functions of d. A computer is helpful, although not indispensable.

PROOF. D and R are both effective divisors. At the generic point q of D
the fibre is a reducible conic. For hyperplane sections which do not meet the
intersection of the two lines, q is not contained in R. Hence D and R have no
common component.
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PROPOSITION 4.16.

PROOF. We have (using 4.11 and 4.8)

Moreover from the adjunction formula cl (X).
obtain

and 4.10ii) we

Substituting the values of Proposition 4.14 and simplifying gives the assertion.
Now we are in the position to give the first upper bound on the degree

of a conic bundle in Ps.

PROPOSITION 4.17. Let X be a conic bundle in P5. Then d = deg(X)  72.

PROOF. We consider the possible values of x, y compatible with the three
inequalities:

We have respectively (using 4.10, 4.11, 4.14 and 4.16) after easy compu-
tations :

These inequalities bound the inside of a triangle as in the following picture (the
triangle is acutangle for d &#x3E; 14):



82

, Ad, Bd, Cd are the three vertices of the triangle. We have coordinates

The minimum and the maximum of g - 1 considered as a function in x and y
with d fixed (see Proposition 4.16) have to be attained in one of the vertices.
Substituting the coordinates of Ad, Bd, Cd in the expression of g - 1 we get
respectively

Hence we have in our case

Now we distinguish two cases.
Suppose first that the curve section C of X is not contained in a cubic.

Then from 2.5 and (*) we have

that is 6d- - 283d + 1282  0, which gives d  42.
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If otherwise C is contained in a cubic, from 2.6 we get that also Y is
contained in a cubic. Hence 2.7 and (*) give

that is d2 - 82d + 690  0, which implies d  72.

THEOREM 4.18. Let X be a conic bundle in Then d = deg(X) = 9 or
12.

PROOF. From [BSS1] we know that for d  10 there exists precisely
one conic bundle of degree 9. For 11  d  72 there are only finitely many
integer pairs (x, y) inside the triangle considered in the proof of Proposition
4.17. Moreover we impose the Hodge inequality

and the integrality conditions

Using the formulas of Theorem 4.14 all the conditions (*.1 ),...,(*.6) involve
only x, y, d. We have checked conditions ( * .1 ), ..., ( * .6) with a Pascal program.
It turns out that only the following values are possible:

From these values one can compute K3, HK2, H2K using the formulas
of Propositions 4.12 and 4.14. But from Riemann-Roch

hence

and the above value is
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For d = 45 we have HK2 = 2667, H2K = 428 and the above value is

Therefore d = 12 is the only possible value (for d &#x3E; 11).

5. - Conic bundles II

5.1. We proceed by showing that there exist conic bundles X in of

degree 9 resp. 12 and that they are all obtained by the constructions given in
Example 1 and 2 below. In degree 9 this is contained in [BSS 1]. The proof of
"uniqueness" in degree 12 requires some work. In particular we obtain that the
Hilbert scheme of smooth 3-dimensional conic bundles in P5 has 2 components.
Both are unirational of expected dimension.

5.2. A quick way to construct 3-folds in Ps is to use the following result
of Kleiman:

THEOREM (Kleiman). Let E be a globally generated rank r vector bundle
on Pn, n  5. Then the morphism determined by r - 1 generic sections of E
degenerates on a smooth codimension two subvariety X, and we have the exact
sequence 

- u 1

EXAMPLE 1. 3 generic sections of E: = C~5 ( 1 )3 e Pp5(2) degenerate on the
Castelnuovo conic bundle X of degree 9; hence a resolution of its ideal sheaf
is

The morphism associated to the line bundle Kx + H is P2 which

gives the structure of a conic bundle. Note that X is also obtained by linkage
with a cubic and a quartic from the Segre variety Pal x P2.

EXAMPLE 2. Consider the rank 5 vector bundle E on P5 irreducible for
the action of Sp(6) and unique up to PGL-action with cl (E) = 5, c.f. [H]. E is
globally generated and by Kleiman’s theorem for generic f we obtain a smooth
3-fold X of degree 12 with resolution

The morphism (where B is a smooth quartic surface) gives
the structure of a conic bundle.

Before proving uniqueness in degree 12 we describe these two examples
in more detail.

5.3. In the Example 1 one computes h°(Kx + H) = 3, (Kx + H)3 = 0,
hence P2. Explicitly the matrix of the homomorphism F: 0 3 --&#x3E;
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0 ( 1 )3 0153 0 (2) is given by

with aij E 0 ( 1 )), ci E 0(2)). The four 3 x 3 minors of F give
the equations of X (in fact Ix is generated by a cubic and three quartic
hypersurfaces). If x’ E X then rank (F)  2 and there exist (Ai , A2, A3) such that

The morphism p: X - P2 defined by p(x’) _ (A I, A2, A3) gives the structure
of a conic bundle and (*) are the equations of the fiber over (al, A2, A3)-

LEMMA 5.4. Let X be the Castelnuovo conic bundle as in the Example
1. We have 2R = Op2(8) and D = 0¡p2(9). (Notations as in Section 4).

PROOF. Let Y = X f1 H be a generic hyperplane section. By Lemma 4.5
p: Y - P2 is finite 2: 1 and we have p* 0 = 0 EÐ 0 (-R). We have

hence

It follows Now
We obtain and The Hilbert

polynomial is and it is easy to check that

H2K = -2, HK2 = -3, K3 = 6. Let S be a smooth surface of the system
thus Ks = is the blow up in deg(D) points of a ruled

rational surface. K2 decreases by one at each blow up, hence KS = 8 - deg(D).
But we compute (2K + H)2(K + H) = 4K3 + 8HK2 + 5H2 K + H3 =
24 - 24 - 10 + 9 = -1, then deg(D) = 9, as we wanted.

5.5. In Example 2 the bundle E can be constructed directly from the
nullcorrelation bundle N. As N carries a nondegenerate symplectic form, 0 is
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a direct summand of n2N and we may define A2N = One computes
(e.g. from Bott’s theorem) the following table of cohomology:

for t and all other are zero. Hence
from Beilinson’s theorem we have also

or dually (Ev = E(-1 ) by [DMS], Proposition 1.2))

and the ideal sheaf of X has the following resolution

The dual sequence shows that Kx + H is globally generated by 4 sections and
an easy calculation gives (Kx + H)3 = 0, (Kx + H)2H = 4. Hence the morphism
associated to Kx + H maps X onto a quartic surface of P3 and exhibits X as
a conic bundle.

LEMMA 5.6. Let X be the conic bundle of Example 2. Then R = 
and D = 0.

PROOF. Exactly as in the proof of Lemma 5.4 we get x(OY) - 6,
hence X(O(-R)) = 6 - X(OB) = 4, K 3 = 12, HK 2 = - 12, H 2K = 4,
KS = (2KX + H)2(K + H) - -16. S is the blow up of a ruled surface over
the hyperplane section of B which has genus 3. As -16 = 8(1 - 3) there
are no blow ups to perform, that is there are no reducible conics. Moreover

= (Kx = Ky = p*(KB + R) = p*(R).

REMARK. The bundle E appearing in the resolution of the Example 2 is
explicitly described in [DMS]. From the description given there one can see
directly that the fibers of the projection p: X -~ B are smooth conics. B is the
intersection of a generic linear P3 with the quartic hypersurface T c P13 in the
notations of [DMS].

5.7. The invariants of the conic bundles of the Examples 1 and 2 are
summarized in the following table:
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where p:X 2013~ B, E = p* 0 ( 1 ), (~,C2(E)) is the bidegree of the embedding of B
in Gr(2, 5) and V is the hypersurface spanned by the planes of the conics.

It remains to show uniqueness in degree 12. We achieve this in two steps:
first, given a conic bundle X of degree 12 in ?5, we prove that the dimensions
of certain cohomology groups are the same as in Example 2;
secondly the morphisms in the corresponding Beilinson spectral sequences are
also the same.

PROPOSITION 5.8. Let X be a conic bundle of degree 12 in ?5. Then
as in the following table:

PROOF. By Theorem 4.18 and Propositions 4.12 and 4.14 the numeri-
cal invariants of X are as in Example 2, especially (see 5.7): x( OX(t)) = 2t3 -
t2 + 3t + 2. 

’

Consider the exact sequence

The associated cohomology sequence gives the zeros in the top row of the
diagram. By Riemann-Roch, Kodaira-vanishing and h3 ( OX) - 0 we
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obtain the -2, -1 and 0-columns. Since X is linearly normal we have
= 0. From [K] we know that Y (hence also X) cannot be contained

in a cubic. Hence we are left with the bold face numbers.
Now hO(Kx) = h3(OX) = 0 yields for m &#x3E; 0:

PROOF. Riemann-Roch and the previous results give

Let h be a hyperplane in P5 and consider the commutative diagram

Let V be a C-vector space with I~5 = I~ (V). In Beilinson’s spectral sequence

the dl-morphism ,(3) Q(2) is an element
of Hom(Qjj~(3),~~(2)) ~ V. Consequently ah can be identified with a point
P E P (V ) and if we choose h, such that P e h, we see that ah is in fact the
zero map. This implies Claim 1.

PROOF. Immediately from Claim 1.
To control the remaining four groups we need some information on Y.

We have the following table for 

where a: = and b: = h2(IYIP4(3».
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CLAIM 3. a  1.

PROOF. By the cohomology of the exact sequence

and it is enough to show thai

Assume the contrary and let B be the base locus of two independent sections of
OC(KC - 2H) and let W be the subspace of H° ( 0c (Kc - 2H - B)) generated by
the induced sections. The Base-Point-Free Pencil Trick [ACGH, p. 126] gives
an exact sequence

where the last equality follows from Riemann-Roch.

The images of in HO(OC(H)) satisfy the relation

i.e. C is contained in a quadric, which is a contradiction.

CLAIM 4. b = 0.

PROOF. Since = h°(OC(KC - 3H)) = 0 we obtain from the exact
sequence

that b = h l ( OY (3))  = a + 1, hence by Claim 3: b  2.
The same argument shows that h2(IypP4(r» = 2 for all r &#x3E; 2.

Define k: = maxft E and consider the Beilinson spec-
tral sequence

By construction the di-morphism

has to be surjective. Now
Hence we get a morphism of vector bundles
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Taking the dual twisted by 0(-1) we obtain an injective map in each
fiber over a point (v) C P (V) = i.e. for all v E VB{0}

given by wedging with for certain w and u.

This is a contradiction (take e.g. w A u E (w) A V).
We conclude 1~ = 2 which means b = 0.

CLAIM 5. a=0.

PROOF. Assume a = 1.
We argue as in the proof of Claim 1 and find a point P E P4 such that

for every hyperplane h in P4 with P E h the multiplication map

is zero. Consequently the corresponding hyperplane sections of Y are contained
in a cubic. By Aure’s proof [A] of Roth’s theorem in the case s = 3, we find
that Y is contained in a cubic - a contradiction.

PROOF. We have = 0 and by Claim 5 also ,
Riemann-Roch and the cohomology of the exact sequence

give the assertion.

PROOF. From Riemann-Roch we obtain 0 = X(
The cohomology of the exact sequence

yields 1. Arguing again as in Claim 1, we find a hyperplane h
such that the induced multiplication map

is zero. From = 0 follows Claim 7 and this finishes the proof of
Proposition 5.8.

To show that our table in the introduction is complete we now only need:
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PROPOSITION 5.9. Every conic bundle X of degree 12 in is as in

Example 2.

PROOF. From the cohomology table of Proposition 5.8 we obtain via
Beilinson’s spectral sequence that lx(3) is the cohomology of a monad

i.e. we have the commutative diagram

where a is given by contraction with a 2-form w.
We can choose a basis { e 1, ... , e6 } of = P (V)) such that w is one of

the following:

CASE (1). In this case a is surjective and the induced map ~(Q~(4)) 2013~
H°(SZ~S(2)) is an isomorphism, hence 0. We deduce B(2) ~ E
(compare 5.5). Furthermore A cannot contain a summand which

implies that ,~ is a direct sum of four copies of the Euler sequence map
On»5(-I)EÐ6 - Q~5(4). Consequently we have C = 0 and A = Op,(-2)~. Hence
the ideal sheaf of X has a resolution as in Example 2.

It remains to exclude the cases (2), (3) and (4).

CASE (2). By restricting to the P3 which is spanned by e 1, ... , e4 we obtain
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from the diagram *

Note that the homology of the restriction monad is a splits in the
following way:

where N is a null correlation bundle and M ~ N(- 1).
Via the Euler sequence we replace ,Q by

and obtain a surjection

Since the second Segre class of N(I) is not zero, N(I) cannot be generated by
less than four sections, hence the kernel of /3 contains at least four copies of

This means that we have an injective map

But M(1) rr N has no sections and = 3, which is a contradiction.

CASE (3). Assume w = el A e2 and consider the map a of diagram *.

After dualizing and twisting by 0(-l) we obtain in each fiber over a point

For v g (el, e2) the kernel is spanned by v A e 1 and v A e2, which means that
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the rank of D is 2 and consequently B has rank 7. Furthermore

And from diagram *: rank(A)  rank(B) = 7.
In fact rank(A)  rank(B), since otherwise A -- B which leads to

Hence -1: = 3. Riemann-Roch and the previous computations give
the following table for 

From Beilinson’s spectral sequence we obtain a complex

Notice first that 0 has to be surjective and 0 is given by contraction with
w = el A e2. Since composition is wedge product we have el A e2 A 1b = 0. So we
write 0 as a 1 x -1-matrix 0 = + e2 A bi)i=,,...,.y with certain ai, bi E V. Let
P = Ael be any point on the line spanned by e 1 and e2. Dualizing 1/J and
twisting by 0 ( 1 ) induces an injective map in the fibers over P:
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This means that the elements of the 1 x 1-matrix

are linearly independent in Consider the projection map p:V -
=: U and let aa : = and bi: = Now (A bi - are

linearly independent in U, which implies -i  4. y can not be 4, since in this
case the determinantal locus of the matrix

in P (Uv) would be non-empty and any such point would give A, Jj such that

~o,)t=i~~4 are linearly dependent. Hence 1 = 3.
Moreover we have a well-defined morphism

and the image is a rational normal curve. Therefore there exists a basis el,..., e6
of V such that 

- _

where eZ : = p(ez ). Thus

with ci E C. Consider now

pi is given by contraction with a 3-form and after subtracting VI A e A e2
(suitable VI E V) we can assume

where the sum runs over all indices 1 ~ i  j  k  6 and = 0 for all k.

From w A pi = 0 we get by an easy computation 0 for all

i, j, k, l, i.e. ~p - 0. We conclude that there exists an injective map
which is a contradiction since

CASE (4). We have Arguing as in case 3
we find rank(A) = and the map
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is again surjective. Equivalently we get an injection Ops - A~(7p~(-l)). Since
and n2(T~5 (-1 )) is generated by global sections it follows

1 ~ 6, i.e. 1 = 6.
From diagram * we deduce 9 = rank(A) which implies

We twist with Op,(l) and use Q~(4) ~ to obtain
from the first column of diagram *: 

where the codimension of Z in P5 is 2 and deg(Z) = c2(A2(Tp5( -1») = 9. But
Iz c Ix, i.e. X c Z which contradicts deg(X) = 12.

Thus the proof of Proposition 5.9 is complete.
Putting everything together we get the theorem in the introduction.

Note added in proof

It is natural to ask whether the conic bundle X of degree 12 in Ps is a

PI-bundle, all fibres being smooth. It is fairly easy to see that X cannot be a
P I -bundle in case Z. Indeed, assuming X = P (E), and using [0], p.
469, equations (C) and (D), we get

Here ~ = If Pic(B) rr Z, we have ci (E) = ac 1 ( 0 (B ( 1 )), leading to

But this is clearly impossible.
For the general conic bundle X - B in the isomorphism Pic(B) ~ Z

follows from a beautiful idea of Mukai:
Let U14 - HO(P5, E) be the 14-dimensional space of sections of the

Sp(3, C)-bundle E. We have seen that the Hilbert scheme of degree 12 conic
bundles in 1~5 is birational to G(4, U14), the Grassmannian of 4-dimensional

subspaces of U 14. The moduli space of K3 surfaces B, arising as base spaces
of our conic bundles, is therefore birational to G(4, U14)/Sp(3, C).

On the other hand Mukai [Ml], [M2] has shown that G( 10, U14)/Sp(3, c~ )
is birational to the moduli space of polarized K3 surfaces of genus 9 and
Clifford index 4. The symplectic form on I~5 induces a skew symmetric non
degenerate form on U14. With the induced ’isomorphism ul4 - the
Grassmannians G(4, U14) and G(10, U14) are identified and this gives rise to a
birational correspondence of the moduli space of K3 surfaces of genus 9 and
the moduli space of K3 surfaces occuring as base spaces of our conic bundles.
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Hence both spaces are of dimension 19, and by Hodge theory the general
base space B has Picard group Z. In particular we see that the general quartic
in P3 arises as a base B.
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