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To my family, the only lighthouse in my storms





Abstract

We analyze the Waring decompositions of the powers of any quadratic form over the field of complex
numbers. Our main objective is to provide detailed information about their rank and border rank. These
forms are of significant importance because of the classical decomposition expressing the space of
polynomials of a fixed degree as a direct sum of the spaces of harmonic polynomials multiplied by a
power of the quadratic form. Using the fact that the spaces of harmonic polynomials are irreducible
representations of the special orthogonal group over the field of complex numbers, we show that the
apolar ideal of the 𝑠 -th power of a non-degenerate quadratic form in 𝑛 variables is generated by the set
of harmonic polynomials of degree 𝑠 + 1. We also generalize and improve upon some of the results
about real decompositions, provided by B. Reznick in his notes from 1992, focusing on possibly minimal
decompositions and providing new ones, both real and complex. We investigate the rank of the second
power of a non-degenerate quadratic form in 𝑛 variables, which is equal to

(
𝑛2 + 𝑛 + 2

)
/2 in most cases.

We also study the border rank of any power of an arbitrary ternary non-degenerate quadratic form, which
we determine explicitly using techniques of apolarity and a specific subscheme contained in its apolar
ideal. Based on results about smoothability, we prove that the smoothable rank of the 𝑠 -th power of such
form corresponds exactly to its border rank and to the rank of its middle catalecticant matrix, which is
equal to (𝑠 + 1) (𝑠 + 2)/2.
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Preface

This work represents the research activity carried out during the author’s Ph.D. program. The choice of
the powers of the quadratic forms as the main object of this study is due to its special properties. Indeed, it
represents an important example of invariant form under the action of the orthogonal group. Moreover, of
great relevance is the large use of the Laplace operator, appearing in several branches of Mathematics.

Despite describing the problem is quite elegant and simple, establishing the Waring rank of the
polynomial 𝑞 𝑠

𝑛 , with 𝑠 , 𝑛 ∈ N, presents several difficulties and requires many information and notions
about several subjects, such as apolarity, representation theory, and secant varieties.

Prerequisites
We will take for granted all the basic notions of linear algebra, like basis of vector spaces, linear applications
and dual spaces, for whose details we refer, for instance, to [Lan87] or [SR13]. We will also need some
arguments about differential geometry, especially for what concerns the study of Lie groups and Lie
algebras. Even if we will redefine some subjects in chapter 1, one can consult, for instance, [AT11],
[GQ20], [Spi79], and [Tu11] to get more details about differential geometry in general. For a more
accurate view on Lie groups and Lie algebras we refer, instead, to [Kir08] or [Pro07] and, to get more
information about linear algebraic groups, also to [MT11]. On the other hand, for what concerns tensor
products and multilinear algebra, we suggest to consult [Lan12].

Through the text, there will be also needed a basic knowledge of algebraic structures, like ring, ideals,
modules and algebras, for which we refer to [AM69], which is a useful classic resource for an introduction
to basic elements of commutative algebra, or also to [ZS58] and [ZS75]. Moreover, we will treat also
some results about Gröbner bases, leading ideals and saturation of ideals. In this case, we suggest [Eis95]
as a standard reference. Theory of schemes and varieties is necessary as well. Some elementary concepts,
like algebraic sets or Zariski topology, can be found in [Per08] or [Har95]. For arguments a bit more
demanding, instead, there are many other texts which can be consulted. For a more detailed general
overview, we suggest [Har77], [Sha13a] and [Sha13b].

Notation
We include here a list of the main basic notations we use. The other symbols will be introduced and
specified in the various chapters. Anyway, all of these will be included in the Glossary of notations at the
end of the dissertation.

We denote by ⊆ an inclusion with equality allowed, while we use ( to consider a proper inclusion.
For every 𝑛, 𝑘 ∈ N, the binomial coefficient of 𝑛 choose 𝑘 is denoted by(

𝑛

𝑘

)
=

𝑛!
𝑘 !(𝑛 − 𝑘 )!

and, by convection, it is supposed to be equal to 0 whenever 𝑘 > 𝑛.

xi



xii Preface

We denote the sets of natural numbers (including zero), integer numbers, rational numbers, real
numbers and complex numbers with the usual notations, given respectively by N, Z, Q, R, and C. We
denote the ring of integers modulo 𝑛 by Z𝑛 for every 𝑛 ∈ N. The Euler’s constant and imaginary unit will
be written in roman typefaces respectively as "e" and "i".

Given any field K, we denote the usual groups of classical linear algebra in the traditional way, that is,
we use the symbols GL𝑛 (K), SL𝑛 (K), O𝑛 (K) and SO𝑛 (K) to indicate respectively the linear algebraic
group, the special linear group, the orthogonal group and the special orthogonal group over K in dimension
𝑛 ∈ N. The ring of square matrices of order 𝑛 over K is instead denoted by Mat𝑛 (K) and the polynomial
ring in 𝑛 variables 𝑥1, . . . , 𝑥𝑛 is denoted by K[𝑥1, . . . , 𝑥𝑛].

In dealing with any vector space which is different by the one-dimensional ones, we will denote its
elements by boldface writing and its coordinates numbered with subscript. For instance, we use the
notation

a = (𝑎1, 𝑎2) ∈ R2

with 𝑎1, 𝑎2 ∈ R. The same holds for multi-indices and monomials, setting, given the vector of coordinates

x = (𝑥1, . . . , 𝑥𝑛)

and a multi-index δ = (𝛿1, . . . , 𝛿𝑛), every monomial in K[𝑥1, . . . , 𝑥𝑛] is written as

xδ = 𝑥
𝛿1
1 · · · 𝑥

𝛿𝑛
𝑛 .

In particular, the degree of the above monomial is denoted by the quantity

|δ | = 𝛿1 + · · · + 𝛿𝑛 .

Moreover, we denote every linear form in K[𝑥1, . . . , 𝑥𝑛], i.e. every polynomial of degree 1, associated to
the point a ∈ K𝑛 as

𝑙a = (a · x) = 𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 .

For every linear application 𝑓 : 𝑉 →𝑊 between any two vector spaces𝑉 and𝑊 , we will denote by
Ker 𝑓 and Im 𝑓 respectively the kernel and the image of 𝑓 . The dual space of𝑉 will be denoted by𝑉 ∗.

In describing summation of powers of linear forms, if not specified, the subscript on the right standing
alone will denote the variable varying among all the possible natural values numbering the variables,
while the superscript on the right will establish the number of summands of the summation. Moreover,
the plus-minus sign ± will denote that both of the signs must be considered among the summation. For
instance, the sum

𝑓 (𝑥1, 𝑥2, 𝑥3) =
∑︁4

𝑗
(𝑥1 ± 𝑥𝑗 )2

consists of the four summands (𝑥1 + 𝑥2)2, (𝑥1 − 𝑥2)2, (𝑥1 + 𝑥3)2 and (𝑥1 − 𝑥3)2.
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Introduction

The determination of the minimum natural number 𝑟 such that a homogeneous polynomial of degree
𝑑 ∈ N can be written as a sum of 𝑟 different 𝑑-th powers of linear forms is a classical problem. This
value is also known as Waring rank of a polynomial, taking its name by E. Waring. He posed in 1770 the
problem of determining if, for every natural number 𝑘 , there exists a positive integer 𝑠 such that every
natural number is the sum of at most 𝑠 natural numbers raised to the power 𝑘 (see [War91]). This old and
fascinating problem of number theory, after remaining unsolved for over a century, has been completely
solved by D. Hilbert in 1909, who provided in [Hil09] a proof of the affirmative answer, thanks to the so
called Hilbert-Waring Theorem.

Sum of powers and Waring rank
Given a field K and a homogeneous polynomial 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛] of degree 𝑑 , a decomposition of 𝑓 of
size 𝑟 ∈ N is a linear combination of the 𝑑-th powers of 𝑟 different linear forms 𝑙1, . . . , 𝑙𝑟 ∈ K[𝑥1, . . . , 𝑥𝑛]1,
which results to be equal to 𝑓 , namely,

𝑓 =

𝑟∑︁
𝑗=1

_𝑗 𝑙
𝑑
𝑗

for some _1, . . . , _𝑟 ∈ K. If K is an algebraically closed field, then the definition is limited to the existence
of 𝑟 different linear forms 𝑙1, . . . , 𝑙𝑟 ∈ K[𝑥1, . . . , 𝑥𝑛]1 such that

𝑓 =

𝑟∑︁
𝑗=1

𝑙𝑑𝑗 .

For example (see [BBT13, Section 2]), a minimal Waring decomposition of the quadratic form 𝑥1𝑥2 ∈
K[𝑥1, 𝑥2] is given by the formula

𝑥1𝑥2 =
1
4
(𝑥1 + 𝑥2)2 −

1
4
(𝑥1 − 𝑥2)2.

A minimal decomposition of the form 𝑥1𝑥2𝑥3 ∈ K[𝑥1, 𝑥2, 𝑥3] is instead given by

𝑥1𝑥2𝑥3 =
1
24
(𝑥1 + 𝑥2 + 𝑥3)3 −

1
24
(𝑥1 + 𝑥2 − 𝑥3)3 −

1
24
(𝑥1 − 𝑥2 + 𝑥3)3 +

1
24
(𝑥1 − 𝑥2 − 𝑥3)3.

For every homogeneous polynomial 𝑓 , we denote the Waring rank of 𝑓 by rk 𝑓 .
The analogous of the Waring problem for homogeneous polynomials, also known as Big Waring

problem, concerns the determination of the minimum number 𝑟 such that a general form of degree 𝑑

admits a decomposition of size 𝑟 , also called a Waring decomposition. With the term general, we mean
any form belonging to an open and dense subset in the Zariski topology. As one could expect, the question
was not so easy and it was left unanswered up to 1995, when the problem was solved by J. Alexander and
A. Hirschowitz in [AH95]. They established in the famous Alexander-Hirschowitz theorem that the rank
of a general polynomial in 𝑛 variables of degree 𝑑 is given by a precise formula depending on 𝑛 and 𝑑 ,
with the exception of a few cases, regarding some lower values of the degree and the number of variables.

1



2 Introduction

Theorem (J. Alexander, A. Hirschowitz). The Waring rank of a general form 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛]𝑑 is given
by the formula

rk 𝑓 =

⌈
1
𝑛

(
𝑑 + 𝑛 − 1

𝑑

)⌉
,

with the exceptions given by the following cases:
• 𝑑 = 2;
• 𝑛 = 3, 𝑑 = 4;
• 𝑛 = 4, 𝑑 = 4;
• 𝑛 = 5, 𝑑 = 3;
• 𝑛 = 5, 𝑑 = 4.

More recently, this result has been accurately analyzed by M. C. Brambilla and G. Ottaviani, who
provided a shorter version of the proof in [BO08], to which we refer for the details.

However, despite the Big Waring problem has been completely understood, the determination of the
rank of a specific polynomial remains in general a hard issue and, currently, there is no general efficient
method to solve it, or even to determine some suitable decompositions, independently by the form we
consider. Nevertheless, many partial results and methods to attack the Waring problem for a polynomial
have been produced among the years. For a more detailed overview about Waring decompositions, there
are many texts and papers in the literature. We refer, for instance, to [BCC+18], [BGI11], [CGO14],
[Lan12], and [LO13].

For the special case of two variables, the determination of the rank is quite easier to approach and
completely analyzed (see [Syl51b] or the more recent work of G. Comas and M. Seiguer in [CS11]). In
particular, there are many algorithms leading to explicit decompositions. The first of these is known
as Sylvester algorithm, that can be found in [Syl86] or, with a more recent version, also in [CS11],
[BGI11] and [BCMT10]. It has further been analyzed among the years, with several other variants (see
e.g. [BGI11, Algorithm 2]).

For what concerns instead a higher number of variables, there are still some algorithms which, under
highly specific hypothesis, can provide decompositions. One can see, for instance, the generalization of
Sylvester algorithms provided by J. Brachat, P. Comon, B. Mourrain, and T. Tsigaridas in [BCMT10,
Algorithm 7.1]. However the determination of convenient decompositions for an arbitrary homogeneous
polynomial remains in general a quite difficult argument. Despite this, there are several cases related
to some specific classes of polynomials, for which the problem has been solved partially with some
estimations on lower and upper bound on the rank, or even completely. One of the most important examples
has been provided in 2012 by E. Carlini, M. V. Catalisano, and A. V. Geramita in [CCG12, Proposition
3.1]. Thanks to this result, they completely solved the Waring problem for monomials, proving that, for
every monomial

𝑔 = 𝑥
𝛼1
1 · · · 𝑥

𝛼𝑛
𝑛 ∈ K[𝑥1, . . . , 𝑥𝑛]𝑑

of degree 𝑑 , with
𝛼1 + · · · + 𝛼𝑛 = 𝑑, 1 ≤ 𝛼1 ≤ · · · ≤ 𝛼𝑛 ,

its rank is given by the formula

rk 𝑔 =
1

𝛼1 + 1

𝑛∏
𝑗=1
(𝛼𝑗 + 1).

A very useful subject in view of the Waring problem for polynomials is represented by the apolarity
theory. Given a homogeneous polynomial 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛]𝑑 , it is well known that the ideal of the points
appearing in one of its decomposition is contained in another specific ideal. This is the so called apolar
ideal of a 𝑓 , denoted by 𝑓 ⊥, and we will introduce it in section 1.2. The catalecticant map of 𝑓 is defined
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by the derivative action of differential polynomial operators on 𝑓 . That is, for every monomial yα such
that |α| = 𝑑 , the map obtained extending by linearity the function defined on monomials by

Cat𝑓
(
yα

)
=
𝜕 |α | 𝑓

𝜕xα .

The apolar ideal can thus be identified as the kernel of this map and the crucial correspondence described
above is essentially the statement of a famous result known as the apolarity lemma (cf. Lemma 1.2.17,
[IK99, Lemma 1.15]).

Lemma (Apolarity Lemma). Let 𝑍 = {[a1], . . . , [a𝑟 ]} ⊆ P
(
K𝑛

)
and let 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛]𝑑 . Then the

following conditions are equivalent:
(1) 𝑓 =

∑𝑟
𝑗=1 _𝑗 (a𝑗 · x)𝑑 for some _1, . . . , _𝑟 ∈ K;

(2) 𝐼 (𝑍 ) ⊆ 𝑓 ⊥.

Thanks to this correspondence, the determination of such ideals leads to explicit decompositions, up to
solving a linear system. This fact allows, in particular, to get some information on the decompositions by
analyzing algebraic invariants, like Hilbert function. Apolarity theory, which represents a quite classical
subject, has been mostly formalized in 1999 by A. Iarrobino and V. Kanev in [IK99], to which we refer to
get further details.

Another related problem is to determine when a given decomposition of a homogeneous form is
unique. Probably the most classical result related to this question is based on generic forms and is due to
J. J. Sylvester. It is historically known as the Sylvester’s Pentahedral Theorem, appearing for the first time
in [Syl51a] in 1851 (see also [Dol12, Theorem 9.4.1] for a more recent reference).

Theorem (J. J. Sylvester). Every generic cubic form 𝑓 in four variables can uniquely be written, up to
scalars, as

𝑓 = 𝑙3
1 + 𝑙

3
2 + 𝑙

3
3 + 𝑙

3
4 + 𝑙

3
5

where 𝑙1, . . . , 𝑙5 are non-proportional linear forms in four variables.

Other classical examples are provided for the case of ternary forms in degree 5 by H. W. Richmond
in [Ric04] and by F. Palatini in [Pal03], while the same argument has been treated from a more modern
point of view in several recent papers (see e.g. [GM19], [Mel09], and [RS00]). Furthermore, it is quite
noticeable the analysis of the uniqueness of decompositions in the case of polynomials which are invariant
under the action of a linear group, clearly up to suitable transformations. One of the most clarifying
examples in this sense, as we will see later, is represented by the power(

𝑥2
1 + 𝑥

2
2 + 𝑥

2
3
)2
.

This specific form, as proved by B. Reznick in [Rez92, Theorem 9.13], can be represented by a sum of 6
different 4-th powers of linear forms, which must correspond to the vertices of a regular icosahedron.

Apart from the classical concept of Waring rank, several other notions of rank of polynomials have been
introduced among the years. A very important one is represented by the border rank of a homogeneous
polynomial 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛]𝑑 , denoted by brk 𝑓 . This is the minimum number 𝑟 ∈ N such that

𝑓 = lim
𝑡→0

𝑟∑︁
𝑗=1

𝑙𝑑𝑗 (𝑡 ),

for a suitable family {𝑙 𝑗 (𝑡 )}𝑡 ∈R for every 𝑗 = 1, . . . , 𝑟 .
Thanks to the theory of secant varieties (see [Har95, Lecture 8] for a general overview), a strong

connection between rank of polynomials and algebraic varieties has been developed, especially for what
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concerns the theory of secant varieties. We will introduce it briefly in subsection 1.2.2. We can also find
many elements in the literature concerning this subject, such as the above mentioned texts [BCC+18],
[CGO14], [LO13] or also other papers, such as [BL13], [Bal10a], and [Bal10b].

In these order of ideas, of noticeable relevance is the 𝑑-Veronese embedding, defined as

a𝑑 : P
(
K𝑛

)
P
(
K(𝑑+𝑛−1

𝑑 )
)

[𝑙 ]
[
𝑙𝑑

]
,

←→

←� →

and its image a𝑑
(
K𝑛

)
, known as the 𝑑-Veronese variety, to which the quite recent notions of cactus

rank and smoothable rank of a homogeneous form are well connected. These last two concepts will be
presented in subsection 1.2.2 and are a little bit beyond our purposes, but they can be compared with rank
and border rank and effectively permit to establish upper bounds. The cactus rank corresponds exactly to
the notion of scheme length, which has been first introduced in 1999 by A. Iarrobino and V. Kanev (see
[IK99, Definition 5.1]). It is defined as the natural value

crk 𝑓 = min
{
𝑟 ∈ N

�� ∃ 0-dim. scheme 𝑍 ⊆ a𝑑
(
P𝑛−1): deg𝑍 = 𝑟 , [ 𝑓 ] ∈ 〈𝑍 〉

}
.

The term cactus rank has been used for the first time by K. Ranestad and F.-O. Schreyer in [RS11],
inspired by the notion of cactus variety, defined by W. Buczyńska and J. Buczyński in [BB14]. It has been
analyzed in several other papers, such as [Bal18], [BR13], or [BBG19]. The smoothable rank is defined
analogously, with the only difference that the scheme contained in the image of the Veronese embedding
must be smoothable, namely, a limit of smooth subschemes. That is the natural value

smrk 𝑓 = min
{
𝑟 ∈ N

�� ∃ 0-dim. smoothable scheme 𝑍 ⊆ a𝑑
(
P𝑛−1): deg𝑍 = 𝑟 , [ 𝑓 ] ∈ 〈𝑍 〉

}
.

This last definition appeared for the first time in [RS11], motivated by several results appearing in [BGI11],
[BB14], and [BGL13]. Our interest in smoothable rank is due to a comparison with border rank (see
[BBM14, Remark 2.7]), stating that the inequality

brk 𝑓 ≤ smrk 𝑓

holds for every homogeneous polynomial 𝑓 . In particular, we will use it to determine the border rank of
any power of a ternary quadratic form.

Tensor decomposition and applications

Given a tensor𝑇 ∈ 𝑉 ⊗𝑑 , where𝑉 is a finite dimensional vector space over a field of characteristic 0, the
rank of𝑇 is defined as the minimum number 𝑟 ∈ N such that𝑇 can be written as sum of 𝑟 tensors of the
form

𝑣1 ⊗ · · · ⊗ 𝑣𝑛 ,
for some 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 . Such tensors are called decomposable or rank one tensors. Thus, the rank of𝑇 is
the value

rk𝑇 = min
 𝑟 ∈ N

������ 𝑇 =

𝑟∑︁
𝑗=1

𝑣𝑗 ,1 ⊗ · · · ⊗ 𝑣𝑗 ,𝑛 : 𝑣𝑗 ,𝑘 ∈ 𝑉 , 𝑘 = 1, . . . , 𝑛


and, analogously, the border rank of𝑇 is defined as

brk𝑇 = min
 𝑟 ∈ N

������ 𝑇 = lim
𝑡→0

𝑟∑︁
𝑗=1

𝑣𝑗 ,1(𝑡 ) ⊗ · · · ⊗ 𝑣𝑗 ,𝑛 (𝑡 ) : {𝑣𝑗 ,𝑘 (𝑡 )}𝑡 ∈C ⊆ 𝑉 , 𝑘 = 1, . . . , 𝑛
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It is quite easy to show that any 𝑑-graded homogeneous polynomial in 𝑛 variables can be naturally
viewed as a symmetric tensor in the 𝑑-th symmetric power 𝑆𝑑K𝑛 (cf. Proposition 1.2.3). This allows to
analyze a homogeneous polynomial from the point of view of tensors. In particular, the symmetric rank
and the symmetric border rank of a symmetric tensor 𝑆 ∈ 𝑆𝑑𝑉 are defined respectively as

rks 𝑆 = min
 𝑟 ∈ N

������ 𝑆 =

𝑟∑︁
𝑗=1

𝑣⊗𝑑𝑗 : 𝑣𝑗 ∈ 𝑉


and

brks 𝑆 = min
 𝑟 ∈ N

������ 𝑆 = lim
𝑡→0

𝑟∑︁
𝑗=1

𝑣⊗𝑑𝑗 (𝑡 ) : {𝑣𝑗 (𝑡 )}𝑡 ∈C ⊆ 𝑉
 .

Especially in recent years, tensor decomposition turned out to have many applications in several
scientific branches, both theoretical and applied. In general, for applications, scientific data are collected in
multi-dimensional arrays, which are treated as tensors. Some surveys about several uses related to tensor
decompositions are provided by J. M. Landsberg in [Lan12, Chapter 1] and by B. W. Bader and T. G. Kolda
in [KB09]. Among the more theoretical usages, we can highlight complexity of matrix multiplication (see
e.g. [Str83]), the P versus NP complexity problem (see e.g. [Val01]), and the entanglement in quantum
physics (see e.g. [BC12]). For what concerns instead applications to more applied sciences, we can
consider independent component analysis and blind identifications in signal processing (see respectively
[Com94] and [SGB00]), the study of phylogenetic invariants (see e.g. [AR08]), bioinformatics and
spectroscopy (see e.g. [CJ10]).

Of great interest, however, are also the applications of symmetric tensor decomposition. In [BGI11, Sec-
tion 1], A. Bernardi, A. Gimigliano, and M. Idà briefly summarize some uses, such as telecommunications
in electrical engineering (see [Che11] and [DLC07]) or cumulant tensors in statistics (see [McC87]).

It is by this reason that the determination of the Waring rank of a polynomial or, equivalently, the
symmetric rank of a symmetric tensor, despite its classical origins, still preserves a special role even in
more recent days. The concept of border rank of an arbitrary tensor, in particular, was introduced for the
first time in 1979 by D. Bini, M. Capovani, G. Lotti, and F. Romani in [BCRL79]. It was then named that
way in the following year still by D. Bini, G. Lotti, and F. Romani in [BLR80], where they defined it in a
more practical way as the minimum number of decomposable tensors requested to approximate a tensor
with an arbitrarily small error. This is the reason why it can be much useful in cases in which specific
tensors have a particularly high gap between rank and border rank (see e.g. [Zui17]). Hence, in a more
practical way, these could be approximated, in a more convenient way, by tensors of much lower rank.

Powers of quadratic forms
As one could expect, many forms own a special role in both classical and modern subjects, appearing
several time in the literature. The central objects we will consider, on the field C of complex numbers, are
represented by the powers of the quadratic forms. It is well known that, by the classical Silvester’s law
([Syl52]), every quadratic form with rank equal to 𝑛 ∈ N can be written as

𝑞𝑛 = 𝑥2
1 + · · · + 𝑥

2
𝑛 .

Thus, we can restrict ourselves to the study of the polynomial

𝑞 𝑠
𝑛 =

(
𝑥2

1 + · · · + 𝑥
2
𝑛

)𝑠
for suitable 𝑛, 𝑠 ∈ N.
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Our aim is to gather as much information as possible about the rank and the border rank of any power
of the form 𝑞𝑛 . While for the case of binary forms the problem is quite easy and completely solved, we
cannot say the same for the general case in more variables, about which there is not much information in
the literature.

The most complete analysis on this subject up to now is due to B. Reznick, who provides in [Rez92]
an accurate survey about both classical and more original results over R. Following the greater relevance
which real numbers used to have in applications, with respect to complex ones, B. Reznick focuses in his
notes on real Waring decomposition, to which he refers as representations. In particular, to get a new
vision of this problem, especially considering the recent applications of which tensors are endowed, we
would consider also the complex case of Waring decompositions. In relation to the powers of quadratic
forms, this represents a new approach, apart from the classical point of view.

Several uses due to decompositions of powers of quadratic forms have been listed by B. Reznick in
[Rez92, Section 8], such as in number theory, to study the Waring problem, or even in functional analysis.
The quadratic form 𝑞𝑛 corresponds exactly, in the language of differential operators, to the well known
Laplace operator

Δ =
𝜕2

𝜕𝑥2
1
+ · · · + 𝜕2

𝜕𝑥2
𝑛

,

which has a special role in analysis.
By an algebraic point of view, we can recall the decomposition of the 𝑑-th symmetric power 𝑆𝑑C𝑛 as

𝑆𝑑C𝑛 =

b 𝑑2 c⊕
𝑗=0

𝑞
𝑗
𝑛H

𝑑−2𝑗
𝑛 ,

where H𝑑−2𝑗
𝑛 represents the space of harmonic polynomials of degree 𝑑 − 2𝑗 in 𝑛 variables for every

𝑗 ∈ N. This elegant decomposition, which has been exposed in details by R. Goodman and N. R. Wallach
in [GW98, Corollary 5.2.5], takes on much relevance, considering its invariance under the action of the
orthogonal complex group O𝑛 (C).

This last decomposition represents also an important tool we use for the determination of the apolar
ideal of 𝑞 𝑠

𝑛 , representing actually the first result we provide, which will be analyzed in details in chapter 2.
B. Reznick already remarks that the catalecticant matrices of 𝑞 𝑠

𝑛 have all full rank; in particular, denoting
by𝑇𝑛,𝑠 the size of the middle catalecticant matrix, equal to

𝑇𝑛,𝑠 =

(
𝑠 + 𝑛 − 1

𝑠

)
,

it easily follows the lower bound (cf. Corollary 2.2.18)

rk
(
𝑞 𝑠
𝑛

)
≥ brk

(
𝑞 𝑠
𝑛

)
≥ 𝑇𝑛,𝑠 .

We improve this basic result for the polynomial 𝑞 𝑠
𝑛 by describing exactly the structure of the kernels of the

various catalecticant matrices, that is, we prove the following

Theorem. For every 𝑛, 𝑠 ∈ N (
𝑞 𝑠
𝑛

)⊥
=

(
H 𝑠+1

𝑛

)
.

Once we know how the apolar ideal is made, our problem turns into the analysis of ideals of points
contained in it. This characterization is useful in determining explicit decompositions presenting the same
pattern, as we will see in chapter 4. Moreover, for our purposes, it is crucial for determining the border
rank for any power in the case of three variables. B. Reznick provides in [Rez92, Chapters 8-9] both
classical and new decompositions, giving also proofs of minimality for some of these. In particular, he
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analyzes, using the language of spherical designs (see [DGS77]), the existence and the uniqueness of tight
representations, namely, real decompositions having size equal to the rank of the middle catalecticant
matrix. He summarizes this in the following

Theorem ([Rez92, Proposition 9.2]). If 𝑞 𝑠
𝑛 has a real tight decomposition, then one of the following

conditions holds:
(1) 𝑠 = 1 or 𝑛 = 2;
(2) 𝑠 = 2 and 𝑛 = 3;
(3) 𝑠 = 2 and 𝑛 = 𝑚2 − 2 for some odd 𝑚 ∈ N;
(4) 𝑠 = 3 and 𝑛 = 3𝑚2 − 4 for some 𝑚 ∈ N;
(5) 𝑠 = 5 and 𝑛 = 24.

In particular, this theorem guarantees that there is no tight representation for 𝑠 ≥ 6. We partially
generalize this theorem for complex numbers, proving in chapter 3 for 𝑠 = 2 the following

Theorem. If 𝑞2
𝑛 has a tight decomposition, then 𝑛 = 3 or 𝑛 = 𝑚2 − 2 for some odd number 𝑚 ∈ N.

In the case of 𝑠 = 3, we get a less powerful result than the statement proposed by B. Reznick.

Theorem. If 𝑞3
𝑛 has a tight decomposition, then 𝑛 ≡ 2 mod 3.

The proof of this results has been made following exactly the same strategy that B. Reznick uses in
[Rez92, pp. 130-132], but the possibility of using it is not so immediate. Indeed, he uses the important
fact that every tight representation must be first caliber, namely, every point of such a decomposition must
have the same norm, that is, if

𝑞 𝑠
𝑛 =

𝑟∑︁
𝑗=1
(a𝑗 · x)2𝑠

is a tight real decomposition with 𝑟 ∈ N and a1, . . . , a𝑟 ∈ R𝑛 , then

|a𝑗 | = |a𝑘 |

for every 1 ≤ 𝑗 , 𝑘 ≤ 𝑟 . Denoting by 𝐵𝑛,𝑠 the value of the norm of every point raised to 2𝑠 , for such a tight
decomposition, we have (see [Rez92, Corollary 8.18])

𝐵𝑛,𝑠 = |a𝑗 |2𝑠 =
1

𝑇𝑛,𝑠

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

=

(
𝑠 + 𝑛 − 1

𝑠

)−1 𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

.

Considering this, B. Reznick determines the kernel of the polynomial

𝑞2
𝑛 − 𝐵𝑛,2𝑥

4
1 ,

which must be necessarily non-zero and imposes consequent conditions to the remaining point of the
decompositions.

The new fact that allows us to generalize the result provided by B. Reznick, extending the notion
of first caliber to complex decompositions, is that every tight complex decomposition is first caliber as
well. In fact, we prove in section 3.1 the following theorem, which implies in particular that every tight
decomposition does not contain any isotropic point.

Theorem. Every tight decomposition

𝑞 𝑠
𝑛 =

𝑟∑︁
𝑘=1
(a𝑘 · x)2𝑠
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is first caliber. In particular,

(a𝑘 · a𝑘 )𝑠 =
1
𝑟

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

.

for every 𝑘 = 1, . . . , 𝑟 .

In the case of exponent 𝑠 = 2, a quadrature formula presented by A. H. Stroud in [Str67a] is used by
B. Reznick to prove that, for 𝑛 = 4, 5, 6, the real rank of 𝑞2

𝑛 is equal to𝑇𝑛,2 + 1, while in the case of 𝑛 = 7,
it gives a tight decomposition of size𝑇7,2. By this fact, we prove another result about the rank of 𝑞2

𝑛 . This
establishes its exact rank for most of the values assumed by 𝑛 ≥ 9 and partially solves the determination
of the rank in the case of 𝑠 = 2.

Theorem. Let 𝑛 ≥ 3. Then the following conditions hold:
(1) if 𝑛 = 3, 7, 23, then rk

(
𝑞2
𝑛

)
= 𝑇𝑛,2;

(2) if 𝑛 > 23 and 𝑛 = 𝑚2 − 2 for some odd number 𝑚 ∈ N, then𝑇𝑛,2 ≤ rk
(
𝑞2
𝑛

)
≤ 𝑇𝑛,2 + 1;

(3) if 𝑛 = 8, then rk
(
𝑞2
𝑛

)
≥ 𝑇𝑛,2 + 1;

(4) otherwise, rk
(
𝑞2
𝑛

)
= 𝑇𝑛,2 + 1.

Apart this general properties, B. Reznick actually studies the real rank, also called width, for several
specific cases, including the one of two variables. For this case he concludes that all the points of such
minimal decompositions must be the vertices of a regular polygon inscribed in a circle of radius depending
only on 𝑠 . Again, thanks to apolarity, we are able to generalize this fact and also to determine the exact
correspondence between polynomials in the apolar ideal and complex decompositions. The latter are
found to be equivalent, up to complex orthogonal transformations, to the real ones already known.

The other decompositions analyzed by B. Reznick regard ternary forms. The power 𝑞2
3 , in particular,

is quite special. Indeed, each of its minimal decompositions, which has size equal to 6 and hence is tight,
must be composed by points corresponding to the vertices of a regular icosahedron inscribed in a sphere
of radius 5/6. Again, by the first caliber property, we can extend the uniqueness to the complex field
(cf. Theorem 3.3.8). Beside this, denoting by rkR 𝑓 the real rank of a homogeneous polynomial 𝑓 , he
shows also that

rkR
(
𝑞3

3
)
= 𝑇3,3 + 1 = 11, rkR

(
𝑞4

3
)
= 𝑇3,4 + 1 = 16.

The first case is easily obtained by previous results on exponent 𝑠 = 3, while the second one involves
instead a more complicated proceeding. We will see in chapter 5 that the first caliber property imposes
strong conditions for the angle between the various points. In particular, by an analysis through the Gram
matrices of 4 points in the space C3, we achieve to prove the following

Theorem. rk
(
𝑞4

3
)
= 16.

The last analysis we make concerns instead the smoothable rank and the border rank, which represented
up to now a completely unexplored land for this specific polynomial. Indeed, it could seem a quite
surprising fact to state that the border rank of every power a ternary quadratic form is minimal. In
particular, we have

Theorem. For every 𝑠 ∈ N,

smrk
(
𝑞 𝑠

3
)
= brk

(
𝑞 𝑠

3
)
= 𝑇3,𝑠 =

(𝑠 + 1) (𝑠 + 2)
2

.

The central instrument used to verify this is the version of apolarity lemma for schemes. Indeed,
we determine a smoothable 0-dimensional scheme contained in the apolar ideal and supported over a
point. This specific structure can be easily determined for every 𝑠 ∈ N, providing an effective proof of the
theorem.
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Overview
We divide our analysis of the polynomial 𝑞 𝑠

𝑛 into five parts. We start in chapter 1 by reporting some
preliminary material, especially for what concerns Lie groups, Lie algebras and some elements of
representations theory. This last one is quite important in relation to the fact that the form 𝑞 𝑠

𝑛 is invariant
under the action of the orthogonal group O𝑛 (C) and that the space of 𝑑-harmonic polynomialsH𝑑

𝑛 is an
irreducible SO𝑛 (C)-module ([GW98, Theorem 5.2.4]). After that, we present some notions about both
classical and recent apolarity theory, tensor decomposition and secant varieties, such as the apolar ideal,
catalecticant map, the various definitions of tensor ranks and also some basic but necessary results, such
as the classical apolarity lemma and its alternative version for schemes (cf. Lemma 1.2.29).

In chapter 2, we focus our attention on the apolarity action on the polynomial 𝑞 𝑠
𝑛 , determining the

structure of catalecticant matrices for every 𝑛, 𝑠 ∈ N and providing our first main result, proving that the
apolar ideal of 𝑞 𝑠

𝑛 is given by (
𝑞 𝑠
𝑛

)⊥
=

(
H 𝑠+1

𝑛

)
.

Chapter 3, instead, is centered on tight decompositions. We first summarize some known facts and
some results exposed by B. Reznick. Then, we extend his results concerning tight decompositions, focusing
in particular on the fact that every tight decomposition must be first caliber. After that, we analyze all the
decompositions in two variables, proving the uniqueness also for the complex case, and the suitable tight
decompositions for the exponents 𝑠 = 2, 3.

In chapter 4, we provide some general decompositions for different values assumed by 𝑛 ∈ N. In
particular, we first concentrate on the decomposition of 𝑞2

𝑛 , establishing its rank for most of the values of
𝑛 ∈ N, and then we provide some specific decompositions regarding ternary forms, which seems to follow
a quite similar pattern.

Finally, chapter 5 is dedicated to our main result, which is the determination of the border rank of
ternary quadratic forms, in which we show that the smoothable rank of 𝑞 𝑠

𝑛 is equal to the minimal possible
value, that is, the rank of the middle catalecticant. Moreover, by the conditions imposed by the first caliber
decompositions, we are able to guarantee that, also for complex numbers, the rank of the forms 𝑞3

3 and 𝑞4
3

are given by
rk

(
𝑞3

3
)
= 11, rk

(
𝑞4

3
)
= 16.





CHAPTER 1
Preliminaries

Tensor decomposition involves in general several arguments of algebra and geometry. In this chapter we
provide some background material we need to achieve our results.

Section 1.1 is focused on some elements of representations theory. We first recall some basic notions
about Lie groups and Lie algebras. Then, we introduce some theory related to the notion of representation
of these two algebraic structures, focusing on the irreducible ones, for their special role. All the contents
we provide about these arguments can be found in [FH91], [Pro07] and [Ser77]. In addition, to get further
details about Lie groups and Lie algebras, one can also consult many other textbooks, such as, for instance,
[AT11], [GQ20], [GW98], [Kir08], and [MT11]. The latter, in particular, provides a specific overview of
linear algebraic groups.

Section 1.2 deals instead with apolarity theory and decompositions of polynomials. In particular,
we provide a brief overview about rank and border rank of polynomials. The main reference we use for
apolarity is [IK99], but we refer also to [Dol12] to get a more recent point of view. Information about
the various notions of rank for tensors, on the other hand, are quite standard and can be found in many
texts. For a general overview, we refer, as a textbook, to [Lan12]. However, there are also several papers
summarizing the main notions about rank and border rank of symmetric tensors, such as [BCC+18],
[LO13] and [LT10].

1.1 Representation theory
Through this section, we will only consider finite-dimensional vector spaces over an algebraically closed
field C.

1.1.1 Lie groups and Lie algebras
We start by recalling the basic concept of Lie group, which is very important in differential geometry, as
well as in representation theory.

Definition 1.1.1. A differentiable manifold𝐺 is called a Lie group if it owns a structure of algebraic group
such that the product and the inverse maps are differentiable maps. A subset 𝐻 ⊆ 𝐺 is called a closed Lie
subgroup if it is an algebraic subgroup and a submanifold of𝐺 .

All the usual classical group of linear algebra represents the most common examples of Lie groups.
For instance, we can consider the groups GL𝑛 (R), SL𝑛 (R), O𝑛 (R), or SO𝑛 (R) and also their complex
versions. As we will see later, a special class having a special role is that of connected Lie groups. About
this, we recall the following property, a proof of which can be found in [Kir08, Corollary 2.10].

11
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Proposition 1.1.2. Let𝐺 be a Lie group. Then every connected open set𝑈 ⊆ 𝐺 containing the identity
element 𝑒 ∈ 𝐺 generates the connected component𝐺0 of𝐺 containing 𝑒 .

It is possible to define what is a morphism of Lie groups, which is a map preserving both the structures
of manifold and of algebraic group.

Definition 1.1.3. A morphism of Lie groups is a differentiable map 𝑓 : 𝐺 → 𝐻 which is also a group
homomorphism, that is

𝑓 (𝑔1𝑔2) = 𝑓 (𝑔1) 𝑓 (𝑔2)
for every 𝑔1, 𝑔2 ∈ 𝐺 .

We now proceed to introduce Lie algebras.

Definition 1.1.4. A Lie algebra g is a vector space together with a skew-symmetric bilinear map

[ , ] : g × g g,

←→

called bracket, satisfying the Jacobi identity, that is,[
𝑋 , [𝑌 , 𝑍 ]

]
+

[
𝑌 , [𝑍 , 𝑋 ]

]
+

[
𝑍 , [𝑋 ,𝑌 ]

]
= 0

for every 𝑋 ,𝑌 , 𝑍 ∈ g.

Since Lie algebras are vector spaces, it is quite natural to define morphisms of Lie algebras in the
following way.

Definition 1.1.5. Let g and h be two Lie algebras. A linear map 𝑓 : g→ h is a map of Lie algebras if it
preserves bracket, that is,

𝑓 ( [𝑋 ,𝑌 ]) = [ 𝑓 (𝑋 ), 𝑓 (𝑌 )]
for every 𝑋 ,𝑌 ∈ g.

Now, given a differentiable manifold 𝑀 , we denote by X(𝑀 ) the set of vector fields over 𝑀 . It is well
known that, given a Lie group 𝐺 , there is a Lie algebra g that can be naturally associated to it. This is
the tangent space 𝑇𝑒𝐺 to𝐺 at the identity element 𝑒 ∈ 𝐺 , which is called Lie algebra of𝐺 . This fact is
very important for representations of Lie algebras. Anyway, the structure of Lie algebra on 𝑇𝑒𝐺 is not
immediate and can be obtained by considering it as a subspace of X(𝐺 ).

Given two manifolds𝑀 and𝑁 and a diffeomorphism 𝑓 : 𝑀 → 𝑁 , if 𝑋 ∈ X(𝑀 ), then the pushforward
of 𝑋 by 𝑓 is well-defined (see e.g. [Tu11, Example 14.15]) and corresponds to the vector field 𝑓∗𝑋 ∈ X(𝑁 ),
given for every 𝑝 ∈ 𝑀 by

( 𝑓∗𝑋 )𝑓 (𝑝) = d𝑓𝑝 (𝑋𝑝 ),
where d𝑓𝑝 : 𝑇𝑝𝑀 → 𝑇𝑓 (𝑝)𝑁 is the differential map of 𝑓 at 𝑝 . If we consider the left multiplication map

𝐿ℎ : 𝐺 𝐺

𝑔 ℎ𝑔 ,

←→

←�→

that is clearly a diffeomorphism of Lie groups with inverse 𝐿ℎ−1 = 𝐿ℎ−1 . We have the following definition.

Definition 1.1.6. A vector field 𝑋 ∈ X(𝐺 ) over a Lie group𝐺 is left-invariant if, for every ℎ ∈ 𝐺 ,

(𝐿ℎ)∗𝑋 = 𝑋 ,

that is
d(𝐿ℎ)𝑔 (𝑋𝑔 ) = 𝑋ℎ𝑔 .
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Denoting by 𝐿 (𝐺 ) the vector space of all left-invariant vector fields on 𝐺 , it turns out that 𝑇𝑒𝐺 is
naturally isomorphic to 𝐿 (𝐺 ) via the isomorphism

Φ : 𝐿 (𝐺 ) 𝑇𝑒𝐺

𝑋 𝑋𝑒 .

←→

←� →

It is clear that Φ represents an isomorphism, since, by definition of left-invariant vector field, we must have

𝑋𝑔 =
(
(𝐿𝑔 )∗𝑋

)
𝑒 = d(𝐿𝑔 )𝑒 (𝑋𝑒 )

for each 𝑔 ∈ 𝐺 . Thus, the vector field 𝑋 is uniquely defined. Finally, we can define the bracket on 𝑇𝑒𝐺
given for every 𝑋𝑒 ,𝑌𝑒 ∈ 𝑇𝑒𝐺 by

[𝑋𝑒 ,𝑌𝑒 ] = [𝑋 ,𝑌 ]𝑒 ,

which in fact represents a well-defined bracket (see [Tu11, Proposition 16.10]), that provides the structure
of Lie algebra on g (for further details about the construction of the Lie algebra associated to a Lie group,
we refer to [AT11], [GQ20], or [Tu11])

We now provide the construction of the exponential map of a Lie group𝐺 , which allows us to determine
the values of a morphism of Lie groups by its differential at the identity element 𝑒 ∈ 𝐺 . Let us start by
recalling the notion of integral curve of a vector field.

Definition 1.1.7. Let 𝑋 ∈ X(𝑀 ) be a vector field over a manifold 𝑀 and let 𝑝 ∈ 𝑀 . Let 𝐼 ⊆ R be an
interval such that 0 ∈ 𝐼 . If 𝛾 : 𝐼 → 𝑀 is a curve such that 𝛾 (0) = 𝑝 and

𝛾 ′(𝑡 ) = 𝑋𝛾 (𝑡 )

for every 𝑡 ∈ 𝐼 , then 𝛾 is said to be an integral curve for 𝑋 passing through 𝑝 .

It is possible to show that for every 𝑋 ∈ X(𝑀 ) and every point 𝑝 ∈ 𝑀 , there exists a unique maximal
integral curve for 𝑋 passing through 𝑝 . The proof of this fact is based on the local existence theorem for
differential equations (see e.g. [Wal98, Section III.13.V] and [Lan95, Section IV.1]) and involves also the
concept of local flow of a vector field over a manifold. To see this, we refer to [Lan99, Section IV.2].

Definition 1.1.8. Let𝐺 be a connected Lie group and let \ : R→ 𝐺 a differentiable map. Then \ is said
to be a one-parameter subgroup of𝐺 if it is also a homomorphism of groups, that is

\ (𝑠 + 𝑡 ) = \ (𝑠 )\ (𝑡 )

for every 𝑠 , 𝑡 ∈ R.

Next proposition is crucial to obtain exponential maps. However, its proof is quite long and we omit it.
To see it, one can consult, for instance. [AT11, Lemma 3.6.2] or [Kir08, Proposition 3.1]. It reveals that
the integral curve of a Lie group𝐺 is in fact the only one-parameter subgroup of𝐺 .

Proposition 1.1.9. Let𝐺 be a Lie group and let g be its Lie algebra. If 𝑣 ∈ g, then there exists a unique
one-parameter subgroup 𝛾𝑣 : R→ 𝐺 of𝐺 such that

𝛾 ′𝑣 (0) = 𝑣.

For every 𝑣 ∈ g, the map 𝛾𝑣 introduced in Proposition 1.1.9 is called the one-parameter subgroup
associated to 𝑣 and owns a special role in connecting Lie groups and their associated Lie algebras. The
uniqueness of 𝛾𝑣 implies that, given any _ ∈ R, we have

𝛾𝑣 (_𝑡 ) = 𝛾_𝑣 (𝑡 ). (1.1.10)
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This follows immediately from the equalities

d
d𝑡
𝛾𝑣 (_𝑡 )

����
𝑡=0

= _𝛾 ′𝑣 (_𝑡 )
��
𝑡=0 = _𝛾 ′𝑣 (0) = _𝑣.

Definition 1.1.11. Let𝐺 be a Lie group and let g be its Lie algebra. The exponential map of𝐺 is the map

exp: g 𝐺

𝑋 𝛾𝑋 (1),

←→

←�→

where 𝛾𝑋 : g→ 𝐺 is the one-parameter subgroup associated to 𝑋 .

For every 𝑣 ∈ g, the one-parameter subgroup 𝛾𝑣 is uniquely determined by the curve 𝜎 (𝑡 ) = 𝑡𝑣 .
Indeed, by relation (1.1.10), we have

𝛾𝑣 (𝑡 ) = 𝛾𝑡𝑣 (1) = exp(𝑡𝑣 ). (1.1.12)

It can be easily proved, by the definition of local flow, that the exponential map is differentiable. We refer
to [Spi79, Chapter 10] for more explicit details. We focus in particular on the fact that the differential of
the exponential map at the identity element of a Lie group is trivial (see e.g. [Kir08, Theorem 3.7]).

Proposition 1.1.13. Let𝐺 be a Lie group and let g be its Lie algebra. Then:
(1) the differential of the exponential map at 0

d(exp)0 : 𝑇0g � g→ g

corresponds to the identity map;
(2) the exponential map exp: g → 𝐺 is a local diffeomorphism at 0 ∈ g; that is, there exist an open

neighborhood𝑈0 of 0 such that
exp

��
𝑈0

: 𝑈0 → exp(𝑈0)

is a diffeomorphism.

Proof. (1). Given 𝑣 ∈ g, let us consider the curve

𝜎 : R g

𝑡 𝑡𝑣 .

←→

←�→

Then we have 𝜎 ′(0) = 𝑋 and

d(exp)0(𝑣 ) = (exp ◦𝜎) ′(0) = d
d𝑡

exp(𝑡𝑣 )
����
𝑡=0

= 𝑣,

where the last equality follows by 1.1.12.
(2). It directly follows by point (1) and by the Inverse Function Theorem (see e.g. [Spi65, Theorem

2-13]), which states that any differentiable map of manifolds 𝑓 : 𝑀 → 𝑁 is a local diffeomorphism at a
point 𝑝 ∈ 𝑀 if and only if the differential map d𝑓𝑝 of 𝑓 at 𝑝 is an isomorphism. �

Next proposition represents a crucial fact for exponential maps.
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Proposition 1.1.14. If 𝑓 : 𝐺 → 𝐻 is a homomorphism of Lie groups, then

exp ◦ d𝑓𝑒 = 𝑓 ◦ exp,

that is, the diagram

g h

𝐺 𝐻

←→d𝑓𝑒

←→exp ←→ exp

←→𝑓

commutes.

Proof. By Proposition 1.1.9 and formula (1.1.12), it is sufficient to prove that the curve 𝑓
(
exp(𝑡𝑣 )

)
is the

one-parameter subgroup associated to d𝑓𝑒 (𝑣 ). Thus, observing that

d
d𝑡

𝑓
(
exp(𝑡𝑣 )

) ����
𝑡=0

= d𝑓𝑒
(

d
d𝑡

exp(𝑡𝑣 )
����
𝑡=0

)
= d𝑓𝑒 (𝑣 ),

we get the statement. �

We conclude by the following result, which immediately follows from Proposition 1.1.14.

Corollary 1.1.15. Let𝐺 and 𝐻 be two Lie groups and let 𝑓 : 𝐺 → 𝐻 a morphism of Lie groups. If𝐺 is
connected, then 𝑓 is uniquely determined by the differential map of 𝑓 at 𝑒

d𝑓𝑒 : g→ h.

Proof. By Proposition 1.1.14, we know that the diagram

g h

𝐺 𝐻

←→d𝑓𝑒

←→exp ←→ exp

←→𝑓

commutes. Moreover, it follows by Proposition 1.1.13 that the exponential map exp: g→ 𝐺 is a local
diffeomorphism at 0 ∈ g; in particular, the image of exp contains an open neighborhood of 𝑒 ∈ 𝐺 .
Therefore, since𝐺 is connected, we have by Proposition 1.1.2 that𝐺 is generated by exp(g). This means
that 𝜌 is uniquely determined by its differential d𝜌𝑒 . �

For completeness, we provide further notions about Lie algebras, given in next definition. These will
be necessary to analyze the Lie algebra of the Lie group SL2C.

Definition 1.1.16. A Lie subalgebra h of a Lie algebra g is an ideal of g if

[𝑋 ,𝑌 ] ∈ h

for every 𝑋 ∈ h and 𝑌 ∈ g. A Lie algebra is simple, if it is non-commutative and does not contain any
nonzero proper ideal. A Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
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1.1.2 Representations and modules
Definition 1.1.17. A group homomorphisms 𝜌 : 𝐺 → GL(𝑉 ) is called a representation of𝐺 . In this case,
𝑉 is said to be a𝐺 -module.

If there is no risk of confusion, given any𝐺 -module𝑉 , we write 𝑔 · 𝑣 to describe the action of 𝑔 on 𝑣 ,
for every 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉 , without specifying the associated representation.

Definition 1.1.18. Let𝑉 be a𝐺 -module. A subset𝑈 ⊂ 𝑉 is said to be𝐺 -invariant if 𝑔 · 𝑢 ∈ 𝑈 for every
𝑔 ∈ 𝐺 and 𝑢 ∈ 𝑈 . If𝑈 is also a linear subspace of𝑉 , then𝑈 is said to be a𝐺 -submodule of𝑉 .

Clearly, a𝐺 -submodule𝑈 of𝑉 has a natural structure of𝐺 -module, given by

𝑔 · 𝑢 = 𝜌 (𝑔 ) |𝑈 (𝑢),

for every 𝑢 ∈ 𝑈 and 𝑔 ∈ 𝐺 .

Definition 1.1.19. Let𝑉 and𝑊 be two𝐺 -modules. A𝐺 -equivariant map (or a𝐺 -modules homomorphism)
from𝑉 to𝑊 is a linear map 𝛼 : 𝑉 →𝑊 such that

𝛼 (𝑔 · 𝑣 ) = 𝑔 · 𝛼 (𝑣 ),

for every 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉 . If, moreover, 𝛼 is an isomorphism, then it is said to be a 𝐺 -modules
isomorphism and the𝐺 -module𝑉 and𝑊 are said to be isomorphic.

The following remark provides some natural structures induced by𝐺 -modules. It is straightforward to
verify that they are well defined.

Remark 1.1.20. Let𝑉 and𝑊 be two𝐺 -modules.
(1) Given any𝐺 -equivariant map 𝛼 : 𝑉 →𝑊 , Ker𝛼 and Im𝛼 are𝐺 -submodules respectevely of𝑉 and

𝑊 .
(2) The vector spaces𝑉 ⊕𝑊 and𝑉 ⊗𝑊 are𝐺 -modules, with action respectevely defined by

𝑔 · (𝑣 +𝑤 ) = (𝑔 · 𝑣 ) + (𝑔 ·𝑤 )

and
𝑔 · (𝑣 ⊗𝑤 ) = (𝑔 · 𝑣 ) ⊗ (𝑔 ·𝑤 )

for every 𝑔 ∈ 𝐺 , 𝑣 ∈ 𝑉 and 𝑤 ∈𝑊 .
(3) As direct consequence of point (2), for every 𝑑 ∈ N, the 𝑑-symmetric power 𝑆𝑑𝑉 of𝑉 is a𝐺 -module,

with an action defined by

𝑔 ·
(
𝑣
𝑘1
1 · · ·𝑣

𝑘𝑛
𝑛

)
= (𝑔 · 𝑣1)𝑘1 · · · (𝑔 · 𝑣𝑛)𝑘𝑛 ,

for every 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 and 𝑘1, . . . , 𝑘𝑛 ∈ N such that 𝑘1 + · · · + 𝑘𝑛 = 𝑑 . Moreover, we have that also
the symmetric algebra 𝑆 (𝑉 ), as direct sum of𝐺 -modules and extended by linearity, is a𝐺 -module.

(4) If 𝜌 : 𝐺 → GL(𝑉 ) is a representation, then the dual vector space 𝑉 ∗ has a natural structure of
𝐺 -module given by the dual representation 𝜌∗ : 𝐺 → GL(𝑉 ∗). It is defined as

𝜌∗(𝑔 ) = 𝜌t (𝑔 )−1

for every 𝑔 ∈ 𝐺 , so that the dual pairing is preserved, i.e. for every 𝑔 ∈ 𝐺 , 𝜙 ∈ 𝑉 ∗ and 𝑣 ∈ 𝑉

(𝑔 · 𝜙) (𝑔 · 𝑣 ) = 𝜙 (𝑣 ).
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𝐺 -modules not containing any nontrivial𝐺 -module play an important role.

Definition 1.1.21. A𝐺 -module𝑉 is said to be irreducible if it contains no nonzero proper𝐺 -submodules,
i.e. if𝑊 is a𝐺 -submodule of𝑉 , then𝑊 = 0 or𝑊 =𝑉 .

We can provide now an elementary but very important statement related to irreducible modules. It
is due to I. Schur and appears for the first time in 1905 in [Sch05]. We can find it, for instance, in
[Ser77, Proposition 4].

Lemma 1.1.22 (Schur’s Lemma). Let 𝑉 and 𝑊 be irreducible 𝐺 -modules and let 𝛼 : 𝑉 → 𝑊 a
𝐺 -equivariant map. Then:
(1) if𝑉 and𝑊 are not isomorphic, then 𝛼 = 0;
(2) if𝑉 =𝑊 , then 𝛼 = _ · id for some _ ∈ K.

Proof. Point (1) follows immediately from the fact that Ker𝛼 and Im𝛼 are𝐺 -submodules. So, let𝑉 =𝑊

and let _ ∈ K be an eigenvalue of 𝛼. If we set 𝛼 ′ = 𝛼 − _ · id, then we must have Ker𝛼 ′ ≠ 0 and hence, by
point (1), we get

𝛼 ′ = 𝛼 − _ · id = 0,

that is, 𝛼 = _ · id. �

Analogously to algebraic groups, we can extend the concept of representations to Lie algebras,
associating a linear application to each element of a Lie algebra. This need not to be an isomorphism.

Definition 1.1.23. Let g be a Lie algebra and let𝑉 be a vector space. A map of Lie algebras

𝜌 : g→ gl(𝑉 ) � End(𝑉 )

is called a representation of g.

As for𝐺 -modules, it is possible to define subrepresentations, focusing on those not containing any
proper subrepresentations.

Definition 1.1.24. Let 𝜌 : g→ gl(𝑉 ) be a representation of g. If𝑊 is a vector subspace of𝑉 such that

𝜌 (𝑔 ) (𝑤 ) ∈𝑊 ,

then it is said to be g-invariant. The representation 𝜌 : g→ gl(𝑉 ) is said irreducible, if the vector space𝑉
does not contain any proper g-invariant subspace.

Now, it is natural to ask which are the relations between representations of Lie groups and representations
of their Lie algebras. An important fact concerns irreducibility of representations. We summarize it in the
next proposition, which can be also found as an exercise in [FH91, Exercise 8.17].

Proposition 1.1.25. Let𝐺 be a connected Lie group and let𝑉 be a𝐺 -module with associate representation
𝜌 : 𝐺 → GL(𝑉 ). Then a subspace𝑊 of𝑉 is a𝐺 -submodule if and only if it is carried into itself under
the action of the Lie algebra g of𝐺 , that is,

d𝜌𝑒 (𝑣 ) (𝑊 ) ⊆𝑊

for every 𝑣 ∈ g.
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Proof. By Proposition 1.1.14, we know that the diagram

g End(𝑉 )

𝐺 GL(𝑉 )

←→d𝜌𝑒

←→exp ←→ exp

←→𝜌
(1.1.26)

commutes. Given a subspace𝑊 ⊆ 𝑉 , let us suppose that for every 𝑣 ∈ g

d𝜌𝑒 (𝑣 ) (𝑊 ) ⊆𝑊 .

Let us consider the closed Lie subgroup GL(𝑊 ) of GL(𝑉 ). We have that

d𝜌𝑒 (𝑣 )
��
𝑊
∈ End(𝑊 )

and hence, considering the restriction of the exponential map to End(𝑊 ), we must have

exp
��
End(𝑊 )

(
d𝜌𝑒 (𝑣 )

��
𝑊

)
∈ GL(𝑊 ),

that is,
exp

(
d𝜌𝑒 (𝑣 )

) ��
𝑊
∈ GL(𝑊 ).

By commutativity of the diagram in (1.1.26), we have

𝜌
(
exp(𝑣 )

) ��
𝑊
∈ GL(𝑊 )

and hence, since𝐺 is connected, it follows by Proposition 1.1.13 that𝐺 is generated by exp(g). Thus, we
get

𝜌 (𝑔 )
��
𝑊
∈ GL(𝑊 ),

which means that𝑊 is a𝐺 -submodule of𝑉 .
Conversely, if

𝜌 (𝑔 ) (𝑤 ) ∈𝑊
for every 𝑔 ∈ 𝐺 and 𝑤 ∈𝑊 , then we can define a morphism

𝜌 : 𝐺 → GL(𝑊 ),

for which we can consider the identification

𝜌 (𝑔 ) = 𝜌 (𝑔 )
��
𝑊
.

In particular, the diagram

g End(𝑊 )

𝐺 GL(𝑊 )

←→d𝜌𝑒

←→exp ←→ exp

←→𝜌

is well-defined and commutes. Therefore, we can also restrict the differential d𝜌𝑒 , getting

d𝜌𝑒 (𝑣 )
��
𝑊
∈ End𝑊 ,

for every 𝑣 ∈ 𝑉 . This implies that𝑊 is carried into itself by the action of g. �

By Proposition 1.1.25, it follows immediately the following corollary.

Corollary 1.1.27. Let𝐺 be a connected Lie group and let𝑉 be a𝐺 -module. Then,𝑉 is irreducible over
𝐺 if and only if it is irreducible over g.
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1.1.3 Irreducible representations of sl2C
In this section we focus on a particular example regarding irreducible representations of Lie Algebras. We
analyze the Lie algebra of the Lie group SL2(C), which is the space

sl2C = { 𝐴 ∈ Mat2(C) | tr𝐴 = 0 } .

All the contents below are taken from [FH91, Section 11.1] and [Kir08, Section 4.8], to which we refer to
further details. Let us consider the basis given by the the matrices

𝐻 =

(
1 0
0 −1

)
, 𝐸 =

(
0 1
0 0

)
, 𝐹 =

(
0 0
1 0

)
,

satisfying the equations
[𝐻 ,𝐸 ] = 2𝐸, [𝐻 , 𝐹 ] = −2𝐹 , [𝐸, 𝐹 ] = 𝐻 . (1.1.28)

Proposition 1.1.29. The Lie algebra sl2C is a simple algebra.

Proof. Let a ⊆ sl2C be an ideal of sl2C. Let us consider any non-zero linear combination

𝑎𝐻 + 𝑏𝐸 + 𝑐𝐹 ∈ a

with 𝑎, 𝑏, 𝑐 ∈ C. We observe that if 𝐻 ∈ a, then by equations (1.1.28) we have

[𝐻 ,𝐸 ] = 2𝐸 ∈ a, [𝐻 , 𝐹 ] = −2𝐹 ∈ a

and hence a = sl2C. So, if 𝑏 = 𝑐 = 0, the statement is trivial. Otherwise, in the case of 𝑏 = 0, since

[𝐻 , 𝑎𝐻 + 𝑏𝐸 + 𝑐𝐹 ] = 𝑎 [𝐻 ,𝐻 ] + 𝑏 [𝐻 ,𝐸 ] + 𝑐 [𝐻 , 𝐹 ] = 2𝑏𝐸 − 2𝑐𝐹 ∈ a,

we easily get 𝐹 ∈ a and hence also
[𝐸, 𝐹 ] = 𝐻 ∈ a.

Analogously, if 𝑐 = 0, we get 𝐻 ∈ a as well. Finally, if 𝑏, 𝑐 ≠ 0, we have

(𝑎𝐻 + 𝑏𝐸 + 𝑐𝐹 ) + (𝑏𝐸 − 𝑐𝐹 ) = 𝑎𝐻 + 2𝑏𝐸 ∈ a

and hence
[𝐻 , 𝑎𝐻 + 2𝑏𝐸 ] = 𝑎 [𝐻 ,𝐻 ] + 2𝑏 [𝐻 ,𝐸 ] = 4𝑏𝐸 ∈ a.

This implies, in particular, that
[𝐸, 𝐹 ] = 𝐻 ∈ a,

proving the statement. �

The classical Jordan decomposition (see e.g. [Bor91, Proposition 4.2]) says that any endomorphism
𝑓 : 𝑉 →𝑉 of a complex vector space𝑉 can be written uniquely as the sum

𝑓 = 𝑓𝑠 + 𝑓𝑛 ,

where 𝑓𝑠 : 𝑉 → 𝑉 and 𝑓𝑛 : 𝑉 → 𝑉 are respectively a diagonalizable endomorphism and a nilpotent
endomorphism commuting with each other, namely,

𝑓𝑛 𝑓𝑠 − 𝑓𝑠 𝑓𝑛 = 0.

This concept can be extended to Lie algebras in the specific case of semisimple Lie algebras. Indeed, each
of these can be decomposed into a sum of two elements, preserving the diagonalizable and the nilpotent
parts. The proof of this theorem, which can be found in [FH91, Theorem 9.20, Corollary C.18], is quite
technical and we omit it. We suggest to consult [FH91, Appendix C] for more specific details and a
complete proof.
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Theorem 1.1.30 (Preservation of Jordan decomposition). Let g be a semisimple Lie algebra. For every
element 𝑋 ∈ g, there exist two element 𝑋𝑠 , 𝑋𝑛 ∈ g such that for any representation 𝜌 : g→ gl(𝑉 ) we have

𝜌 (𝑋𝑠 ) = 𝜌 (𝑋 )𝑠 , 𝜌 (𝑋𝑛) = 𝜌 (𝑋 )𝑛 .

In particular, if 𝜌 is injective and g represents a subalgebra of gl(𝑉 ), then the diagonalizable and nilpotent
parts of any element 𝑋 of g are again in g and are independent of the particular representation 𝜌 .

Let𝑉 be a finite-dimensional irreducible representation of sl2C. By Theorem 1.1.30, it is clear that
the action of 𝐻 on𝑉 is diagonalizable. Therefore, we can write

𝑉 =
⊕
_∈𝐼

𝑉_, (1.1.31)

where I is a finite set of complex values such that

𝐻 (𝑣 ) = _𝑣

for every _ ∈ 𝐼 and 𝑣 ∈ 𝑉_. Now, given a vector 𝑣 ∈ 𝑉_, we have

𝐻
(
𝐸 (𝑣 )

)
= 𝐸

(
𝐻 (𝑣 )

)
+ [𝐻 ,𝐸 ] (𝑣 )

= 𝐸 (_𝑣 ) + 2𝐸 (𝑣 )
= (_ + 2)𝐸 (𝑣 ).

This means that 𝐸 sends every eigenvector into another eigenspace and, in particular, its restriction to𝑉_
gives a morphism 𝐸 : 𝑉_ →𝑉_+2 for every _ ∈ 𝐼 . Analogously, we obtain a morphism 𝐹 : 𝑉_ →𝑉_−2 such
that

𝐻
(
𝐹 (𝑣 )

)
= (_ − 2)𝐹 (𝑣 ).

The space ⊕
𝑘 ∈Z

𝑉_0+2𝑘 ,

is invariant under the action of sl2C and hence, by irreducibility of𝑉 , we must have

𝑉 =
⊕
𝑘 ∈Z

𝑉_0+2𝑘 .

This means that the eigenvalues appearing in decomposition (1.1.31) must be congruent modulo 2.
Moreover, the spectrum of𝐻 must consist of an unbroken string of complex numbers_0, _0+2, . . . , _0+2𝑚
for a certain 𝑚 ∈ N. More specifically, if we set 𝑛 = _0 + 2𝑚, then we can describe the action of sl2C on
𝑉 through the diagram

0 𝑉𝑛−2𝑚 𝑉𝑛−2𝑚+2 · · · 𝑉𝑛−2 𝑉𝑛 0

←→𝐸←→

𝐹

←→

𝐻

←→𝐸←→

𝐹

←→

𝐻

←→𝐸←→

𝐹

←→𝐸

←→

𝐻

←→

𝐹

←→𝐸

←→

𝐻

←→𝐸←→

𝐹
←→

𝐹
. (1.1.32)

Hence, it is sufficient to determine the value of 𝑛 ∈ C to determine all the eigenspaces.
We provide now a series of results, by which we can determine the structure of the space𝑉 .

Lemma 1.1.33. Let 𝑣 ∈ 𝑉𝑛 . Then the set
{
𝐹 𝑘 (𝑣 )

�� 𝑘 ∈ N }
generates the space𝑉 .
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Proof. Let us consider the subspace

𝑊 =
〈
𝐹 𝑘 (𝑣 )

〉
𝑘 ∈N ⊆ 𝑉 .

Then, by irreducibility of𝑉 , it is sufficient to show that𝑊 is irreducible under the action of sl2C. We
clearly have that 𝐹 preserves the space𝑊 . Moreover, since 𝐹 𝑘 (𝑣 ) ∈ 𝑉𝑛−2𝑘 for every 𝑘 ∈ N, it follows that

𝐻
(
𝐹 𝑘 (𝑣 )

)
= (𝑛 − 2𝑘 )𝐹 𝑘 (𝑣 ) (1.1.34)

and hence also 𝐻 preserves the space𝑊 . Finally, to prove that

𝐸 (𝑊 ) ⊆𝑊 ,

we can proceed by induction on the power 𝑘 ∈ N to show that

𝐸
(
𝐹 𝑘 (𝑣 )

)
∈𝑊

for every 𝑘 ∈ N. If 𝑘 = 0, then, since 𝑣 ∈ 𝑉𝑛 , we have

𝐸 (𝑣 ) = 0,

which clearly belongs to𝑊 . Now, let us suppose that 𝐸
(
𝐹 𝑘−1(𝑣 )

)
∈𝑊 . Then we have

𝐸
(
𝐹 𝑘 (𝑣 )

)
= 𝐹

(
𝐸
(
𝐹 𝑘−1(𝑣 )

) )
+ [𝐸, 𝐹 ]

(
𝐹 𝑘−1(𝑣 )

)
= 𝐹

(
𝐸
(
𝐹 𝑘−1(𝑣 )

) )
+𝐻

(
𝐹 𝑘−1(𝑣 )

)
.

Since both 𝐹 and 𝐻 preserves 𝑊 then we have that also 𝐸 preserves 𝐸 as well, which proves that
𝑉 =𝑊 . �

Considering formula (1.1.34), we have by Lemma 1.1.33 that

𝑉 =
〈
𝐹 𝑘 (𝑣 )

〉
𝑘 ∈N.

We therefore immediately obtain the following corollary.

Corollary 1.1.35. If𝑉_ is an eigenspace of 𝐻 , then dim𝑉_ = 1.

It is also possible to determine explicitly the image of each power 𝐹 𝑘 (𝑣 ) from the operator 𝐸 .

Lemma 1.1.36. The equality
𝐸
(
𝐹 𝑘 (𝑣 )

)
= 𝑘 (𝑛 − 𝑘 + 1)𝐹 𝑘−1(𝑣 )

holds for every 𝑘 ∈ N \ {0} and 𝑣 ∈ 𝑉𝑛 .

Proof. We proceed by induction on 𝑘 . If 𝑘 = 1, then

𝐸
(
𝐹 (𝑣 )

)
= 𝐹

(
𝐸 (𝑣 )

)
+ [𝐸, 𝐹 ] (𝑣 ) = 𝐻 (𝑣 ) = 𝑛𝑣,

where the second equality follows by 𝐸 (𝑣 ) = 0. Now, let us suppose the statement true for 𝑘 − 1. Then we
have by inductive hypothesis and formula (1.1.34) the equalities

𝐸
(
𝐹 𝑘 (𝑣 )

)
= 𝐹

(
𝐸
(
𝐹 𝑘−1(𝑣 )

) )
+ [𝐸, 𝐹 ]

(
𝐹 𝑘−1(𝑣 )

)
= 𝐹

(
(𝑘 − 1) (𝑛 − 𝑘 + 2)𝐹 𝑘−2(𝑣 )

)
+ (𝑛 − 2𝑘 + 2)𝐹 𝑘−1(𝑣 )

=
(
(𝑘 − 1) (𝑛 − 𝑘 + 2) + (𝑛 − 2𝑘 + 2)

)
)𝐹 𝑘−1(𝑣 )

= 𝑘 (𝑛 − 𝑘 + 1)𝐹 𝑘−1(𝑣 ). �
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Since𝑉 has finite dimension, it follows by decomposition (1.1.31) and formula (1.1.34) that there
must exists a natural number 𝑚 ∈ N, such that

𝐹𝑚 (𝑣 ) = 0.

In particular, if we suppose 𝑚 to be the smallest power of 𝐹 annihilating 𝑣 , then we have by Lemma 1.1.36

0 = 𝐸
(
𝐹𝑚 (𝑣 )

)
= 𝑚 (𝑛 −𝑚 + 1)𝐹𝑚−1(𝑣 ).

Therefore, since 𝐹𝑚−1 ≠ 0, we must have 𝑛 = 𝑚 − 1. In particular, we conclude that 𝑛 is a non-negative
integer and the set of eigenvalues of 𝐻 on𝑉 is given by a finite succession of integers differing by 2 and it
is symmetric with respect to 0 in Z. Namely, we can rewrite the diagram (1.1.32) as

0 𝑉−𝑛 𝑉−𝑛+2 · · · 𝑉𝑛−2 𝑉𝑛 0

←→𝐸←→

𝐹

←→

𝐻

←→𝐸←→

𝐹
←→

𝐻

←→𝐸←→

𝐹

←→𝐸

←→

𝐻

←→

𝐹

←→𝐸

←→

𝐻

←→𝐸←→

𝐹
←→

𝐹
. (1.1.37)

We have thus proved that irreducible representations are unique and depend only on the dimension of𝑉 .
From the later we can determine the eigenvalues of the action of the operator 𝐻 , which have a special role.

Definition 1.1.38. Given a representation𝑉 (𝑛) of sl2C of dimension 𝑛 + 1, the eigenvectors of the action
of the operator 𝐻 on𝑉 (𝑛) , associated to the set of eigenvalues given by

{−𝑛,−𝑛 + 2, . . . , 𝑛 − 2, 𝑛},

are called the weights of𝑉 (𝑛) .

Considering the diagram (1.1.37) we conclude that any representation of sl2C with distinct eigenvalues
of multiplicity 1 and having the same parity must be irreducible. In particular, we can see that irreducible
representations of sl2C correspond to the components of the ring of polynomials in two variables and the
weights correspond to monomials.

Theorem 1.1.39. For every 𝑛 ∈ N, there exists a unique irreducible representation𝑉 (𝑛) of sl2C such that
dim𝑉 (𝑛) = 𝑛 + 1, given by the 𝑛-th symmetric power of C2, that is

𝑉 (𝑛) � 𝑆𝑛C2,

and for every 𝑘 = 0, . . . , 𝑛, the weight associated to the integer number 𝑛 − 2𝑘 is given by the monomial
𝑥𝑛−𝑘𝑦𝑘 , that is

𝐻
(
𝑥𝑛−𝑘𝑦𝑘

)
= (𝑛 − 2𝑘 )𝑥𝑛−𝑘𝑦𝑘 .

Proof. The standard representation of sl2C on C2 can be defined by the relations on the operator 𝐻

𝐻 (𝑥) = 𝑥, 𝐻 (𝑦 ) = −𝑦 .

These can be extended to the 𝑛-th symmetric power 𝑆𝑛C2 by considering its basis{
𝑥𝑛 , 𝑥𝑛−1𝑦 , . . . , 𝑥𝑦𝑛−1, 𝑦𝑛

}
.

Indeed, we have

𝐻
(
𝑥𝑛−𝑘𝑦𝑘

)
= (𝑛 − 𝑘 )𝐻 (𝑥)𝑥𝑛−𝑘−1𝑦𝑘 + 𝑘𝐻 (𝑦 )𝑥𝑛−𝑘𝑦𝑘−1 = (𝑛 − 2𝑘 )𝑥𝑛−𝑘𝑦𝑘 .

Thus, by the considerations we made above, we conclude that 𝑆𝑛C2 is the unique irreducible representation
of sl2C of dimension 𝑛 + 1. �

1.2 Apolarity and sums of powers
Through this section, we will always denote by𝑉 a finite-dimensional vector space of dimension 𝑛 ∈ N
over a field K of characteristic 0.



1.2. Apolarity and sums of powers 23

1.2.1 Classical apolarity
Let us denote by

R𝑛 = 𝑆 (𝑉 ), D𝑛 = 𝑆 (𝑉 ∗),

respectively the symmetric algebra of 𝑉 and its dual space. We can define in a natural way, for every
𝑑 ∈ N, a bilinear map in 𝑆𝑑𝑉 ⊗ 𝑆𝑑𝑉 ∗, given by

◦ : 𝑆𝑑𝑉 ∗ × 𝑆𝑑𝑉 K

(𝜙1 · · ·𝜙𝑑 , 𝑣1 · · ·𝑣𝑑 )
∑︁
𝜎 ∈S𝑑

𝜙1(𝑣𝜎 (1) ) · · ·𝜙𝑑 (𝑣𝜎 (𝑑) ),

← →

←�→ (1.2.1)

which is also known as contraction pairing or polar pairing. This one can be also generalized to the
partial polarization map, defined for 𝑘 ≤ 𝑑 by

◦ : 𝑆𝑘𝑉 ∗ × 𝑆𝑑𝑉 𝑆𝑑−𝑘𝑉

(𝜙1 · · ·𝜙𝑘 , 𝑣1 · · ·𝑣𝑑 )
∑︁

1≤𝑖1<· · ·<𝑖𝑘 ≤𝑑
(𝜙1 · · ·𝜙𝑘 ) ◦

(
𝑣𝑖1 · · ·𝑣𝑖𝑘

) ∏
𝑗≠𝑖1,...,𝑖𝑘

𝑣𝑗 .

← →

←�→ (1.2.2)

It is possible to identify 𝑆 (𝑉 ) and 𝑆 (𝑉 ∗) with polynomial rings. Let us denote by K[𝑉 ] the ring of
polynomial functions on𝑉 , that is the commutative K-algebra generated by𝑉 ∗.

Proposition 1.2.3. For every 𝑑 ∈ N, there is a natural isomorphism

𝑆𝑑𝑉 ∗ � K[𝑉 ]𝑑 .

Proof. Let us consider the K-linear map

Φ : 𝑆𝑑𝑉 ∗ K[𝑉 ]𝑑
𝜙 𝑓𝜙 ,

←→

←� →

where the function 𝑓𝜙 is defined by

𝑓𝜙 : 𝑉 K

𝑣 𝜙 (𝑣, . . . , 𝑣 ).

←→

←�→

We should verify that Φ is well defined, that is, 𝑓𝜙 is effectively a polynomial function. To see this, we can
write 𝜙 as a linear combination of the basis

{
𝑣∗1 , . . . , 𝑣

∗
𝑑

}
, obtaining

𝜙 (𝑤1, . . . ,𝑤𝑑 ) =
𝑛∑︁

𝑖1,...,𝑖𝑑=1
𝜙 (𝑣𝑖1 , . . . , 𝑣𝑖𝑑 )𝑣∗𝑖1 (𝑤1) · · ·𝑣∗𝑖𝑑 (𝑤𝑑 ). (1.2.4)

Therefore, we have

𝑓𝜙 (𝑣 ) = 𝜙 (𝑣, . . . , 𝑣 ) =
𝑛∑︁

𝑖1,...,𝑖𝑑=1
𝜙 (𝑣𝑖1 , . . . , 𝑣𝑖𝑑 )𝑣∗𝑖1 (𝑣 ) · · ·𝑣

∗
𝑖𝑑
(𝑣 ) (1.2.5)

for every 𝑣 ∈ 𝑉 and hence 𝑓𝜙 is a polynomial function, namely, 𝑓𝜙 ∈ K[𝑉 ]. It remains to verify that Φ is
bijective. Let us consider an element 𝜙 ∈ 𝑆𝑑𝑉 and let us suppose that Φ(𝜙) ≡ 0. This means that

Φ(𝜙) (𝑣 ) = 𝑓𝜙 (𝑣 ) = 0
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for every 𝑣 ∈ 𝑉 . Then, if we consider again formula (1.2.5), we have

𝑓𝜙 =

𝑛∑︁
𝑖1,...,𝑖𝑑=1

𝜙 (𝑣𝑖1 , . . . , 𝑣𝑖𝑑 )𝑣∗𝑖1 · · ·𝑣
∗
𝑖𝑑
≡ 0.

Moreover, since the set of the polynomial functions of the type

𝑣∗𝑖1 · · ·𝑣
∗
𝑖𝑑

: 𝑉 → K

among the indices 1 ≤ 𝑖1, . . . , 𝑖𝑑 ≤ 𝑛 constitutes a set of linear independent elements, it follows that

𝜙 (𝑣𝑖1 , . . . , 𝑣𝑖𝑑 ) = 0.

Thus, as the linear combination describing 𝜙 in formula (1.2.4) has the same coefficients, we conclude
that 𝜙 ≡ 0, that is Φ is injective. To prove surjectivity, we consider a polynomial function 𝑓 ∈ K[𝑉 ]𝑑 ,
written as a linear combination of the arbitrary basis

{
𝑣∗1 , . . . , 𝑣

∗
𝑑

}
, that is

𝑓 =

𝑛∑︁
𝑖1,...,𝑖𝑑=1

𝑎𝑖1,...,𝑖𝑑𝑣
∗
𝑖1
· · ·𝑣∗𝑖𝑑

for some suitable coefficients 𝑎𝑖1,...,𝑖𝑑 ∈ K. If we consider the symmetric multilinear form 𝜓 ∈ 𝑆𝑑𝑉 ∗,
defined as

𝜓 (𝑤1, . . . ,𝑤𝑑 ) =
𝑛∑︁

𝑖1,...,𝑖𝑑=1
𝑎𝑖1,...,𝑖𝑑𝑣

∗
𝑖1
(𝑤1) · · ·𝑣∗𝑖𝑑 (𝑤𝑑 ),

then it is immediate to verify that 𝑓 = 𝑓𝜓 = Φ(𝜓 ), that is, Φ is surjective. �

Let us consider a basis {𝑣1, . . . , 𝑣𝑛} of𝑉 and its dual basis
{
𝑣∗1 , . . . , 𝑣

∗
𝑛

}
in𝑉 ∗. Then, given any

𝑣 = 𝑦1𝑣1 + · · · + 𝑦𝑛𝑣𝑛 ∈ 𝑉 ,

as each functional 𝑣∗
𝑖

associates to 𝑣 its 𝑖 -th coordinate 𝑦𝑖 , we can directly identify
{
𝑣∗1 , . . . , 𝑣

∗
𝑛

}
as the sets

of coordinates {𝑦1, . . . , 𝑦𝑛}. Therefore, by Proposition 1.2.3, we can write

R𝑛 ' K[𝑥1, . . . , 𝑥𝑛], D𝑛 ' K[𝑦1, . . . , 𝑦𝑛],

identifying R𝑛 and D𝑛 with two polynomial rings.
We can compute the image of each pair of monomials through polarization map, that is

yα ◦ xβ =


β!

(β −α)!xβ−α, if β −α ≥ 0,

0, otherwise,

for every α,β ∈ N𝑛 , where we use the notation

xδ = 𝑥
𝛿1
1 . . . 𝑥𝛿𝑛𝑛 , yδ = 𝑦

𝛿1
1 . . . 𝑦 𝛿𝑛𝑛 , δ! = 𝛿1! · · · 𝛿𝑛!

for every multi-index δ = (𝛿1, . . . , 𝛿𝑛) ∈ N𝑛 . By these considerations, it follows that we can naturally
identify the space D𝑛 with the space of polynomial differential operators.

Definition 1.2.6. Given any homogeneous polynomial 𝜙 ∈ D𝑘
𝑛 , with 𝑘 ≤ 𝑑 , the operator

D𝜙 : R𝑑
𝑛 R𝑑−𝑘

𝑛

ℎ 𝜙 ◦ ℎ

←→

←� →

is called the differential operator associated to 𝜙 .
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The partial polarization map induces in a natural way an action of the space D𝑛 on the space R𝑛 ,
considering their elements just as polynomials.

Definition 1.2.7. The apolarity action of D𝑛 on R𝑛 is defined by naturally extending by linearity the
polarization maps for each components of D𝑛 and R𝑛 , that is

◦ : D𝑛 × R𝑛 R𝑛
(𝜙, 𝑓 ) D𝜙 ( 𝑓 ).

←→

←� →

Remark 1.2.8. For the case of contraction pairing, defined in (1.2.1), and also in general in dealing with
dual spaces R𝑛 and D𝑛 , we can reverse the roles of variables 𝑥𝑖 and 𝑦𝑖 , setting an identification between
the components R 𝑗

𝑛 and D 𝑗
𝑛 . In particular, we can consider the contraction pairing as a symmetric bilinear

form.
Given any homogeneous polynomial, we can also provide the following definition, based on the

apolarity action of the space D𝑛 on it.

Definition 1.2.9. For every homogeneous polynomial 𝑓 ∈ R𝑑
𝑛 , the catalecticant map of 𝑓 is defined as the

linear map
Cat𝑓 : D𝑛 R𝑛

𝜙 𝜙 ◦ 𝑓 .

←→

←� →

The apolar ideal of the polynomial 𝑓 is defined as the kernel of Cat𝑓 and it is the set

𝑓 ⊥ = { 𝑔 ∈ D | 𝑔 ◦ 𝑓 = 0 } .

Now, it is clear that the catalecticant map is graded, that is the map

Cat𝑗
𝑓
: D 𝑗

𝑛 R𝑑−𝑗
𝑛

𝑔 𝑔 ◦ 𝑓 ,

←→

←� →

also called the 𝑗 -th catalecticant of the polynomial 𝑓 , is well defined. Moreover, fixed any bases of D 𝑗
𝑛

and R𝑑−𝑗
𝑛 , the matrix associated to Cat𝑗

𝑓
is called the 𝑗 -th catalecticant matrix of 𝑓 .

Now, by the identification we have seen in Proposition 1.2.3, we can naturally define the action of the
linear group GL𝑛 (K) on both R𝑛 and D𝑛 , in the same way of Remark 1.1.20.

Definition 1.2.10. The action of GL𝑛 (K) on R𝑛 is defined by naturally extending the action of GL𝑛 (K)
on R1

𝑛 , given by

𝐴 · 𝑥𝑗 =
𝑛∑︁

𝑘=1
𝐴𝑘 𝑗𝑥𝑘 ,

for every 𝐴 ∈ GL𝑛 (K) and for every 𝑗 = 1, . . . , 𝑛. The action of GL𝑛 (K) on D𝑛 is defined in the same
way by the dual action on D1

𝑛 , given by

𝐴 · 𝑦𝑗 =
𝑛∑︁

𝑘=1
𝐴t −1
𝑘 𝑗 𝑦𝑘 ,

for every 𝐴 ∈ GL𝑛 (K) and for every 𝑗 = 1, . . . , 𝑛.

In dealing with apolarity action it can be useful to consider a particular notation for a basis of
monomials.
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Definition 1.2.11. For every 𝑘 ∈ N, the divided power monomials of R𝑘
𝑛 and D𝑘

𝑛 are the monomials
defined as

x[δ] = 𝑥
[𝛿1 ]
1 . . . 𝑥

[𝛿𝑛 ]
𝑛 =

1
δ!
𝑥
𝛿1
1 . . . 𝑥𝛿𝑛𝑛 , y[δ] = 𝑦

[𝛿1 ]
1 . . . 𝑦

[𝛿𝑛 ]
𝑛 =

1
δ!

𝑦
𝛿1
1 . . . 𝑦 𝛿𝑛𝑛 ,

where
δ! = 𝛿1! · · · 𝛿𝑛!

for any multi-index δ ∈ N𝑛 such that

|δ | = 𝛿1 + · · · + 𝛿𝑛 = 𝑘.

The use of divided power monomials can simplify the use of apolarity action in dealing with the
coefficients produced by derivations. It is possible to define also a structure of K-algebra over the vector
space generated by divided power monomials (see [IK99, Appendix A]). This is given by extending by
linearity the operation of multiplication on divided power monomials, which is defined by the equality

x[δ]x[γ ] = (δ + γ)!
δ!γ!

x[δ+γ ]

for every multi-indices δ,γ ∈ N𝑛 .
The next property easily follows from the definition of apolarity action and representations on dual

spaces.

Proposition 1.2.12. The apolarity action of D𝑛 on R𝑛 is a GL𝑛 (K)-equivariant map.

Proof. By the action of GL𝑛 (K) on R𝑛 and D𝑛 given in Definition 1.2.10 and Remark 1.1.20, we can
define in a natural way the action of GL𝑛 (K) on D𝑛 × R𝑛 as

𝐴 · (𝜙, 𝑓 ) = (𝐴 · 𝜙, 𝐴 · 𝑓 )

for every 𝐴 ∈ GL𝑛 (K), 𝜙 ∈ D𝑛 and 𝑓 ∈ R𝑛 . We first analyze the restriction to the action of D1
𝑛 on R1

𝑛 .
So, let 𝐴 ∈ GL𝑛 (K) and 𝑗 , 𝑘 ∈ N such that 1 ≤ 𝑗 , 𝑘 ≤ 𝑛. Then we have

(𝐴 · 𝑦𝑗 ) ◦ (𝐴 · 𝑥𝑘 ) =
( 𝑛∑︁
𝑠=1

𝐴t −1
𝑗 𝑠 𝑦𝑠

)
◦

( 𝑛∑︁
𝑡=1

𝐴𝑡𝑘𝑥𝑡

)
=

𝑛∑︁
𝑠=1

𝐴t −1
𝑗 𝑠

( 𝑛∑︁
𝑡=1

𝐴𝑘𝑡
𝜕𝑥𝑡

𝜕𝑥𝑠

)
=

𝑛∑︁
𝑡=1

𝐴−1
𝑡 𝑗 𝐴𝑘𝑡 = 𝛿𝑗𝑘 ,

that is,
(𝐴 · 𝑦𝑗 ) ◦ (𝐴 · 𝑥𝑘 ) = 𝑦𝑗 ◦ 𝑥𝑘 .

This means, in particular, that the set {𝐴 · 𝑦1, . . . , 𝐴 · 𝑦𝑛} corresponds to the dual basis of the basis
{𝐴 · 𝑥1, . . . , 𝐴 · 𝑥𝑛}. Therefore, since the action of 𝐴 is a linear transformation preserving the dual pairing,
we have by definition that

(𝐴 · 𝜙) ◦ (𝐴 · 𝑓 ) = 𝐴 · (𝜙 ◦ 𝑓 )

for every 𝜙 ∈ D𝑛 and 𝑓 ∈ R𝑛 . �
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Linear forms can be view in general as points in K𝑛∗. For every point a = (𝑎1, . . . , 𝑎𝑛) ∈ K𝑛 , we
denote by 𝑙a ∈ D1

𝑛 the linear form

𝑙a = a · x = 𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛

and we call it the linear form associated to a. Sometimes, if there is no risk of confusion, we will refer to
it simply by the term point.

Definition 1.2.13. Let a ∈ K𝑛 and let 𝑙a be its associated linear form. Then for every 𝑑 ∈ N the form
𝑙
[𝑑 ]
a ∈ R𝑑

𝑛 , defined as
𝑙
[𝑑 ]
a =

∑︁
𝛼1+···+𝛼𝑛=𝑑

𝑎
𝛼1
1 · · · 𝑎

𝛼𝑛
𝑛 𝑥

[𝛼1 ]
1 . . . 𝑥

[𝛼𝑛 ]
𝑛 ,

is called the 𝑑-th divided power of 𝑙a.

The main properties of divided powers of linear forms are enumerated in the following proposition.

Proposition 1.2.14. Let be 𝑙a = 𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 ∈ D1
𝑛 . Then for every 𝑑, 𝑘 ∈ N

(1) 𝑙𝑑a = 𝑑!𝑙 [𝑑 ]a ;
(2) 𝑙

[𝑑 ]
a (𝜙) = 𝜙 (𝑎1, . . . , 𝑎𝑛) for every 𝜙 ∈ R𝑑

𝑛 ;
(3) 𝐴 · 𝑙 [𝑑 ]a = (𝐴 · 𝑙a) [𝑑 ] for every 𝐴 ∈ GL𝑛 (K);
(4) 𝑑!𝑘 !𝑙 [𝑑 ]a 𝑙

[𝑘 ]
a = (𝑑 + 𝑘 )!𝑙 [𝑑+𝑘 ]a .

Since the proof is quite simple and consists just of some technical computations, we omit it and we
refer to [IK99, Proposition A.9] to check it. Another property to take into consideration is the fact that the
image elements through the catalecticant map of the powers of a point are still powers of the same point.

Lemma 1.2.15. Let 𝑑, 𝑘 ∈ N such that 𝑑 ≥ 𝑘 . Then, for every a ∈ K𝑛 and 𝜙 ∈ D𝑘
𝑛 ,

𝜙 ◦ 𝑙 [𝑑 ]a = 𝜙 (a)𝑙 [𝑑−𝑘 ]a .

Proof. By linearity it is sufficient to prove the formula just for monomials in D𝑘
𝑛 . So, given a multi-index

α = (𝛼1, . . . , 𝛼𝑛) ∈ N𝑛 such that |α| = 𝑘 , we have

𝑦
𝛼1
1 · · · 𝑦

𝛼𝑛
𝑛 ◦ 𝑙 [𝑑 ]a = 𝑦

𝛼1
1 · · · 𝑦

𝛼𝑛
𝑛 ◦

( ∑︁
|β |=𝑑

𝑎
𝛽1
1 . . . 𝑎

𝛽𝑛
𝑛 𝑥

[𝛽1 ]
1 · · · 𝑥 [𝛽𝑛 ]𝑛

)
=

∑︁
|β |=𝑑

𝑎
𝛽1
1 · · · 𝑎

𝛽𝑛
𝑛 𝑥

[𝛽1−𝛼1 ]
1 · · · 𝑥 [𝛽𝑛−𝛼𝑛 ]𝑛

= 𝑎
𝛼1
1 · · · 𝑎

𝛼𝑛
𝑛

( ∑︁
|γ |=𝑑−𝑘

𝑎
𝛾1
1 · · · 𝑎

𝛾𝑛
𝑛 𝑥
[𝛾1 ]
1 · · · 𝑥 [𝛾𝑛 ]𝑛

)
= 𝑎

𝛼1
1 · · · 𝑎

𝛼𝑛
𝑛 𝑙
[𝑑−𝑘 ]
a . �

Corollary 1.2.16. For every 𝑑, 𝑘 ∈ N and for every a ∈ K𝑛

rk
(
Cat𝑘

𝑙𝑑a

)
≤ 1.

We can finally expose a classical result, crucial for our purposes, which puts homogeneous polynomials
in relation with powers of linear forms.



28 1. Preliminaries

Lemma 1.2.17 (Apolarity lemma). Let a1, . . . , a𝑟 ∈ K𝑛 , let 𝑙𝑘 = 𝑙a𝑘 for every 𝑘 = 1, . . . , 𝑟 , let

A = {[a1], . . . , [a𝑟 ]} ⊂ P
(
K𝑛

)
= P𝑛−1

and let 𝐼A be the homogeneous ideal in D𝑛 of polynomials vanishing on A. Then:
(1) for every 𝑑, 𝑘 ∈ N such that 𝑑 ≥ 𝑘 , if 𝜙 ∈ D𝑘

𝑛 , then

𝜙 ◦
(
𝑙
[𝑑 ]
1 + · · · + 𝑙 [𝑑 ]𝑟

)
= 𝜙 (a1)𝑙 [𝑑−𝑘 ]1 + · · · + 𝜙 (a𝑟 )𝑙 [𝑑−𝑘 ]𝑟 ;

(2) given any 𝑘 ∈ N, then
(𝐼A)⊥𝑘 =

〈
𝑙
[𝑘 ]
1 , . . . , 𝑙

[𝑘 ]
𝑟

〉
,

where (𝐼A)⊥𝑘 represents the orthogonal space to (𝐼A)𝑘 with respect to the contraction pairing

◦ : D𝑘
𝑛 × R𝑘

𝑛 → K.

Proof. Point (1) follows directly by Lemma 1.2.15. Now, given any𝜙 ∈ D𝑘
𝑛 , we have still by Lemma 1.2.15

that for every _1, . . . , _𝑟 ∈ K

𝜙 ◦
( 𝑟∑︁
𝑗=1

_𝑗 𝑙
[𝑘 ]
𝑗

)
=

𝑟∑︁
𝑗=1

_𝑗𝜙 (a𝑗 ).

This means that 〈
𝑙
[𝑘 ]
1 , . . . , 𝑙

[𝑘 ]
𝑟

〉⊥
=

{
𝜙 ∈ D𝑘

𝑛

�� 𝜙 (a𝑗 ) = 0, ∀𝑗 = 1, . . . , 𝑟
}
= (𝐼A)𝑘 .

Thus, point (2) directly follows from the fact that the contraction pairing is non-degenerate. �

1.2.2 Rank and border rank of a polynomial
The statement of Lemma 1.2.17 provides an efficient method to determine a representation of a polynomial
as sum of powers of linear forms. This way of writing polynomials have a special role in both classical
and recent mathematics.

Definition 1.2.18. Let 𝑓 ∈ R𝑑
𝑛 be a homogeneous polynomial. For every 𝑟 ∈ N, the sum of the 𝑑-th

powers of 𝑟 linear form 𝑙a1 , . . . , 𝑙a𝑟 ∈ R1 is said to be a decomposition of 𝑓 if

𝑓 =

𝑟∑︁
𝑗=1

𝑙𝑑a𝑗 .

The elements a1, . . . , a𝑟 are called the points of the decomposition.

Now, as already mentioned in the Introduction, the determination of decompositions of polynomials is
quite classical and, nowadays, has been approached with the languages of symmetric tensors, as we have
seen in Proposition 1.2.3. In dealing with this subject, the main problem consists of finding which is the
minimum number 𝑟 ∈ N such that, given a specific 𝑓 ∈ R𝑑 , it is possible to represent a decomposition of
𝑓 of size 𝑟 .

Definition 1.2.19. Let 𝑓 ∈ R𝑑 be a homogeneous polynomial. The Waring rank, or symmetric tensor
rank, or simply rank, of 𝑓 is the natural number

rk 𝑓 = min
 𝑟 ∈ N

������ 𝑓 =

𝑟∑︁
𝑗=1

𝑙𝑑a𝑗 : a𝑗 ∈ K𝑛

.
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In dealing with decompositions of polynomials from the point of view of algebraic geometry, there is
another subject to take into consideration. That is, the minimum number 𝑟 ∈ N such that a polynomial is
the limit of polynomials of rank equal to 𝑟 .

Definition 1.2.20. For every 𝑟 ∈ N, let

S𝑑𝑛,𝑟 =
{
𝑓 ∈ R𝑑

𝑛

�� rk 𝑓 = 𝑟
}

be the set of polynomials of degree 𝑑 with rank equal to 𝑟 . Given a polynomial 𝑓 ∈ R𝑑
𝑛 , the border rank

of 𝑓 is the natural number
brk 𝑓 = min

{
𝑟 ∈ N

��� 𝑓 ∈ S𝑑𝑛,𝑟 }
,

where the overline represents the closure for the Zariski topology.

In terms of closure, we need to recall that, essentially by a result provided by D. Mumford in
[Mum95, Theorem 2.33], setting K = C, the closure of the set S𝑑𝑛,𝑟 in Zariski topology equals the closure
of the same set in Euclidean topology. Thus, we can think to the border rank of a polynomial 𝑓 ∈ R𝑑

𝑛 as
the minimum number 𝑟 ∈ N such that

𝑓 = lim
𝑡→0

𝑟∑︁
𝑗=1

𝑙𝑑𝑗 (𝑡 ),

where {𝑙 𝑗 (𝑡 )}𝑡 ∈R is a family of linear forms for every 𝑗 = 1, . . . , 𝑟 .
If one would like to see the definition of rank and border rank from a more geometric point of view,

we should give further definitions (see e.g. [LT10, Section 2]). Given a projective variety 𝑋 ⊆ P𝑛−1, we
can can introduce the sets

𝜎0
𝑟 (𝑋 ) =

⋃
a1,...,a𝑟 ∈𝑋

〈a1, . . . , a𝑟 〉, 𝜎𝑟 (𝑋 ) =
⋃

a1,...,a𝑟 ∈𝑋
〈a1, . . . , a𝑟 〉, (1.2.21)

where the overline is again meant for the Zariski topology. We thus define the 𝑋 -rank and the 𝑋 -border
rank of a point p ∈ P𝑛−1 as the values given respectively by

rk𝑋 (p) = min
{
𝑟 ∈ N

�� p ∈ 𝜎0
𝑟 (𝑋 )

}
, brk𝑋 (p) = min { 𝑟 ∈ N | p ∈ 𝜎𝑟 (𝑋 ) } . (1.2.22)

In particular, we can relate this generalized vision to the rank and border rank of polynomials.

Definition 1.2.23. For every 𝑑 ∈ N and every vector space𝑉 over K, the map

a𝑑 : P𝑉 P
(
𝑆𝑑𝑉

)
[v]

[
v𝑑

]←→

←� →

is called the 𝑑-Veronese map of𝑉 .

Now, if we consider the space 𝑉 as the space of linear polynomials R1
𝑛 , then we can translate the

𝑑-Veronese map as
a𝑑 : P

(
R1
𝑛

)
P
(
R𝑑
𝑛

)
[𝑙 ]

[
𝑙𝑑

]
.

←→

←� →

Considering the values defined in formulas (1.2.22) for a polynomial 𝑓 ∈ R𝑑
𝑛 , we have that these coincide

with Definition 1.2.18 and Definition 1.2.19 in the case of 𝑋 corresponding to the image of the 𝑑-Veronese
map. That is

rk 𝑓 = rka𝑑 (P(D1
𝑛 )) ( 𝑓 ), brk 𝑓 = brka𝑑 (P(D1

𝑛 )) ( 𝑓 ). (1.2.24)
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By construction, it is evident that the border rank has a privileged role in algebraic geometry over the
classical Waring rank, since the set 𝜎𝑟 (𝑋 ) of formulas (1.2.22) is an algebraic variety and it is indeed
called the 𝑟 -th secant variety of 𝑋 .

Now, by Lemma 1.2.15, we can easily recall a well known lower bound for rank and border rank of a
homogeneous polynomial. It is classically attributed to J. J. Sylvester (see [Syl51b]) and also appears
many times in the literature (see e.g. [Lan12, Proposition 3.5.1.1]). The proof we provide here is quite
simple and can be found, for instance, in [Tei14, pp. 11-12].

Proposition 1.2.25. Let 𝑑, 𝑘 ∈ N be such that 𝑑 ≥ 𝑘 . Then

rk 𝑓 ≥ brk 𝑓 ≥ rk
(
Cat𝑘𝑓

)
for every 𝑓 ∈ R𝑑

𝑛 .

Proof. Let us consider the decomposition of size 𝑟

[ 𝑓 ]𝑟 = 𝑙𝑑a1 + · · · + 𝑙
𝑑
a𝑟 ,

with 𝑟 ∈ N, where a1, . . . , a𝑟 ∈ K𝑛 . Then, it follows by Lemma 1.2.15 that for every 𝑗 = 1, . . . , 𝑑 , if
𝜙 ∈ D𝑘

𝑛 , we have

Cat𝑘𝑓 (𝜙) = 𝜙 ◦ 𝑓 = D𝜙

(
𝑙𝑑a1 + · · · + 𝑙

𝑑
a𝑟
)

= D𝜙

(
𝑙𝑑a1

)
+ · · · + D𝜙

(
𝑙𝑑a𝑟

)
=

𝑑!
(𝑑 − 𝑘 )!𝜙 (a1)𝑙𝑑−𝑘1 + · · · + 𝜙 (a𝑟 )𝑙𝑑−𝑘𝑟 ,

that is,
Im 𝑓 ⊆

〈
𝑙𝑑−𝑘1 , . . . , 𝑙𝑑−𝑘𝑟

〉
and hence

rk
(
Cat𝑘𝑓

)
≤ 𝑟 .

The second inequality is a direct consequence of the fact that the locus of matrices of rank at most 𝑟 is
closed in Zariski topology for every 𝑟 ∈ N. �

The concepts of Waring rank and border rank are not the only notions of tensor rank appearing in
the literature. Among the years, several definitions have been provided, generalizing the concept of
decompositions, to associate natural values to points of schemes and varieties. An example is given by the
following definition.

Definition 1.2.26. Given an algebraic variety 𝑋 ⊆ P𝑛−1 and a point [p] ∈ P𝑛−1, the 𝑋 -cactus rank of p is
the natural value

crk𝑋 (p) = min { 𝑟 ∈ N | ∃ 0-dim. scheme 𝑍 ⊆ 𝑋 : deg𝑍 = 𝑟 , [p] ∈ 〈𝑍 〉 } .

That is, the minimum natural number 𝑟 such that there exists a scheme 𝑍 in 𝑋 of degree 𝑟 such that
[p] ∈ 〈𝑍 〉.

This particular notion of tensor rank, has been first presented in 1999 by A. Iarrobino and V. Kanev
(see [IK99, Definition 5.1]), who called it scheme length. The term cactus rank has been instead introduced
by K. Ranestad and F.-O. Schreyer in [RS11], inspired by the notion of cactus variety, defined by
W. Buczyńska and J. Buczyński in [BB14]. There are several motivation for its introduction, which have
been analyzed in other works, such as [Bal18], [BR13], and [BBG19].
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However, for our purposes, another notion of tensor rank becomes relevant. This is the smoothable
rank of a tensor, which is quite similar to the cactus rank, but with the difference that the scheme for
which we require the existence must be smoothable, that is, a limit of smooth subschemes. To be more
precise, we recall the classical notion of Hilbert scheme, which we denote by Hilb𝑟

(
P𝑛

)
. This object,

firstly developed by A. Grothendieck (see [Gro61] for a formal definition and further details), basically
consists of a scheme parameterizing all the closed 0-dimensional subschemes of P𝑛 of degree 𝑟 , which
represent the closed points of Hilb𝑟

(
P𝑛

)
. Denoting by Hilb0

𝑟

(
P𝑛

)
the open subset of Hilb𝑟

(
P𝑛

)
consisting

of the 𝑟 -tuples of distinct points in P𝑛 , we say that a scheme 𝑍 ⊆ P𝑛 is smoothable if it is contained in the
closure of Hilb0

𝑟

(
P𝑛

)
(to see more details about smoothability one can consult, for instance, [JKK19]).

Definition 1.2.27. Given an algebraic variety 𝑋 ⊆ P𝑛−1 and a point [p] ∈ P𝑛−1, the 𝑋 -smoothable rank
of p is the natural value

smrk𝑋 (p) = min { 𝑟 ∈ N | ∃ 0-dim. smoothable scheme 𝑍 ⊆ 𝑋 : deg𝑍 = 𝑟 , [p] ∈ 〈𝑍 〉 } .

That is, the minimum natural number 𝑟 such that there exists a smoothable scheme 𝑍 of length 𝑟 such that
[p] ∈ 〈𝑍 〉.

Clearly, it follows by definition that, for every algebraic variety 𝑋 ⊆ P𝑛−1 and [p] ∈ 𝑋 , then

crk𝑋 p ≤ smrk𝑋 p.

To compare these with many other notions of symmetric tensor ranks, we refer to [BBM14]. Analogously
to formulas (1.2.24), we can define the cactus rank and the smoothable rank of a homogeneous polynomial
𝑓 ∈ R𝑑

𝑛 , respectively as

crk 𝑓 = crka𝑑 (P(R1
𝑛 )) 𝑓 , smrk 𝑓 = smrka𝑑 (P(R1

𝑛 )) 𝑓 .

It is possible to make a comparison also with the border rank of a polynomial. Indeed, as observed by
A. Bernardi, J. Brachat and B. Mourrain in [BBM14, Remark 2.7], using [IK99, Lemma 5.17], we have
also

brk 𝑓 ≤ smrk 𝑓 . (1.2.28)

We recall that, for a 0-dimensional scheme 𝑍 , its degree is defined as the maximum value assumed by the
Hilbert function of the corresponding ideal 𝐼 , given by

HF𝐼 : Z Z

𝑘 dim
(
D𝑘

/
𝐼𝑘

)
.

← →

←�→

As one could expect, there are many cases in which equality in formula (1.2.28) does not hold. Several
examples of polynomials having border rank strictly smaller than smoothable rank are provided by
W. Buczyńska and J. Buczyński in [BB15]. Probably the most useful result we need is the version of
Lemma 1.2.17 for 0-dimensional schemes. There many ways to enunciate it, but we use the one appearing
in [BJMR18, Lemma 1].

Lemma 1.2.29 (Apolarity lemma). Let 𝑓 ∈ R𝑑 and 𝑍 ⊆ P𝑛 a 0-dimensional scheme and let. Let

a𝑑 : P
(
R1
𝑛

)
→ P

(
R𝑑
𝑛

)
be the 𝑑-Veronese map. The following conditions are equivalent:
(1) [ 𝑓 ] ∈ 〈a𝑑 (𝑍 )〉;
(2) 𝐼𝑍 ⊆ 𝑓 ⊥.



32 1. Preliminaries

Proof. If 𝐼𝑍 ⊆ 𝑓 ⊥, then we have
(𝐼𝑍 )𝑑 ⊆ 𝑓 ⊥𝑑

for every 𝑑 ∈ N and hence [ 𝑓 ] ∈ 𝑉
(
(𝐼𝑍 )𝑑

)
= 〈a𝑑 (𝑍 )〉. Conversely, let [ 𝑓 ] ∈ 〈a𝑑 (𝑍 )〉. We have that

(𝐼𝑍 )𝑘 ⊆ 𝑓 ⊥
𝑘

for every 𝑘 > 𝑑 . If 𝜑 ∈ (𝐼𝑍 )𝑘 for some 𝑘 ≤ 𝑑 , then 𝜑D𝑑−𝑘 ⊆ (𝐼𝑍 )𝑑 and hence, since
[ 𝑓 ] ∈ 〈a𝑑 (𝑍 )〉, we have 𝜑D𝑑−𝑘 ⊆ ( 𝑓 ⊥)𝑑 . That is,

𝜑ℎ ◦ 𝑓 = 0

for every ℎ ∈ D𝑑−𝑘
𝑛 and hence we have

𝜑 ◦ 𝑓 = 0,

which proves the second part of the statement. �

Lemma 1.2.29 is particularly useful in dealing with smoothable rank, since the condition of belonging
to the space 〈a𝑑 (𝑍 )〉 can be obtained by analyzing the apolar ideal of the considered homogeneous form.
We will see a direct application in chapter 5.



CHAPTER 2
Apolarity on powers of quadratic forms

In this chapter, we begin our analysis on the powers of the quadratic forms. As already said previously,
our aim is to determine suitable decompositions, trying to establish which are the minimal ones. These
elegant polynomials appear many times also in the classical literature. Several authors have provided
various decompositions for different exponents and numbers of variables (see e.g. [Dic19, Chapter XXV,
pp. 717-724]). A quite recent work is due to B. Reznick, who in [Rez92, Chapters 8-9] analyzes in
details many cases, restricting anyway to the case of real decompositions, also called in that context
representations. From this point on we will consider only vector spaces over the field C and we will use
the same notations of chapter 1 for the polynomial rings. That is,

R𝑛 = C[𝑥1, . . . , 𝑥𝑛] ' 𝑆
(
C𝑛

)
, D𝑛 = C[𝑦1, . . . , 𝑦𝑛] ' 𝑆

(
C𝑛∗) ,

for every 𝑛 ∈ N, and

R𝑑
𝑛 = C[𝑥1, . . . , 𝑥𝑛]𝑑 ' 𝑆𝑑C𝑛 , D𝑑

𝑛 = C[𝑦1, . . . , 𝑦𝑛]𝑑 ' 𝑆𝑑C𝑛∗,

for every 𝑑 ∈ N. Up to linear transformations, we can consider every quadratic form equal to the form

𝑞𝑛 = 𝑥2
1 + · · · + 𝑥

2
𝑛

for some 𝑛 ∈ N, which corresponds to the value of its rank. Therefore, if the quadratic form is in R2
𝑚 for

some 𝑚 ∈ N, but it has rank equal to 𝑛 < 𝑚, we will consider it as a form in R2
𝑛 . An important strategy

to obtain decompositions is given by the use of Lemma 1.2.17. By this reason, our first result regards the
determination of the apolar ideal of 𝑞 𝑠

𝑛 for every 𝑠 ∈ N.
We start in section 2.1 by an analysis on the space of harmonic polynomials, which is an irreducible

representation of the special orthogonal group SO𝑛 (C). This last fact is a quite classical result (see
[GW98, Theorem 5.2.4]). Several facts that are related to quadratic forms involve harmonic polynomials.
One of the most interesting ones is that any form can be uniquely decomposed as a sum of harmonic
polynomials multiplied by powers of 𝑞𝑛 .

Then we proceed in section 2.2 with the analysis on the apolarity action on 𝑞 𝑠
𝑛 . After a detailed

examination on the catalecticant matrices of 𝑞 𝑠
𝑛 , which result to be full rank (a fact already known from

[Rez92]), we move to the analysis of its apolar ideal. Its determination is in fact a quite important result in
terms of apolarity, since it provides us with another strategy to attack the problem of decomposing the
form 𝑞 𝑠

𝑛 . The resulting structure is quite elegant: the apolar ideal of the 𝑠 -th power of a quadratic form of
rank 𝑛 is exactly the ideal generated by harmonic polynomials of degree 𝑠 + 1.

33
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2.1 Harmonic polynomials
To carry on our analysis of the apolar ideal of the form 𝑞 𝑠

𝑛 , we need to make some consideration on the
spaces of harmonic polynomials. These objects appear many times also in other branches of mathematics.
Clearly, their presence can be found in analysis, especially in the theory of harmonic functions, for which
we refer to [ABR01, Chapter 5] to get further details from an analytic point of view.

2.1.1 Apolarity and Laplace operator
It can be useful to identify the space D𝑛 with the space of polynomial differential operators, as we have
already seen in section 1.2. We first observe that the kernel of a differential operator associated to a
homogeneous polynomial 𝜙 ∈ D𝑛 is connected with the contraction pairing. Indeed, it can be viewed as
the orthogonal complement of the space 𝜙D𝑑−𝑘

𝑛 .

Proposition 2.1.1. Let 𝑘 ≤ 𝑑 and let 𝜙 ∈ D𝑘
𝑛 . Then

Ker(D𝜙 ) =
(
𝜙D𝑑−𝑘

𝑛

)⊥ ⊆ R𝑑
𝑛 .

Proof. Let ◦ : D𝑑
𝑛 × R𝑑

𝑛 → C be the contraction pairing of degree 𝑑 ∈ N. Given any 𝑔 ∈ R𝑑
𝑛 , we have by

the argument of Remark 1.2.8 that 𝑔 ∈
(
𝜙D𝑑−𝑘

𝑛

)⊥ if and only if, for every 𝜓 ∈ D𝑑−𝑘
𝑛 ,

𝑔 ◦ (𝜙𝜓 ) = (𝜙𝜓 ) ◦ 𝑔 = 0.

That is,
𝜓 ◦ (𝜙 ◦ 𝑔 ) = 0,

but this means that
D𝜙 (𝑔 ) = 𝜙 ◦ 𝑔 = 0

and hence 𝑔 ∈ Ker(D𝜙 ). �

Proposition 2.1.1 thus allows us to introduce the space of harmonic polynomials by the contraction
pairing. If there is no risk of confusion, we continue to interchange the roles of the variables 𝑥𝑖 and 𝑦𝑖
passing from one space to its dual, without specifying.

Definition 2.1.2. The space
H𝑑

𝑛 =
(
𝑞𝑛D𝑑−2

𝑛

)⊥
= Ker(D𝑞𝑛 ) ⊆ R𝑑

𝑛

is called the space of the 𝑑-harmonic polynomials or 𝑑-harmonic forms. The differential operator D𝑞𝑛 ,
denoted also by Δ, is called the Laplace operator and corresponds to the operator Δ : R𝑑

𝑛 → R𝑑−2
𝑛 , defined

by

Δ =

𝑛∑︁
𝑖=1

𝜕2

𝜕𝑥2
𝑖

.

Remark 2.1.3. We can make some considerations on the behavior of the Laplace operator on polynomials.
First, given any two forms 𝑔1, 𝑔2 ∈ R𝑛 , it is straightforward to verify, simply using Leibniz’s rule for
derivations, that

Δ(𝑔1𝑔2) = Δ(𝑔1)𝑔2 + 𝑔1Δ(𝑔2) + 2
𝑛∑︁
𝑗=1

𝜕𝑔1
𝜕𝑥𝑗

𝜕𝑔2
𝜕𝑥𝑗

. (2.1.4)

In particular, we need to recall the Euler’s formula for a polynomial 𝑓 ∈ R𝑘
𝑛 , that is

𝑛∑︁
𝑗=1

𝑥𝑗
𝜕𝑓

𝜕𝑥𝑗
= 𝑘 𝑓 . (2.1.5)



2.1. Harmonic polynomials 35

Furthermore, we can observe that

Δ
(
𝑞 𝑠
𝑛

)
=

𝑛∑︁
𝑗=1

𝜕2𝑞 𝑠
𝑛

𝜕𝑥2
𝑗

= 2𝑠
𝑛∑︁
𝑗=1

𝜕

𝜕𝑥𝑗

(
𝑥𝑗𝑞

𝑠−1
𝑛

)
= 2𝑠

𝑛∑︁
𝑗=1

(
𝑞 𝑠−1
𝑛 + 𝑥𝑗

𝜕𝑞 𝑠−1
𝑛

𝜕𝑥𝑗

)
= 2𝑠𝑛𝑞 𝑠−1

𝑛 + 4𝑠 (𝑠 − 1)
𝑛∑︁
𝑗=1

𝑥2
𝑗 𝑞

𝑠−2
𝑛 = 2𝑠

(
𝑛 + 2(𝑠 − 1)

)
𝑞 𝑠−1
𝑛 (2.1.6)

for every 𝑠 ≥ 2. Therefore, iterating the process, we get

Δ𝑘
(
𝑞 𝑠
𝑛

)
= 2𝑘

𝑠 !
(𝑠 − 𝑘 )!

( 𝑘∏
𝑗=1

(
𝑛 + 2(𝑠 − 𝑗 )

) )
𝑞 𝑠−𝑘
𝑛 (2.1.7)

for every 𝑘 ≤ 𝑠 . In particular, we can introduce a constant value depending on 𝑛, 𝑠 ∈ N, given by

𝐶𝑛,𝑠 = Δ𝑠
(
𝑞 𝑠
𝑛

)
= 2𝑠 𝑠 !

𝑠−1∏
𝑗=0
(𝑛 + 2𝑗 ) ≠ 0. (2.1.8)

Introducing the notations

𝑞
[𝑘 ]
𝑛 =

1
2𝑘𝑘 !

𝑞𝑘
𝑛 , 𝐴𝑛,𝑠 ,𝑘 =

𝑘∏
𝑗=1

(
𝑛 + 2(𝑠 − 𝑗 )

)
for every 𝑘 ∈ N, formula (2.1.7) assumes a more concise form, since we can write

𝑞𝑘
𝑛 ◦ 𝑞

[𝑠 ]
𝑛 = 𝐴𝑛,𝑠 ,𝑘𝑞

[𝑠−𝑘 ]
𝑛 . (2.1.9)

In addition to the apolarity action between powers of the quadratic forms, we can observe another
nice property. It regards the apolarity action of powers of 𝑞𝑛 on the products of harmonic polynomials by
powers of the quadratic form, generalizing formula (2.1.9).

Lemma 2.1.10. Given a harmonic polynomial ℎ𝑚 ∈ H𝑚
𝑛 ,

𝑞𝑘
𝑛 ◦

(
𝑞
[𝑑 ]
𝑛 ℎ𝑚

)
= 𝐴𝑛,𝑑+𝑚,𝑘𝑞

[𝑑−𝑘 ]
𝑛 ℎ𝑚 .

Proof. We begin by the case 𝑘 = 1. Now, using formula (2.1.4) and formula (2.1.5), we get

Δ
(
𝑞
[𝑑 ]
𝑛 ℎ𝑚

)
= Δ

(
𝑞𝑑
𝑛

)
ℎ𝑚 + 𝑞 [𝑑 ]𝑛 Δ(ℎ𝑚) + 2

𝑛∑︁
𝑗=1

𝜕𝑞
[𝑑 ]
𝑛

𝜕𝑥𝑗

𝜕ℎ𝑚

𝜕𝑥𝑗

= Δ
(
𝑞
[𝑑 ]
𝑛

)
ℎ𝑚 + 2𝑞 [𝑑−1]

𝑛

𝑛∑︁
𝑗=1

𝑥𝑗
𝜕ℎ𝑚

𝜕𝑥𝑗

=
(
𝑛 + 2(𝑑 − 1)

)
𝑞
[𝑑−1]
𝑛 ℎ𝑚 + 2𝑚𝑞

[𝑑−1]
𝑛 ℎ𝑚

=
(
𝑛 + 2(𝑑 +𝑚 − 1)

)
𝑞
[𝑑−1]
𝑛 ℎ𝑚

= 𝐴𝑛,𝑑+𝑚,1𝑞
[𝑑−1]
𝑛 ℎ𝑚 .

Thus, iterating the process, we get

Δ𝑘
(
𝑞
[𝑑 ]
𝑛 ℎ𝑠−2𝑑

)
= 𝐴𝑛,𝑑+𝑚,𝑘𝑞

[𝑑−𝑘 ]
𝑛 ℎ𝑠−2𝑑 . �
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2.1.2 Decompositions and harmonic components

The role of harmonic polynomials is crucial in determining a decomposition of the whole space R𝑑
𝑛 .

It is well known indeed, that the space H𝑑
𝑛 is an irreducible SO𝑛 (C)-module for every 𝑑 ∈ N (see

[GW98, Theorem 5.2.4]). Next proposition shows a decomposition of R𝑑
𝑛 as direct sum of irreducible

representations. It is already presented in [GW98, Corollary 5.2.5] and also in [ABR01, Proposition 5.5],
but we provide here another proof, for which we use apolarity.

Proposition 2.1.11. Let 𝑑 ∈ N. Then

R𝑑
𝑛 = 𝑞𝑛R𝑑−2

𝑛 ⊕ H𝑑
𝑛

and, more precisely,

R𝑑
𝑛 =

b 𝑑2 c⊕
𝑗=0

𝑞
𝑗
𝑛H

𝑑−2𝑗
𝑛 . (2.1.12)

Proof. Since by duality 𝑞𝑛R𝑑−2
𝑛 ' 𝑞𝑛D𝑑−2

𝑛 , the aimed decomposition can be obtained simply by proving
that

𝑞𝑛R𝑑−2
𝑛 ∩H𝑑

𝑛 = {0}.

For every 𝑔 ∈ R𝑑−2
𝑛 \ {0}, let 𝑘 ∈ N be the maximum natural number such that 𝑞𝑛𝑔 = 𝑞𝑘

𝑛 𝑔0 for some
𝑔0 ∈ R𝑑−2𝑘

𝑛 . Then we have that 𝑞𝑛 - 𝑔0 and, using formulas (2.1.5) and (2.1.7), we get

Δ
(
𝑞𝑘
𝑛 𝑔0

)
= Δ

(
𝑞𝑘
𝑛

)
𝑔0 + 𝑞𝑘

𝑛Δ(ℎ0) + 2
𝑛∑︁
𝑗=1

𝜕𝑞𝑘
𝑛

𝜕𝑥𝑗

𝜕ℎ0
𝜕𝑥𝑗

= 2𝑘
(
𝑛 + 2(𝑘 − 1)

)
𝑞𝑘−1
𝑛 𝑔0 + 𝑞𝑘

𝑛Δ(𝑔0) + 4𝑘𝑞𝑘−1
𝑛

𝑛∑︁
𝑗=1

𝑥𝑗
𝜕𝑔0
𝜕𝑥𝑗

= 2𝑘
(
𝑛 + 2(𝑘 − 1)

)
𝑞𝑘−1
𝑛 𝑔0 + 4𝑘 (𝑑 − 2𝑘 )𝑞𝑘−1

𝑛 𝑔0 + 𝑞𝑘
𝑛Δ(𝑔0)

= 2𝑘
(
𝑛 + 2(𝑑 − 𝑘 − 1)

)
𝑞𝑘−1
𝑛 𝑔0 + 𝑞𝑘

𝑛Δ(𝑔0)
𝑛∑︁
𝑗=1

𝜕𝑞𝑘
𝑛

𝜕𝑥𝑗

𝜕ℎ0
𝜕𝑥𝑗

.

So, if Δ
(
𝑞𝑘
𝑛 𝑔0

)
= 0, then we have

𝑞𝑘
𝑛Δ(𝑔0) = −2𝑘

(
𝑛 + 2(𝑑 − 𝑘 − 1)

)
𝑞𝑘−1
𝑛 𝑔0

and, since 𝑔0 ≠ 0, it implies that 𝑞𝑘
𝑛

�� 𝑞𝑘−1
𝑛 𝑔0. Thus we must have 𝑞𝑛 | 𝑔0, but this is absurd by the

hypothesis on 𝑔0. We have therefore proved that

R𝑑
𝑛 = 𝑞𝑛R𝑑−2

𝑛 ⊕ H𝑑
𝑛 .

Proceeding by induction on 𝑑 , we easily get the equality

R𝑑
𝑛 =

b 𝑑2 c⊕
𝑗=0

𝑞
𝑗
𝑛H

𝑑−2𝑗
𝑛 . �

By Proposition 2.1.11, we can determine the dimension of each component of the vector space of
harmonic polynomials.
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Corollary 2.1.13. For every 𝑑, 𝑛 ∈ N

dimH𝑑
𝑛 = dimR𝑑

𝑛 − dimR𝑑−2
𝑛 =

(
𝑑 + 𝑛 − 1
𝑛 − 1

)
−

(
𝑑 + 𝑛 − 3
𝑛 − 1

)
.

We can also establish a recursive value of the dimension of each component.

Lemma 2.1.14. For every 𝑑, 𝑛 ≥ 1,

dimH𝑑
𝑛 = dimR𝑑−1

𝑛−1 + dimR𝑑
𝑛−1 = dimH𝑑−1

𝑛 + dimH𝑑
𝑛−1.

Proof. By Corollary 2.1.13, we have

dimH𝑑
𝑛 =

(
𝑑 + 𝑛 − 1
𝑛 − 1

)
−

(
𝑑 + 𝑛 − 3
𝑛 − 1

)
=
(𝑑 + 𝑛 − 1)! − 𝑑 (𝑑 − 1) (𝑑 + 𝑛 − 3)!

𝑑!(𝑛 − 1)!

=
(
(𝑑 + 𝑛 − 1) (𝑑 + 𝑛 − 2) − 𝑑 (𝑑 − 1)

) (𝑑 + 𝑛 − 3)!
𝑑!(𝑛 − 1)!

=
(
2𝑑 (𝑛 − 1) + (𝑛 − 1) (𝑛 − 2)

) (𝑑 + 𝑛 − 3)!
𝑑!(𝑛 − 1)!

=
(
2𝑑 + 𝑛 − 2

) (𝑑 + 𝑛 − 3)!
𝑑!(𝑛 − 2)!

=

(
(𝑑 − 1) + (𝑛 − 1)

𝑛 − 1

)
+

(
𝑑 + 𝑛 − 1
𝑛 − 1

)
= dimR𝑑−1

𝑛−1 + dimR𝑑
𝑛−1.

Furthermore, by this last equality, we get

dimH𝑑
𝑛 = dimR𝑑−1

𝑛−1 + dimR𝑑
𝑛−1

= dimR𝑑−1
𝑛−1 + dimR𝑑−2

𝑛−1 + dimH𝑑
𝑛−1

= dimH𝑑−1
𝑛 + dimH𝑑

𝑛−1. �

In terms of the contraction pairing defined in formula (1.2.1), we observe that formula (2.1.12) provides
an orthogonal decomposition of the spaces of homogeneous polynomials in each degree. In the following
lemma we see how the contraction pairing works between each component of decomposition (2.1.12).

Lemma 2.1.15. For every 𝑗 , 𝑘 ≤ 𝑑 ∈ N such that 𝑗 ≠ 𝑘 ,

𝑞
𝑗
𝑛ℎ𝑑−2𝑗 ◦ 𝑞𝑘

𝑛ℎ𝑑−2𝑘 = 0

for every ℎ𝑑−2𝑗 ∈ H𝑑−2𝑗
𝑛 and ℎ𝑑−2𝑘 ∈ H𝑑−2𝑘

𝑛 .

Proof. Recalling Remark 1.2.8, we can suppose by symmetry that 𝑗 ≥ 𝑘 . Thus, we get immediately by
Lemma 2.1.10 that

𝑞
𝑗
𝑛ℎ𝑑−2𝑗 ◦ 𝑞𝑘

𝑛ℎ𝑑−2𝑘 = 0. �

2.2 The apolar ideal of 𝑞 𝑠
𝑛

Now we prove that the apolar ideal of 𝑞 𝑠
𝑛 is exactly the ideal generated by harmonic polynomials of degree

𝑠 + 1. Again, as we have already done above, we will pass from a set of coordinate to its dual without
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specifying. We start by observing the behavior of the apolarity action of an arbitrary polynomial on 𝑞 𝑠
𝑛 .

By considering monomials of degree 1 first, we get for every 𝑗 = 1, . . . , 𝑛

𝑦𝑗 ◦ 𝑞 𝑠
𝑛 =

𝜕𝑞 𝑠
𝑛

𝜕𝑥𝑗
= 2𝑠𝑞 𝑠−1

𝑛 𝑥𝑗 .

Therefore, by Leibniz’s rule, we can extend it to any polynomial 𝑔 ∈ D𝑘
𝑛 , with 𝑘 ≤ 𝑠 , and we get the

equation
𝑔 ◦ 𝑞 𝑠

𝑛 = 2𝑘
𝑠 !

(𝑠 − 𝑘 )!𝑞
𝑠−𝑘
𝑛 𝑔 + 𝑞 𝑠−𝑘+1

𝑛 ℎ, (2.2.1)

for a suitable ℎ ∈ R𝑘−2
𝑛 . In this case we use the same notation for the polynomial obtained by replacing 𝑦𝑗

by 𝑥𝑗 for every 𝑗 = 1, . . . , 𝑛 in the polynomial 𝑔 .

2.2.1 Catalecticant matrices of 𝑞 𝑠
𝑛

We have already seen that R𝑛 and D𝑛 own a natural structure of GL𝑛 (C)-modules. Next result is related
to the catalecticant map and it is crucial for our purposes. For every polynomial 𝑔 ∈ R𝑛 , we denote by(
GL𝑛 (C)

)
𝑔 the stabilizer of 𝑔 , i.e. the subgroup of GL𝑛 (C) given by(

GL𝑛 (C)
)
𝑔 = { 𝐴 ∈ GL𝑛 (C) | 𝐴 · 𝑔 = 𝑔 } .

The stabilizer of GL𝑛 (C) with respect to the form 𝑞 𝑠
𝑛 can be described explicitly. In particular, it contains

the group of special orthogonal matrices SO𝑛 (C).

Lemma 2.2.2. For every 𝑛, 𝑠 ∈ N the stabilizer of the action of GL𝑛 (C) with respect to the form 𝑞 𝑠
𝑛 is the

group
𝐺𝑞𝑠

𝑛
= Z𝑠 × O𝑛 (C).

Proof. Given any 𝐴 ∈ GL𝑛 (C), we have by Definition 1.2.10 that

𝐴 · 𝑞 𝑠
𝑛 = 𝐴 ·

(
𝑥2

1 + · · · + 𝑥
2
𝑛

)𝑠
=

(
(𝐴 · 𝑥1)2 + · · · + (𝐴 · 𝑥𝑛)2

)𝑠
= (𝐴 · 𝑞𝑛)𝑠

and hence
𝐴 · 𝑞 𝑠

𝑛 = (𝐴 · 𝑞𝑛)𝑠 = 𝑞 𝑠
𝑛 ,

that is, (
(𝐴 · 𝑥1)2 + · · · + (𝐴 · 𝑥𝑛)2

)𝑠
=

(
𝑥2

1 + · · · + 𝑥
2
𝑛

)𝑠
.

This means, considering the (2𝑠 )-th roots of unity, that

𝐴 · 𝑞𝑛 = e
2( 𝑗−1)πi

𝑠 𝑞𝑛

for some 𝑗 ∈ N such that 1 ≤ 𝑗 ≤ 𝑠 and this implies that

e−
2( 𝑗−1)πi

𝑠 𝐴 · 𝑞𝑛 = 𝑞𝑛 .

In particular, since the stabilizer of the form 𝑞𝑛 corresponds to the orthogonal group O𝑛 (C), we have

𝐴 = e
2( 𝑗−1)πi

𝑠 𝐵

for some 𝐵 ∈ O𝑛 (C), which proves the statement. �

We need to notice another basic fact in representation theory, i.e. that, in general, the catalecticant map
of a homogeneous polynomial 𝑔 represents a map of GL𝑛 (C)𝑔 -modules.
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Proposition 2.2.3. Let 𝑔 ∈ R𝑑
𝑛 and let𝐺 = GL𝑛 (C). Then the catalecticant map of 𝑔 is𝐺𝑔 -equivariant,

that is,
Cat𝑔 (𝐴 · 𝑓 ) = 𝐴 · Cat𝑔 ( 𝑓 )

for every 𝐴 ∈ 𝐺𝑔 .

Proof. By Proposition 1.2.12, we know that the apolarity action of D𝑛 on R𝑛 is 𝐺 -equivariant, that is,
given any 𝜙 ∈ D𝑛 and 𝑓 ∈ R𝑛 ,

𝐵 · (𝜙 ◦ 𝑓 ) = (𝐵 · 𝜙) ◦ (𝐵 · 𝑓 )

for every 𝐵 ∈ 𝐺 . Thus, given any 𝐴 ∈ 𝐺𝑔 , we have

Cat𝑔 (𝐴 · 𝜙) = (𝐴 · 𝜙) ◦ 𝑔 = (𝐴 · 𝜙) ◦ (𝐴 · 𝑔 ) = 𝐴 · (𝜙 ◦ 𝑔 ) = 𝐴 · Cat𝑔 (𝜙)

for every 𝜙 ∈ D𝑛 . �

Before proving that the set of (𝑠 + 1)-harmonic polynomials represents a set of generators of the apolar
ideal, we need other considerations. Let us define the polynomials 𝑢,𝑣 ∈ D1, as

𝑢 = 𝑦1 + i𝑦2, 𝑣 = 𝑦1 − i𝑦2. (2.2.4)

Lemma 2.2.5. If 𝑙a ∈ D1
𝑛 is a linear form associated to an isotropic point a ∈ C𝑛 , namely such that

a · a = 0, then the 𝑑-th power 𝑙𝑑a is harmonic for every 𝑑 ∈ N.

Proof. If 𝑑 = 1 the statement is clear. If 𝑑 ≥ 2, we get by Lemma 1.2.15 that

Δ𝑙 [𝑑 ]a = 𝑞𝑛 ◦ 𝑙 [𝑑 ]a = (a · a)𝑙 [𝑑−2]
a = 0. �

As a direct consequence, we have that every power of the polynomials 𝑢 and 𝑣 is harmonic.

Lemma 2.2.6. For every 𝑑 ∈ N such that 𝑑 ≥ 𝑠 + 1, 𝑢𝑑 , 𝑣𝑑 ∈
(
𝑞 𝑠
𝑛

)⊥.

Proof. We prove the statement only for the linear polynomial 𝑢 , since the case of 𝑣 is analogous. We
observe that

(𝑦1 + i𝑦2) ◦ (𝑥1 + i𝑥2) = 1 + i2 = 0

and
𝑢 ◦ 𝑞 𝑠

𝑛 = (𝑦1 + i𝑦2) ◦
(
𝑥2

1 + · · · + 𝑥
2
𝑛

)𝑠
= 2𝑠 (𝑥1 + i𝑥2)

(
𝑥2

1 + · · · + 𝑥
2
𝑛

)𝑠−1
.

Then, if 𝑑 ≥ 𝑠 + 1, we obtain by Leibniz’s rule

𝑢𝑑 ◦ 𝑞 𝑠
𝑛 = (𝑦1 + i𝑦2)𝑑 ◦

(
𝑥2

1 + · · · + 𝑥
2
𝑛

)𝑠
= 2𝑠 𝑠 !(𝑦1 + i𝑦2)𝑑−𝑠 ◦ (𝑥1 + i𝑥2)𝑠 = 0,

that is, 𝑢𝑑 ∈
(
𝑞 𝑠
𝑛

)⊥. �

Remark 2.2.7. It is clear that the product of two powers of the polynomials 𝑢 and 𝑣 cannot be harmonic.
Indeed, given any 𝑙 ,𝑚 ∈ N such that 𝑙 ,𝑚 ≥ 1,we have

𝑢 𝑙𝑣𝑚 =
(
𝑦 2

1 + 𝑦
2
2
)
(𝑦1 + i𝑦2)𝑙−1(𝑦1 − i𝑦2)𝑚−1,

namely
(
𝑦 2

1 + 𝑦
2
2
) �� 𝑢 𝑙𝑣𝑚 .
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We can finally analyze each component of the catalecticant map, in order to determine its kernel,
which is the apolar ideal of 𝑞 𝑠

𝑛 . We have seen in Corollary 2.2.11 that the catalecticant matrices of 𝑞 𝑠
𝑛

are full rank for every 𝑛, 𝑠 ∈ N. Moreover, we can represent them in their diagonal form by the use of
harmonic polynomials. Given any 𝑘 ∈ N such that 𝑘 ≤ 2𝑠 , let us consider the 𝑘 -th catalecticant map

Cat𝑘𝑞𝑠
𝑛

: D𝑘
𝑛 → R2𝑠−𝑘

𝑛 .

Proposition 2.2.8. Let 𝑘 ∈ N such that 𝑘 ≤ 2𝑠 and 𝑗 ≤
⌊
𝑘
2
⌋
. Then

Cat𝑘𝑞𝑠
𝑛

(
𝑞
𝑗
𝑛ℎ𝑘−2𝑗

)
∈ 𝑞 𝑠−𝑘+𝑗

𝑛 H𝑘−2𝑗
𝑛

for every ℎ𝑘−2𝑗 ∈ H𝑘−2𝑗
𝑛 . In particular, the restriction

Cat𝑘𝑞𝑠
𝑛

: 𝑞 𝑗
𝑛H

𝑘−2𝑗
𝑛 → 𝑞

𝑠−𝑘+𝑗
𝑛 H𝑘−2𝑗

𝑛

is a well defined isomorphism of SO𝑛 (C)-modules.

Proof. We have already recalled that the space of harmonic polynomialsH 𝑠
𝑛 is an irreducible SO𝑛 (C)-

module ([GW98, Theorem 5.2.4]) and so is 𝑞 𝑗
𝑛H

𝑘−2𝑗
𝑛 . Now, let us consider the linear polynomials 𝑢 and 𝑣

defined in (2.2.4) and the restriction

Cat𝑘𝑞𝑠
𝑛

���
𝑞
𝑗
𝑛H

𝑘−2𝑗
𝑛

: 𝑞 𝑗
𝑛H

𝑘−2𝑗
𝑛 → R2𝑠−𝑘

𝑛 .

Then we have, by formula (2.1.7), that

Cat𝑘𝑞𝑠
𝑛

(
𝑞
𝑗
𝑛𝑢

𝑘−2𝑗
1

)
=

(
𝑞
𝑗
𝑛𝑢

𝑘−2𝑗
1

)
◦ 𝑞 𝑠

𝑛 = 𝑢
𝑘−2𝑗
1 ◦

(
2𝑘

𝑠 !
(𝑠 − 𝑘 )!

( 𝑠−1∏
𝑙=𝑠−𝑘
(𝑛 + 2𝑙 )

)
𝑞
𝑠−𝑗
𝑛

)
.

We also see that

𝑢
𝑘−2𝑗
1 ◦ 𝑞 𝑠−𝑗

𝑛 = (𝑦1 + i𝑦2)𝑘−2𝑗 ◦ 𝑞 𝑠−𝑗
𝑛 = (𝑦1 + i𝑦2)𝑘−2𝑗−1 ◦

(
2𝑞 𝑠−𝑗−1

𝑛 (𝑥1 + i𝑥2)
)

and, since
(𝑦1 + i𝑦2) ◦ (𝑥1 + i𝑥2) = 0,

we can iterate the process obtaining

𝑢
𝑘−2𝑗
1 ◦ 𝑞 𝑠−𝑗

𝑛 = 2𝑘−2𝑗𝑞
𝑠−𝑘+𝑗
𝑛 (𝑥1 + i𝑥2)𝑘−2𝑗 ∈ 𝑞 𝑠−𝑘+𝑗

𝑛 H𝑘−2𝑗
𝑛 .

In particular, since 𝑞 𝑠−𝑘+𝑗
𝑛 H𝑘−2𝑗

𝑛 is an irreducible SO𝑛 (C)-module, we must have by Lemma 1.1.22 that

𝑞
𝑠−𝑘+𝑗
𝑛 H𝑘−2𝑗

𝑛 ⊆ Im
(
Cat𝑘𝑞𝑠

𝑛

)
.

Therefore, by dimensional reasons, it follows immediately that

Cat𝑘𝑞𝑠
𝑛

���
𝑞
𝑗
𝑛H

𝑘−2𝑗
𝑛

: 𝑞 𝑗
𝑛H

𝑘−2𝑗
𝑛 → 𝑞

𝑠−𝑘+𝑗
𝑛 H𝑘−2𝑗

𝑛

is an isomorphism of SO𝑛 (C)-modules. �
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In a certain sense, the catalecticant maps of𝑞 𝑠
𝑛 preserve the decomposition (2.1.12). Indeed, considering

the classical coordinates, for every harmonic polynomial ℎ ∈ H𝑘
𝑛 , we know by formula (2.2.1) that

ℎ ◦ 𝑞 𝑠
𝑛 = 2𝑘

𝑠 !
(𝑠 − 𝑘 )!𝑞

𝑠−𝑘
𝑛 ℎ + 𝑞 𝑠−𝑘+1

𝑛 𝑔

for some 𝑔 ∈ R𝑑
𝑛 . However, since the harmonic decomposition is unique, we have by Proposition 2.2.8 that

ℎ ◦ 𝑞 𝑠
𝑛 = 2𝑘

𝑠 !
(𝑠 − 𝑘 )!𝑞

𝑠−𝑘
𝑛 ℎ.

In particular, setting

𝑞
[𝑠 ]
𝑛 =

1
2𝑠 𝑠 !

𝑞 𝑠
𝑛

for every 𝑠 ∈ N, we obtain
ℎ ◦ 𝑞 [𝑠 ]𝑛 = 𝑞

[𝑠−𝑘 ]
𝑛 ℎ. (2.2.9)

for every ℎ ∈ H𝑘
𝑛 . So, we can determine a particular basis, for which every catalecticant matrix presents a

diagonal form.

Proposition 2.2.10. Let B𝑛,𝑑 be a basis ofH𝑑
𝑛 for every 𝑛, 𝑑 ∈ N. Let 𝐴𝑛,𝑠 ,𝑘 denote the value given by

𝐴𝑛,𝑠 ,𝑘 =

𝑘−1∏
𝑗=0

(
𝑛 + 2(𝑠 − 𝑘 + 𝑗 )

)
=

𝑘−1∏
𝑗=0

(
𝑛 + 2(𝑠 − 1 − 𝑗 )

)
=

𝑘∏
𝑗=1

(
𝑛 + 2(𝑠 − 𝑗 )

)
.

Let also

T𝑑 =

b 𝑑2 c⋃
𝑘=1

{
1

𝐴𝑛,𝑠 ,𝑘
𝑞𝑘
𝑛ℎ𝑑−2𝑘

���� ℎ𝑑−2𝑘 ∈ B𝑑−2𝑘
𝑛,𝑘

}
and

S𝑑 =

b 𝑑2 c⋃
𝑘=1

{
𝑞
[𝑘 ]
𝑛 ℎ𝑑−2𝑘

��� ℎ𝑑−2𝑘 ∈
(
B𝑑−2𝑘
𝑛,𝑘

)∗ }
be basis respectively of D𝑑 and R𝑑 for every 𝑑 = 1, . . . , 2𝑠 . Then, the entries of the 𝑑-th catalecticant
matrix Cat𝑑

𝑞
[𝑠 ]
𝑛

with respect to bases T𝑑 and S2𝑠−𝑑 are

(
Cat𝑑

𝑞
[𝑠 ]
𝑛

)
𝑖 𝑗
=

{
1 if 𝑖 = 𝑗 ,

0 otherwise.

In particular, the central catalecticant matrix corresponds to the identity matrix.

Proof. It is sufficient to prove that, for every 1 ≤ 𝑑 ≤ 2𝑠 , the 𝑑-th catalecticant map sends elements of T𝑑
in elements of S2𝑠−𝑑 . For every ℎ𝑑−2𝑘 ∈ H𝑑−2𝑘

𝑛 , we have by formulas (2.1.7) and (2.2.9) that

1
𝐴𝑛,𝑠 ,𝑘

𝑞𝑘
𝑛ℎ𝑑−2𝑘 ◦ 𝑞 [𝑠 ]𝑛 =

(𝑘−1∏
𝑗=0

1
𝑛 + 2(𝑠 − 𝑘 + 𝑗 )

)
𝑞𝑘
𝑛ℎ𝑑−2𝑘 ◦ 𝑞 [𝑠 ]𝑛

= ℎ𝑑−2𝑘 ◦ 𝑞 [𝑠−𝑘 ]𝑛 = 𝑞
[𝑠−𝑑+𝑘 ]
𝑛 ℎ𝑑−2𝑘

and hence the statement is proved. �
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2.2.2 Generators of the apolar ideal
The new form of catalecticant matrices of 𝑞 𝑠

𝑛 allows us to determine more easily how the apolar ideal is
made. In particular, by Proposition 2.2.10, we get immediately the following well-known result.

Corollary 2.2.11. For every 𝑘 ∈ N such that 0 ≤ 𝑘 ≤ 𝑠 ,

Ker
(
Cat𝑠−𝑘𝑞𝑠

𝑛

)
=

(
𝑞 𝑠
𝑛

)⊥
𝑠−𝑘 = {0}.

The fact that the catalecticant matrices of 𝑞 𝑠
𝑛 are all full-rank has already been proved by B. Reznick,

using [Rez92, Theorem 8.15] and referring to [Rez92, Theorem 3.7] and [Rez92, Theorem 3.16]. Another
kind of proof is provided by F. Gesmundo and J. M. Landsberg in [GL19, Theorem 2.2]. In addition,
again by Proposition 2.2.10, we get also the following corollary, concerning the other components of the
catalecticant matrices and apolar ideal.

Corollary 2.2.12. For every 𝑘 ∈ N such that 1 ≤ 𝑘 ≤ 𝑠 ,

Ker
(
Cat𝑠+𝑘𝑞𝑠

𝑛

)
=

(
𝑞 𝑠
𝑛

)⊥
𝑠+𝑘 =

𝑘−1⊕
𝑗=0

𝑞
𝑗
𝑛H

𝑠+𝑘−2𝑗
𝑛 . (2.2.13)

Now we have all the elements to present our first result, consisting in the determination of the apolar
ideal

(
𝑞 𝑠
𝑛

)⊥, which turns out to be generated by harmonic polynomials of degree 𝑠 + 1. The proof is based
on the determination of a set of generators for each component of the apolar ideal.

Theorem 2.2.14. The apolar ideal of the form 𝑞 𝑠
𝑛 is(

𝑞 𝑠
𝑛

)⊥
=

(
H 𝑠+1

𝑛

)
.

Proof. By Corollary 2.2.11 we have seen that
(
𝑞 𝑠
𝑛

)⊥
𝑘 = 0 for every 1 ≤ 𝑘 ≤ 𝑠 . Therefore, to get the

statement we simply have to prove that (
𝑞 𝑠
𝑛

)⊥
𝑑 = H 𝑠+1

𝑛 D𝑑−𝑠−1
𝑛

for every 𝑑 ≥ 𝑠 + 1. So, let 𝑑 = 𝑠 + 𝑘 for a suitable 𝑘 ∈ N. Then by Corollary 2.2.12, if 1 ≤ 𝑘 ≤ 𝑠 + 1,
this is the same as proving that

𝑘−1⊕
𝑗=0

𝑞
𝑗
𝑛H

𝑠+𝑘−2𝑗
𝑛 = H 𝑠+1

𝑛 D𝑘−1
𝑛 . (2.2.15)

Corollary 2.2.12 also shows us that (
𝑞 𝑠
𝑛

)⊥
𝑠+1 = H 𝑠+1

𝑛 ,

and hence we get immediately the inclusion

𝑘−1⊕
𝑗=0

𝑞
𝑗
𝑛H

𝑠+𝑘−2𝑗
𝑛 ⊇ H 𝑠+1.

𝑛 D𝑘−1
𝑛 . (2.2.16)

The reverse inclusion can be obtained by induction on 𝑘 separately on odd and even values. If 𝑘 = 1 the
equality is clear and we have already seen it. If 𝑘 = 2 we have to show that

H 𝑠+2
𝑛 ⊕ 𝑞𝑛H 𝑠

𝑛 ⊆ H 𝑠+1
𝑛 D1

𝑛 .

So, if we consider the polynomials

𝑢 = 𝑦1 + i𝑦2, 𝑣 = 𝑦1 − i𝑦2,
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then, as we have seen in Lemma 2.2.6, we can consider the polynomial 𝑢𝑠+2 ∈ H 𝑠+2
𝑛 , which can be written

as
𝑢𝑠+1𝑢 ∈ H 𝑠+1

𝑛 D1
𝑛 .

Thus, sinceH 𝑠+2
𝑛 is an irreducible SO𝑛 (C)-module, it follows that

H 𝑠+2
𝑛 ⊆ H 𝑠+1

𝑛 D1
𝑛 .

Now by Remark 2.2.7, we have also that 𝑢𝑠+1𝑣 ∉ H 𝑠+2
𝑛 and, in particular, we get by formula (2.2.16) that

𝑢𝑠+1𝑣 ∈ H 𝑠+1
𝑛 D1

𝑛 ⊆ H 𝑠+2
𝑛 ⊕ 𝑞𝑛H 𝑠

𝑛 .

This means that there are unique forms ℎ1 ∈ H 𝑠+2
𝑛 and ℎ2 ∈ H 𝑠

𝑛 , with ℎ2 ≠ 0 such that

𝑢𝑠+1𝑣 = ℎ1 + 𝑞𝑛ℎ2 ∈ H 𝑠+2
𝑛 ⊕ 𝑞𝑛H 𝑠

𝑛

and, in particular,
𝑞𝑛ℎ2 = 𝑢𝑠+1𝑣 − ℎ1 ∈ H 𝑠+1

𝑛 D1
𝑛 .

This implies by irreducibility that
𝑞𝑛H 𝑠

𝑛 ⊆ H 𝑠+1
𝑛 D1

𝑛 ,

providing the required inclusion. Now, let 3 ≤ 𝑘 ≤ 𝑠 and let the equality be true for 𝑘 − 2. We have to
show that

𝑘−1⊕
𝑗=0

𝑞
𝑗
𝑛H

𝑠+𝑘−2𝑗
𝑛 = H 𝑠+𝑘

𝑛 ⊕ 𝑞𝑛
( 𝑘−2⊕
𝑗=0

𝑞
𝑗−1
𝑛 H

𝑠+𝑘−2−2𝑗
𝑛

)
⊆ H 𝑠+1

𝑛 D𝑘−1.

As above, we can consider the polynomial 𝑢𝑠+𝑘 ∈ H𝑠+𝑘 , which can be written as

𝑢𝑠+1𝑢𝑘−1 ∈ H 𝑠+1
𝑛 D𝑘−1

𝑛

and conclude, again by irreducibility, that

H 𝑠+𝑘
𝑛 ⊆ H 𝑠+1

𝑛 D𝑘−1
𝑛 .

So, since by inductive hypothesis we have

𝑘−2⊕
𝑗=0

𝑞
𝑗−1
𝑛 H

𝑠+𝑘−2−2𝑗
𝑛 ⊆ H 𝑠+1

𝑛 D𝑘−3
𝑛 ,

then we have, as 𝑞𝑛 ∈ D2
𝑛 ,

𝑞𝑛

( 𝑘−2⊕
𝑗=0

𝑞
𝑗−1
𝑛 H

𝑠+𝑘−2−2𝑗
𝑛

)
⊆ H 𝑠+1

𝑛 D𝑘−1
𝑛 .

This provides the inclusion
𝑘−1⊕
𝑗=0

𝑞
𝑗
𝑛H

𝑠+𝑘−2𝑗
𝑛 ⊆ H 𝑠+1

𝑛 D𝑘−1
𝑛 ,

proving equality (2.2.15). It remains to show that for every 𝑑 ≥ 2(𝑠 + 1)(
𝑞 𝑠
𝑛

)⊥
𝑑 = H 𝑠+1

𝑛 D𝑑−𝑠−1
𝑛 . (2.2.17)

In particular, since we have that (
𝑞 𝑠
𝑛

)⊥
𝑑 = D𝑑

𝑛



44 2. Apolarity on powers of quadratic forms

for every 𝑑 ≥ 2(𝑠 + 1), we simply have to prove that

D2𝑠+𝑚+1
𝑛 = H 𝑠+1

𝑛 D𝑠+𝑚
𝑛

for every 𝑚 ≥ 1. Now, we have just seen, by formulas (2.2.13) and (2.2.15), that

(
𝑞 𝑠
𝑛

)⊥
2𝑠+1 = H 𝑠+1

𝑛 D𝑠
𝑛 =

𝑠⊕
𝑗=0

𝑞
𝑗
𝑛H

2𝑠−2𝑗+1
𝑛 .

This implies, by the decomposition (2.1.12), that

H 𝑠+1
𝑛 D𝑠

𝑛 = D2𝑠+1
𝑛 ,

from which we easily get

D2𝑠+𝑚+1
𝑛 = D2𝑠+1

𝑛 D𝑚
𝑛 = H 𝑠+1

𝑛 D𝑠
𝑛D𝑚

𝑛 = H 𝑠+1
𝑛 D𝑠+𝑚

𝑛

for every 𝑚 ≥ 1, which corresponds to equality (2.2.17). �

By Theorem 2.2.14 it is quite easy to obtain a lower bound for the rank of the form 𝑞 𝑠
𝑛 . Indeed, as a

direct consequence of Proposition 1.2.25, we get the following corollary.

Corollary 2.2.18. For every 𝑛,𝑠 ∈ N

rk
(
𝑞 𝑠
𝑛

)
≥ brk

(
𝑞 𝑠
𝑛

)
≥

(
𝑠 + 𝑛 − 1
𝑛 − 1

)
.



CHAPTER 3
Tight decompositions

The lower bound provided by Corollary 2.2.18, i.e. the value

T𝑛,𝑠 =

(
𝑠 + 𝑛 − 1
𝑛 − 1

)
,

leads us to ask in which cases the equality is satisfied, that is, the rank of 𝑞 𝑠
𝑛 is equal to the rank of the

middle catalecticant matrix. B. Reznick analyzes this problem in [Rez92] for real decompositions, calling
tight decompositions the decomposition having size 𝑇𝑛,𝑠 and creating a connection with the classical
language of spherical designs. Although it is not so easy to extend the whole theory to the complex case,
we provide in this chapter some generalizations of results of B. Reznick, which are valid also for the field
C.

In section 3.1 we give a summary of results for the real tight decompositions, which seem to preserve
some geometric properties if we extend them to the complex case. In particular, we prove that the property
of tight decompositions to be formed by points having the same normis valid also over C, not only over R,
which is the case proved by B. Reznick. Thanks to this surprising fact, we are able to extend some results
exposed by B. Reznick on tight decomposition. One of the most relevant is that many decompositions,
resulting to be unique up to real orthogonal transformations, still preserve their uniqueness also extending
the set of possible transformation to the complex ones. This represents, in fact, the main subject of the two
following sections. First, in section 3.2, we explicitly compute all the possible decompositions in two
variables, thanks to Theorem 2.2.14. Then, in section 3.3, we repeat the same procedure for some specific
cases in more variables. In this last section, we focus on tight decompositions in the case of lower powers
and we also observe that, working on the complex field, there are just a few number of values which can
be assumed by 𝑛 to get tight decompositions. For many cases, the question remains unsolved even for real
decompositions.

3.1 Real decompositions and spherical designs
In dealing with minimal real decompositions of the form 𝑞 𝑠

𝑛 , the number of different values of the norm
of the points of the decompositions plays a relevant role. B. Reznick focuses on this in [Rez92, Chapter
8], analyzing the decompositions determined by points having the same norm, also called first caliber
decompositions, and their one-to-one correspondence with some specific combinatorial objects, known as
spherical designs (see [Rez92, Proposition 8.38]). However, although we do not work using spherical
designs, we consider these results and generalize some of them to the field of complex numbers, especially
for what concerns first caliber decomposition.

45
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Spherical designs can be defined in many different ways. B. Reznick chose in [Rez92] the one provided
by P. Delsarte, J.-M. Goethals, and J. J. Seidel in [DGS77, Definition 5.1]. They were the first to define this
concept, considering a spherical 𝑡 -design as a finite set of points 𝐴 contained in the (𝑛 − 1)-dimensional
sphere S𝑛−1 such that, for every homogeneous polynomial 𝑓 ∈ R𝑛 with deg 𝑓 ≤ 𝑡 ,

1��S𝑛−1
�� ∫S𝑛−1

𝑓 (b ) d𝜔 (b ) = 1
|𝐴 |

∑︁
a∈𝐴

𝑓 (a).

More details on spherical designs occur many times in the literature, for which B. Reznick also lists
several texts (see [Rez92, p. 113]) which can be consulted to get more information them, as [Ban84],
[CS99], [GS79], [GS81a], [GS81b], [Hog90], [Sei84], and [Sei87]. There is another equivalent definition,
again provided by P. Delsarte, J.-M. Goethals and J. J. Seidel in [DGS77, Theorem 5.2] and also used by
E. Bannai and R. M. Damerell in [BD79] and [BD80]. It tells us that any finite set of points 𝐴 ⊆ S𝑛−1 is a
𝑡 -spherical design if and only if ∑︁

a∈𝐴
ℎ (a) = 0

for every ℎ ∈ H𝑘
𝑛 and 𝑘 = 1, . . . , 𝑡 . Although we can extend this last definition to complex points on a

subset 𝐴 of the complexified sphere

S𝑛−1
C =

{
(𝑥1, . . . , 𝑥𝑛) ∈ C𝑛

�� 𝑥2
1 + · · · + 𝑥

2
𝑛 = 1

}
,

it is not immediate to obtain the same results. This is due to the several hypothesis on the points which
are necessary to define another kind of objects, equally important, namely the spherical codes (see
e.g. [DGS77, Section 4]).

We start by introducing a name to indicate the minimal decomposition of size equal to the rank of
central catalecticant matrices. This is the same term used by B. Reznick and it was chosen in relation to
the correspondence with tight spherical designs (see [BD79]).

Definition 3.1.1. A decomposition

𝑞 𝑠
𝑛 =

𝑚∑︁
𝑘=1
(𝑎𝑘 ,1𝑥1 + · · · + 𝑎𝑘,𝑛𝑥𝑛)2𝑠

is said to be tight if 𝑚 = 𝑇𝑛,𝑠 , where

𝑇𝑛,𝑠 =

(
𝑠 + 𝑛 − 1

𝑠

)
.

The work of B. Reznick about the form 𝑞 𝑠
𝑛 concerns several decompositions, some of which were

known from the classical literature and then translated from the language of spherical designs. This can be
explained by the fact that the real decompositions of size 𝑚 ∈ N can be associated to a finite set of 𝑚 real
𝑛-tuples a1, . . . , a𝑚 , where

a𝑘 = (𝑎𝑘 ,1, . . . , 𝑎𝑘,𝑛) ∈ R𝑛 ,

for every 𝑘 = 1, . . . ,𝑚. Then, it is quite natural to identify these as points on several 𝑛-dimensional
spheres centered in the origin. In particular, we have the following theorem, provided by B. Reznick.

Theorem 3.1.2 ([Rez92, Proposition 9.2]). If 𝑞 𝑠
𝑛 has a real tight decomposition, then one of the following

conditions holds:
(1) 𝑠 = 1 or 𝑛 = 2;
(2) 𝑠 = 2 and 𝑛 = 3;
(3) 𝑠 = 2 and 𝑛 = 𝑚2 − 2 for some odd 𝑚 ∈ N;
(4) 𝑠 = 3 and 𝑛 = 3𝑚2 − 4 for some 𝑚 ∈ N;
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(5) 𝑠 = 5 and 𝑛 = 24.

This result is very powerful in dealing with real numbers, since it shows that there is no tight
decomposition for every power 𝑠 ≥ 6. Now, given a natural number 𝑟 ∈ N, B. Reznick defines a 𝑟 -th
caliber representation as the number 𝑟 of different spheres containing points of such a representation,
namely, a real decomposition for which there are 𝑟 distinct values taken by

|a𝑘 |2𝑠 =
(
𝑎2
𝑘,1 + · · · + 𝑎

2
𝑘,𝑛

)𝑠
for 𝑘 = 1, . . . ,𝑚. We can naturally extend this definition to the complex field, including isotropic points.

Definition 3.1.3. For every 𝑟 ∈ N, a decomposition

𝑞 𝑠
𝑛 =

𝑚∑︁
𝑘=1
(a𝑘 · x)2𝑠 =

𝑚∑︁
𝑘=1
(𝑎𝑘 ,1𝑥1 + · · · + 𝑎𝑘,𝑛𝑥𝑛)2𝑠

is said to be an 𝑟 -th caliber decomposition if there are exactly 𝑟 values 𝑐1, . . . , 𝑐𝑟 ∈ C such that{
(a𝑘 · a𝑘 )𝑠

}
𝑘=1,...,𝑚 ∈ {𝑐1, . . . , 𝑐𝑟 }.

That is, there are exactly 𝑟 values taken by

(a𝑘 · a𝑘 )𝑠 =
(
𝑎2
𝑘 ,1 + · · · + 𝑎

2
𝑘 ,𝑛

)𝑠
for 𝑘 = 1, . . . ,𝑚.

The first caliber decompositions own a special role because of their particular symmetry. Most of the
results provided by B. Reznick in [Rez92] are based on the construction of a inner product on R𝑑

𝑛 . Given a
polynomial 𝑝 ∈ R𝑑

𝑛 and a multi-index 𝛼 ∈ N𝑛 such that |𝛼 | = 𝑑 , we denote by 𝑐𝛼 (𝑝) the coefficient of the
monomial x𝛼 in the polynomial 𝑝 , that is,

𝑝 =
∑︁

𝛼∈I𝑛,𝑑

|𝛼 |!
𝛼1! · · · 𝛼𝑛!

𝑐𝛼 (𝑝)x𝛼 ,

where
I𝑛,𝑑 = { 𝛼 ∈ N𝑛 | |𝛼 | = 𝑑 } .

In the case of real polynomials, for every 𝑛, 𝑑 ∈ N, the inner product

〈 , 〉 : 𝑆𝑑R𝑛 × 𝑆𝑑R𝑛 → R

considered by B. Reznick in [Rez92, pp. 1-2] associates to each pair of polynomials 𝑓 , 𝑔 ∈ 𝑆𝑑R𝑛 the real
value

〈𝑓 , 𝑔 〉 =
∑︁

𝛼∈I𝑛,𝑑

|𝛼 |!
𝛼1! · · · 𝛼𝑛!

𝑐𝛼 ( 𝑓 )𝑐𝛼 (𝑔 ).

This inner product is classically known as Bombieri inner product and it is based on the norm in spaces
of polynomials known as the Bombieri norm and exposed by B. Beauzamy, E. Bombieri, P. Enflo, and
H. L. Montgomery in [BBEM90]. For the real case, this concept has been analyzed also by E. Kostlan in
[Kos93, Section 4], where he proves (see [Kos93, Theorem 4.1, Theorem 4.2]) that it is invariant under
the action of the space O𝑛 (R) of real orthogonal matrices. We can extend it to the complex case obtaining
a complex symmetric bilinear form

〈 , 〉 : R𝑑
𝑛 × R𝑑

𝑛 → C,

defined in the same way.
A nice property about this product, considered by B. Reznick in [Rez92, formula (1.5)], considers the

evaluation of a polynomial at a point associated to a linear form and is given by the following proposition.
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Proposition 3.1.4. For every 𝑓 ∈ R𝑑
𝑛 and for every a ∈ C𝑛〈

𝑓 , (a · x)𝑑
〉
= 𝑓 (a). (3.1.5)

Proof. Since every homogeneous polynomial can be written as a sum of 𝑑-powers of linear forms, it is
sufficient to prove the statement when 𝑓 is a power of a linear form (b · x)𝑑 for some b ∈ C𝑛 . Then we
have 〈

(b · x)𝑑 , (a · x)𝑑
〉
=

∑︁
𝛼∈I𝑛,𝑑

|𝛼 |!
𝛼1! · · · 𝛼𝑛!

b𝛼a𝛼 = (b · a)𝑑 ,

which proves the formula. �

We can state, as for the previous one, that this inner product is invariant under the action of complex
orthogonal group.

Proposition 3.1.6. For every 𝑓 , 𝑔 ∈ R𝑑
𝑛 , the equality

〈𝐴 · 𝑓 , 𝐴 · 𝑔 〉 = 〈𝑓 , 𝑔 〉

holds for every 𝐴 ∈ O𝑛 (C).

Proof. By linearity, we can just prove the statement for powers of linear forms. So, considering the
polynomials

𝑓 = (a · x)𝑑 , 𝑔 = (b · x)𝑑 ,

and an orthogonal matrix 𝐴 ∈ O𝑛 (C), i.e. such that 𝐴t 𝐴 = 𝐴 𝐴t = 𝐼 , we get〈
𝐴 · (a · x)𝑑 , 𝐴 · (b · x)𝑑

〉
=

〈(
a · 𝐴x

)𝑑
,
(
b · 𝐴x

)𝑑 〉
=

〈(
𝐴t −1a · x

)𝑑
,
(
𝐴t −1b · x

)𝑑 〉
=

〈
(𝐴a · x)𝑑 , (𝐴b · x)𝑑

〉
=

∑︁
𝛼∈I𝑛,𝑑

|𝛼 |!
𝛼1! · · · 𝛼𝑛!

(𝐴a)𝛼 (𝐴b)𝛼

= (𝐴a · 𝐴b)𝑑 = (a · b)𝑑 =
〈
(a · x)𝑑 , (b · x)𝑑

〉
�

As a particular case of Proposition 3.1.6, we can state (see also [Rez92, formula (8.2) and Corollary
8.18]) that 〈

𝑞 𝑠
𝑛 , 𝑞

𝑠
𝑛

〉
=

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

. (3.1.7)

Furthermore, we observe that, given a decomposition

𝑞 𝑠
𝑛 =

𝑚∑︁
𝑘=1
(a𝑘 · x)2𝑠 , (3.1.8)

we get by Proposition 3.1.4 and formula (3.1.7) the equality

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

=

〈
𝑞 𝑠
𝑛 ,

𝑚∑︁
𝑘=1
(a𝑘 · x)2𝑠

〉
=

𝑚∑︁
𝑘=1

〈
𝑞 𝑠
𝑛 , (a𝑘 · x)2𝑠

〉
=

𝑚∑︁
𝑘=1

𝑞 𝑠
𝑛 (a𝑘 ) =

𝑚∑︁
𝑘=1
(a𝑘 · a𝑘 )𝑠 .

Thus, we rewrite the following generalization to the complex field for first caliber decompositions.
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Proposition 3.1.9. Let

𝑞 𝑠
𝑛 =

𝑚∑︁
𝑘=1
(a𝑘 · x)2𝑠

be a first caliber decomposition of size 𝑚 ∈ N. Then

(a𝑘 · a𝑘 )𝑠 =
1
𝑚

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
(2𝑗 + 1)

for every 𝑘 = 1, . . . ,𝑚.

P. D. Seymour and T. Zavlavsky prove in [SZ84] that a first caliber decomposition of 𝑞 𝑠
𝑛 of size 𝑟 ∈ N

always exists for a big enough value of 𝑟 . Moreover, B. Reznick proves in [Rez92, Corollary 8.17] that
every real tight decomposition is first caliber. This result can easily be extended, but in order to prove this,
we need the following lemma.

Lemma 3.1.10. Let 𝑑 ≥ 2. Then the following conditions hold:
(1) for every point a ∈ C𝑛 , the 𝑑-th power of its associated linear form 𝑙a = a · x is harmonic if and only

if a is isotropic in C𝑛 , that is, a · a = 0;
(2) the spaceH𝑑

𝑛 is generated by the 𝑑-th powers of linear forms associated to isotropic points; that is,

H𝑑
𝑛 =

〈{
𝑙𝑑a ∈ R𝑑

𝑛

�� a ∈ C𝑛 : a · a = 0
}〉
.

Proof. Point (1) follows directly by Lemma 1.2.15. Indeed, for every non-zero linear form 𝑙a ∈ R1
𝑛 we

have
Δ
(
𝑙𝑑a

)
= 𝑑 (𝑑 − 1)

(
𝑎2

1 + · · · + 𝑎
2
𝑛

)
𝑙𝑑−2
a = 𝑑 (𝑑 − 1) (a · a)𝑙𝑑−2

a ,

which is equal to zero if and only if a · a = 0. To prove point (2), let us consider the space

𝑊 =
〈{

𝑙𝑑a ∈ R𝑑
𝑛

�� a ∈ C𝑛 : a · a = 0
}〉
.

We have by point (1) that
𝑊 ⊆ H𝑑

𝑛 .

Now, for every 𝐴 ∈ SO𝑛 (C), we have

𝐴 · 𝑙𝑑a =
(
𝐴 · 𝑙a

)𝑑
= 𝑙𝑑𝐴 ·a

for every a ∈ C𝑛 . Since 𝐴 is an orthogonal transformation, we have

a · a = (𝐴 · a) · (𝐴 · a),

which implies that
𝐴 · ℎ ∈𝑊

for every ℎ ∈𝑊 . Thus,𝑊 is a SO𝑛 (C)-module and sinceH𝑑
𝑛 (C) is an irreducible SO𝑛 (C)-module, as

we have already seen in section 2.1, we must have𝑊 = H𝑑
𝑛 . �

Now, in dealing with linear forms of the kind a · x for some a ∈ C𝑛 , a relevant role is assumed by
the associated value a · a. In particular, from the fact that the middle catalecticant Cat𝑠

𝑞𝑠
𝑛

is full rank, it
immediately follows the following lemma.
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Lemma 3.1.11. For every 𝑛, 𝑠 ∈ N, let a · x be a linear form with a ∈ C𝑛 and let

𝑓 = 𝑞
[𝑠 ]
𝑛 − (a · x) [2𝑠 ] .

Then
𝑇𝑛,𝑠 − 1 ≤ rk

(
Cat𝑠𝑓

)
≤ 𝑇𝑛,𝑠 .

Proof. We can select a basis {𝑔1, . . . , 𝑔𝑇𝑛,𝑠 } of R𝑠
𝑛 with

𝑔1 = (a · x) [𝑠 ] .

Then we can also consider a basis {ℎ1, . . . , ℎ𝑛} of D𝑠
𝑛 such that

ℎ 𝑗 ◦ 𝑞 [𝑠 ]𝑛 = 𝑔 𝑗

for every 𝑗 = 1, . . . ,𝑇𝑛,𝑠 . In particular, for any choice of the elements 𝑐1, . . . , 𝑐𝑇𝑛,𝑠 ∈ C, let us consider the
polynomial

ℎ =

𝑇𝑛,𝑠∑︁
𝑗=1

𝑐 𝑗ℎ 𝑗 ∈ D𝑠
𝑛 .

Then we have (𝑇𝑛,𝑠∑︁
𝑗=1

𝑐 𝑗ℎ 𝑗

)
◦ 𝑓 =

(𝑇𝑛,𝑠∑︁
𝑗=1

𝑐 𝑗ℎ 𝑗

)
◦ 𝑞 [𝑠 ]𝑛 −

(𝑇𝑛,𝑠∑︁
𝑗=1

𝑐 𝑗ℎ 𝑗

)
◦ (a · x) [2𝑠 ]

=

𝑇𝑛,𝑠∑︁
𝑗=1

𝑐 𝑗 𝑔 𝑗 −
(𝑇𝑛,𝑠∑︁
𝑗=1

𝑐 𝑗ℎ 𝑗 (a)
)
(a · x) [𝑠 ]

=

𝑇𝑛,𝑠∑︁
𝑗=2

𝑐 𝑗 𝑔 𝑗 +
(
𝑐1 −

𝑇𝑛,𝑠∑︁
𝑗=1

𝑐 𝑗ℎ 𝑗 (a)
)
𝑔1.

Therefore, by linear independence, ℎ ∈ Ker
(
Cat𝑠𝑓

)
if and only if

𝑐2 = · · · = 𝑐𝑇𝑛,𝑠 = 0

either 𝑐1 = 0, or ℎ1(a) = 1. In the first case we clearly have ℎ = 0, while in the second one we get

〈ℎ1〉 = Ker
(
Cat𝑠𝑓

)
and hence

rk
(
Cat𝑠𝑓

)
= 𝑇𝑛,𝑠 − 1. �

A quite important fact is related to the middle catalecticant of the form 𝑞 𝑠
𝑛 and isotropic points. We

will use next lemma to prove that any tight decomposition of 𝑞 𝑠
𝑛 must be first caliber.

Lemma 3.1.12. For every 𝑛, 𝑠 ∈ N, let a · x be a linear form such that a ∈ C𝑛 is an isotropic point, and let

𝑓 = 𝑞
[𝑠 ]
𝑛 − (a · x) [2𝑠 ] .

Then the middle catalecticant Cat𝑠𝑓 of 𝑓 is full rank.
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Proof. Let us consider an element 𝑔 ∈ Ker
(
Cat𝑠𝑓

)
, which can be written, by decomposition (2.1.12), as

𝑔 =

b 𝑠2c∑︁
𝑘=0

𝑞𝑘
𝑛ℎ𝑠−2𝑘 ,

where ℎ𝑠−2𝑘 is a harmonic polynomial for every 𝑘 = 1, . . . ,
⌊
𝑠
2
⌋
. Then we have

𝑞𝑘
𝑛ℎ𝑠−2𝑘 ◦ (a · x) [2𝑠 ] = 𝑞𝑘−1

𝑛 ℎ𝑠−2𝑘 ◦
(
𝑞𝑛 ◦ (a · x) [2𝑠 ]

)
= 0 (3.1.13)

for every 𝑘 = 1, . . . ,
⌊
𝑠
2
⌋
. Indeed, since a is isotropic, then it follows by Lemma 3.1.10 that (a · x)2𝑠 is

harmonic, that is,
𝑞𝑛 ◦ (a · x)2𝑠 = 0.

Formula (3.1.13) implies that the kernel of the catalecticant map can only contain harmonic polynomials.
To see this, let us suppose that 𝑔 ◦ 𝑓 = 0, namely,(b 𝑠2c∑︁

𝑘=0
𝑞𝑘
𝑛ℎ𝑠−2𝑘

)
◦

(
𝑞
[𝑠 ]
𝑛 − (a · x)2𝑠

)
=

(b 𝑠2c∑︁
𝑘=1

𝐴𝑛,𝑠 ,𝑘𝑞
𝑘
𝑛ℎ𝑠−2𝑘

)
+ ℎ𝑠 ◦

(
𝑞
[𝑠 ]
𝑛 − (a · x) [2𝑠 ]

)
= 0.

Then, since the polynomial

ℎ𝑠 ◦
(
𝑞
[𝑠 ]
𝑛 − (a · x)2𝑠

)
= ℎ𝑠 − ℎ𝑠 (a) (a · x) [𝑠 ]

is harmonic, we must have by uniqueness of decomposition (2.1.12) that ℎ𝑠−2𝑘 = 0 for every 𝑘 = 1 . . . ,
⌊
𝑠
2
⌋
.

That is,
𝑔 = ℎ𝑠 = ℎ𝑠 (a) (a · y) [𝑠 ] ,

which is harmonic. Now, by Lemma 3.1.10 we know that harmonic polynomials are generated by powers
of isotropic linear forms. So, let us consider a basis

B =
{
(a1 · y) [𝑠 ] , . . . , (a𝑚 · y) [𝑠 ]

}
of the spaceH 𝑠

𝑛 ⊂ D𝑠
𝑛 , setting a1 = a. Since any polynomial 𝑔 ∈ Ker

(
Cat𝑠𝑓

)
must be harmonic, we can

write

𝑔 =

𝑚∑︁
𝑗=1

𝑐 𝑗 (a𝑗 · x)𝑠

for some 𝑐1, . . . , 𝑐𝑚 ∈ C and we have

𝑔 ◦
(
𝑞
[𝑠 ]
𝑛 − (a · x) [2𝑠 ]

)
=

( 𝑚∑︁
𝑗=1

𝑐 𝑗 (a𝑗 · y)𝑠
)
◦

(
𝑞
[𝑠 ]
𝑛 − (a · x) [2𝑠 ]

)
= 0.

That is, since a is isotropic, by formula (2.2.9) we get the equalities

ℎ ◦
(
𝑞
[𝑠 ]
𝑛 − (a · x) [2𝑠 ]

)
=

𝑚∑︁
𝑗=1

𝑐 𝑗 (a𝑗 · x)𝑠 −
𝑚∑︁
𝑗=2

𝑐 𝑗 (a · a𝑗 ) (a · x) [𝑠 ]

=

(
𝑐1 −

𝑚∑︁
𝑗=2

𝑐 𝑗 (a · a𝑗 )
)
(a · x) [𝑠 ] +

𝑚∑︁
𝑗=2

𝑐 𝑗 (a𝑗 · x) [𝑠 ] = 0.

This implies, by linear independence, that 𝑐2 = · · · = 𝑐𝑚 = 0 and hence also

𝑐1(a1 · x)𝑠 = 0,

that is 𝑐1 = 0. Therefore, we have 𝑔 = 0, which means that the middle catalecticant Cat𝑠𝑓 is full rank. �
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The importance of Lemma 3.1.12 is that it allows to exclude isotropic points from tight decompositions.
In particular, now we can prove that every tight decomposition must be first caliber, even considering
complex decompositions.

Theorem 3.1.14. Every tight decomposition

𝑞 𝑠
𝑛 =

𝑚∑︁
𝑘=1
(a𝑘 · x)2𝑠 ,

where
𝑚 = 𝑇𝑛,𝑠 =

(
𝑠 + 𝑛 − 1

𝑠

)
,

is first caliber. In particular,

(a𝑘 · a𝑘 )𝑠 =
1

𝑇𝑛,𝑠

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
(2𝑗 + 1) .

for every 𝑘 = 1, . . . ,𝑇𝑛,𝑠 .

Proof. Let us suppose that a tight decomposition of 𝑞 [𝑠 ]𝑛 contains a summand (a1 · x)2𝑠 , such that a1 is an
isotropic point. This means, in particular, that

𝑞𝑛 ◦ (a1 · x)2𝑠 = Δ
(
(a1 · x)2𝑠

)
= 𝑠 (𝑠 − 1) (a1 · a1) · (a1 · x)2𝑠−2 = 0.

Then, considering the polynomial
𝑓 = 𝑞

[𝑠 ]
𝑛 − (a1 · x) [2𝑠 ] ,

we should have that Cat𝑠𝑓 is not full rank, but by Lemma 3.1.12 we know that this is not possible. Thus,
any tight decomposition cannot contain any power of a linear form which is associated to a isotropic point.
Now, it remains to prove that each point of a tight decomposition has the same norm, up to roots of unity.
Let

𝑞 𝑠
𝑛 =

𝑇𝑛,𝑠∑︁
𝑗=1
(b𝑗 · x)2𝑠

be a tight decomposition. Now, 𝑞 𝑠
𝑛 is invariant under the action of SO𝑛 (C), which acts transitively on the

set of non-isotropic points with fixed norm of C𝑛 . We can then suppose that

b1 = 𝐶0e1 = 𝐶0(1, 0, . . . , 0) ∈ C𝑛

for some 𝐶0 ∈ C. If we consider the polynomial

𝑓1 = 𝑞
[𝑠 ]
𝑛 − (a1 · x) [2𝑠 ] ,

then we have that det
(
Cat𝑠𝑓1

)
is a polynomial in the variable 𝐶0 of degree 2𝑠 . Moreover, since the form

(b1 · x)2𝑠 = 𝐶 2𝑠
0 (e1 · x)2𝑠

would not change by multiplying 𝐶0 by any 2𝑠 -th root of unity, then the roots of det
(
Cat𝑠𝑓1

)
are given by a

unique value up to multiplications by a 2𝑠 -th root of unity. Thus, by the invariance of 𝑞 𝑠
𝑛 under the action

of SO𝑛 (C), we get that the complex number (b𝑘 · b𝑘 )𝑠 is the same for every 𝑘 = 1, . . . ,𝑇𝑛,𝑠 . In particular,
we have by Proposition 3.1.9 that this value is real, namely,

(b𝑘 · b𝑘 )𝑠 =
1

𝑇𝑛,𝑠

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
(2𝑗 + 1) . �
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Given any tight decomposition

𝑞 𝑠
𝑛 =

𝑇𝑛,𝑠∑︁
𝑘=1
(b𝑘 · x)2𝑠 ,

we denote by 𝐵𝑛,𝑠 the value obtained in Theorem 3.1.14, that is

𝐵𝑛,𝑠 =
1

𝑇𝑛,𝑠

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

(3.1.15)

for every 𝑘 = 1, . . . ,𝑇𝑛,𝑠 .

3.2 Tight decomposition in two variables
For the case of two variables, the rank of the powers of the quadric 𝑞𝑛 is completely known and exposed
by B. Reznick in [Rez92, Theorem 9.5], where he provides all the possible real decompositions, which
turn out to be unique up to a real orthogonal transformation. In this section we deal with this fact from the
point of view of apolarity and extend it to the complex field, proving that the unique real decomposition is
still unique for the complex case.

3.2.1 Real tight decompositions
We know by Theorem 2.2.14 that the apolar ideal of 𝑞 𝑠

2 is(
𝑞 𝑠

2
)⊥

=
(
H 𝑠+1

2
)
.

Hence, we first have to determine a basis of the space H 𝑠+1
2 . In general, for every 𝑛 ∈ N, we have by

Proposition 2.1.11 that the dimension of the 𝑑-harmonic polynomials in 𝑛 variables is

dimH𝑑
𝑛 =

(
𝑑 + 𝑛 − 1
𝑛 − 1

)
−

(
𝑑 + 𝑛 − 3
𝑛 − 1

)
,

for every 𝑑 ∈ N. Therefore, if we restrict to the case of two variables, we obtain that dimH𝑑
2 = 2. Now,

let us consider in D1
𝑛 the polynomials

𝑢 =
𝑦1 + i𝑦2

2
, 𝑣 =

𝑦1 − i𝑦2
2

,

multiples of the polynomials 2.2.4. Then we obtain a new basis of D1
2 and hence, by a simple change of

variables, we have D2 = C[𝑦1, 𝑦2] ' C[𝑢,𝑣 ]. Thus, it follows by Lemma 2.2.6 that(
𝑞 𝑠

2
)⊥

=
(
𝑢𝑠+1, 𝑣 𝑠+1

)
.

In dealing with complex numbers, we denote by =(𝑧) the imaginary part of any number 𝑧 ∈ C.

Lemma 3.2.1. For every 𝑎, 𝑏 ∈ C, let 𝑢1 and 𝑢2 be the complex values

𝑢1 = 𝑎 + i𝑏, 𝑢2 = 𝑎 − i𝑏.

Then the following conditions are equivalent:
(1) 𝑎, 𝑏 ∈ R;
(2) 𝑢1 = 𝑢2.
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Proof. (1)⇒ (2) is trivial. Conversely, if 𝑢1 = 𝑢2, then we have

𝑎 + i𝑏 = 𝑎 + i𝑏

and hence,
2i=(𝑎) = 𝑎 − 𝑎 = i

(
𝑏 − 𝑏

)
= −2i2=(𝑏) = 2=(𝑏).

That is,
=(𝑎) = =(𝑏) = 0,

and hence 𝑎, 𝑏 ∈ R. �

Lemma 3.2.1 can be generalized to projective points. In particular, we can characterize the points in
coordinates {𝑢,𝑣 } such that these correspond to real projective points in coordinates {𝑦1, 𝑦2}.
Lemma 3.2.2. Let 𝑎, 𝑏 ∈ C be such that (𝑎, 𝑏) ≠ (0, 0), let [𝑎 : 𝑏] ∈ P1(C) be the projective point
associated to the pair (𝑎, 𝑏) ∈ C2 and let 𝑢1, 𝑢2 ∈ C be the values

𝑢1 = 𝑎 + i𝑏, 𝑢2 = 𝑎 − i𝑏.

Then the following conditions are equivalent:
(1) [𝑎 : 𝑏] ∈ P1(R), that is, 𝑏 can be written as real multiple of 𝑎 or 𝑎 = 0;
(2) [𝑢1 : 𝑢2] = [𝑢0 : 𝑢0] for a suitable 𝑢0 ∈ C;
(3) |𝑢1 | = |𝑢2 |.
Proof. The implications (1)⇒ (2) and (2)⇒ (3) are trivial. So, let 𝑢1 and 𝑢2 be such that |𝑢1 | = |𝑢2 |. If
𝑎 = 0 or 𝑏 = 0 then the statement (1) is clear. If instead 𝑎, 𝑏 ≠ 0, then we have

|𝑢1 |2 − |𝑢2 |2 = (𝑎 + i𝑏)
(
𝑎 − i𝑏

)
− (𝑎 − i𝑏)

(
𝑎 + i𝑏

)
= |𝑎 |2 + i𝑎𝑏 − i𝑎𝑏 + |𝑏 |2 − |𝑎 |2 − i𝑎𝑏 + i𝑎𝑏

= 2i
(
𝑎𝑏 − 𝑎𝑏

)
= 0,

that is

𝑎2 =

(
|𝑎 |
|𝑏 |

)2
𝑏2.

Therefore, we have
𝑎 = ± |𝑎 ||𝑏 |𝑏

and hence 𝑎 is a real multiple of 𝑏 . �

As a consequence of Lemma 3.2.2, we get that, given the coordinate function

𝑣 : C2 C
(𝑦1, 𝑦2) 𝑦1 − i𝑦2

←→

←�→

and the conjugate coordinate function

𝑢 : C2 C
(𝑦1, 𝑦2) 𝑦 1 − i𝑦 2,

←→

←�→

a projective point [𝑎 : 𝑏] ∈ P1(C) has a real representative pair if and only if 𝑣 (𝑎, 𝑏) = 𝑢 (𝑎, 𝑏). Without
loss of generality, we will refer to real roots of a polynomial whenever this condition is satisfied. Now
we can provide another proof for the determination of the rank 𝑞 𝑠

2 , in addition to the one proposed by
B. Reznick in [Rez92, Theorem 9.5], exposed in the following theorem. In this case we determine a
suitable decomposition by Lemma 1.2.17.
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Theorem 3.2.3. For every 𝑠 ∈ N
rk

(
𝑞 𝑠

2
)
= 𝑠 + 1.

Proof. By point (2) of Lemma 1.2.17, to prove the statement we have just to determine a polynomial of
degree 𝑠 + 1 belonging to the apolar ideal of 𝑞 𝑠

2 and having 𝑠 + 1 distinct roots. So, let us consider the
polynomial

𝑓 = 𝑢𝑠+1 − 𝑣 𝑠+1.
Then, for every (𝑢0, 𝑣0) ∈ C2, we have that 𝑓 (𝑢0, 𝑣0) = 0 if and only if 𝑢0 = 𝑣0 = 0 or(

𝑢0
𝑣0

)𝑠+1
= 1,

that is
𝑢0
𝑣0

= ei 2( 𝑗−1)π
𝑠+1

for some 𝑗 = 1, . . . , 𝑠 + 1. Thus, we have 𝑠 + 1 distinct roots, corresponding to the projective points

[𝑢 𝑗 : 𝑣𝑗 ] =
[
ei 2( 𝑗−1)π

𝑠+1 : 1
]
=

[
ei ( 𝑗−1)π

𝑠+1 : e−i ( 𝑗−1)π
𝑠+1

]
for 𝑗 = 1 . . . , 𝑠 + 1. Now, by Lemma 3.2.2, we can write these roots using the coordinates {𝑦1, 𝑦2}, as real
points. In particular, considering the value

𝜏𝑗 =
(𝑗 − 1)π
𝑠 + 1

for every 𝑗 = 1, . . . , 𝑠 + 1, we can write the points as[
𝑦1,𝑗 : 𝑦2,𝑗

]
=

[
cos𝜏𝑗 : sin𝜏𝑗

]
for 𝑗 = 1, . . . , 𝑠 + 1. We conclude that 𝑓 has 𝑠 + 1 distinct roots and hence rk

(
𝑞 𝑠

2
)
= 𝑠 + 1. �

𝑦1

𝑦2

𝑦1

𝑦2

Figure 3.1: Examples of decompositions for the polynomials 𝑞3
2 and 𝑞4

2 . The blue octagon
on the left represents the 4 projective points obtained by the roots of the polynomial 𝑢4 − 𝑣4,
while the red decagon on the right represents the 5 projective points obtained by the roots of
the polynomial 𝑢5 − 𝑣5 (points opposite to the origin represent the same point in P1 (C)).

The roots of the polynomial used in the proof of Theorem 3.2.3 are all real and hence provide a real
decomposition of 𝑞 𝑠

2 , whose elements correspond to the projective classes of the 2(𝑠 + 1)-th roots of unity.
Equivalently, these points correspond to the vertices of a regular 2(𝑠 + 1)-gon (see Figure 3.1), inscribed
in a circumference of radius equal to

𝐵2,𝑠 = (𝑠 + 1)−1
𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

= 22𝑠 (𝑠 + 1)−1
(
2𝑠
𝑠

)−1
.
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This last fact is obtained by Theorem 3.1.14.
Analyzing all the polynomials of minimal degree 𝑠 + 1 with distinct real roots, which are contained

in (𝑞 𝑠
2)
⊥, we can then determine all the real decompositions of 𝑞 𝑠

2 . The procedure simply consists of
resolving a real system and so determining, by Lemma 1.2.17, the coefficients of the powers of the linear
forms associated to every roots.

Proposition 3.2.4. Let 𝑓 = 𝑎𝑢𝑠+1 +𝑏𝑣 𝑠+1 ∈
(
𝑞 𝑠

2
)⊥ be a non-zero polynomial of degree 𝑠 +1, with 𝑎, 𝑏 ∈ C.

Then 𝑓 has 𝑠 + 1 real distinct roots if and only if |𝑎 | = |𝑏 | ≠ 0. In particular, it can be written, up to
scalars, as

𝑓 = 𝑢𝑠+1 − ei\𝑣 𝑠+1

for some \ ∈ [0, 2π) and its roots correspond to the projective points

[𝑦1,𝑗 : 𝑦2,𝑗 ] = [cos𝜏\ ,𝑗 : sin𝜏\ ,𝑗 ],

where
𝜏\ ,𝑗 =

2(𝑗 − 1)π + \
2(𝑠 + 1)

for 𝑗 = 1, . . . , 𝑠 + 1.

Proof. If the polynomial 𝑓 has a real root (𝑦1,0, 𝑦2,0) ≠ (0, 0), then

𝑢0 = 𝑣0 ≠ 0

and hence
𝑎𝑢𝑠+1

0 + 𝑏𝑢𝑠+1
0 = 0.

This clearly means that 𝑎, 𝑏 ≠ 0 and |𝑎 | = |𝑏 |. Conversely, if 𝑎 and 𝑏 are complex numbers such that
|𝑎 | = |𝑏 | ≠ 0, then there exists a real number \ ∈ [0, 2π) such that 𝑓 can be written, up to a scalar 𝑎 , as

𝑓 = 𝑢𝑠+1 − ei\𝑣 𝑠+1

where
ei\ = −𝑏

𝑎
.

Thus, for every pair (𝑢0, 𝑣0) ∈ C2, we have 𝑓 (𝑢0, 𝑣0) = 0 if and only if 𝑢0 = 𝑣0 = 0 or(
𝑢0
𝑣0

)𝑠+1
= ei\ .

This means that there are 𝑠 + 1 roots [𝑢 𝑗 : 𝑣𝑗 ] ∈ PC1 for which we have

𝑢 𝑗 = ei 2( 𝑗−1)π+\
𝑠+1 𝑣𝑗

for every 𝑗 = 1, . . . , 𝑠 + 1. That is, the 𝑠 + 1 roots of 𝑓 are

[𝑢 𝑗 : 𝑣𝑗 ] =
[
ei 2( 𝑗−1)π+\

𝑠+1 : 1
]
=

[
ei 2( 𝑗−1)π+\

2(𝑠+1) : e−i 2( 𝑗−1)π+\
2(𝑠+1)

]
,

for 𝑗 = 1, . . . , 𝑠 + 1. So, introducing the notation

𝜏\ ,𝑗 =
2(𝑗 − 1)π + \

2(𝑠 + 1)
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we can write
[𝑢 𝑗 : 𝑣𝑗 ] =

[
ei𝜏\ ,𝑗 : e−i𝜏\ ,𝑗

]
,

for 𝑗 = 1, . . . , 𝑠 + 1. Hence, by the change of variables, we get the 𝑠 + 1 real distinct roots in standard
coordinates, namely,

[𝑦1,𝑗 : 𝑦2,𝑗 ] =
[
cos𝜏\ ,𝑗 : sin𝜏\ ,𝑗

]
,

for 𝑗 = 1, . . . , 𝑠 + 1 �

We observe that in the case of \ = 0 we obtain the same polynomial used for the proof of Theorem 3.2.3.
In general, the roots we obtain correspond to the projective classes of the vertices of a regular 2(𝑠 + 1)-gon.

Now we have all the elements to obtain all the minimal real decompositions of the form 𝑞 𝑠
2 , exploiting

all the roots of the polynomials considered in Proposition 3.2.4.

Theorem 3.2.5. The form 𝑞 𝑠
2 has a unique real decomposition, up to orthogonal real transformations,

whose terms correspond to the vertices of a regular 2𝑠 -gon inscribed in a circle of radius equal to

𝑟 = 2(𝑠 + 1)− 1
2𝑠

(
2𝑠
𝑠

)− 1
2𝑠

.

Namely

𝑞 𝑠
2 =

𝑠+1∑︁
𝑗=1

(
𝑟 cos(𝜏𝑗 )𝑥1 + 𝑟 sin(𝜏𝑗 )𝑥2

)2𝑠
,

where
𝜏𝑗 =

(𝑗 − 1)π
𝑠 + 1

for every 𝑗 = 1, . . . , 𝑠 + 1.

Proof. By Theorem 3.1.14, we know that any decomposition of 𝑞 𝑠
2 is first caliber and every point has

norm equal to

𝑟 = 2(𝑠 + 1)− 1
2𝑠

(
2𝑠
𝑠

)− 1
2𝑠

.

Moreover, by Proposition 3.2.4, the polynomials with real distinct roots in the apolar ideal of 𝑞 𝑠
2 are given

by all the linear combinations of the type

𝑢𝑠+1 − ei\𝑣 𝑠+1, \ ∈ [0, 2π).

Thus, introducing the variables
𝑧1 = 𝑥1 − i𝑥2, 𝑧2 = 𝑥1 + i𝑥2,

and considering the values

𝜏𝑗 ,\ =
(𝑗 − 1)π
𝑠 + 1

+ \

2(𝑠 + 1)
for every 𝑗 = 1, . . . , 𝑠 + 1, we have

𝑞 𝑠
2 =

(
𝑥2

1 + 𝑥
2
2
)𝑠

= 𝑧2𝑠
1 𝑧2𝑠

2 =

𝑠+1∑︁
𝑗=1

(
𝑟

2

)2𝑠 (
ei𝜏𝑗 ,\ 𝑧1 + e−i𝜏𝑗 ,\ 𝑧2

)2𝑠

=

𝑠+1∑︁
𝑗=1

(
𝑟

2

)2𝑠
(
2
(
ei𝜏𝑗 ,\ + e−i𝜏𝑗 ,\

2

)
𝑥1 + 2

(
ei𝜏𝑗 ,\ − e−i𝜏𝑗 ,\

2i

)
𝑥2

)2𝑠
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=

𝑠+1∑︁
𝑗=1

𝑟 2𝑠 ( cos(𝜏𝑗 ,\ )𝑥1 + sin(𝜏𝑗 ,\ )𝑥2
)2𝑠

.

It remains to prove that all these decompositions are unique up to orthogonal transformation. Since the
form 𝑞 𝑠

2 is invariant under the action of the orthogonal group O2(R) (where the field R of real numbers
must be considered for standard coordinates), we can consider the action of the matrix

𝐴\ =

(
ei \

2(𝑠+1) 0
0 e−i \

2(𝑠+1)

)
.

Then, we observe that

𝑞 𝑠
2 = 𝑧2𝑠

1 𝑧2𝑠
2 =

𝑠+1∑︁
𝑗=1

(
𝑟

2

)2𝑠 (
ei𝜏𝑗 ,\ 𝑧1 + e−i𝜏𝑗 ,\ 𝑧2

)2𝑠

=

𝑠+1∑︁
𝑗=1

(
𝑟

2

)2𝑠 (
ei𝜏𝑗 ,0 (𝐴\ · 𝑧1) + e−i𝜏𝑗 ,0 (𝐴\ · 𝑧2)

)2𝑠

=

𝑠+1∑︁
𝑗=1

(
𝑟

2

)2𝑠 (
ei𝜏𝑗 𝑧1 + e−i𝜏𝑗 𝑧2

)2𝑠

=

𝑠+1∑︁
𝑗=1

(
𝑟 cos(𝜏𝑗 )𝑥1 + 𝑟 sin(𝜏𝑗 )𝑥2

)2𝑠
,

where we set 𝜏𝑗 = 𝜏𝑗 ,0 for every 𝑗 = 1, . . . , 𝑠 + 1. �

3.2.2 Complex tight decompositions
It is not so difficult to generalize the results so far obtained to the complex case. In particular, we have to
find all the polynomials of minimal degree 𝑠 + 1 with distinct roots in the apolar ideal

(
𝑞 𝑠

2
)⊥. Then we get

in the same way all the explicit decompositions of the form 𝑞 𝑠
2 .

Proposition 3.2.6. Let 𝑓 = 𝑎𝑢𝑠+1 + 𝑏𝑣 𝑠+1 ∈
(
𝑞 𝑠

2
)⊥ be a nonzero polynomial such that 𝑎, 𝑏 ≠ 0. Then 𝑓

can be written, up to scalars, as
𝑓 = 𝑢𝑠+1 − ei(\+i𝑘 )𝑣 𝑠+1,

for some 𝑘 ∈ R and some \ ∈ [0, 2π). Moreover, it has 𝑠 + 1 distinct roots corresponding to

[𝑦1,𝑗 : 𝑦2,𝑗 ] = [cos(𝑤𝑘,\ ,𝑗 ) : sin(𝑤𝑘 ,\ ,𝑗 )],

where
𝑤𝑘,\ ,𝑗 =

2(𝑗 − 1)π + \ + i𝑘
2(𝑠 + 1) ,

for 𝑗 = 1, . . . , 𝑠 + 1.

Proof. Since 𝑓 ≠ 0, then we can suppose, up to multiplying by a scalar, that

𝑓 = 𝑢𝑠+1 − 𝑐0𝑣
𝑠+1,

where
𝑐0 = −𝑏

𝑎
∈ C.
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Moreover, denoting by 𝑘 ′ ∈ R>0 the norm of 𝑐0, we can write

𝑐0 = 𝑘 ′ei\ = ei(\−i log𝑘 ′) = ei(\+i𝑘 )

for some \ ∈ [0, 2π), with 𝑘 = − log𝑘 ′ ∈ R. Thus, we get the required form

𝑓 = 𝑢𝑠+1 − ei(\+i𝑘 )𝑣 𝑠+1.

Now, we proceed exactly as in the proof of Proposition 3.2.4. We observe that [𝑢0 : 𝑣0] ∈ PC1 is a root of
𝑓 if and only if (

𝑢0
𝑣0

)𝑠+1
= ei(\+i𝑘 ) .

Therefore, we can determine 𝑠 + 1 distinct roots of 𝑓 , corresponding to

[𝑢 𝑗 : 𝑣𝑗 ] =
[
ei 2( 𝑗−1)π+\+i𝑘

𝑠+1 : 1
]
=

[
ei 2( 𝑗−1)π+\+i𝑘

2(𝑠+1) : e−i 2( 𝑗−1)π+\+i𝑘
2(𝑠+1)

]
,

for 𝑗 = 1, . . . , 𝑠 + 1, which can be written, introducing the term

𝑤𝑘,\ ,𝑗 =
2(𝑗 − 1)π + \ + i𝑘

2(𝑠 + 1)
as

[𝑢 𝑗 : 𝑣𝑗 ] =
[
ei𝑤𝑘,\ ,𝑗 : e−i𝑤𝑘,\ ,𝑗

]
,

for every 𝑗 = 1, . . . , 𝑠 + 1. So, rewriting each pair with standard coordinates, we obtain

𝑦1,𝑗 = 𝑢 𝑗 + 𝑣𝑗 = ei𝑤𝑘 ,\ ,𝑗 + e−i𝑤𝑘 ,\ ,𝑗 = 2 cos(𝑤𝑘 ,\ ,𝑗 ),
𝑦2,𝑗 = −i(𝑢 𝑗 − 𝑣𝑗 ) = −i

(
ei𝑤𝑘 ,\ ,𝑗 + e−i𝑤𝑘,\ ,𝑗

)
= 2 sin(𝑤𝑘,\ ,𝑗 ).

Hence, the roots of the polynomial 𝑓 are given by

[𝑦1,𝑗 : 𝑦2,𝑗 ] = [cos(𝑤𝑘 ,\ ,𝑗 ) : sin(𝑤𝑘,\ ,𝑗 )],

for 𝑗 = 1, . . . , 𝑠 + 1. �

It remains to determine the other decompositions of 𝑞 𝑠
2 . The proceeding we use is exactly as in the

real case.

Theorem 3.2.7. The form 𝑞 𝑠
2 has a unique decomposition corresponding, up to complex orthogonal

transformations, to the real decomposition whose terms are given by the pairs of opposite vertices of a
regular 2𝑠 -gon inscribed in a circle of radius equal to

𝑟 = 2(𝑠 + 1)−2𝑠
(
2𝑠
𝑠

)−2𝑠
.

Namely

𝑞 𝑠
2 =

𝑠+1∑︁
𝑗=1

(
𝑟 cos(𝜏𝑗 )𝑥1 + 𝑟 sin(𝜏𝑗 )𝑥2

)2𝑠
,

where
𝜏𝑗 =

(𝑗 − 1)π
𝑠 + 1

for every 𝑗 = 1, . . . , 𝑠 + 1.
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Proof. By Proposition 3.2.6, we can describe every minimal decomposition of 𝑞 𝑠
2 as a sum of powers of

linear forms corresponding to the distinct roots of a polynomial

𝑢𝑠+1 − ei(\+i𝑘 )𝑣 𝑠+1,

for some \ ∈ [0, 2π) and some 𝑘 ∈ R. This means that, considering the set of variables {𝑧1, 𝑧2},
introduced in the proof of Theorem 3.2.5, and the values

𝑤𝑘 ,\ ,𝑗 =
2(𝑗 − 1)π + \ + i𝑘

2(𝑠 + 1)

for every 𝑗 = 1, . . . , 𝑠 + 1, we can write 𝑞 𝑠
2 as

𝑞 𝑠
2 =

(
𝑥2

1 + 𝑥
2
2
)𝑠

= 𝑧2𝑠
1 𝑧2𝑠

2 =

𝑠+1∑︁
𝑗=1

(
𝑐 𝑗𝑒

𝑖𝑤𝑘 ,\ ,𝑗 𝑧1 + 𝑐 𝑗𝑒−𝑖𝑤𝑘,\ ,𝑗 𝑧2

)2𝑠

=

𝑠+1∑︁
𝑗=1

(
𝑟

2

)2𝑠
(
2
(
ei𝑤𝑘 ,\ ,𝑗 + e−i𝑤𝑘,\ ,𝑗

2

)
𝑥1 + 2

(
ei𝑤𝑘,\ ,𝑗 − e−i𝑤𝑘,\ ,𝑗

2i

)
𝑥2

)2𝑠

=

𝑠+1∑︁
𝑗=1

(
𝑟 cos(𝑤𝑘,\ ,𝑗 )𝑥1 + 𝑟 sin(𝑤𝑘,\ ,𝑗 )𝑥2

)2𝑠
,

for some coefficients 𝑐1, . . . , 𝑐𝑠+1 ∈ R. In particular, we observe that

𝑞 𝑠
2 = 𝑧2𝑠

1 𝑧2𝑠
2 =

𝑠+1∑︁
𝑗=1

(
𝑐 𝑗𝑒

𝑖𝑤𝑘 ,\ ,𝑗 𝑧1 + 𝑐 𝑗𝑒−𝑖𝑤𝑘,\ ,𝑗 𝑧2

)2𝑠
=

𝑠+1∑︁
𝑗=1

(
𝑐 𝑗𝑒

𝑖𝜏𝑗𝐴𝑘,\ · 𝑧1 + 𝑐 𝑗𝑒−𝑖𝜏𝑗𝐴𝑘 ,\ · 𝑧2

)2𝑠
.

Therefore, by the invariance of 𝑞 𝑠
2 under the action of O2(C), we conclude by Theorem 3.2.5 that every

minimal representation is obtained from the action of a complex orthogonal transformation on the real
decomposition

𝑞 𝑠
2 =

𝑠+1∑︁
𝑗=1

(
𝑟 cos(𝜏𝑗 )𝑥1 + 𝑟 sin(𝜏𝑗 )𝑥2

)2𝑠
,

where

𝑟 = 2(𝑠 + 1)−2𝑠
(
2𝑠
𝑠

)−2𝑠
.

That is, for every \ ∈ [0, 2𝜋) and 𝑘 ∈ R, we have the equality

𝑞 𝑠
2 =

𝑠+1∑︁
𝑗=1

(
𝑟 cos(𝑤𝑘 ,\ ,𝑗 )𝑥1 + 𝑟 sin(𝑤𝑘,\ ,𝑗 )𝑥2

)2𝑠
. �

3.3 General tight decompositions
By the analysis of the central catalecticant matrices we are able to extend, as we have done in the previous
section, some of the results obtained for the real case. In particular, for the second and the third power of
𝑞𝑛 , we can exclude the existence of tight decompositions for several cases. The strategy consists of trying
to determine suitable decompositions by finding the possible points, all with the same norm, contained in
the kernel of the central catalecticant map of 𝑞 𝑠

𝑛 − 𝐵𝑛,𝑠𝑥
2𝑠
1 , which must have dimension 1. This is exactly

the same strategy adopted by B. Reznick in [Rez92], but thanks to Theorem 3.1.14 we can approach the
complex case.
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3.3.1 Tight decomposition for exponent 𝑠 = 2

Considering the second power of a quadratic form, our strategy is to subtract a summand from a hypothetical
tight decomposition of the form 𝑞 𝑠

𝑛 , so that the rank of the middle catalecticant of 𝑞 𝑠
𝑛 decreases by 1. By

Theorem 3.1.14, we know that the 𝑠 -power of the value a · a is the same for every point a ∈ C𝑛 of a tight
decomposition of 𝑞 𝑠

𝑛 , namely

𝐵𝑛,𝑠 = (a · a)𝑠 =
1

𝑇𝑛,𝑠

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

=
𝑠 !(𝑛 − 1)!
(𝑠 + 𝑛 − 1)!

𝑠−1∏
𝑗=0

2𝑗 + 𝑛
2𝑗 + 1

.

Therefore, by supposing that a tight decomposition exists, we can consider the form

1
𝐵𝑛,𝑠

𝑞 𝑠
𝑛 ,

so that every point of the decomposition has norm 1, up to roots of unity. In particular, by the transitivity of
the orthogonal group action on the non-isotropic points on the complexified sphere S𝑛−1

C , we can suppose
one of them to be the point

a1 = (1, 0, . . . , 0).

Now, we will use the notation
𝑞
[𝑠 ]
𝑛 =

1
2𝑠 𝑠 !

𝑞 𝑠
𝑛

and we consider the case of exponent 𝑠 = 2. In particular, we have

𝐵𝑛,2 =
2(𝑛 + 2)
3(𝑛 + 1)

and it follows by Theorem 3.1.14 that, if a tight decomposition of 𝑞2
𝑛 exists, the central catalecticant matrix

of the polynomial

𝑓1 =
1

𝐵𝑛,2
𝑞2
𝑛 − (a · x)4,

where a ∈ C𝑛 is such that a · a = 1, up to roots of unity, must have rank equal to𝑇𝑛,2 − 1. Moreover, we
can determine exactly how the kernel of Cat2𝑓1 is made.

Lemma 3.3.1. Let 𝑛 ∈ N and let
𝑓1 =

1
𝐵𝑛,2

𝑞2
𝑛 − (a · x)4,

for some a ∈ C𝑛 such that a · a = 1. Then

Ker
(
Cat2𝑓1

)
=

〈
(𝑛 + 2) (a · y)2 − 𝑞𝑛

〉
.

Proof. By Lemma 3.1.11 it is sufficient to prove that the Ker
(
Cat2𝑓1

)
≠ 0. Therefore, using Lemma 1.2.15,

formula (2.1.6) and the fact that a · a = 1, we simply observe that(
(𝑛 + 2) (a · y)2 − 𝑞𝑛

)
◦ 𝑓1 =

𝑛 + 2
𝐵𝑛,2

(
(a · y)2 ◦ 𝑞2

𝑛

)
− (𝑛 + 2)

(
(a · y)2 ◦ (a · x)4

)
− 1
𝐵𝑛,2

(
𝑞𝑛 ◦ 𝑞2

𝑛

)
+

(
𝑞𝑛 ◦ (a · x)4

)
=
𝑛 + 2
𝐵𝑛,2

(
4𝑞𝑛 + 8(a · x)2

)
− 12(𝑛 + 2) (a · x)2
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− 4(𝑛 + 2)
𝐵𝑛,2

𝑞𝑛 + 12(a · x)2

=
8(𝑛 + 2)
𝐵𝑛,2

(a · x)2 − 12(𝑛 + 1) (a · x)2 = 0,

proving the statement. �

Lemma 3.3.1 guarantees that, assuming the first point to be a1 = (1, 0, . . . , 0), the further points must
be roots of the polynomial

𝑔1 = (𝑛 + 2)𝑦 2
1 − 𝑞𝑛 .

In particular, this means that, given any other point of the decomposition a2 = (𝑎2,1, . . . , 𝑎2,𝑛), we must
have

𝑎2,1 = ± 1
√
𝑛 + 2

.

Moreover, for every 𝑗 , 𝑘 = 1, . . . ,𝑇𝑛,2 such that 𝑗 ≠ 𝑘 , we have

a𝑗 · a𝑘 = ± 1
√
𝑛 + 2

. (3.3.2)

By equation (2.1.4), we can get, using the same strategy adopted by B. Reznick in [Rez92, pp. 130-132], the
result of Theorem 3.1.2 for the case of exponent 2, which turns out to be true for complex decompositions
as well.

Theorem 3.3.3. Let 𝑛 ≥ 3 and let
1

𝐵𝑛,2
𝑞2
𝑛 =

𝑇𝑛,2∑︁
𝑗=1
(a𝑗 · x)4

be a tight decomposition of 𝑞2
𝑛 . Then 𝑛 = 3 or 𝑛 = 𝑚2 − 2 for a suitable odd number 𝑚 ∈ N.

Proof. Assuming that a point of the decomposition is

a1 = (1, 0, . . . , 0),

we can then suppose, by Lemma 3.3.1, that the second point of the decomposition is

a2 =

(
1

√
𝑛 + 2

,

√︂
𝑛 + 1
𝑛 + 2

, 0, . . . , 0
)
.

So, given any other point a𝑘 of the decomposition, which can be written as

a𝑘 =

(
1

√
𝑛 + 2

, 𝑎𝑘,2, . . . , 𝑎𝑘 ,𝑛

)
,

we must have by formula (3.3.2) that

a2 · a𝑘 =
1

𝑛 + 2
+ 𝑎𝑘 ,2

√︂
𝑛 + 1
𝑛 + 2

= ± 1
√
𝑛 + 2

and hence

𝑎𝑘 ,2 =
−1 ±

√
𝑛 + 2√︁

(𝑛 + 1) (𝑛 + 2)
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for every 𝑘 = 3, . . . ,𝑇𝑛,2. Now, we define the natural number 𝐶1 ∈ N as the number of elements of the
decomposition having the second coordinate equal to

−1 −
√
𝑛 + 2√︁

(𝑛 + 1) (𝑛 + 2)
.

Consequently, exactly𝑇𝑛,𝑠 −𝐶1 − 2 elements must have the second coordinate equal to

−1 +
√
𝑛 + 2√︁

(𝑛 + 1) (𝑛 + 2)
.

Therefore, developing the form and solving an equation for the coefficients of the monomial 𝑥4
2 , we have

the equation

(𝑛 + 1)2
(𝑛 + 2)2

+ (𝑇𝑛,𝑠 −𝐶1 − 2)
(
−1 +

√
𝑛 + 2

)4

(𝑛 + 1)2(𝑛 + 2)2
+𝐶1

(
−1 −

√
𝑛 + 2

)4

(𝑛 + 1)2(𝑛 + 2)2
=

3(𝑛 + 1)
2(𝑛 + 2) ,

which we can be written as

2(𝑛 + 1)4 + 2(𝑇𝑛,𝑠 −𝐶1 − 2)
(
−1 +

√
𝑛 + 2

)4 + 2𝐶1
(
−1 −

√
𝑛 + 2

)4
= 3(𝑛 + 1)3(𝑛 + 2)

and then as

−(𝑛 + 1)3(𝑛 + 4) + 2(𝑇𝑛,𝑠 −𝐶1 − 2)
(
−1 +

√
𝑛 + 2

)4 + 2𝐶1
(
−1 −

√
𝑛 + 2

)4
= 0.

Substituting the value

𝑇𝑛,2 =

(
𝑛 + 1

2

)
,

we get

−(𝑛 + 1)3(𝑛 + 4) +
(
𝑛 (𝑛 + 1) − 2𝐶1 − 4

) (
−1 +

√
𝑛 + 2

)4 + 2𝐶1
(
−1 −

√
𝑛 + 2

)4
= 0

from which we obtain

𝐶1 =
−(𝑛 + 1)3(𝑛 + 4) +

(
𝑛2 + 𝑛 − 4

) (
−1 +

√
𝑛 + 2

)4

2
(
−1 +

√
𝑛 + 2

)4 − 2
(
−1 −

√
𝑛 + 2

)4

=
(𝑛 + 1)3(𝑛 + 4) −

(
𝑛2 + 𝑛 − 4

) (
(𝑛 + 2)2 + 6(𝑛 + 2) + 1 − 4(𝑛 + 3)

√
𝑛 + 2

)
16(𝑛 + 3)

√
𝑛 + 2

=
(𝑛 + 1)3(𝑛 + 4) −

(
𝑛2 + 𝑛 − 4

) (
𝑛2 + 10𝑛 + 17 − 4(𝑛 + 3)

√
𝑛 + 2

)
16(𝑛 + 3)

√
𝑛 + 2

=
−4𝑛3 − 8𝑛2 + 36𝑛 + 72 + 4

(
𝑛2 + 𝑛 − 4

)
(𝑛 + 3)

√
𝑛 + 2

)
16(𝑛 + 3)

√
𝑛 + 2

=
−𝑛3 − 2𝑛2 + 9𝑛 + 18 +

(
𝑛2 + 𝑛 − 4

)
(𝑛 + 3)

√
𝑛 + 2

)
4(𝑛 + 3)

√
𝑛 + 2

=
−(𝑛 + 2) (𝑛 − 3) (𝑛 + 3) +

(
𝑛2 + 𝑛 − 4

)
(𝑛 + 3)

√
𝑛 + 2

)
4(𝑛 + 3)

√
𝑛 + 2
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=
𝑛2 + 𝑛 − 4 − (𝑛 − 3)

√
𝑛 + 2

4
.

Now, since 𝐶1 is a natural value, the equality

4𝐶1 − 𝑛2 − 𝑛 + 4 = (3 − 𝑛)
√
𝑛 + 2

holds if and only if 𝑛 = 3 or
√
𝑛 + 2 ∈ N, i.e. 𝑛 = 𝑚2 − 2 for a suitable 𝑚 ∈ N. Thus, supposing 𝑛 ≥ 4,

we determine the value of 𝐶1, obtaining

𝐶1 =

(
𝑚2 − 2

)2 +𝑚2 − 6 − (𝑚2 − 5)𝑚
4

=
𝑚4 − 4𝑚2 − 2 −𝑚 (𝑚2 − 5)

4

=
𝑚4 −𝑚3 − 4𝑚2 + 5𝑚 − 2

4

=
(𝑚 − 2)

(
𝑚3 +𝑚2 − 2𝑚 + 1

)
4

.

Just substituting modular values, we can check that 𝑚 . 0 mod 4. We have then proved that there are
exactly 𝐶1 points b1, . . . ,b𝐶1 such that

𝑏𝑘,2 = − 𝑚 + 1
𝑚
√
𝑚2 − 1

for every 𝑘 = 1, . . . ,𝐶1. Now, again because of the same norm of the points of the decomposition, we can
rewrite, after a suitable orthogonal transformation, the first two points as

a1 = (𝑐1, 𝑐2, 0, . . . , 0), a2 = (𝑐1,−𝑐2, 0, . . . , 0).

Therefore, since
|a1 | = |a2 | =

√︃
𝑐2

1 + 𝑐
2
2 = 1

and
a1 · a2 = 𝑐2

1 − 𝑐
2
2 =

1
√
𝑛 + 2

=
1
𝑚

,

we easily get
𝑐2

1 =
𝑚 + 1
2𝑚

, 𝑐2
2 =

𝑚 − 1
2𝑚

and hence

a1 =

(√︂
𝑚 + 1
2𝑚

,

√︂
𝑚 − 1
2𝑚

, 0, . . . , 0
)
, a2 =

(√︂
𝑚 + 1
2𝑚

,−
√︂

𝑚 − 1
2𝑚

, 0, . . . , 0
)
.

By applying Lemma 3.3.1, we observe that the elements in the kernel of the catalecticant of the polynomial

1
𝐵𝑛,2

𝑞
[2]
𝑛 − (a1 · x)4 − (a2 · x)4

are given by the polynomials

(𝑐1𝑦1 ± 𝑐2𝑦2)2 −
1

𝑚2 − 2
𝑞𝑛 +

2
𝑚2 (𝑚2 − 2

) 𝑞𝑛 ,
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that is
𝑚 + 1
2𝑚

𝑦 2
1 ±
√
𝑚2 − 1
𝑚

𝑦1𝑦2 +
𝑚 − 1
2𝑚

𝑦 2
2 −

1
𝑚2𝑞𝑛 .

It is clear that the remaining points must satisfy both the equations. Therefore, since the norm of every
point must be equal to one, we obtain for every 𝑘 = 3, . . . ,𝑇𝑛,2 that the point

a𝑘 = (𝑎𝑘 ,1, . . . , 𝑎𝑘,𝑛)

must satisfy the equations of the system
𝑎𝑘,1𝑎𝑘 ,2 = 0,

(𝑚 + 1)𝑎2
𝑘,1 + (𝑚 − 1)𝑎2

𝑘,2 =
2
𝑚

,

that is, we must have

𝑎𝑘 ,1 =

√︄
2

𝑚 (𝑚 + 1) , 𝑎𝑘,2 = 0, (3.3.4)

or

𝑎𝑘 ,1 = 0, 𝑎𝑘 ,2 =

√︄
2

𝑚 (𝑚 − 1) . (3.3.5)

We refer to points satisfying equations (3.3.4) and (3.3.5), respectively, as points of the first and second
type. So, considering the equation obtained by equalizing the coefficient of the monomial 𝑥4

1 and denoting
by 𝐶1 and 𝐶2 the number of addends respectively of the first and second type, we get

(𝑚 + 1)2
2𝑚2 + 4𝐶1

𝑚2(𝑚 + 1)2
=

3
(
𝑚2 − 1

)
2𝑚2

and hence
(𝑚 + 1)4 + 8𝐶1 − 3

(
𝑚2 − 1

)
(𝑚 + 1)2 = 0,

that is
𝐶1 =

(𝑚 + 1)3(𝑚 − 2)
4

.

Thus, we also get

𝐶2 = 𝑇𝑛,2 −𝐶1 − 2 =

(
𝑚2 − 2

) (
𝑚2 − 1

)
2

− (𝑚 + 1)3(𝑚 − 2)
4

− 2 =
(𝑚 − 1)3(𝑚 + 2)

4

for the elements of the second type. Again up to orthogonal transformations, we can suppose the third
point of the decomposition to be

a3 =

(√︄
2

𝑚 (𝑚 + 1) , 0, 𝑐3, 0, . . . , 0
)

for some 𝑐3 ∈ C and we must have
2

𝑚 (𝑚 + 1) + 𝑐
2
3 = 1,

that is,

𝑐2
3 = 1 − 2

𝑚 (𝑚 + 1) =
𝑚2 +𝑚 − 2
𝑚 (𝑚 + 1) =

(𝑚 + 2) (𝑚 − 1)
𝑚 (𝑚 + 1) .
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For the successive points of the first type, we must have, instead,

2
𝑚 (𝑚 + 1) + 𝑎4,3

√︄
(𝑚 + 2) (𝑚 − 1)

𝑚 (𝑚 + 1) = ± 1
𝑚

,

that is

𝑎4,3

√︄
(𝑚 + 2) (𝑚 − 1)

𝑚 (𝑚 + 1) =
−2 ± (𝑚 + 1)
𝑚 (𝑚 + 1)

and hence
𝑎4,3 =

−2 ± (𝑚 + 1)√︃
𝑚 (𝑚 + 2)

(
𝑚2 − 1

) .
Now, the summands contributing to the monomial 𝑥2

1𝑥
2
3 are exactly 𝐶1. So, denoting by 𝐶3 the elements

with the value
−2 − (𝑚 + 1)√︃

𝑚 (𝑚 + 2)
(
𝑚2 − 1

) = − 𝑚 + 3√︃
𝑚 (𝑚 + 2)

(
𝑚2 − 1

)
as third coordinate, we get

12(𝑚 + 2) (𝑚 − 1)
𝑚2(𝑚 + 1)2

+ 6𝐶3
2(𝑚 + 3)2

(𝑚 − 1)𝑚2(𝑚 + 1)2(𝑚 + 2)

+ 6
(
(𝑚 + 1)3(𝑚 − 2)

4
−𝐶3

)
2(𝑚 − 1)2

(𝑚 − 1)𝑚2(𝑚 + 1)2(𝑚 + 2)
=

3
(
𝑚2 − 1

)
𝑚2 ,

that is,

(𝑚 + 2) (𝑚 − 1)
(𝑚 + 1)2

+𝐶3
(𝑚 + 3)2 − (𝑚 − 1)2
(𝑚 − 1) (𝑚 + 1)2(𝑚 + 2)

+
(
(𝑚 + 1)3(𝑚 − 2)

4

)
(𝑚 − 1)2

(𝑚 − 1) (𝑚 + 1)2(𝑚 + 2)
=
𝑚2 − 1

4

and, just simplifying, we get the equation

(𝑚 + 2) (𝑚 − 1)
(𝑚 + 1)2

+𝐶3
(𝑚 + 3)2 − (𝑚 − 1)2
(𝑚 − 1) (𝑚 + 1)2(𝑚 + 2)

+
(
𝑚2 − 1

)
(𝑚 − 2)

4(𝑚 + 2) =
𝑚2 − 1

4
.

Proceeding with the resolution, we obtain

(𝑚 + 2) (𝑚 − 1)
(𝑚 + 1)2

+𝐶3
8

(𝑚 − 1) (𝑚 + 1) (𝑚 + 2) −
𝑚2 − 1
𝑚 + 2

= 0

and hence

8𝐶3
(𝑚 − 1) (𝑚 + 1) (𝑚 + 2) =

𝑚2 − 1
𝑚 + 2

− (𝑚 + 2) (𝑚 − 1)
(𝑚 + 1)2

=
(𝑚 − 1) (𝑚 + 1)3 − (𝑚 − 1) (𝑚 + 2)2

(𝑚 + 2) (𝑚 + 1)2
,

which corresponds to the equality

𝐶3 =
𝑚 (𝑚 − 1)2(𝑚 + 1)2

8(𝑚 + 1) =
𝑚 (𝑚 − 1)2(𝑚 + 1)

8
.



3.3. General tight decompositions 67

Hence, since 𝐶3 must be an integer value, the modular equation

𝑚 (𝑚 − 1)2(𝑚 + 1) ≡ 0 mod 8

must hold. We have already stated that 𝑚 . 0, 4 mod 8 and hence, if 𝑚 ≡ 2, 6 mod 8, we get respectively

𝑚 (𝑚 − 1)2(𝑚 + 1) ≡ 6 mod 8, 𝑚 (𝑚 − 1)2(𝑚 + 1) ≡ 2 mod 8,

thus proving that 𝑚 must be an odd number. �

The problem of establishing for which 𝑛 ∈ N tight decompositions exist is not trivial. We can admire
some nice decomposition obtained mainly by classical examples of spherical designs. Apart from the case
in two variables, the simplest of these is given by the decomposition

𝑞2
3 =

1
6

∑︁6

𝑗

(
𝑥𝑗 ± 𝜑𝑥𝑗−1

)4
, (3.3.6)

where 𝜑 is a root of the polynomial 𝑥2 − 𝑥 − 1 ∈ R[𝑥], namely

𝜑 =
1 +
√

5
2

.

Such decomposition is made by linear forms which geometrically correspond to the vertices of a regular
icosahedron, inscribed in a sphere of radius

(𝐵3,2)
1
4 =

(
5
6

) 1
4

,

whose coordinates are given by H. S. M. Coxeter in [Cox73]. In particular, we can highlight an essential
criterion, classically attributed to J. Haantjes, to obtain the vertices of a regular icosahedron in the
three-dimensional space R3, which represents also an important fact in relation of what we will see later
in chapter 5.

Lemma 3.3.7 ([Haa48]). If 12 real distinct points a1, . . . , a12 ∈ 𝑆2 satisfy the conditions

a𝑖 · a𝑗 = ±
1
√

5
for every 𝑖 , 𝑗 = 1, . . . , 12 with 𝑖 ≠ 𝑗 , then they represent the vertices of a regular icosahedron.

This elegant decomposition of𝑞2
3 , that is represented in Figure 3.2, can be found also in [Rez92, Theorem

9.13], where B. Reznick proves its uniqueness as real decomposition. Considering the language of spherical
designs, it was already known (see [DGS77, Example 5.16]), that the vertices of a regular icosahedron
represent the unique tight 5-spherical design in R3. It is not difficult to prove that decomposition (3.3.6)
represents also the unique tight decomposition over the field of complex numbers, since the demonstration
provided by B. Reznick can be easily extended.

Theorem 3.3.8. Given 6 points a1, . . . , a6 ∈ C3, there is tight decomposition

𝑞2
3 =

∑︁6

𝑗
(𝑎 𝑗 ,1𝑥1 + 𝑎 𝑗 ,2𝑥2 + 𝑎 𝑗 ,3𝑥3)4 (3.3.9)

if and only if a1, . . . , a6 represent the vertices, up to opposite signs, of a regular icosahedron inscribed in
a sphere of radius

(𝐵3,2)
1
4 =

(
5
6

) 1
4

,

up to orthogonal complex transformations.
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Proof. Using the same argument of Theorem 3.3.3, we have that

a𝑖 · a𝑗 = ±
1
√

5

for every 𝑖 , 𝑗 = 1, . . . , 6 with 𝑖 ≠ 𝑗 and we can suppose that |a𝑗 | = 1. We can fix, by invariance of the
orthogonal group O𝑛 (C), the first point of the decomposition (3.3.9) as

a1 = (1, 0, 0),

so that
𝑎 𝑗 ,1 =

1
√

5
for every 𝑗 = 2, . . . , 6. Similarly, we can fix the second point as

a2 =

(
1
√

5
,

2
√

5
, 0

)
,

and, consequently, by Lemma 3.3.1 we get that the other points must satisfy the equation

5
(

1
√

5
𝑦1 +

2
√

5
𝑦2

)2
− 𝑞𝑛 = 0.

That is, (
1
√

5
+ 2𝑦2

)2
− 1 = 0

and hence
5𝑦 2

2 +
√

5𝑦2 − 1 = 0,

which means that

𝑎 𝑗 ,2 =
−
√

5 ± 5
10

for every 𝑗 = 3, . . . , 6. Finally, we know that decomposition (3.3.6) is first caliber and hence we must have

𝑎2
𝑗 ,1 + 𝑎

2
𝑗 ,2 + 𝑎

2
𝑗 ,3 = 1.

Thus, we get

𝑎2
𝑗 ,3 =

4
5
−

(
−
√

5 ± 5
10

)2
=

5 ±
√

5
10

,

that is,

𝑎 𝑗 ,3 = ±

√︄
5 ±
√

5
10

,

for 𝑗 = 3, 4, 5, 6. Since these points are all real, then the condition of Lemma 3.3.7 is satisfied and hence
they represent the vertices of a regular icosahedron, up to orthogonal transformations. �

There are also two further tight decompositions representing the successive cases permitted by
Theorem 3.3.3, respectively for 𝑛 = 7 and 𝑛 = 23, which are both mentioned as tight spherical designs in
[DGS77, p. 371]. The first is given by

𝑞2
7 =

1
12

∑︁28

𝑗
(𝑥𝑗 ± 𝑥𝑗+1 ± 𝑥𝑗+3)4 (3.3.10)
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𝑦1

𝑦2

𝑦3

Figure 3.2: Graphical representation of decomposition (3.3.6), whose elements correspond,
up to central simmetry, to the vertices of a regular icosahedron.

and represents the maximal set of 28 lines in R7 having mutual angles equal to the values \ such that

cos2 \ =
1
9
.

The second one corresponds instead to a set of 276 lines in R23 having mutual angles equal to the values
of an angle \ such that

cos2 \ =
1
25

.

This structure is known as Leech lattice, taking its name by J. Leech, who introduced it in [Lee67]. In
particular, decomposition (3.3.10) has been analyzed, as 5-spherical design, also by H. Cuypers in [Cuy05],
for which (real) uniqueness is proved.

Another result, always considering real tight spherical designs, is provided by E. Bannai, E. Munemasa,
and B. Venkov in [BMV04, Theorem 3.10], where they state that, setting 𝑛 = (2𝑚 + 1)2 − 2 for a suitable
𝑚 ∈ N, there is no tight spherical design in R𝑛 in the case of = 3, 4 or 𝑚 = 2𝑘 for some 𝑘 ∈ N such that
𝑘 ≡ 2 mod 3 and both 𝑘 and 2𝑘 + 1 are square-free. This result has been further improved by G. Nebe and
B. Venkov in [NV12].

3.3.2 Tight decomposition for exponent 𝑠 = 3

Setting 𝑠 = 3, we can proceed exactly as in the previous case. Supposing the existence of a tight
decomposition and considering the form

1
𝐵𝑛,3

𝑞3
𝑛 ,

we can take every point of norm 1. So the initial point can be, again,

a1 = (1, 0, . . . , 0).

We have that
𝐵𝑛,3 =

6𝑛 (𝑛 + 2) (𝑛 + 4)
15𝑛 (𝑛 + 1) (𝑛 + 2) =

2(𝑛 + 4)
5(𝑛 + 1)

and, proceeding as in Lemma 3.3.1, we have that the catalecticant of the polynomial

𝑓1 =
1

𝐵𝑛,3
𝑞3
𝑛 − (a · x)6,
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for some a ∈ C𝑛 such that a · a = 1, must have rank equal to𝑇𝑛,3 − 1.

Lemma 3.3.11. For every 𝑛 ∈ N, the kernel of the polynomial

𝑓1 =
1

𝐵𝑛,3
𝑞3
𝑛 − (a · x)6

is
Ker

(
Cat3𝑓1

)
=

〈
(𝑛 + 4) (a · y)3 − 3𝑞𝑛 (a · y)

〉
.

Proof. As in the proof of Lemma 3.3.1, by Lemma 3.1.11 we simply have to prove that the Ker
(
Cat3𝑓1

)
≠ 0.

Therefore, using Lemma 1.2.15, formula (2.1.6) and the fact that a · a = 1, we have(
(𝑛 + 4) (a · y)3 − 3𝑞𝑛 (a · y)

)
◦ 𝑓1 =

𝑛 + 4
𝐵𝑛,3

(
(a · y)3 ◦ 𝑞3

𝑛

)
− (𝑛 + 4)

(
(a · y)3 ◦ (a · x)6

)
− 3
𝐵𝑛,3

(
𝑞𝑛 (a · y) ◦ 𝑞3

𝑛

)
+ 3

(
𝑞𝑛 (a · y) ◦ (a · x)6

)
=
𝑛 + 4
𝐵𝑛,3

(
72𝑞𝑛 (a · x) + 48(a · x)3

)
− 120(𝑛 + 4) (a · x)3

− 72(𝑛 + 4)
𝐵𝑛,3

𝑞𝑛 (a · x) + 360(a · x)3

=
48(𝑛 + 4)

𝐵𝑛,3
(a · x)3 − 120(𝑛 + 1) (a · x)3 = 0,

proving the statement. Proceeding exactly as in the proof of Lemma 3.3.1, we can use Proposition 2.1.11
to write 𝑙3 = (a · x)3 as

𝑙3 = ℎ + 𝑞 [1]𝑛 (b · x)
for some ℎ ∈ H3

𝑛 and b ∈ C𝑛 . In particular, by uniqueness, we have that

ℎ = 𝑙3 − 𝑞 [1]𝑛 (b · x) ∈ H3
𝑛 ,

that is, applying the Laplace operator,

Δ
(
(a · x)3 − 𝑞 [1]𝑛 (b · x)

)
= 6(a · x) − (𝑛 + 2) (b · x) = 0,

namely,
(b · x) = 6

𝑛 + 2
(a · x).

So, according to Proposition 2.2.10, the element we require is given by the polynomial

𝑔1 =

(
(a · y)3 − 6

𝑛 + 2
𝑞
[1]
𝑛 (a · y)

)
+ 6
(𝑛 + 2)𝐴𝑛,3,1

𝑞𝑛 (a · y)

= (a · y)3 −
(

3
𝑛 + 2

− 6
(𝑛 + 2) (𝑛 + 4)

)
𝑞𝑛 (a · y)

= (a · y)3 −
(

3𝑛 + 12
(𝑛 + 2) (𝑛 + 4) −

6
(𝑛 + 2) (𝑛 + 4)

)
𝑞𝑛 (a · y)

= (a · y)3 − 3
𝑛 + 4

𝑞𝑛 (a · y),

which proves the statement. �
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Now we provide another computation about the values that can be assumed by 𝑛 to obtain suitable
tight decompositions.

Theorem 3.3.12. Let
1

𝐵𝑛,3
𝑞3
𝑛 =

𝑇𝑛,3∑︁
𝑗=1
(a𝑗 · x)6

be a tight decomposition of 𝑞3
𝑛 . Then 𝑛 ≡ 2 mod 3.

Proof. Let us consider an hypothetical tight decomposition of 𝑞3
𝑛 and let us suppose that the point

a1 = (1, 0, . . . , 0)

is one point of such decomposition. Then, by Lemma 3.3.11 it follows that, given another point a2 of this
decomposition, we must have

𝑎2,1 = 0

or

𝑎2,1 = ±
√︂

3
𝑛 + 4

.

Supposing that 𝐶1 of these points have 𝑎2,1 as first coordinate, we can solve the equation

5(𝑛 + 1)
2(𝑛 + 4) − 1 = 𝐶1

(
3

𝑛 + 4

)3
,

that is,
3𝑛 − 3

2(𝑛 + 4) = 𝐶1

(
3

𝑛 + 4

)3
,

obtaining

𝐶1 =
(𝑛 − 1) (𝑛 + 4)2

18
. (3.3.13)

Now, by equality (3.3.13), the elements with the first coordinate equal to 0 are

𝐶 ′1 = 𝑇𝑛,3 −
(𝑛 − 1) (𝑛 + 4)2

18
− 1 =

3𝑛 (𝑛 + 1) (𝑛 + 2) − (𝑛 − 1) (𝑛 + 4)2 − 18
18

=
3
(
𝑛2 + 𝑛

)
(𝑛 + 2) − (𝑛 − 1)

(
𝑛2 + 8𝑛 + 16

)
− 18

18

=
3
(
𝑛3 + 3𝑛2 + 2𝑛

)
− 𝑛3 − 8𝑛2 − 16𝑛 + 𝑛2 + 8𝑛 + 16 − 18

18

=
2𝑛3 + 2𝑛2 − 2𝑛 − 2

18
=
(𝑛 − 1) (𝑛 + 1)2

9

and so we must have
𝑛 ≡ 1, 2, 5, 8 mod 9.

Since the value 𝐶 ′1 is non-zero for every 𝑛 ∈ N, we can suppose that

a2 = (0, 1, 0, . . . , 0)

and, by repeating the same procedure for this last point, we easily see that the second coordinate of each of
the other points must have the same possible values assumed by the first coordinate. This means that we
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must have the same number of points with second coordinate equal to 0. Now, we want to know how many
points have the first two coordinates different from zero. In particular, supposing that all the points with
non-zero first coordinate have it equal to √︂

3
𝑛 + 4

,

we must have the coefficient of the monomial 𝑥3
1𝑥

3
2 equal to zero, hence the number of points a𝑘 such that

𝑎𝑘,2 =

√︂
3

𝑛 + 4

is the same of those having the second coordinate equal to

−
√︂

3
𝑛 + 4

.

Moreover, the coefficient of the monomials 𝑥4
1𝑥

2
2 and 𝑥2

1𝑥
4
2 are

15(𝑛 + 1)
2(𝑛 + 4) = 15𝐶2

(
3

𝑛 + 4

)3
,

that is
𝐶2 =

(𝑛 + 1) (𝑛 + 4)2
54

.

Then, we have
𝑛 ≡ 2 mod 3. �

As in the case of the exponent 2, we can list some cases in which a tight decomposition exist. In
particular, for 𝑠 = 3, it exists for 𝑛 = 8 and 𝑛 = 23 and they are presented in [BS81].



CHAPTER 4
General decompositions

As one could have seen through the previous chapters, the structure of the polynomial 𝑞 𝑠
𝑛 in terms of

powers of linear forms, as 𝑛 and 𝑠 change, can be quite complicate and it is not so immediate to determine
it. Anyway, it is possible to get explicit closed formulas, just depending on 𝑛, for some fixed values of the
exponent 𝑠 . One of our main results is related to the forms 𝑞2

𝑛 for 𝑛 ∈ N.
In section 4.1 we provide a general survey on this last polynomials, depending on the number 𝑛 of

variables. In particular, after listing some classical and more recent decompositions, we analyze the
possible minimal ones. For most of the values of 𝑛, indeed, it is possible to determine the exact rank.

In section 4.2 we focus, instead, on the case of three variables. First we introduce a different set of
coordinates with respect to the standard ones. After that, we analyze some already known decompositions,
whose points represent several polygons set at different heights in three dimensional space and, moreover,
we provide new examples presenting the same pattern.

4.1 On the rank of 𝑞2
𝑛

We have already provided an example of a tight decomposition for the exponent 2 in the case of three
variables, given by the decomposition (3.3.6), whose points correspond to the vertices of a regular
icosahedron. Despite this elegant structure rarely repeats for other values of 𝑛, we can see that, at least for
every 𝑛 ∈ N such that 𝑛 ≠ 8, that rank of 𝑞 𝑠

𝑛 is at most equal to𝑇𝑛,2 + 1.

4.1.1 Classical decompositions of 𝑞2
𝑛

There are many examples of decompositions of 𝑞2
𝑛 in the classical literature. We can admire, several

simple examples. Fir instance, we can report two of these, due to E. Lucas. The first is given by the
equality

𝑞2
3 =

2
3

∑︁3

𝑗
𝑥4
𝑗 +

1
12

∑︁4
(𝑥1 ± 𝑥2 ± 𝑥3)4 (4.1.1)

and can be found as an exercise in [Hoü77, Question 39, p. 129]. The second one appears in the same
article as the preceding exercise, exactly in [Hoü77, Question 38, p. 129], but it had already appeared
previously also in [Luc76, p. 101]. It concerns the case of four variables and is given by the equality

𝑞2
4 =

1
6

∑︁12

𝑗1<𝑗2

(
𝑥𝑗1 ± 𝑥𝑗2

)4
, (4.1.2)

consisting of a decomposition of size 12. Formally, this last one is exactly the same decomposition
determined by J. Liouville and exposed by V. A. Lebesgue in [Leb59]. This then corresponds, up to an

73
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orthogonal change of coordinates, to

𝑞2
4 =

2
3

∑︁4

𝑗
𝑥4
𝑗 +

1
24

∑︁8
(𝑥1 ± 𝑥2 ± 𝑥3 ± 𝑥4)4. (4.1.3)

B. Reznick provides also a formula, which is given in [Rez92, formula (10.35)], which gives us a
family of real decompositions for every 𝑛 ≥ 3. That is, considering 𝑛 ≠ 4, we get

𝑞2
𝑛 =

1
6

∑︁(𝑛2)
𝑗1<𝑗2

(
𝑥𝑗1 + 𝑥𝑗2

)4 + 1
6

∑︁(𝑛2)
𝑗1<𝑗2

(
𝑥𝑗1 − 𝑥𝑗2

)4 + 4 − 𝑛
3

∑︁𝑛

𝑗
𝑥4
𝑗 , (4.1.4)

which is a decomposition of size 𝑛2. If instead 𝑛 = 4, since the last term of the decomposition becomes
equal to zero, we obtain a decomposition of size 42 − 4 = 12, which is exactly the decomposition (4.1.2).

As we can see from all of these decompositions, these examples represent particularly symmetric
disposition of points inside the space R𝑛 . The idea emerging from these examples is that the dispositions
of points are in a certain sense "balanced" with respect to a center of symmetry. This aspect, as we will see
later, is evident in many other decompositions. For instance, besides the perfect symmetry assumed by the
points of the icosahedron of decomposition (3.3.6), we can further transform this formula. Indeed, simply
by an orthogonal transformation, we can get a disposition of points which are invariant under the action of
the permutation group 𝑆3 and symmetrically disposed in the space with respect to the axis identified by
the unit vector (

1
√

3
,

1
√

3
,

1
√

3

)
∈ R3.

We will see later that this particular disposition of points can be generalized for all the other values of 𝑛.

4.1.2 General decompositions and upper bound for 𝑞2
𝑛

The structure of decomposition (3.3.6) can be generalized to either an arbitrary number or variables 𝑛 ≥ 3,
distinguishing the cases when 𝑛 is an odd or an even number. For simplicity, with the symbol 𝑥𝑛+𝑗 , we
will denote in the following theorems the variable 𝑥𝑗 , for any 𝑗 = 1, . . . , 𝑛.

Theorem 4.1.5. For every odd number 𝑛 ∈ N with 𝑛 ≥ 5, the form 𝑞2
𝑛 can be described as

6𝑞2
𝑛 =

𝑛∑︁
𝑗=1

∑︁
1≤𝑘 ≤ 𝑛−1

2
𝑘 even

(
𝜑

1
4
𝑛 𝑥𝑗 ± 𝜑

− 1
4

𝑛 𝑥𝑗+𝑘
)4
+

𝑛∑︁
𝑗=1

∑︁
1≤𝑘 ≤ 𝑛−1

2
𝑘 odd

(
𝜑
− 1

4
𝑛 𝑥𝑗 ± 𝜑

1
4
𝑛 𝑥𝑗+𝑘

)4
, (4.1.6)

which is a decomposition of size 𝑛 (𝑛 − 1), where

𝜑𝑛 =
3 ± i

√︁
(𝑛 − 4) (𝑛 + 2)
𝑛 − 1

.

In particular, it is a first caliber decomposition, such that every point a appearing in the summation
satisfies the relation

|a|4 =
𝑛 + 2

3(𝑛 − 1) .

Proof. By symmetry, we just need to verify the correctness of the coefficients of the monomials 𝑥4
𝑗

and
𝑥2
𝑗1
𝑥2
𝑗2

for 𝑗 = 1, . . . , 𝑛 and 1 ≤ 𝑗1 < 𝑗2 ≤ 𝑛. In particular, we get that the coefficients of the monomial 𝑥4
𝑗

must be equal to 6 and hence summing such a coefficient for every linear form of the decomposition, we
get the equation

(𝑛 − 1)
(
𝜑−1
𝑛 + 𝜑𝑛

)
= 6.



4.1. On the rank of 𝑞2
𝑛 75

This means, in particular, that
𝜑2
𝑛 −

6
𝑛 − 1

𝜑𝑛 + 1 = 0

and hence

𝜑𝑛 =
3 ± i

√︁
(𝑛 − 4) (𝑛 + 2)
𝑛 − 1

.

For the coefficients of 𝑥2
𝑗1
𝑥2
𝑗2

, by summing all the powers of the linear forms, we get the value

12𝜑−
1
2

𝑛 𝜑
1
2
𝑛 = 12,

which confirms decomposition (4.1.6). It is clear that such decomposition is first caliber and to get the
precise value of the norm raised to 2𝑠 , we simply have to compute

1
6

(
𝜑

1
2
𝑛 + 𝜑

− 1
2

𝑛

)2
=

𝜑𝑛 + 𝜑−1
𝑛 + 2

6
=

1
𝑛 − 1

+ 1
3
=

𝑛 + 2
3(𝑛 − 1) . �

We can find the analogous of (4.1.6) for 𝑛 even, but in this case the decomposition is not first caliber.

Theorem 4.1.7. For every even number 𝑛 ∈ N with 𝑛 ≥ 6, the form 𝑞2
𝑛 can be described as

6𝑞2
𝑛 =

𝑛∑︁
𝑗=1

∑︁
1≤𝑘 ≤ 𝑛−2

2
𝑘 even

(
𝜓
− 1

4
𝑛 𝑥𝑗 ±𝜓

1
4
𝑛 𝑥𝑗+𝑘

)4
+

𝑛∑︁
𝑗=1

∑︁
1≤𝑘 ≤ 𝑛−2

2
𝑘 odd

(
𝜓

1
4
𝑛 𝑥𝑗 ±𝜓

− 1
4

𝑛 𝑥𝑗+𝑘
)4
+

𝑛
2∑︁

𝑗=1

(
𝑥𝑗 ± 𝑥𝑗+ 𝑛2

)4
, (4.1.8)

which is a decomposition of size 𝑛 (𝑛 − 1), where

𝜓𝑛 =
3 ± i

√︁
𝑛 (𝑛 − 4)

𝑛 − 2
.

Proof. We proceed in the same way as we did in Theorem 4.1.5, by determining first the coefficient of the
monomials 𝑥4

𝑗
, obtained by solving the equation

(𝑛 − 2)
(
𝜓𝑛 +𝜓−1

𝑛

)
+ 2 = 6,

that is,
𝜓2
𝑛 −

4
𝑛 − 2

𝜓𝑛 + 1 = 0,

obtaining

𝜓𝑛 =
3 ± i

√︁
𝑛 (𝑛 − 4)

𝑛 − 2
.

For the coefficients of 𝑥2
𝑗1
𝑥2
𝑗2

the equality in both sides of the equations is trivial. �

Despite decomposition (4.1.6) has a quite high size, it proves that, in general, first caliber decompositions
can have also complex points as summands. This shows, in particular, that results in [Rez92] about real
tight decompositions could be non-valid for the complex ones and hence, some caution is necessary.
B. Reznick provides in [Rez92, formula (8.35)] a decomposition of 𝑞2

𝑛 for 3 ≤ 𝑛 ≤ 7, based on a family of
integration quadrature formulas of precision 5, exposed by A. H. Stroud in [Str67a], which are essentially
real. Besides verifying that these decompositions exist, we can prove that the same formula is valid also
for 𝑛 ≥ 9, with the only exception, as we will see, of 𝑛 = 8.

In these last cases the decompositions are not real anymore, but the size remains the same, providing
summations of size 𝑇𝑛,2 + 1, which clearly are not tight. In particular, these decomposition together
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with Theorem 3.3.3 provide the exact rank of 𝑞2
𝑛 for many values of 𝑛. The set of points forming the

decomposition has the special property that it is invariant under the action of the permutation group S𝑛

and these points are symmetric with respect to the central axis identified by the vector(
1
√

3
,

1
√

3
,

1
√

3

)
.

Theorem 4.1.9. Let 𝑛 ∈ N be such that 𝑛 ≥ 3 and 𝑛 ≠ 8. Then the form 𝑞2
𝑛 can be decomposed as

3𝑒 4𝑞2
𝑛 = 𝑎

(∑︁1

𝑗
𝑥𝑗

)4
+

∑︁𝑛

𝑘

(
𝑏
(∑︁𝑛

𝑗
𝑥𝑗

)
+ 𝑐𝑥𝑘

)4
+

∑︁(𝑛2)
𝑘1,𝑘2

(
𝑑
(∑︁1

𝑗
𝑥𝑗

)
+ 𝑒

(
𝑥𝑘1 + 𝑥𝑘2

) )4
, (4.1.10)

where, setting 𝑔 = (8 − 𝑛) 1
4 ∈ C,

𝑎 = 8(𝑔 4 − 1)
(
𝑔 2 ± 2

√
2
)
, 𝑏 = 2𝑔 2 ± 2

√
2, 𝑐 = ∓2

√
2𝑔 4 − 8𝑔 2,

𝑑 = 2𝑔 , 𝑒 = ∓2
√

2𝑔 3 − 8𝑔 .

Proof. We begin by solving the equation

𝑞2
𝑛 = 𝑎

(∑︁1

𝑗
𝑥𝑗

)4
+

∑︁𝑛

𝑘

(
𝑏
(∑︁𝑛

𝑗
𝑥𝑗

)
+ 𝑐𝑥𝑘

)4
+

∑︁(𝑛2)
𝑘1,𝑘2

(
𝑑
(∑︁1

𝑗
𝑥𝑗

)
+ 𝑒

(
𝑥𝑘1 + 𝑥𝑘2

) )4
,

that is, determining which values of the coefficients 𝑎, 𝑏, 𝑐 , 𝑑, 𝑒 ∈ C satisfy the equation. To solve it, we
just have to equalize the coefficient of each monomial from both sides of the equation, obtaining in fact a
linear system. By explicating the form 𝑞2

𝑛 , we obtain

𝑞2
𝑛 =

𝑛∑︁
𝑗=1

𝑥4
𝑖 + 2

∑︁
𝑗1<𝑗2

𝑥𝑗1𝑥𝑗2

and hence, we can expand the sums of powers of the linear forms of the right side of the equation and
determine a system in 5 variables. By symmetry, we just have to consider the monomials with different
multi-degree. So, for the coefficient of the monomial of the form 𝑥4

𝑗
we have

𝑎 + (𝑏 + 𝑐 )4 + (𝑛 − 1)𝑏4 + (𝑛 − 1) (𝑑 + 𝑒 )4 +
(
𝑛 − 1

2

)
𝑑4 = 1,

equal to the equation

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 + 6𝑏2𝑐2 + 4𝑏𝑐3 + 𝑐4 +
(
𝑛

2

)
𝑑4 + (𝑛 − 1)

(
4𝑑3𝑒 + 6𝑑2𝑒 2 + 4𝑑𝑒 3 + 𝑒 4) = 1.

For the monomial 𝑥3
𝑗1
𝑥𝑗2 , we get, instead,

𝑎 + (𝑏 + 𝑐 )3𝑏 + (𝑏 + 𝑐 )𝑏3 + (𝑛 − 2)𝑏4 + (𝑑 + 𝑒 )4 + (𝑛 − 2) (𝑑 + 𝑒 )3𝑑

+ (𝑛 − 2) (𝑑 + 𝑒 )𝑑3 +
(
𝑛 − 2

2

)
𝑑4 = 0,

that is,

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 + 3𝑏2𝑐2 + 𝑏𝑐3 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)𝑑3𝑒 + 3𝑛𝑑2𝑒 2 + (𝑛 + 2)𝑑𝑒 3 + 𝑒 4 = 0.
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From the coefficients of the monomial 𝑥2
𝑗1
𝑥2
𝑗2

, we have

𝑎 + 2𝑏2(𝑏 + 𝑐 )2 + (𝑛 − 2)𝑏4 + 6(𝑑 + 𝑒 )4 + 2(𝑛 − 2) (𝑑 + 𝑒 )2𝑑2 +
(
𝑛 − 2

2

)
𝑑4 =

1
3
,

from which we get

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 + 2𝑏2𝑐2 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)𝑑3𝑒 + 2(𝑛 + 1)𝑑2𝑒 2 + 4𝑑𝑒 3 + 𝑒 4 =

1
3
.

Finally, for the coefficients of the monomials of the forms 𝑥2
𝑗1
𝑥𝑗2𝑥𝑗3 and 𝑥𝑗1𝑥𝑗2𝑥𝑗3𝑥𝑗4 we get respectively

the equations

𝑎 + (𝑏 + 𝑐 )2𝑏2 + 2(𝑏 + 𝑐 )𝑏3 + (𝑛 − 3)𝑏4 + 2(𝑑 + 𝑒 )3𝑑 + (𝑛 − 2) (𝑑 + 𝑒 )2𝑑2

+ 2(𝑛 − 3) (𝑑 + 𝑒 )𝑑3 +
(
𝑛 − 3

2

)
𝑑4 = 0

and

𝑎 + 4(𝑏 + 𝑐 )𝑏3 + (𝑛 − 4)𝑏4 + 6(𝑑 + 𝑒 )2𝑑2 + 4(𝑛 − 4) (𝑑 + 𝑒 )𝑑3 +
(
𝑛 − 4

2

)
𝑑4 = 0,

which give the two equations

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 + 𝑏2𝑐2 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)𝑑3𝑒 + (𝑛 + 4)𝑑2𝑒 2 + 2𝑑𝑒 3 = 0,

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)𝑑3𝑒 + 6𝑑2𝑒 2 = 0.

Now, we observe that every equation has a common summand in the first member, namely

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)𝑑3𝑒 .

Therefore, substituting the last equation, associated to the monomials 𝑥𝑗1𝑥𝑗2𝑥𝑗3𝑥𝑗4 , to the others, we get

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)𝑑3𝑒 = −6𝑑2𝑒 2.

Then we get the system of 5 equations

6𝑏2𝑐2 + +6(𝑛 − 2)𝑑2𝑒 2 + 4(𝑛 − 1)𝑑𝑒 3 + (𝑛 − 1)𝑒 4 + 4𝑏𝑐3 + 𝑐4 = 1,

3𝑏2𝑐2 + 3(𝑛 − 2)𝑑2𝑒 2 + (𝑛 + 2)𝑑𝑒 3 + 𝑒 4 + 𝑏𝑐3 = 0,

2𝑏2𝑐2 + 2(𝑛 − 2)𝑑2𝑒 2 + 4𝑑𝑒 3 + 𝑒 4 =
1
3
,

𝑏2𝑐2 + (𝑛 − 2)𝑑2𝑒 2 + 2𝑑𝑒 3 = 0,

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)𝑑3𝑒 + 6𝑑2𝑒 2 = 0.
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So, we substitute in the same way the fourth equation into the previous ones and we get the value of 𝑒 4 and
a more simpler system 

4(𝑛 − 4)𝑑𝑒 3 + 4𝑏𝑐3 + (𝑛 − 1) 1
3
+ 𝑐4 = 1,

(𝑛 − 4)𝑑𝑒 3 + 𝑏𝑐3 + 1
3
= 0,

𝑒 4 =
1
3
,

𝑏2𝑐2 + (𝑛 − 2)𝑑2𝑒 2 + 2𝑑𝑒 3 = 0,

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)𝑑3𝑒 + 6𝑑2𝑒 2 = 0.

We can therefore suppose, up to a multiplication by a fourth root of unity, that

𝑒 =
1
4√3

.

Thus, in the same way, summing the second equation to the first and substituting the value of 𝑒 , we obtain

𝑒 =
1
4√3

,

𝑐4 =
8 − 𝑛

3
,

𝑛 − 4
4√27

𝑑 + 𝑏𝑐3 + 1
3
= 0,

𝑏2𝑐2 + 𝑛 − 2
√

3
𝑑2 + 2

4√27
𝑑 = 0,

𝑎 + 𝑛𝑏4 + 4𝑏3𝑐 +
(
𝑛

2

)
𝑑4 + 4(𝑛 − 1)

4√3
𝑑3 + 6

√
3
𝑑2 = 0.

Since by hypothesis we have 𝑛 ≠ 8, we have also 𝑐 ≠ 0, and hence, introducing the constant value

𝑔 = (8 − 𝑛) 1
4 ,

we get

𝑐 =
𝑔
4√3

, 𝑒 =
1
4√3

.

It is evident that, if 𝑛 ≥ 9, there is no decomposition of 𝑞2
𝑛 with real coefficients maintaining this pattern

for the coefficients. Hence, the initial system is now reduced to another one made by 3 equations, which
after the suitable substitutions can be written as

𝑔 3𝑏 +
(
4 − 𝑔 4)𝑑 + 1

4√3
= 0,

𝑔 2𝑏2 +
(
6 − 𝑔 4)𝑑2 + 2

4√3
𝑑 = 0,

2𝑎 + 2
(
8 − 𝑔 4)𝑏4 + 8𝑔

4√3
𝑏3 +

(
8 − 𝑔 4) (7 − 𝑔 4)𝑑4 + 8

4√3
(
7 − 𝑔 4)𝑑3 + 4

√
3𝑑2 = 0.
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From the first equation, we get

𝑏 =

4√3
(
𝑔 4 − 4

)
𝑑 − 1

4√3𝑔 3

and, substituting this value in the second equation, we get
√

3
(
𝑔 4 − 4

)2
𝑑2 − 2 4√3

(
𝑔 4 − 4

)
𝑑 + 1 +

√
3𝑔 4 (6 − 𝑔 4)𝑑2 + 2 4√3𝑔 4𝑑 = 0,

that is,
2
√

3
(
8 − 𝑔 4)𝑑2 + 8 4√3𝑑 + 1 = 0,

obtaining

𝑑 =
−4 4√3 ±

√
2 4√3𝑔 2

2
√

3
(
8 − 𝑔 4) .

Therefore, we have

𝑏 =
2𝑔 2 ± 2

√
2

4√3𝑔
(
−8 ∓ 2

√
2𝑔 2) , 𝑑 =

2𝑔
4√3𝑔

(
−8 ∓ 2

√
2𝑔 2) .

It remains to determine the possible values assumed by 𝑎 . For simplicity, we can re-scale the values of the
coefficients, multiplying both sides of the initial equation by the constant term

𝑀 = 3
(
∓2
√

2𝑔 3 − 8𝑔
)4
.

Thus, redefining all the parameters, we obtain

𝑏 = 2𝑔 2 ± 2
√

2, 𝑐 = ∓2
√

2𝑔 4 − 8𝑔 2, 𝑑 = 2𝑔 , 𝑒 = ∓2
√

2𝑔 3 − 8𝑔 ,

and, in particular, 𝑀 = 3𝑒 4. Now, considering the last equation of the initial system, we see that the value
of 𝑎 is

𝑎 =

( (
𝑔 4 − 8

)
𝑏 − 4𝑐

)
𝑏3 −

( (
𝑔 4 − 8

) (
𝑔 4 − 7

)
2

𝑑2 − 4
(
𝑔 4 − 7

)
𝑑𝑒 + 6𝑒 2

)
𝑑2.

Thus, it remains to substitute the considered values on each term. We first observe that

𝑏3 = 8𝑔 6 ± 24
√

2𝑔 4 + 48𝑔 2 ± 16
√

2

and (
𝑔 4 − 8

)
𝑏 − 4𝑐 = 2𝑔 6 ± 10

√
2𝑔 4 + 16𝑔 2 ∓ 16

√
2.

After some computations, we get( (
𝑔 4 − 8

)
𝑏 − 4𝑐

)
𝑏3 = 16

(
𝑔 12 ± 8

√
2𝑔 10 + 44𝑔 8 ± 48

√
2𝑔 6 + 20𝑔 4 ∓ 32

√
2𝑔 2 − 32

)
.

In the same way, observing that

𝑑2 = 4𝑔 2, 𝑑𝑒 = ∓4
√

2𝑔 4 − 16𝑔 2, 𝑒 2 = 8𝑔 6 ± 32
√

2𝑔 4 + 64𝑔 2

we can make other computations and obtain( (
𝑔 4 − 8

) (
𝑔 4 − 7

)
2

𝑑2 − 4
(
𝑔 4 − 7

)
𝑑𝑒 + 6𝑒 2

)
𝑑2 = 8

(
𝑔 12 ± 8

√
2𝑔 10 + 41𝑔 8 ± 40

√
2𝑔 6 + 24𝑔 4) .

Finally, we simply have to substitute this elements to get the values of 𝑎 , that is

𝑎 = 8
(
𝑔 12 ± 8

√
2𝑔 10 + 47𝑔 8 ± 56

√
2𝑔 6 + 16𝑔 4 ∓ 64

√
2𝑔 2 − 64

)
= 8

(
𝑔 4 − 1

) (
𝑔 8 ± 8

√
2𝑔 6 + 48𝑔 4 ± 64

√
2𝑔 2 + 64

)
= 8

(
𝑔 4 − 1

) (
𝑔 2 ± 2

√
2
)4
,

confirming the required decomposition. �
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By Theorem 3.3.3, Theorem 4.1.9, decomposition (4.1.8) and the tight decompositions for 𝑛 = 7, 23
mentioned in [DGS77, p. 371], we can summarize the results concerning the rank of 𝑞2

𝑛 .

Theorem 4.1.11. Let 𝑛 ≥ 3. Then the following conditions hold:
(1) if 𝑛 = 3, 7, 23, then rk

(
𝑞2
𝑛

)
= 𝑇𝑛,2;

(2) if 𝑛 > 23 and 𝑛 = 𝑚2 − 2 for some odd number 𝑚 ∈ N, then𝑇𝑛,2 ≤ rk
(
𝑞2
𝑛

)
≤ 𝑇𝑛,2 + 1;

(3) if 𝑛 = 8, then 56 ≥ rk
(
𝑞2
𝑛

)
≥ 37;

(4) otherwise, rk
(
𝑞2
𝑛

)
= 𝑇𝑛,2 + 1.

4.2 Decompositions in three variables
The decompositions presented in the previous section are not the only examples of closed formulas which
are valid for multiple values of 𝑛. In particular, we can find several decompositions also for higher
exponents. Again, we can find some easier decompositions of the form 𝑞3

𝑛 in the classical literature.
Probably one of the less recent among these is the one for the case of 4 variables and having size 24,
presented by A. Kempner in [Kem12, Section 5] and equal to

𝑞3
4 =

8
15

∑︁4

𝑗
𝑥6
𝑗 +

1
15

∑︁12

𝑗1<𝑗2
(𝑥𝑗1 ± 𝑥𝑗2)6 +

1
120

∑︁8
(𝑥1 ± 𝑥2 ± 𝑥3 ± 𝑥4)6. (4.2.1)

This last decomposition is a particular case for the set of decompositions which can be obtained by
the family of quadrature formulas provided by A. H. Stroud in [Str67b] and that have been exposed by
B. Reznick in [Rez92, formula (8.33)]. These are given, for every 𝑛 ≥ 3 such that 𝑛 ≠ 8, by the formula

𝑞3
𝑛 =

2(8 − 𝑛)
15

∑︁𝑛

𝑗
𝑥6
𝑗 +

1
15

∑︁𝑛 (𝑛−1)
𝑗1<𝑗2

(
𝑥𝑗1 ± 𝑥𝑗2

)6 + 1
15 · 2𝑛−1

∑︁2𝑛−1

(𝑥1 ± · · · ± 𝑥𝑛)6. (4.2.2)

Another formula providing decompositions as functions of 𝑛 is instead given by J. Buczyński, K. Han,
M. Mella, and Z. Teitler in [BHMT18, Section 4.5], where they provide a decomposition of 𝑞3

𝑛 of size

4
(
𝑛

3

)
+ 2

(
𝑛

2

)
+ 𝑛,

given by the equation

60𝑞3
𝑛 =

∑︁4(𝑛3)
𝑗1<𝑗2<𝑗3

(𝑥𝑗1 ± 𝑥𝑗2 ± 𝑥𝑗3)6 + 2(5 − 𝑛)
∑︁2(𝑛2)

𝑗1<𝑗2
(𝑥𝑗1 ± 𝑥𝑗2)6 + 2

(
𝑛2 − 9𝑛 + 38

) ∑︁𝑛

𝑗
𝑥6
𝑗 . (4.2.3)

If the case of 𝑛 = 3 B. Reznick provides also two minimal decompositions for the exponents 3 and 4.
We can see in [Rez92, Theorem 9.28] that the form 𝑞3

3 can be described by a decomposition of size 11
with real coefficients, given by

𝑞3
3 =

14
27

𝑥6
1 +

7
10

∑︁2

𝑗≠1
𝑥6
𝑗 +

1
540

∑︁4

𝑗≠1

(
2𝑥1 ±

√
3𝑥𝑗

)6 + 1
540

∑︁4 (
𝑥1 ±
√

3𝑥2 ±
√

3𝑥3
)6
. (4.2.4)

With the same strategy of Theorem 3.3.12, B. Reznick proves that this is a minimal decomposition and, in
particular, we will prove that it is not unique.

Besides decomposition (4.2.4), B. Reznick analyzes also a minimal decomposition for the successive
exponent. Indeed, he proves in [Rez92, formula (8.31)] that the form 𝑞4

3 can be decomposed as

140𝑞4
3 = 3𝜑−4

∑︁6

𝑗
(𝑥𝑗 ± 𝜑𝑥𝑗−1)8 +

∑︁6

𝑗

(
𝜑𝑥𝑗 ± 𝜑−1𝑥𝑗−1

)8 +
∑︁4
(𝑥1 ± 𝑥2 ± 𝑥3)8, (4.2.5)

where

𝜑 =
1 +
√

5
2

.

Decomposition (4.2.5) consists of a summation of 16 points, corresponding, up to symmetries, to the
vertices of a regular icosahedron together with the vertices of a regular dodecahedron (see Figure 4.1)
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𝑦1

𝑦2

𝑦3

Figure 4.1: Graphical representation of decomposition (4.2.5), whose elements correspond,
up to central simmetry, to the vertices of a regular icosahedron (in blue) togheter with the
vertices of a regular dodecahedron (in orange).

4.2.1 Set of coordinates and irreducible representations
To analyze the case of three variables, it can be suitable to use another set of coordinates, carrying out a
change of basis for the space D = C[𝑦1, 𝑦2, 𝑦3]. Indeed, setting

𝑢 =
𝑦1 + i𝑦2

2
, 𝑣 =

𝑦1 − i𝑦2
2

, 𝑧 = 𝑦3, (4.2.6)

and thus considering the space D = C[𝑢,𝑣, 𝑧], we can consider the inverse relations

𝑦1 = 𝑢 + 𝑣, 𝑦2 = −i(𝑢 − 𝑣 ), 𝑦3 = 𝑧.

Furthermore, we can determine the partial derivatives with respect to this new set of coordinates, that is
𝜕

𝜕𝑢
=

𝜕

𝜕𝑦1
− i

𝜕

𝜕𝑦2
,

𝜕

𝜕𝑣
=

𝜕

𝜕𝑦1
+ i

𝜕

𝜕𝑦2
,

𝜕

𝜕𝑧
=

𝜕

𝜕𝑦3
.

Consequently, the Laplace operator can be rewritten as

Δ =
𝜕2

𝜕𝑦 2
1
+ 𝜕2

𝜕𝑦 2
2
+ 𝜕2

𝜕𝑦 2
3
=

𝜕2

𝜕𝑢 𝜕𝑣
+ 𝜕2

𝜕𝑧2 .

We have already recalled that the space of harmonic polynomialsH𝑑
𝑛 of degree 𝑑 is an irreducible

SO𝑛 (C)-module for every 𝑑 ∈ N ([GW98, Theorem 5.2.4]). The Lie algebra of the Lie group SO3(C) is
the space

so3C =
{
𝐴 ∈ Mat3(C)

�� 𝐴 = − 𝐴t
}

and, if we consider the three matrices associated to the morphisms 𝐻 ,𝐸 , 𝐹 : C3 → C3 with respect to the
canonical basis {𝑦1, 𝑦2, 𝑦3}, given by

𝐻 (𝑦1) = 2i𝑦2,

𝐻 (𝑦2) = −2i𝑦1,

𝐻 (𝑦3) = 0,
𝐻 =

©«
0 −2i 0
2i 0 0
0 0 0

ª®¬,
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𝐸 (𝑦1) = 𝑦3,

𝐸 (𝑦2) = i𝑦3,

𝐸 (𝑦3) = −(𝑦1 + i𝑦2),
𝐸 =

©«
0 0 −1
0 0 −i
1 i 0

ª®¬,
𝐹 (𝑦1) = −𝑦3,

𝐹 (𝑦2) = i𝑦3,

𝐹 (𝑦3) = 𝑦1 − i𝑦2,

𝐹 =
©«

0 0 1
0 0 −i
−1 i 0

ª®¬,
then we obtain the equations

[𝐻 ,𝐸 ] = 𝐻𝐸 − 𝐸𝐻 =
©«
0 0 −2
0 0 −2i
0 0 0

ª®¬ − ©«
0 0 0
0 0 0
−2 −2i 0

ª®¬ =
©«
0 0 −2
0 0 −2i
2 2i 0

ª®¬ = 2𝐸,

[𝐻 , 𝐹 ] = 𝐻𝐹 − 𝐹𝐻 =
©«
0 0 −2
0 0 2i
0 0 0

ª®¬ − ©«
0 0 0
0 0 0
−2 2i 0

ª®¬ =
©«
0 0 −2
0 0 2i
2 −2i 0

ª®¬ = −2𝐹 ,

[𝐸, 𝐹 ] = 𝐸𝐹 − 𝐹𝐸 =
©«
1 −i 0
i 1 0
0 0 2

ª®¬ − ©«
1 i 0
−i 1 0
0 0 2

ª®¬ =
©«

0 −2i 0
2i 0 0
0 0 0

ª®¬ = 𝐻 .

Since these conditions correspond exactly to equations (1.1.28), we have, in particular, that so3C � sl2C,
justifying the use of the same notations.

Now, by rewriting the matrices 𝐻 , 𝐸 and 𝐹 with respect to the new basis {𝑢,𝑣, 𝑧}, clearly, we do not
obtain skew-symmetric matrices, but new ones presenting a quite simpler structure. Indeed, we have

𝐻 (𝑢) = 2𝑢,
𝐻 (𝑣 ) = −2𝑣,
𝐻 (𝑧) = 0,

𝐻 =
©«
2 0 0
0 −2 0
0 0 0

ª®¬,
𝐸 (𝑢) = 0,
𝐸 (𝑣 ) = 𝑧,

𝐸 (𝑧) = −2𝑢,
𝐸 =

©«
0 0 −2
0 0 0
0 1 0

ª®¬,
𝐹 (𝑢) = −𝑧,
𝐹 (𝑣 ) = 0,
𝐹 (𝑧) = 2𝑣,

𝐹 =
©«

0 0 0
0 0 2
−1 0 0

ª®¬.
Moreover, it follows by the uniqueness of irreducible representations of sl2C that for every 𝑑 ∈ N the
spaceH𝑑

3 of harmonic polynomials of degree 𝑑 in three variable is canonically isomorphic to the 2𝑑-th
symmetric power of the standard representation C2, that isH𝑑

3 � 𝑆2𝑑C2. We can see it in the following
proposition.

Proposition 4.2.7. For every 𝑑 ∈ N, the set

B𝑑 =
{
ℎ𝑑,𝑘

}
𝑘=−𝑑,...,𝑑
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composed by the harmonic polynomials

ℎ𝑑,𝑘 =

(
2𝑑

𝑘 + 𝑑

)−1

⌊
𝑑−|𝑘 |

2

⌋∑︁
𝑗=0
(−1)

|𝑘 |+𝑘
2 +𝑗𝑢

[
|𝑘 |+𝑘

2 +𝑗
]
𝑣

[
|𝑘 |−𝑘

2 +𝑗
]
𝑧 [𝑑−|𝑘 |−2𝑗 ] , (4.2.8)

for 𝑘 = −𝑑, . . . , 𝑑 , is a basis of the spaceH𝑑
3 , which corresponds in a canonical way, up to scalars, to the

standard basis of 𝑆2𝑑C2, that is the set of monomials {𝑥2𝑑 , 𝑥2𝑑−1𝑦 , . . . , 𝑥𝑦 2𝑑−1, 𝑦 2𝑑 }. In particular, for
every 𝑘 = −𝑑, . . . , 𝑑

𝐻 (ℎ𝑑,𝑘 ) = 2𝑘 · ℎ𝑑,𝑘

and for every 𝑠 ∈ N such that 𝑘 − 𝑑 ≤ 𝑠 ≤ 𝑑 − 𝑘 ,

𝐸 𝑠 (ℎ𝑑,𝑘 ) ∈ 〈ℎ𝑑,𝑘+𝑠 〉, 𝐹 𝑠 (ℎ𝑑,𝑘 ) ∈ 〈ℎ𝑑,𝑘−𝑠 〉.

Proof. We need to prove first that for every 𝑘 ∈ N the polynomial ℎ𝑑,𝑘 is an eigenvector of the linear map
represented by 𝐻 with eigenvalue 2𝑘 . So, we have

𝐻 (ℎ𝑑,𝑘 ) =
(

2𝑑
𝑘 + 𝑑

)−1
𝐻

( ⌊
𝑑−|𝑘 |

2

⌋∑︁
𝑗=0
(−1)

|𝑘 |+𝑘
2 +𝑗𝑢

[
|𝑘 |+𝑘

2 +𝑗
]
𝑣

[
|𝑘 |−𝑘

2 +𝑗
]
𝑧 [𝑑−|𝑘 |−2𝑗 ]

)
and in the case of 𝑘 ≥ 0 we get

𝐻 (ℎ𝑑,𝑘 ) =
(

2𝑑
𝑘 + 𝑑

)−1
𝐻

(b 𝑑−𝑘2 c∑︁
𝑗=0
(−1)𝑘+𝑗𝑢 [𝑘+𝑗 ]𝑣 [𝑗 ]𝑧 [𝑑−𝑘−2𝑗 ]

)

=

(
2𝑛

𝑘 + 𝑑

)−1 b 𝑑−𝑘2 c∑︁
𝑗=0
(−1)𝑘+𝑗

𝐻
(
𝑢𝑘+𝑗 )𝑣 𝑗 𝑧𝑑−𝑘−2𝑗 + 𝑢𝑘+𝑗𝐻

(
𝑣 𝑗

)
𝑧𝑑−𝑘−2𝑗

𝑗 !(𝑘 + 𝑗 )!(𝑑 − 𝑘 − 2𝑗 )!

=

(
2𝑑

𝑘 + 𝑑

)−1 b 𝑑−𝑘2 c∑︁
𝑗=0
(−1)𝑘+𝑗

2(𝑘 + 𝑗 )
(
𝑢𝑘+𝑗𝑣 𝑗 𝑧𝑑−𝑘−2𝑗 ) − 2𝑗

(
𝑢𝑘+𝑗𝑣 𝑗 𝑧𝑑−𝑘−2𝑗 )

𝑗 !(𝑘 + 𝑗 )!(𝑑 − 𝑘 − 2𝑗 )!

= 2𝑘
(

2𝑑
𝑘 + 𝑑

)−1 b 𝑑−𝑘2 c∑︁
𝑗=0
(−1)𝑘+𝑗𝑢 [𝑘+𝑗 ]𝑣 [𝑗 ]𝑧 [𝑑−𝑘−2𝑗 ] = 2𝑘 · ℎ𝑑,𝑘 .

The case of 𝑘 < 0 is obtained in the same way by simply exchanging the roles of 𝑢 and 𝑣 . Now, to get the
statement, since for the space 𝑆2𝑑C2 we have

𝐸
(
𝑥2𝑑 ) = 0, 𝐸

(
𝑥𝑑+𝑘𝑦𝑑−𝑘

)
= (𝑑 − 𝑘 )𝑥𝑑+𝑘+1𝑦𝑑−𝑘−1,

for every 𝑘 = −𝑑, . . . , 𝑑 − 1, and

𝐹
(
𝑦 2𝑑 ) = 0, 𝐹

(
𝑥𝑑+𝑘𝑦𝑑−𝑘

)
= (𝑑 + 𝑘 )𝑥𝑑+𝑘−1𝑦𝑑−𝑘+1,

for every 𝑘 = −𝑑 + 1, . . . , 𝑑 , we only have to prove that

𝐸 (ℎ𝑑,𝑑 ) = 0, 𝐸 (ℎ𝑑,𝑘 ) = (𝑑 − 𝑘 )ℎ𝑑,𝑘+1,

for every 𝑘 = −𝑑, . . . , 𝑑 − 1, and

𝐹 (ℎ𝑑,−𝑑 ) = 0, 𝐹 (ℎ𝑑,𝑘 ) = (𝑑 + 𝑘 )ℎ𝑑,𝑘−1,
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for every 𝑘 = −𝑑 + 1, . . . , 𝑑 . We can write

𝐸 (ℎ𝑑,𝑘 ) =
(

2𝑑
𝑘 + 𝑑

)−1
𝐸

(b 𝑑−𝑘2 c∑︁
𝑗=0
(−1)𝑘+𝑗𝑢 [𝑘+𝑗 ]𝑣 [𝑗 ]𝑧 [𝑑−𝑘−2𝑗 ]

)
and it is quite convenient to analyze separately the different cases in which we have respectively 𝑑 − 𝑘
even or odd, due to the presence of an extra term. Again, we only consider the case of 𝑘 ≥ 0. In the first
case, if we set 𝑑 − 𝑘 = 2𝑡 for some 𝑡 ∈ N, we get

𝐸 (ℎ𝑑,𝑘 ) =
(

2𝑑
2𝑑 − 2𝑡

)−1 𝑡∑︁
𝑗=0
(−1)𝑑−2𝑡+𝑗 𝑢

𝑑−2𝑡+𝑗𝐸
(
𝑣 𝑗

)
𝑧2𝑡−2𝑗 + 𝑢𝑑−2𝑡+𝑗𝑣 𝑗𝐸

(
𝑧2𝑡−2𝑗 )

𝑗 !(𝑑 − 2𝑡 + 𝑗 )!(2𝑡 − 2𝑗 )!

=

(
2𝑑

2𝑑 − 2𝑡

)−1 𝑡∑︁
𝑗=1
(−1)𝑑−2𝑡+𝑗 𝑢𝑑−2𝑡+𝑗𝑣 𝑗−1𝑧2𝑡−2𝑗+1

(𝑑 − 2𝑡 + 𝑗 )!(𝑗 − 1)!(2𝑡 − 2𝑗 )!)

− 2
𝑡−1∑︁
𝑗=0
(−1)𝑑−2𝑡+𝑗 𝑢𝑑−2𝑡+𝑗+1𝑣 𝑗 𝑧2𝑡−2𝑗−1

(𝑑 − 2𝑡 + 𝑗 )!𝑗 !(2𝑡 − 2𝑗 − 1) .

by which, setting in the first summation 𝑗 ′ = 𝑗 − 1, we get

𝐸 (ℎ𝑑,𝑘 ) =
(

2𝑑
2𝑑 − 2𝑡

)−1 𝑡−1∑︁
𝑗 ′=0
(−1)𝑑−2𝑡+1+𝑗 ′ 𝑢𝑑−2𝑡+1+𝑗 ′𝑣 𝑗 ′𝑧2𝑡−2𝑗 ′−1

(𝑑 − 2𝑡 + 1 + 𝑗 ′)!𝑗 ′!(2𝑡 − 2𝑗 ′ − 2)!)

+ 2
𝑡−1∑︁
𝑗=0
(−1)𝑑−2𝑡+1+𝑗 𝑢𝑑−2𝑡+𝑗+1𝑣 𝑗 𝑧2𝑡−2𝑗−1

(𝑑 − 2𝑡 + 𝑗 )!𝑗 !(2𝑡 − 2𝑗 − 1)!

=
(2𝑑 − 2𝑡 )!2𝑡 !
(2𝑛)! (2𝑑 − 2𝑡 + 1)

𝑡−1∑︁
𝑗=0
(−1)𝑑−2𝑡+1+𝑗𝑢 [𝑑−2𝑡+𝑗+1]𝑣 [𝑗 ]𝑧 [2𝑡−2𝑗−1]

= 2𝑡
(2𝑑 − 2𝑡 + 1)!(2𝑡 − 1)!

(2𝑑)!

𝑡−1∑︁
𝑗=0
(−1)𝑑−2𝑡+1+𝑗𝑢 [𝑑−2𝑡+𝑗+1]𝑣 [𝑗 ]𝑧 [2𝑡−2𝑗−1] .

Then we finally obtain, considering 𝑘 = 𝑑 − 2𝑡 ,

𝐸 (ℎ𝑑,𝑘 ) = (𝑑 − 𝑘 )
(

2𝑑
𝑑 + 𝑘 + 1

) b 𝑑−𝑘−1
2 c∑︁

𝑗=0
(−1)𝑑−2𝑡+1+𝑗𝑢 [𝑘+1+𝑗 ]𝑣 [𝑗 ]𝑧 [𝑑−𝑘−1−2𝑗 ]

= (𝑑 − 𝑘 )ℎ𝑑,𝑘+1.

The case of 𝑘 = 𝑑 is trivial, as we have

𝐸
(
𝑢 [𝑑 ]

)
= 𝑢 [𝑑−1]𝐸 (𝑢) = 0.

If we set, instead, 𝑑 − 𝑘 = 2𝑡 + 1 for some 𝑡 ∈ N we get something similar, that is

𝐸 (ℎ𝑑,𝑘 ) =
(

2𝑑
2𝑑 − 2𝑡 − 1

)−1 𝑡∑︁
𝑗=0
(−1)𝑑−2𝑡+𝑗−1𝑢

𝑑−2𝑡+𝑗−1𝐸
(
𝑣 𝑗

)
𝑧2𝑡−2𝑗+1 + 𝑢𝑑−2𝑡+𝑗−1𝑣 𝑗𝐸

(
𝑧2𝑡−2𝑗+1)

𝑗 !(𝑑 − 2𝑡 + 𝑗 − 1)!(2𝑡 − 2𝑗 + 1)!
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=

(
2𝑑

2𝑑 − 2𝑡 − 1

)−1 𝑡∑︁
𝑗=1
(−1)𝑑−2𝑡+𝑗−1 𝑢𝑑−2𝑡+𝑗−1𝑣 𝑗−1𝑧2𝑡−2𝑗+2

(𝑑 − 2𝑡 + 𝑗 − 1)!(𝑗 − 1)!(2𝑡 − 2𝑗 + 1)!

− 2
𝑡−1∑︁
𝑗=0
(−1)𝑑−2𝑡+𝑗−1 𝑢𝑑−2𝑡+𝑗𝑣 𝑗 𝑧2𝑡−2𝑗

(𝑑 − 2𝑡 + 𝑗 − 1)!𝑗 !(2𝑡 − 2𝑗 )! .

Then, setting 𝑗 ′ = 𝑗 − 1 in the first summation, as we have done above for the previous case, we get

𝐸 (ℎ𝑑,𝑘 ) =
(

2𝑑
2𝑑 − 2𝑡 − 1

)−1 𝑡−1∑︁
𝑗 ′=0
(−1)𝑑−2𝑡+𝑗 ′ 𝑢𝑑−2𝑡+𝑗 ′𝑣 𝑗 ′𝑧2𝑡−2𝑗 ′

(𝑑 − 2𝑡 + 𝑗 ′)!𝑗 ′!(2𝑡 − 2𝑗 ′ − 1)!)

+ 2
𝑡−1∑︁
𝑗=0
(−1)𝑑−2𝑡+𝑗 𝑢𝑑−2𝑡+𝑗𝑣 𝑗 𝑧2𝑡−2𝑗

(𝑑 − 2𝑡 + 𝑗 − 1)!𝑗 !(2𝑡 − 2𝑗 )!

=
(2𝑑 − 2𝑡 − 1)!(2𝑡 + 1)!

(2𝑑)! (2𝑑 − 2𝑡 )
𝑡−1∑︁
𝑗=0
(−1)𝑑−2𝑡+𝑗𝑢 [𝑑−2𝑡+𝑗 ]𝑣 [𝑗 ]𝑧 [2𝑡−2𝑗 ]

= (2𝑡 + 1) (2𝑑 − 2𝑡 )!(2𝑡 )!
(2𝑑)!

𝑡−1∑︁
𝑗=0
(−1)𝑑−2𝑡+𝑗𝑢 [𝑑−2𝑡+𝑗 ]𝑣 [𝑗 ]𝑧 [2𝑡−2𝑗 ] .

Finally, setting 𝑘 = 𝑑 − 2𝑡 − 1, we have

𝐸 (ℎ𝑑,𝑘 ) = (𝑑 − 𝑘 )
(

2𝑑
𝑑 + 𝑘 + 1

) b 𝑑−𝑘−1
2 c∑︁

𝑗=0
(−1)𝑘+𝑗+1𝑢 [𝑘+1+𝑗 ]𝑣 [𝑗 ]𝑧 [𝑑−𝑘−2𝑗−1]

= (𝑑 − 𝑘 )ℎ𝑑,𝑘+1.

The statement for the operator 𝐹 is obtained by exchanging the roles of 𝑢 with −𝑣 . �

The spaces generated by the basis of harmonic polynomials defined in formulas (4.2.8), corresponding
to the weights of representations of so3(C), can be visualized in Figure 4.2.

〈1
2
𝑢2

〉
ℎ2,2

〈1
4
𝑢𝑧

〉
ℎ2,1

〈 1
12

(
𝑧2 − 2𝑢𝑣

)〉
ℎ2,0

〈1
4
𝑣𝑧

〉
ℎ2,−1

〈1
2
𝑣2

〉
ℎ2,−2

←→𝐹←→

𝐸

←→𝐹←→

𝐸

←→𝐹←→

𝐸

←→𝐹←→

𝐸

〈1
6
𝑢3

〉
ℎ3,3

〈 1
12

𝑢2𝑧
〉

ℎ3,2

〈 1
30

𝑢
(
𝑧2 − 𝑢𝑣

)
ℎ3,1

〉 〈 1
120

𝑧
(
𝑧2 − 6𝑢𝑣

)〉
ℎ3,0

〈 1
30

𝑣
(
𝑧2 − 𝑢𝑣

)〉
ℎ3,−1

〈 1
12

𝑣2𝑧
〉

ℎ3,−2

〈1
6
𝑣3

〉
ℎ3,−3

←→𝐹←→

𝐸

←→𝐹←→

𝐸

←→𝐹←→

𝐸

←→𝐹←→

𝐸

←→𝐹←→

𝐸

←→𝐹←→

𝐸

...〈 1
𝑑!

𝑢𝑑
〉

ℎ𝑛,𝑛

〈 1
2𝑑 (𝑑 − 1)!𝑢

𝑑−1𝑧
〉

ℎ𝑑,𝑑−1

· · ·
〈 1
2𝑑 (𝑑 − 1)!𝑣

𝑑−1𝑧
〉

ℎ𝑑,−(𝑑−1)

〈 1
𝑑!

𝑣𝑑
〉

ℎ𝑑,−𝑑

.

←→𝐹←→

𝐸

←→𝐹←→

𝐸

←→𝐹←→

𝐸

←→𝐹←→

𝐸

Figure 4.2: Diagram representing the weights of the space of harmonic polynomials defined
by formulas (4.2.8).
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4.2.2 Decompositions and regular polygons
We have already seen that the minimal decomposition of 𝑞2

3 given by formula (3.3.6) is represented by
a configuration of points forming a regular icosahedron in the three-dimensional space. This particular
disposition represents a case that, at least for real points, cannot be repeated among the higher powers of
𝑞𝑛 . Anyway, we can determine some decompositions which seems to introduce a new pattern of points
which suggests a possible repetition of what happens in decomposition (3.3.6) also for the successive
cases. This new way of analyzing the decomposition is based on considering the points, just for usefulness,
with the new set of coordinates given by relations (4.2.6) and with the new basis given by the elements
of the equations (4.2.8). For the next cases, the use of the software system Macaulay2 ([GS]) has been
essential in determining decompositions and their associated ideal of points.

𝑦1

𝑦2

𝑦3

𝑦1

𝑦2

Figure 4.3: Graphical representation of decomposition (4.2.9) in standard coordinates, whose
elements correspond, up to central simmetry, to the vertices of two triangles, respectively in
red and blue, placed at different heights.

We start by considering decomposition (3.3.6), which, as already said above, results to be made, after
a suitable rotation, by points forming two different triangles at different height in the space (see Figure
4.3). Introducing the notation 𝜏𝑗 to denote the 𝑗 -th root of unity equal to

𝜏𝑗 = e
2πi
𝑗 ,

for every 𝑗 ∈ N, we can therefore rewrite decomposition (3.3.6) as

54𝑞2
3 =

∑︁3

𝑗
(3 − 𝜑 )

(
𝜑𝑧 + 𝜏2( 𝑗−1)

6 𝑢 + 𝜏−2( 𝑗−1)
6 𝑣

)4
+

∑︁3

𝑗
𝜑

(
(3 − 𝜑 )𝑧 + 𝜏2𝑗−1

6 𝑢 + 𝜏−(2𝑗−1)
6 𝑣

)4
, (4.2.9)

where

𝜑 =
3 +
√

5
2

.

In particular, the ideal of the points forming such decomposition presents a quite simple set of generators,
made by four polynomials symmetric with respect to the variables 𝑢 and 𝑣 , that is,

I(4.2.9) =

(
ℎ3,0 −

√
5ℎ3,3, ℎ3,1 −

√
5ℎ3,−2,

ℎ3,0 −
√

5ℎ3,−3, ℎ3,−1 −
√

5ℎ3,2

)
, (4.2.10)
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which effectively presents a symmetric structure with respect to the basis of harmonic polynomials we
determine.

If we look now at decomposition (4.2.4), we can observe that the disposition of the points presents
some analogies with the disposition of the points of decomposition (4.2.9). Indeed, we observe that
the point related to decomposition (4.2.4) are disposed over three square placed at different heights,
symmetrically with respect to the central axis 𝑦3. Since one of the squares is placed at height 0, just two
points of it must be considered (see Figure 4.4). The decomposition written in new coordinates takes

𝑦1

𝑦2

𝑦3

𝑦1

𝑦2

Figure 4.4: Graphical representation of decompositions (4.2.4) and (4.2.11) in standard
coordinates, whose elements correspond, up to central simmetry, to the vertices of three
squares, respectively in green, red and blue, placed at different heights, with adjuntive and an
additional point in the axis 𝑦3, in yellow.

again into considerations the roots of unity, which have size 8 and is given by

𝑞3
3 =

14
27

𝑧6 + 7
640

2∑︁
𝑗=1

(
𝜏

2( 𝑗−1)
8 𝑢 + 𝜏−2( 𝑗−1)

8 𝑣
)6 + 1

1280

4∑︁
𝑗=1

(
𝜏

2( 𝑗−1)
8 𝑢 + 𝜏−2( 𝑗−1)

8 𝑣 +
√︂

16
3
𝑧

)6

+ 1
160

4∑︁
𝑗=1

(
𝜏

2𝑗−1
8 𝑢 + 𝜏−(2𝑗−1)

8 𝑣 +
√︂

2
3
𝑧

)6
. (4.2.11)

Again, we observe that ideal associated to such decomposition is structured in a way similar to ideal
(4.2.10). Indeed, it presents generators which are obtained by linear combination of elements posed at
"distance" 4 in the diagram we have seen in Figure 4.2, that is,

I(4.2.11) =

(
ℎ4,4 − ℎ4,−4, ℎ4,2 − ℎ4,−2,

7ℎ4,3 − 3ℎ4,−1, 7ℎ4,−3 − 3ℎ3,1

)
.

This provides a symmetric structure with respect to the variables 𝑢 and 𝑣 , due to symmetric disposition of
the points among the axis 𝑦3.

By Theorem 3.3.12, it follows that decomposition (4.2.11) is minimal. However, we can prove that, in
general, minimal decompositions of 𝑞 𝑠

𝑛 are not unique, not even up to orthogonal tranformations. Indeed,
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𝑦1

𝑦2

𝑦3

𝑦1

𝑦2

Figure 4.5: Graphical representation of decomposition (4.2.12) in standard coordinates, whose
elements correspond, up to central simmetry, to the vertices of two pentagons, respectively in
blue, and red, placed at different heights, with an additional point in the axis 𝑦3, in yellow.

by doing some computations, we can obtain another decomposition of 𝑞3
3 , which is minimal as well, but

which is not in the orbit under the action of O𝑛 (C) of decomposition (4.2.11). Indeed, it is structured as
two set of five points each, forming the vertices of two regular pentagons at different heights, with an
additional point (see Figure 4.5). That is

𝑞3
3 =

35
54

𝑧6 +
(

1
500

𝛽2 + 1
750

) 5∑︁
𝑗=1

(
𝜏

2( 𝑗−1)
10 𝑢 + 𝜏2( 𝑗−1)

10 𝑣 + 𝛼𝑧
)6

+
(

1
500

𝛼2 + 8
500

) 5∑︁
𝑗=1

(
𝜏

2𝑗−1
10 𝑢 + 𝜏−(2𝑗−1)

10 𝑣 + 𝛽𝑧
)6
, (4.2.12)

where 𝛼, 𝛽 ∈ R are constant values satisfying the equations

𝛼𝛽 =
2
3
, 𝛼2 + 𝛽2 =

11
3
,

namely

𝛼 =

√︄
11 ±

√
105

6
, 𝛽 =

11 ∓
√

105
4

√︄
11 ±

√
105

6
.

Again, we get our ideal generated by linear combination of elements having "distance" 5 in diagram of
Figure 4.2, namely

I(4.2.11) =

(
7ℎ4,1 − 8

√
21ℎ4,−4, 2ℎ4,2 −

√
21ℎ4,−3,

7ℎ4,−1 − 8
√

21ℎ4,4, 2ℎ4,−2 −
√

21ℎ4,3

)
.

We have thus proved the following proposition.

Proposition 4.2.13. Minimal decompositions of 𝑞3
3 are not unique, even up to orthogonal transformations.
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Both decompositions (4.2.11) and (4.2.12) are real, but we determine another pattern of non-real
points. This decomposition is quite complicated and to determine it, the use of Macaulay2 (see [GS])
has been essential. Despite this, the result is quite elegant and, again, the disposition of points appears
balanced in the space. Denoting by 𝛼1, 𝛼2 and 𝛼3 the three roots of the polynomial

𝑧3 − 3𝑧2 − 3𝑧 + 2 ∈ C[𝑧],

namely

𝛼1 = 1 + 2
(
3 + i
√

23
2

)− 1
3

+
(
3 + i
√

23
2

) 1
3

,

𝛼2 = 1 −
(
1 − i
√

3
) (3 + i

√
23

2

)− 1
3

− 1 + i
√

3
2

(
3 + i
√

23
2

) 1
3

,

𝛼3 = 1 −
(
1 + i
√

3
) (3 + i

√
23

2

)− 1
3

− 1 − i
√

3
2

(
3 + i
√

23
2

) 1
3

,

we get the relations
𝛼1 + 𝛼2 + 𝛼3 = 3, 𝛼1𝛼2𝛼3 = −2,

by which is possible to determine the decomposition

𝑦1

𝑦2

𝑦3

𝑦1

𝑦2

Figure 4.6: Graphical representation of decompositions (4.2.5) and (4.2.15) in standard
coordinates, whose elements correspond, up to central simmetry, to the vertices of three
pentagons, respectively in blue, green, and red, placed at different heights, with adjuntive and
an additional point in the axis 𝑦3, in yellow.

𝑞3
3 = − 1

20
𝑢6 − 1

20
𝑣6 + 1

6210
(
19𝛼−1

1 − 11𝛼1 + 36
) 3∑︁
𝑗=1

(
𝜏
𝑗−1
3 𝑢 + 𝜏−( 𝑗−1)

3 𝑣 + 𝛼1𝑧
)6

− 1
6210

(
19𝛼−1

2 + 11𝛼2 − 36
) 3∑︁
𝑗=1

(
𝜏
𝑗−1
3 𝑢 + 𝜏−( 𝑗−1)

3 𝑣 + 𝛼2𝑧
)6



90 4. General decompositions

− 1
6210

(
19𝛼−1

3 − 11𝛼3 + 36
) 3∑︁
𝑗=1

(
𝜏
𝑗−1
3 𝑢 + 𝜏−( 𝑗−1)

3 𝑣 + 𝛼3𝑧
)6
. (4.2.14)

The associated ideal is given, instead, by

I(4.2.14) =

(
4ℎ4,0 − 7ℎ4,3, ℎ4,1 − 2ℎ4,−2,

4ℎ4,0 − 7ℎ4,−3, ℎ4,−1 − 2ℎ4,2

)
.

For completeness, we include also a transformation of decomposition (4.2.5), obtained by a rotation
for which we set a point on the axis 𝑦3. We obtain points disposed over three different pentagons placed at
different heights, symmetrically with respect to the central axis (see Figure 4.6). Thus, we can write

𝑞4
3 =

15
28

𝑧8 + 1 + 𝜑−1

3500

5∑︁
𝑗=1

(
𝜏

2( 𝑗−1)
10 𝑢 + 𝜏−2( 𝑗−1)

10 𝑣 + 𝜑𝑧
)8
+ 3

3500

5∑︁
𝑗=1

(
𝜏

2𝑗−1
10 𝑢 + 𝜏−(2𝑗−1)

10 𝑣 + 𝑧
)8

+ 1 + 𝜑
3500

5∑︁
𝑗=1

(
𝜏

2( 𝑗−1)
10 𝑢 + 𝜏−2( 𝑗−1)

10 𝑣 + 𝜑−1𝑧
)8
, (4.2.15)

where

𝜑 =
3 +
√

5
2

, 𝜑−1 =
3 −
√

5
2

with the ideal of points equal to

I(4.2.15) =

(
ℎ5,1 − 3ℎ5,−4 ℎ5,2 − ℎ5,−3, ℎ5,5 − ℎ5,−5,

ℎ5,−1 − 3ℎ5,4, ℎ5,−2 − ℎ5,3

)
.



CHAPTER 5
On the case of three variables

In this chapter we focus on the decompositions of the powers of ternary quadratic forms. Although the
determination of the rank presents some difficulties, we can be more precise in dealing with the border
rank. Indeed, using classical apolarity again and the property of smoothability, we can determine the
border rank for the powers of quadratic forms in three variables, which turns out to be exactly equal to the
rank of the middle catalecticant matrix. In section 5.1 we present the proof of this fact, just determining
for every 𝑠 ∈ N a scheme supported on a point, which is apolar to the form 𝑞 𝑠

3 . The crucial fact is that,
thanks to a classical result by J. Fogarty ([Fog68, Theorem 2.4]), every 0-dimensional subscheme in P2 is
smoothable. Then, we can use Lemma 1.2.29 to get the required result.

In section 5.2, we focus instead on the strict inequality between rank and border rank of the ternary
form 𝑞 𝑠

3 . Indeed, we observe that the property of being first caliber decompositions imposes strong
conditions between points. A specific analysis on this fact allows to prove that, also for complex numbers,

rk𝑞4
3 = 16.

5.1 Border rank of 𝑞 𝑠
3

For every 𝑑 ∈ N, let us consider the basis

B𝑑 = {ℎ𝑑,𝑘 }−𝑑≤𝑘 ≤𝑑 ,

composed by the polynomials we have introduced in Proposition 4.2.7 by formulas (4.2.8). We recall that
these are given, up to scalars, by

ℎ𝑑,𝑘 =

b 𝑑−𝑘2 c∑︁
𝑗=0
(−1) 𝑗𝑢 [𝑘+𝑗 ]𝑧 [𝑑−𝑘−2𝑗 ]𝑣 [𝑗 ] , ℎ𝑑,−𝑘 =

b 𝑑−𝑘2 c∑︁
𝑗=0
(−1) 𝑗𝑢 [𝑘 ]𝑧 [𝑑−𝑘−2𝑗 ]𝑣 [𝑘+𝑗 ] ,

for 𝑘 = 0, . . . , 𝑑 . Our idea is to determine a 0-dimensional scheme which is apolar to 𝑞 𝑠
3 . In this manner,

we will be able to determine, thanks to Lemma 1.2.29, its smoothable rank. Now, we consider the ideal

𝐼𝑑 = (ℎ𝑑,0, . . . , ℎ𝑑,𝑑 )

as the candidate ideal to be apolar to 𝑞 𝑠
3 . In order to see this, we first have to prove that 𝐼𝑑 is saturated. We

start by next lemma, which provides a basic result related to theory of fat points (see e.g. [Gim89] for
further details). Given any ideal 𝐼 , we denote by 𝐼 its saturation.

91
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Lemma 5.1.1. For every 𝑑 ∈ N, the monomial ideal

𝐽𝑑 =
(
𝑢𝑑 , 𝑢𝑑−1𝑧, . . . , 𝑧𝑑

)
⊆ K[𝑢, 𝑧,𝑣 ],

equal to the ideal generated by all the monomials in the variables 𝑢 and 𝑧 of degree 𝑑 , is saturated.

Proof. Given any polynomial 𝑓 ∈ 𝐽𝑑 , we want to prove that 𝑓 ∈ 𝐽𝑑 . Since 𝐽𝑑 is a monomial ideal, every
monomial appearing in 𝑓 must belong to 𝐽𝑑 and hence we can suppose that 𝑓 is a monomial. Now, by
definition of saturated ideal, there must exists a natural value 𝑚 ∈ N such that

𝑣𝑚 𝑓 ∈ 𝐽𝑑 ,

but this means that there is also a natural value 𝑘 ≤ 𝑑 such that

𝑢𝑠−𝑘𝑧𝑘
�� 𝑣𝑚 𝑓 .

Therefore, we have
𝑢𝑠−𝑘𝑧𝑘

�� 𝑓 ,
that is, 𝑓 ∈ 𝐽𝑑 . �

We denote by LT( 𝑓 ) and LT(𝐼 ) respectively the leading term of a polynomial 𝑓 ∈ R𝑑
𝑛 and the leading

ideal of an ideal 𝐼 ⊆ R𝑛 (see [Eis95, Section 15] for explicit definitions). We want to prove that the ideal
𝐽𝑑 defined in Lemma 5.1.1 is actually the leading ideal of 𝐼𝑑 . To get this, it is sufficient to prove that the
set of generators

G𝑠 = {ℎ𝑠 ,0, . . . , ℎ𝑠 ,𝑠 }

forms a Gröbner basis of 𝐼𝑑 . The most classical method to prove this is the Buchberger’s criterion, which
can be found in its standard version [Eis95, Theorem 15.8]. Nevertheless, we consider a particular version
of that, described accurately by W. Decker and F.-O. Schreyer in [DS09, Theorem 2.3.9], which allows us
to simplify considerably the proof.

Theorem 5.1.2 (Buchberger’s criterion). Let 𝑓1, . . . , 𝑓𝑟 ∈ K[𝑥1, . . . , 𝑥𝑛] and let 𝐼 = ( 𝑓1, . . . , 𝑓𝑟 ). For every
𝑗 = 2, . . . , 𝑟 , let 𝑀𝑗 denote the ideal

𝑀𝑗 =
(
LT( 𝑓1), . . . ,LT( 𝑓𝑗−1)

)
:
(
LT( 𝑓𝑗 )

)
.

Then {𝑓1, . . . , 𝑓𝑟 } is a Gröbner basis for 𝐼 if and only if for every 𝑗 = 2, . . . , 𝑟 and each minimal generator
xα of 𝑀𝑗 , the remainder of the division of xα 𝑓𝑗 by 𝑓1, . . . , 𝑓𝑟 is equal to zero.

Then we can use Theorem 5.1.2 to prove that the ideal 𝐽𝑑 of Lemma 5.1.1 is effectively the leading
ideal of 𝐼𝑑 .

Lemma 5.1.3. For every 𝑑 ∈ N, the set

G𝑑 = {ℎ𝑑,0, . . . , ℎ𝑑,𝑑 }

represents a Gröbner basis of the ideal 𝐼𝑑 with respect to the lexicographic monomial order defined by the
relation

𝑧 >lex 𝑢 >lex 𝑣.
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Proof. We start by observing that for every 𝑘 = 0, . . . , 𝑠 , we have(
𝑧𝑑 , . . . , 𝑧𝑑−𝑘+1𝑢𝑘−1) :

(
𝑧𝑑−𝑘𝑢𝑘

)
= (𝑧).

Thus, by Theorem 5.1.2, it is sufficient to prove that the remainder of 𝑧ℎ𝑑,𝑘 divided by ℎ𝑑,0, . . . , ℎ𝑑,𝑑 is
equal to zero for every 𝑘 = 0, . . . , 𝑠 . Now, if 𝑘 = 𝑑 , then we have

𝑧ℎ𝑑,𝑑 = 𝑧𝑢𝑑 = 𝑢ℎ𝑑,𝑑−1

and the property holds. Otherwise, given any 𝑘 ≤ 𝑑 − 1, since

𝑧ℎ𝑑,𝑘 = 𝑧

b 𝑑−𝑘2 c∑︁
𝑗=0
(−1) 𝑗𝑢 [𝑘+𝑗 ]𝑧 [𝑑−𝑘−2𝑗 ]𝑣 [𝑗 ] =

b 𝑑−𝑘2 c∑︁
𝑗=0
(−1) 𝑗 (𝑑 − 𝑘 − 2𝑗 + 1)𝑢 [𝑘+𝑗 ]𝑧 [𝑑−𝑘−2𝑗+1]𝑣 [𝑗 ] ,

we can proceed with the division algorithm, first by considering LT(ℎ𝑑,𝑘−1) = 𝑧 [𝑑−𝑘+1]𝑢 [𝑘−1] . We get
then

𝑧ℎ𝑑,𝑘 =
LT(𝑧ℎ𝑑,𝑘 )
LT(ℎ𝑑,𝑘−1)

ℎ𝑑,𝑘−1 + 𝑟1 =
𝑑 − 𝑘 + 1

𝑘
𝑢ℎ𝑑,𝑘−1 + 𝑟1,

where 𝑟1 corresponds to the first remainder. In particular, we have

𝑟1 = 𝑧ℎ𝑑,𝑘 −
𝑑 − 𝑘 + 1

𝑘
𝑢ℎ𝑑,𝑘−1

=

b 𝑑−𝑘2 c∑︁
𝑗=0
(−1) 𝑗 (𝑑 − 𝑘 − 2𝑗 + 1)𝑢 [𝑘+𝑗 ]𝑧 [𝑑−𝑘−2𝑗+1]𝑣 [𝑗 ]

− 𝑑 − 𝑘 + 1
𝑘

𝑢

b 𝑑−𝑘+12 c∑︁
𝑗=0
(−1) 𝑗𝑢 [𝑘+𝑗−1]𝑧 [𝑑−𝑘−2𝑗+1]𝑣 [𝑗 ] .

Now, looking at the first summation, if 𝑑 − 𝑘 is even, then⌊
𝑑 − 𝑘

2

⌋
=

⌊
𝑑 − 𝑘 + 1

2

⌋
,

while if 𝑑 − 𝑘 is odd, we get ⌊
𝑑 − 𝑘

2

⌋
<

⌊
𝑑 − 𝑘 + 1

2

⌋
.

But the factor 𝑑 − 𝑘 − 2𝑗 + 1 in the summation annihilates for

𝑗 =

⌊
𝑑 − 𝑘 + 1

2

⌋
.

Thus, we can modify the first summation by varying 𝑗 from 1 to⌊
𝑑 − 𝑘 + 1

2

⌋
and hence we can rewrite the equality as

𝑟1 =

b 𝑑−𝑘+12 c∑︁
𝑗=1
(−1) 𝑗

(
(𝑑 − 𝑘 − 2𝑗 + 1) − (𝑑 − 𝑘 + 1) (𝑘 + 𝑗 )

𝑘

)
𝑢 [𝑘+𝑗 ]𝑧 [𝑑−𝑘−2𝑗+1]𝑣 [𝑗 ]
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=

b 𝑑−𝑘+12 c∑︁
𝑗=1
(−1) 𝑗 (𝑑 − 𝑘 − 2𝑗 + 1)𝑘 − (𝑑 − 𝑘 + 1) (𝑘 + 𝑗 )

𝑘
𝑢 [𝑘+𝑗 ]𝑧 [𝑑−𝑘−2𝑗+1]𝑣 [𝑗 ]

=

b 𝑑−𝑘+12 c∑︁
𝑗=1
(−1) 𝑗−1 (𝑑 + 𝑘 + 1) 𝑗

𝑘
𝑢 [𝑘+𝑗 ]𝑧 [𝑑−𝑘−2𝑗+1]𝑣 [𝑗 ]

=
𝑑 + 𝑘 + 1

𝑘
𝑣

b 𝑑−𝑘+12 c∑︁
𝑗=1
(−1) 𝑗−1𝑢 [𝑘+𝑗 ]𝑧 [𝑑−𝑘−2𝑗+1]𝑣 [𝑗−1]

=
𝑑 + 𝑘 + 1

𝑘
𝑣

b 𝑑−𝑘−1
2 c∑︁

𝑗=0
(−1) 𝑗𝑢 [𝑘+𝑗+1]𝑧 [𝑑−𝑘−2𝑗−1]𝑣 [𝑗 ]

=
𝑑 + 𝑘 + 1

𝑘
𝑣ℎ𝑑,𝑘+1,

which guarantees that the last remainder is equal to zero. �

To conclude, we need just another nice property that T. Mańdziuk proves in [Mań22], given in the next
lemma.

Lemma 5.1.4 ([Mań22, Lemma 4.12]). Let 𝐼 be an ideal in R𝑛 and let < be a monomial order. Then

LT<

(
𝐼
)
⊆ LT<(𝐼 ).

In particular, if 𝐼 is a homogeneous ideal and LT<(𝐼 ) is a saturated ideal, then 𝐼 is a saturated ideal.

Thus, by Lemma 5.1.1 and Lemma Lemma 5.1.4 together, we immediately obtain the following
corollary.

Corollary 5.1.5. For every 𝑑 ∈ N the ideal 𝐼𝑑 is saturated.

We are now ready to enunciate and prove the result which provides the border rank of 𝑞 𝑠
3 . An approach

focused on classical apolarity is sufficient to reach the aim.

Theorem 5.1.6. Let 𝑓 ∈ R𝑠
3 be an arbitrary ternary quadratic form. For every 𝑠 ∈ N, if 𝑓 is degenerate,

then
smrk

(
𝑓 𝑠

)
= brk

(
𝑓 𝑠

)
= rk

(
𝑓 𝑠

)
=

(
𝑠 + rk 𝑓 − 1

rk 𝑓 − 1

)
.

Otherwise,

smrk
(
𝑓 𝑠

)
= brk

(
𝑓 𝑠

)
=

(
𝑠 + 2

2

)
=
(𝑠 + 1) (𝑠 + 2)

2
.

Proof. If 𝑓 is a degenerate form such that rk 𝑓 = 1, then the statement is clear. If instead rk 𝑓 = 2, then
the form 𝑓 𝑠 is equivalent, under the action of SL3(C), to the form

𝑞 𝑠
2 =

(
𝑥2

1 + 𝑥
2
2
)𝑠
.

Thus, we conclude by Theorem 3.2.3 that

smrk
(
𝑓 𝑠

)
= rk

(
𝑓 𝑠

)
= 𝑠 + 1.

If instead 𝑓 represents a non-degenerate form, then 𝑓 𝑠 is equivalent, up to linear transformations, to the
form

𝑞 𝑠
3 =

(
𝑥2

1 + 𝑥
2
2 + 𝑥

2
3
)𝑠
.
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Now, Lemma 5.1.1 and Lemma 5.1.4 together guarantee that the ideal

𝐼𝑠+1 = (ℎ𝑠+1,𝑠+1, ℎ𝑠+1,𝑠 , . . . , ℎ𝑠+1,0),

is saturated for every 𝑠 ∈ N. Now let us consider the Hilbert function HF𝐼𝑠+1 of the ideal 𝐼𝑠+1, defined as

HF𝐼𝑠+1 : Z Z

𝑘 dim
(
D𝑘

/
(𝐼𝑠+1)𝑘

)
.

← →

←�→

We observe that for every 𝑘 ≤ 𝑠 , since (𝐼𝑠+1)𝑘 = (0), we have

HF𝐼𝑠+1 (𝑘 ) = dimD𝑘 =

(
𝑘 + 2

2

)
=
(𝑘 + 2) (𝑘 + 1)

2
.

Moreover, since 𝐼𝑠+1 is generated by 𝑠 + 1 elements of degree 𝑠 + 1, we also have

HF𝐼𝑠+1 (𝑠 + 1) = dim
(
D𝑠+1

/
(𝐼𝑠+1)𝑠+1

)
=

(
𝑠 + 3

2

)
− (𝑠 + 1) = (𝑠 + 3) (𝑠 + 2) − 2(𝑠 + 2)

2
,

that is,

HF𝐼𝑠+1 (𝑠 + 1) = 𝑠 2 + 3𝑠 + 2
2

=

(
𝑠 + 2

2

)
= HF𝐼𝑠+1 (𝑠 ).

This means, since 𝐼𝑠+1 is a saturated ideal, that

HF𝐼𝑠+1 (𝑘 ) = HF𝐼𝑠+1 (𝑠 )

for every 𝑘 ≥ 𝑠 . Then, setting

𝑟 =

(
𝑠 + 2

2

)
,

it follows, denoting by 𝑍𝑠 the scheme associated to the ideal 𝐼𝑠 , that

deg𝑍𝑠 =

(
𝑠 + 2

2

)
.

Now, it is well known by a result of J. Fogarty (see [Fog68, Theorem 2.4]) that for every 𝑟 ∈ N, the
Hilbert scheme Hilb𝑟

(
P2) parameterizing 𝑟 points is smooth. Thus, we obtain that every 0-dimensional

subscheme in P2 is smoothable. Therefore, we can use together Corollary 2.2.18, inequality (1.2.28), and
Lemma 1.2.29, to obtain (

𝑠 + 2
2

)
≤ brk

(
𝑞 𝑠

3
)
≤ smrk

(
𝑞 𝑠

3
)
=

(
𝑠 + 2

2

)
,

which proves the statement. �

Example 5.1.7. We can consider the case of exponent 𝑠 = 2, corresponding to the case of the icosahedron
determined by B. Reznick. The ideal 𝐼3 is given by

𝐼3 =

(
𝑢3, 𝑢2𝑧,𝑢

(
𝑧2 − 𝑢𝑣

)
, 𝑧

(
𝑧2 − 6𝑢𝑣

) )
,

which represents a scheme supported on the point (0, 0, 1). Now, observing how this ideal is defined, we
can describe it in the affine plane, setting 𝑣 = 1. We can consider a family of radical ideals {𝐼3(𝑡 )}𝑡 ∈C
depending on 𝑡 , where, for every 𝑡 ∈ C,

𝐼3(𝑡 ) =
(
ℎ3,3(𝑡 ), ℎ3,2(𝑡 ), ℎ3,1(𝑡 ), ℎ3,0(𝑡 )

)
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is generated by the homogeneous polynomials

ℎ3,3(𝑡 ) = (𝑢 − 𝑡𝑣 )
(
𝑢 + 𝑡 2𝑣

) (
5𝑢 −

(
𝑡 2 − 𝑡

)
𝑣
)
,

ℎ3,2(𝑡 ) = 𝑧 (𝑢 − 𝑡𝑣 )
(
5𝑢 −

(
𝑡 2 − 𝑡

)
𝑣
)
,

ℎ3,1(𝑡 ) = (𝑢 − 𝑡𝑣 )
(
𝑧2 − 𝑢𝑣 − 𝑡 2𝑣2) ,

ℎ3,0(𝑡 ) = 𝑧
(
𝑧2 − 6𝑢𝑣 − 𝑡𝑣2) .

The corresponding variety is given by the set of six projective points

𝑉
(
𝐼3(𝑡 )

)
=

{[
−𝑡 2 : 0 : 1

]
,

[
𝑡 2 − 𝑡

5
: ±

√︂
6𝑡 2 − 𝑡

5
: 1

]
, [𝑡 : 0 : 1],

[
𝑡 : ±
√

7𝑡 : 1
]}

.

In particular, as 𝑡 → 0, all of these points tend to the projective point [0 : 0 : 1].

𝑢

𝑧

𝑢

𝑧

𝑢

𝑧

Figure 5.1: Graphical representation of the points associated to the family of radical ideals
{𝐼3 (𝑡 )}𝑡 ∈C, defined in Example 5.1.7, with 𝑡 → 0. The red graphic represents the polynomial
ℎ3,1 (𝑡 ), and the blue one represents the polynomial ℎ3,0 (𝑡 ).

5.2 Equiangular lines and rank lower bounds
The value of the border rank given in Theorem 5.1.6 represents the first general result about Waring
decompositions for every power of ternary quadratic forms. As a noticeable consequence, we can observe
that this is one of those cases in which border rank is strictly lower than Waring rank. We can state this by
analyzing again the ternary forms, but while for the exponent 3 the conclusion was a bit more easier, as
we have seen in Theorem 3.3.12, we cannot say the same for the exponent 4, for which we use another
approach. We will consider, indeed, the point of view of angles between points, which can be uniquely
defined up to sign. Indeed, there are always two supplementary angles between two lines in the space and
the restriction of the first caliber decomposition effectively imposes a strong bound for the disposition of
the points inside the sphere.

Definition 5.2.1. Let a,b ∈ C𝑛 two non-isotropic points. Then the two values

\1 = arccos
(

a · b
|a| |b|

)
, \2 = π − arccos

(
a · b
|a| |b|

)
are called angles between a and b.
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It is quite easy to verify that the angles between two points are uniquely determined by the formula
involving just one of the two angles, defined as the complex value

cos2 \1 =
(a · b)2

|a|2 |b|2
=

1
|a|2 |b|2

( 𝑛∑︁
𝑗=1

𝑎 𝑗𝑏 𝑗

)2
.

Clearly, since the value of cos2 \1 is the same also for multiples of a and b, then it is well defined also for
the projective lines generated by a and b or, equivalently, for the projective points [a], [b] ∈ P𝑛−1.

The Gram matrix of a set of vectors {v1, . . . , v𝑛} in a vector space𝑉 endowed with a bilinear form is
the matrix𝐺 of order 𝑛 defined by the entries

𝐺𝑖 ,𝑗 = v𝑖 · v𝑗

for every 𝑖 , 𝑗 = 1, . . . , 𝑛. The utility of the Gram determinant, in particular, is due to the fact that when
computed on the 𝑛 (𝑛 + 1)/2 scalar products of 𝑛 + 1 unitary vectors a1, . . . , a𝑛+1 ∈ C𝑛 , with respect to
the Euclidean product, it vanishes identically. Fixing 𝑛 = 3 and considering four points a1, a2, a3, a4 ∈ C3,
the Gram determinant is given by the polynomial in six variables equal to

𝑔 (𝑐12, . . . , 𝑐34) = det
©«

1 𝑐12 𝑐13 𝑐14
𝑐12 1 𝑐23 𝑐24
𝑐13 𝑐23 1 𝑐34
𝑐14 𝑐24 𝑐34 1

ª®®®¬, (5.2.2)

where
𝑐 𝑗𝑘 = a𝑗 · a𝑘 ∈ C

for every 𝑗 , 𝑘 = 1, 2, 3, 4 with 𝑗 ≠ 𝑘 .
We can check that there is a subgroup of order 24 of the permutation group S6 that leaves 𝑔 invariant.

This means that permuting the variables the determinant can assume at most 6!/24 = 30 possible distinct
values and one can detect 30 permutations representing each lateral class to evaluate the determinant.
Indeed, the Gram matrix factors in this case as 𝐴t 𝐴, where 𝐴 is the matrix of order 4 having the a1, a2, a3, a4
as columns.

Theorem 5.2.3. Let a1, a2, a3, a4 ∈ C3 be four distinct nonisotropic lines such that the square cosinus
cos2 \ of every angle between any two points a𝑗 , a𝑘 for 𝑗 ≠ 𝑘 assume the same value. Then

cos2 \ ∈
{

1
9
,
1
5
, 1

}
.

Proof. Let 𝑎 ∈ C be the unique complex value assumed by cos2 \ . Then, supposing

|a1 | = |a2 | = |a3 | = |a4 | = 1,

we must have
a𝑖 · a𝑗 = ±𝑎

for every 𝑖 , 𝑗 = 1, . . . , 4 such that 𝑖 ≠ 𝑗 . To get the statement, we simply have to compute the Gram
determinant given by formula (5.2.2) in the case of all the variables equal to ±𝑎 . Now, in case of a𝑖 · a𝑗 = 𝑎

for every 𝑖 < 𝑗 , we have

det
©«
1 𝑎 𝑎 𝑎

𝑎 1 𝑎 𝑎

𝑎 𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ = −(𝑎 − 1)3(3𝑎 + 1).
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By definition of Gram matrix, we simply have to compute matrices in consideration of how many points
have mutual angle 𝑎 or −𝑎 . So, if just two points have mutual angle equal to −𝑎 , we can suppose, without
loss of generality, that

a1 · a2 = −𝑎

and compute the determinant

det
©«

1 −𝑎 𝑎 𝑎

−𝑎 1 𝑎 𝑎

𝑎 𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ =
(
𝑎2 − 1

) (
5𝑎2 − 1

)
.

We can follow the same reasoning for the other cases. In the case of two pairs of points with the opposite
angle, we have to distinguish the case of these pairs involving the same point and the case of disjoint pairs.
That is, we can suppose that

a1 · a2 = a1 · a3 = −𝑎,

getting

det
©«

1 −𝑎 −𝑎 𝑎

−𝑎 1 𝑎 𝑎

−𝑎 𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ =
(
𝑎2 − 1

) (
5𝑎2 − 1

)
,

or, respectively, suppose that
a1 · a2 = a3 · a4 = −𝑎,

obtaining

det
©«

1 −𝑎 𝑎 𝑎

−𝑎 1 𝑎 𝑎

𝑎 𝑎 1 −𝑎
𝑎 𝑎 −𝑎 1

ª®®®¬ = (𝑎 + 1)3(3𝑎 − 1).

Analogously, if we have three pairs of points with mutual angle equal to −𝑎 , we have to analyze which is
the value of the determinant in case that the three pairs involve the same point or not. We have only two
possibilities. Indeed supposing that

a1 · a2 = a1 · a3 = a1 · a4 = −𝑎,

we must also have
a2 · a3 = a2 · a4 = a3 · a4 = 𝑎,

and

det
©«

1 −𝑎 −𝑎 −𝑎
−𝑎 1 𝑎 𝑎

−𝑎 𝑎 1 𝑎

−𝑎 𝑎 𝑎 1

ª®®®¬ = −(𝑎 − 1)3
(
3𝑎 + 1

)
.

If we suppose instead
a1 · a2 = a1 · a3 = a2 · a3 = −𝑎,

we must also have
a1 · a4 = a2 · a4 = a3 · a4 = 𝑎,

which, up to reversing the roles of a1 and a4, is equivalent to the previous case. Thus, it only remains the
case in which we can set

a1 · a2 = a2 · a3 = a3 · a4 = −𝑎,
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obtaining

det
©«

1 −𝑎 𝑎 𝑎

−𝑎 1 −𝑎 𝑎

𝑎 −𝑎 1 −𝑎
𝑎 𝑎 −𝑎 1

ª®®®¬ = −
(
𝑎2 − 1

) (
5𝑎2 − 1

)
.

Thus, we have proved that the Gram determinant can be 0 only if

𝑎2 ∈
{
1,

1
5
,
1
9

}
,

which gives the statement. �

Next lemma concerns the structure of the kernel of the catalecticant matrices of the polynomial

𝑓1 = 𝑞 𝑠
𝑛 − _𝑥2𝑠

1 .

We have already observed that, for every 𝑛 ∈ N, there exists a unique value _𝑛 ∈ C such that

dim
(
Ker

(
Cat𝑠𝑓1

) )
= 1.

In particular, for the cases of 𝑠 = 2, 3, we have stated in proofs of Theorem 3.3.3 and Theorem 3.3.12 that
this value must be the norm assumed by each point of any tight decomposition. We can prove that the
element generating the kernel is given by a product of quadratic forms, whenever 𝑠 is odd, multiplied by
the variable 𝑥1.

Lemma 5.2.4. For every 𝑠 ∈ N,

Ker
(
Cat𝑠𝑓1

)
= 𝑥
b 𝑠+12 c−b 𝑠2c
1

b 𝑠2c∏
𝑗=1

(
𝑥2

1 − 𝑎𝑘
𝑛∑︁
𝑗=2

𝑥2
𝑗

)
for some 𝑎1, . . . , 𝑎b 𝑠2c ∈ C.

Proof. The polynomial 𝑓1 in the kernel of the middle catalecticant must be invariant under the action of
SO𝑛−1(C). We can write the polynomial 𝑓1 as

𝑓1 =

𝑛∑︁
𝑘=0

𝑥𝑘1 𝑔𝑛−𝑘 (𝑥2, . . . , 𝑥𝑛),

where 𝑔𝑛−𝑘 ∈ D𝑛−𝑘
𝑛−1 for every 𝑘 = 0, . . . , 𝑛. By uniqueness of decomposition (2.1.12), since the

polynomials 𝑔1, . . . , 𝑔𝑛 must be invariant, they must be multiples of the powers of 𝑞𝑛−1. �

We can now proceed as in Theorem 5.2.3, to highlight which are the values assumed by the angle
between a set of four points, in the case of two possible complex values.

Theorem 5.2.5. Let a1, a2, a3, a4 ∈ C3 be four distinct nonisotropic lines such that the square cosinus
cos2 \ of every angle between any two points a𝑗 , a𝑘 for 𝑗 ≠ 𝑘 assume at most two values 𝑎2 and 𝑏2. Then,
either 𝑎2 = 1 or 𝑏2 = 1 or the pair (𝑎, 𝑏) ∈ C2 must be a root of at least one of the following polynomials
𝑔1, . . . , 𝑔10 ∈ C[𝑥1, 𝑥2]:

𝑔1 = 4𝑥2
1 ± 𝑥1𝑥2 ± 𝑥1 ± 𝑥2 − 1, 𝑔2 = 4𝑥2

1 + 𝑥
2
2 − 1,

𝑔3 = 𝑥3
1 − 𝑥1 ± 4𝑥2

1𝑥2 ±
(
3𝑥2

1 + 2𝑥2
2 − 1

)
, 𝑔4 = 2𝑥1 ± 𝑥2 ± 1,



100 5. On the case of three variables

𝑔5 = 5𝑥1𝑥
2
2 − 𝑥1 ±

(
2𝑥2

1 + 3𝑥2
2 − 1

)
, 𝑔6 = 2𝑥2

1 + 𝑥
2
2 − 1 ± 2𝑥1𝑥2,

𝑔7 = 3𝑥2
2 − 1 ± 2𝑥1, 𝑔8 = 𝑥2

1 + 𝑥
2
2 − 1 ± 𝑥1𝑥2 ± 𝑥1 ± 𝑥2,

𝑔9 = 𝑥2
1 + 𝑥

2
2 − 1 ± 3𝑥1𝑥2 ± 𝑥1 ± 𝑥2, 𝑔10 = 𝑥4

1 + 3𝑥2
1𝑥

2
2 + 𝑥

4
2 − 3𝑥2

1 − 3𝑥2
2 + 1

±
(
2𝑥3

1𝑥2 − 2𝑥1𝑥
3
2
)
.

Proof. As in the proof of Theorem 5.2.3, we just have to consider the number of possibly mutual angles
between the various points and this allows us to not consider every permutation of the different values in
each matrix. Denoting the two possible values of square cosinus between the various angles as 𝑎2, 𝑏2 ∈ C,
we first consider the case of 𝑏 appearing only one time in the products between the four points, we have
several possibilities. Setting

|a1 | = |a2 | = |a3 | = |a4 | = 1,

we can suppose, without loss of generality, that

a1 · a2 = 𝑏.

The first polynomial, equal to the determinant of the Gram matrix in which all the others product equals 𝑎 ,
is given by

det
©«
1 𝑏 𝑎 𝑎

𝑏 1 𝑎 𝑎

𝑎 𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1) (𝑏 − 1)
(
4𝑎2 − 𝑎𝑏 − 𝑎 − 𝑏 − 1

)
.

If we suppose, instead, that one of the products is equal to −𝑎 , then we have to distinguish the case of this
product involving a1 or a2 from the case of

a3 · a4 = −𝑎.

We get respectively

det
©«

1 𝑏 −𝑎 𝑎

𝑏 1 𝑎 𝑎

−𝑎 𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ =
(
𝑎2 − 1

) (
4𝑎2 + 𝑏2 − 1

)
and

det
©«
1 𝑏 𝑎 𝑎

𝑏 1 𝑎 𝑎

𝑎 𝑎 1 −𝑎
𝑎 𝑎 −𝑎 1

ª®®®¬ = (𝑎 + 1) (𝑏 − 1)
(
4𝑎2 + 𝑎𝑏 + 𝑎 − 𝑏 − 1

)
.

If we have, instead, two of the products equal to −𝑎 , we have other different cases. If both of the products
involve the same point a1 or a2, we can suppose this to be a1 and the polynomial is given by

det
©«

1 𝑏 −𝑎 −𝑎
𝑏 1 𝑎 𝑎

−𝑎 𝑎 1 𝑎

−𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1) (𝑏 + 1)
(
4𝑎2 + 𝑎𝑏 − 𝑎 + 𝑏 − 1

)
.

Otherwise, we could have
a1 · a3 = −𝑎, a2 · a4 = −𝑎,
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that is,

det
©«

1 𝑏 −𝑎 𝑎

𝑏 1 −𝑎 𝑎

−𝑎 −𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 + 1) (𝑏 − 1)
(
4𝑎2 + 𝑎𝑏 + 𝑎 − 𝑏 − 1

)
,

which is the case of the product equal to −𝑎 involving both of the points a1 and a2. Finally, if one of the
two products is

a3 · a4 = −𝑎,

then we get

det
©«

1 𝑏 −𝑎 𝑎

𝑏 1 𝑎 𝑎

−𝑎 𝑎 1 −𝑎
𝑎 𝑎 −𝑎 1

ª®®®¬ =
(
𝑎2 − 1

) (
4𝑎2 + 𝑏2 − 1

)
.

We turn now to analyze the various cases with two values of the square cosinus equal to 𝑏2, both involving
the same point, and four values equal to 𝑎2. Hence we can suppose that

a1 · a2 = a1 · a3.

Starting by the simplest one, concerning two products equal to 𝑏 and four products equal to 𝑎 , we get

det
©«
1 𝑏 𝑏 𝑎

𝑏 1 𝑎 𝑎

𝑏 𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1)
(
𝑎3 − 4𝑎2𝑏 + 3𝑎2 + 2𝑏2 − 𝑎 − 1

)
.

In case of one product equal to −𝑎 , we have to distinguish the case in which

a1 · a4 = −𝑎,

corresponding to the polynomial

det
©«

1 𝑏 𝑏 −𝑎
𝑏 1 𝑎 𝑎

𝑏 𝑎 1 𝑎

−𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1)
(
𝑎3 + 4𝑎2𝑏 + 3𝑎2 + 2𝑏2 − 𝑎 − 1

)
,

and the cases of the product equal to −𝑎 not involving a1. That is, supposing for instance

a2 · a3 = −𝑎,

we have

det
©«
1 𝑏 𝑏 𝑎

𝑏 1 −𝑎 𝑎

𝑏 −𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 + 1)
(
𝑎3 + 4𝑎2𝑏 − 3𝑎2 − 2𝑏2 − 𝑎 + 1

)
.

With the same reasoning, we compute the determinant of the Gram matrix for two products equal to −𝑎 ,
obtaining respectively, if

a1 · a4 = a2 · a3 = −𝑎,
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the polynomial

det
©«

1 𝑏 𝑏 −𝑎
𝑏 1 −𝑎 𝑎

𝑏 −𝑎 1 𝑎

−𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 + 1)
(
𝑎3 + 4𝑎2𝑏 − 3𝑎2 − 2𝑏2 − 𝑎 + 1

)
and, if

a1 · a4 = a2 · a3 = −𝑎,

the polynomial

det
©«
1 𝑏 𝑏 𝑎

𝑏 1 −𝑎 −𝑎
𝑏 −𝑎 1 𝑎

𝑎 −𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1)
(
𝑎3 + 4𝑎2𝑏 + 3𝑎2 + 2𝑏2 − 𝑎 − 1

)
.

Now, supposing instead the two initial products to be opposite, that is

a1 · a2 = −a1 · a3,

we can repeat the same computations of the previous cases just replacing one of the coordinates equal to 𝑏

by −𝑏 in the matrices. So we get, in the case of two products equal to 𝑎 , the polynomial

det
©«

1 𝑏 −𝑏 𝑎

𝑏 1 𝑎 𝑎

−𝑏 𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1)
(
𝑎3 + 4𝑎2𝑏 + 3𝑎2 + 2𝑏2 − 𝑎 − 1

)
,

while in the case of one product equal to −𝑎 , the polynomials

det
©«

1 𝑏 −𝑏 −𝑎
𝑏 1 𝑎 𝑎

−𝑏 𝑎 1 𝑎

−𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1)
(
𝑎3 + 4𝑎2𝑏 + 3𝑎2 + 2𝑏2 − 𝑎 − 1

)
and

det
©«

1 𝑏 −𝑏 𝑎

𝑏 1 −𝑎 𝑎

−𝑏 −𝑎 1 𝑎

𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 + 1)
(
𝑎3 + 4𝑎2𝑏 − 3𝑎2 − 2𝑏2 − 𝑎 + 1

)
.

Finally, in the case of two products equal to −𝑎 , the polynomials

det
©«

1 𝑏 −𝑏 −𝑎
𝑏 1 −𝑎 𝑎

−𝑏 −𝑎 1 𝑎

−𝑎 𝑎 𝑎 1

ª®®®¬ = (𝑎 + 1)
(
𝑎3 + 4𝑎2𝑏 − 3𝑎2 − 2𝑏2 − 𝑎 + 1

)
and

det
©«

1 𝑏 −𝑏 𝑎

𝑏 1 −𝑎 −𝑎
−𝑏 −𝑎 1 𝑎

𝑎 −𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1)
(
𝑎3 + 4𝑎2𝑏 + 3𝑎2 + 2𝑏2 − 𝑎 − 1

)
.
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Again for the cases of two values of the square cosinus equal to 𝑏2, we now analyze the case in which the
corresponding products do not involve the same point. Thus, supposing

a1 · a2 = a3 · a4 = 𝑏

if the other four products are all equal to 𝑎 , we have

det
©«
1 𝑏 𝑎 𝑎

𝑏 1 𝑎 𝑎

𝑎 𝑎 1 𝑏

𝑎 𝑎 𝑏 1

ª®®®¬ = −(𝑏 − 1)2(2𝑎 − 𝑏 − 1) (2𝑎 + 𝑏 + 1),

while if one of them is equal to −𝑎 , which we can suppose to be a1·, a3, we get

det
©«

1 𝑏 −𝑎 𝑎

𝑏 1 𝑎 𝑎

−𝑎 𝑎 1 𝑏

𝑎 𝑎 𝑏 1

ª®®®¬ =
(
2𝑎2 − 2𝑎𝑏 + 𝑏2 − 1

) (
2𝑎2 + 2𝑎𝑏 + 𝑏2 − 1

)
.

For the case of two products equal to −𝑎 , if

a1 · a3 = a1 · a4 = −𝑎

and the two product involve the same point, we have

det
©«

1 𝑏 −𝑎 −𝑎
𝑏 1 𝑎 𝑎

−𝑎 𝑎 1 𝑏

−𝑎 𝑎 𝑏 1

ª®®®¬ = (𝑏 − 1) (𝑏 + 1)
(
4𝑎2 + 𝑏2 − 1

)
.

Otherwise, supposing
a1 · a4 = a2 · a3 = −𝑎,

we obtain

det
©«

1 𝑏 𝑎 −𝑎
𝑏 1 −𝑎 𝑎

𝑎 −𝑎 1 𝑏

−𝑎 𝑎 𝑏 1

ª®®®¬ = −(𝑏 + 1)2(2𝑎 − 𝑏 + 1) (2𝑎 + 𝑏 − 1).

Substituting again an element 𝑏 in the matrices by −𝑏 , we repeat the same calculations, obtaining in the
case of the remaining products equal to 𝑎 , the polynomial

det
©«
1 𝑏 𝑎 𝑎

𝑏 1 𝑎 𝑎

𝑎 𝑎 1 −𝑏
𝑎 𝑎 −𝑏 1

ª®®®¬ = (𝑏 − 1) (𝑏 + 1)
(
4𝑎2 + 𝑏2 − 1

)
and in the case of one product equal to −𝑎 , the polynomial

det
©«

1 𝑏 −𝑎 𝑎

𝑏 1 𝑎 𝑎

−𝑎 𝑎 1 −𝑏
𝑎 𝑎 −𝑏 1

ª®®®¬ =
(
2𝑎2 − 2𝑎𝑏 + 𝑏2 − 1

) (
2𝑎2 + 2𝑎𝑏 + 𝑏2 − 1

)
.
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Finally, in the case of two products equal to −𝑎 , the polynomials

det
©«

1 𝑏 −𝑎 −𝑎
𝑏 1 𝑎 𝑎

−𝑎 𝑎 1 −𝑏
−𝑎 𝑎 −𝑏 1

ª®®®¬ = −(𝑏 + 1)2(2𝑎 − 𝑏 + 1) (2𝑎 + 𝑏 − 1)

and

det
©«

1 𝑏 𝑎 −𝑎
𝑏 1 −𝑎 𝑎

𝑎 −𝑎 1 −𝑏
−𝑎 𝑎 −𝑏 1

ª®®®¬ =
(
𝑏2 − 1

)2 (4𝑎2 + 𝑏2 − 1
)
.

It remains to analyze the cases of three values of the square cosinus equal to 𝑏2. We start by supposing

a1 · a2 = a1 · a3 = a1 · a4 = 𝑏,

that is,

det
©«
1 𝑏 𝑏 𝑏

𝑏 1 𝑎 𝑎

𝑏 𝑎 1 𝑎

𝑏 𝑎 𝑎 1

ª®®®¬ = −(𝑎 − 1)2
(
3𝑏2 − 2𝑎 − 1

)
.

If instead one of these last three products is opposite, that is, for instance,

a1 · a2 = −𝑏,

we get

det
©«

1 −𝑏 𝑏 𝑏

−𝑏 1 𝑎 𝑎

𝑏 𝑎 1 𝑎

𝑏 𝑎 𝑎 1

ª®®®¬ = (𝑎 − 1)
(
5𝑎𝑏2 + 2𝑎2 + 3𝑏2 − 𝑎 − 1

)
.

Proceeding in the same way with
a2 · a3 = −𝑎,

we get

det
©«
1 𝑏 𝑏 𝑏

𝑏 1 −𝑎 𝑎

𝑏 −𝑎 1 𝑎

𝑏 𝑎 𝑎 1

ª®®®¬ = (𝑎 + 1)
(
5𝑎𝑏2 − 2𝑎2 − 3𝑏2 − 𝑎 + 1

)
and, even considering both of these cases together, that is

a1 · a2 = −𝑏, a2 · a3 = −𝑎,

we have

det
©«

1 −𝑏 𝑏 𝑏

−𝑏 1 −𝑎 𝑎

𝑏 −𝑎 1 𝑎

𝑏 𝑎 𝑎 1

ª®®®¬ = (𝑎 + 1)
(
5𝑎𝑏2 − 2𝑎2 − 3𝑏2 − 𝑎 + 1

)
.

Finally, we have the case of three products equal to ±𝑏 but not involving the same point, that is, we can
suppose first

a1 · a2 = a2 · a3 = a3 · a4 = 𝑏,
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obtaining

det
©«
1 𝑏 𝑎 𝑎

𝑏 1 𝑏 𝑎

𝑎 𝑏 1 𝑏

𝑎 𝑎 𝑏 1

ª®®®¬ =
(
𝑎2 − 3𝑎𝑏 + 𝑏2 + 𝑎 + 𝑏 − 1

) (
𝑎2 + 𝑎𝑏 + 𝑏2 − 𝑎 − 𝑏 − 1

)
.

If instead one of the three products is equal to −𝑏 , that is, for instance

a1 · a2 = −𝑏,

we get

det
©«

1 −𝑏 𝑎 𝑎

−𝑏 1 𝑏 𝑎

𝑎 𝑏 1 𝑏

𝑎 𝑎 𝑏 1

ª®®®¬ =
(
𝑎4 − 2𝑎3𝑏 + 3𝑎2𝑏2 + 2𝑎𝑏3 + 𝑏4 − 3𝑎2 − 3𝑏2 + 1

)
.

The last two cases are obtained as previously, setting first

a1 · a3 = −𝑎,

and then
a1 · a2 = −𝑎, a1 · a3 = −𝑎,

getting respectively

det
©«

1 𝑏 −𝑎 𝑎

𝑏 1 𝑏 𝑎

−𝑎 𝑏 1 𝑏

𝑎 𝑎 𝑏 1

ª®®®¬ =
(
𝑎4 + 2𝑎3𝑏 + 3𝑎2𝑏2 − 2𝑎𝑏3 + 𝑏4 − 3𝑎2 − 3𝑏2 + 1

)
and

det
©«

1 −𝑏 −𝑎 𝑎

−𝑏 1 𝑏 𝑎

−𝑎 𝑏 1 𝑏

𝑎 𝑎 𝑏 1

ª®®®¬ =
(
𝑎2 − 𝑎𝑏 + 𝑏2 − 𝑎 + 𝑏 − 1

) (
𝑎2 + 3𝑎𝑏 + 𝑏2 + 𝑎 − 𝑏 − 1

)
.

By reversing 𝑎 and 𝑏 , or substituting 𝑎 by −𝑎 and 𝑏 by −𝑏 , we get the statement. �

By Theorem 3.3.12, we already know that the rank of 𝑞3
3 cannot be equal to its border rank, but,

anyway, this result can be obtained also using Theorem 5.2.5, just by doing some computations.

Corollary 5.2.6. rk
(
𝑞3

3
)
> brk

(
𝑞3

3
)
= 10.

Proof. By Theorem 5.2.5 and Lemma 3.3.11, it is sufficient to substitute the values

𝑥1 = 0, 𝑥2 = ±
√︂

3
7

(5.2.7)

and

𝑥1 = ±
√︂

3
7
, 𝑥2 = 0 (5.2.8)

in polynomials 𝑔1, . . . , 𝑔10 ∈ C[𝑥1, 𝑥2], defined in Theorem 5.2.5. We first substitute values given in
formula (5.2.7), obtaining

𝑔1

(
0,±

√︂
3
7

)
= ±

√︂
3
7
− 1, 𝑔2

(
0,±

√︂
3
7

)
= −4

7
,
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𝑔3

(
0,±

√︂
3
7

)
= −1

7
, 𝑔4

(
0,±

√︂
3
7

)
= ±3

7
± 1,

𝑔5

(
0,±

√︂
3
7

)
= ±2

7
, 𝑔6

(
0,±

√︂
3
7

)
=

4
7
,

𝑔7

(
0,±

√︂
3
7

)
=

2
7
, 𝑔8

(
0,±

√︂
3
7

)
= −4

7
±

√︂
3
7

𝑔9

(
0,±

√︂
3
7

)
= −4

7
±

√︂
3
7
, 𝑔10

(
0,±

√︂
3
7

)
= −131

49
.

Then, we proceed in the same way with values of formula (5.2.8), obtaining

𝑔1

(
±
√︂

3
7
, 0

)
=

5
7
±

√︂
3
7
, 𝑔2

(
±
√︂

3
7
, 0

)
=

5
7
,

𝑔3

(
±
√︂

3
7
, 0

)
= −4

7

√︂
3
7
± 2

7
, 𝑔4

(
±
√︂

3
7
, 0

)
= 2

√︂
3
7
± 1,

𝑔5

(
±
√︂

3
7
, 0

)
= ∓

√︂
3
7
± 2

7
, 𝑔6

(
±
√︂

3
7
, 0

)
=

2
7
,

𝑔7

(
±
√︂

3
7
, 0

)
=

2
7
, 𝑔8

(
±
√︂

3
7
, 0

)
= −4

7
±

√︂
3
7

𝑔9

(
±
√︂

3
7
, 0

)
= −4

7
±

√︂
3
7
, 𝑔10

(
±
√︂

3
7
, 0

)
= −131

49
.

Since all the values are non-zero, it follows that it cannot exists a tight decomposition of 𝑞3
3 . �

In order to proceed in the same way for the form 𝑞4
3 , we need to know which are the possible values

assumed by the angles between points of a possibly tight decomposition. Thus, we have to analyze the
kernel of the catalecticant map of the polynomial

𝑓1 =
1

𝐵𝑛,4
𝑞4
𝑛 − (a · a)8,

where a ∈ C𝑛 is such that a · a = 1, recalling (see formula (3.1.15) that

𝐵𝑛,4 =
8(𝑛 + 4) (𝑛 + 6)
35(𝑛 + 1) (𝑛 + 3) .

Analogously to Lemma 3.3.1 and Lemma 3.3.11, we get the following lemma for the exponent 𝑠 = 4.

Lemma 5.2.9. Let 𝑛 ∈ N and let
𝑓1 =

1
𝐵𝑛,4

𝑞4
𝑛 − (a · x)8,

for some a ∈ C𝑛 such that a · a = 1. Then

Ker
(
Cat4𝑓1

)
=

〈
(𝑛 + 6) (a · y)4 − 6𝑞𝑛 (a · y)2 +

3
𝑛 + 4

𝑞2
𝑛

〉
=

〈(
(𝑛 + 6) (a · y)2 −

(
3 +

√︂
6(𝑛 + 3)
𝑛 + 4

)
𝑞𝑛

) (
(𝑛 + 6) (a · y)2 −

(
3 −

√︂
6(𝑛 + 3)
𝑛 + 4

)
𝑞𝑛

)〉
.
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Proof. By Lemma 3.1.11 it is sufficient to prove that the Ker
(
Cat4𝑓1

)
≠ 0. Therefore, using Lemma 1.2.15,

formula (2.1.7) and the fact that a · a = 1, we simply observe that

𝑔1 ◦ 𝑓1 =

(
(𝑛 + 6) (a · x)4 − 6𝑞𝑛 (a · x)2 +

3
𝑛 + 4

𝑞2
𝑛

)
◦

(
1

𝐵𝑛,4
𝑞4
𝑛 − (a · x)8

)
=
𝑛 + 6
𝐵𝑛,4

(
(a · y)4 ◦ 𝑞4

𝑛

)
− (𝑛 + 6)

(
(a · y)4 ◦ (a · x)8

)
− 6
𝐵𝑛,4

(
𝑞𝑛 (a · y)2 ◦ 𝑞4

𝑛

)
+ 6

(
𝑞𝑛 (a · y)2 ◦ (a · x)8

)
+ 3
𝐵𝑛,4(𝑛 + 4)

(
𝑞2
𝑛 ◦ 𝑞4

𝑛

)
− 3
𝑛 + 4

(
𝑞2
𝑛 ◦ (a · x)8

)
=

48(𝑛 + 6)
𝐵𝑛,4

(
8(a · x)4 + 24𝑞𝑛 (a · x)2 + 3𝑞2

𝑛

)
− 1680(𝑛 + 6) (a · x)4

− 288(𝑛 + 6)
𝐵𝑛,4

(
4𝑞𝑛 (a · x)2 + 𝑞2

𝑛

)
+ 10080(a · x)4 + 144(𝑛 + 6)

𝐵𝑛,4
𝑞2
𝑛 −

5040
𝑛 + 4

(a · x)4

=
384(𝑛 + 6)

𝐵𝑛,4
(a · x)4 − 1680(𝑛 + 6) (a · x)4 + 10080(a · x)4 − 5040

𝑛 + 4
(a · x)4

=
1680(𝑛 + 1) (𝑛 + 3) − 1680𝑛 (𝑛 + 4) − 5040

𝑛 + 4
(a · x)4 = 0,

which proves the statement. �

Thus, now we can prove that the rank of 𝑞4
3 is equal to 16. Potentially, this is a technique that can

be extended even to higher cases. It would be interesting to determine a general rule in relation to the
angles between the various points of the decomposition in all the successive cases. To do this, it would be
necessary to determine a general formula to obtain the values of all of the angles between the points of the
decomposition.

Corollary 5.2.10. rk
(
𝑞4

3
)
= 16.

Proof. As in the proof of the previous corollary, by substituting 𝑛 = 3 in formula obtained in Lemma 5.2.9,
it is sufficient to substitute the values

𝑥1 = ±

√︄√
7 + 2
3
√

7
= ±

√︄
7 + 2
√

7
21

, 𝑥2 = ±

√︄√
7 − 2
3
√

7
= ±

√︄
7 − 2

√
7

21
(5.2.11)

and

𝑥1 = ±

√︄√
7 − 2
3
√

7
= ±

√︄
7 − 2

√
7

21
, 𝑥2 = ±

√︄√
7 + 2
3
√

7
= ±

√︄
7 + 2
√

7
21

(5.2.12)

to polynomial 𝑔1, . . . , 𝑔10 ∈ C[𝑥1, 𝑥2], defined in Theorem 5.2.5. For computations, it can be useful to
observe that, in any case,

𝑥1𝑥2 =
1
√

21
, 𝑥2

1 + 𝑥
2
2 =

2
3
.

Substituting the values (5.2.11), we get

𝑔1

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
=

7 + 8
√

7 ±
√

21 ±
√︁

147 + 42
√

7 ±
√︁

147 − 42
√

7
21

,

𝑔2

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
=

2
3
+ 2
√

7
7

,
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𝑔3

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
=

2
√︁

7 + 2
√

7
(√

147 − 7
√

21 ± 42
)
± 42

(
7 +
√

7
)

441
,

𝑔4

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
= ±2

√︄
7 + 2
√

7
21

±

√︄
7 − 2

√
7

21
± 1,

𝑔5

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
= ±

√︄
7 + 2
√

7
21

(
14 − 10

√
7

21

)
± 14 − 2

√
7

21
,

𝑔6

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
=

2
(√

7 ±
√

21
)

21
,

𝑔7

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
= −2

√
7

7
± 2

√︄
7 + 2
√

7
21

,

𝑔8

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
=
−7 ±

√
21 ±

√︁
147 + 42

√
7 ±

√︁
147 − 42

√
7

21

𝑔9

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
=
−7 ± 3

√
21 ±

√︁
147 + 42

√
7 ±

√︁
147 − 42

√
7

21
,

𝑔10

(
±

√︄
7 + 2
√

7
21

,±

√︄
7 − 2

√
7

21

)
=
−315 + 63

√
21 ± 8

√
147

441
.

For values (5.2.12), we get instead

𝑔1

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
=

7 − 8
√

7 +
√

21 ±
√︁

147 − 42
√

7 ±
√︁

147 + 42
√

7
21

,

𝑔2

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
=

2
3
− 2
√

7
7

,

𝑔3

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
=

2
√︁

7 − 2
√

7
(
−
√

147 − 7
√

21 ± 42
)
± 42

(
7 −
√

7
)

441
,

𝑔4

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
= ±2

√︄
7 − 2

√
7

21
±

√︄
7 + 2
√

7
21

± 1,

𝑔5

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
= ±

√︄
7 − 2

√
7

21

(
14 + 10

√
7

21

)
± 14 + 2

√
7

21
,

𝑔6

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
=

2
(
−
√

7 ±
√

21
)

21
,
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𝑔7

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
=

2
√

7
7
± 2

√︄
7 − 2

√
7

21
,

𝑔8

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
=
−7 ±

√
21 ±

√︁
147 − 42

√
7 ±

√︁
147 + 42

√
7

21

𝑔9

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
=
−7 ±

√
21 ±

√︁
147 − 42

√
7 ±

√︁
147 + 42

√
7

21
,

𝑔10

(
±

√︄
7 − 2

√
7

21
,±

√︄
7 + 2
√

7
21

)
=
−315 + 63

√
21 ± 8

√
147

441
.

Since all the values are non-zero, it follows that it cannot exists a tight decomposition of 𝑞4
3 . �





Glossary of notations

𝐵𝑛,𝑠 Norm of the points of a first caliber decomposition of 𝑞 𝑠
𝑛 raised to 2𝑠 . 7

𝐿ℎ Left multiplication map. 12
𝑆 (𝑉 ) Symmetric algebra of a vector space𝑉 . 23
𝑆𝑑𝑉 𝑑-th symmetric power of a vector space𝑉 . 5
𝑇𝑒𝐺 Tangent space of a Lie group𝐺 at the point 𝑒 . 12
𝑇𝑛,𝑠 Size of the middle catalecticant matrix of 𝑞 𝑠

𝑛 . 6
𝑉 ⊗𝑑 𝑑-th tensor power of a vector space𝑉 . 4
[𝑋 ,𝑌 ] Bracket of the vector fields 𝑋 and 𝑌 . 12
Cat𝑓 Catalecticant map of a polynomial 𝑓 . 25
D𝜙 Differential operator associated to a polynomial 𝜙 . 24
End(𝑉 ) Space of endomorphisms of a vector space𝑉 . 17
GL(𝑉 ) General linear group of a vector space𝑉 . 16
GL𝑛 (K) General linear group of degree 𝑛 over a field K. xii
HF𝐼 Hilbert function of an ideal 𝐼 . 31
=(𝑧) Imaginary part of an element 𝑧 ∈ C. 53
LT(𝐼 ) Leading ideal of an ideal 𝐼 . 92
LT( 𝑓 ) Leading term of a polynomial 𝑓 . 92
Δ Laplace operator. 6
Mat𝑛 (K) Space of the square matrices of order 𝑛 over a field K. xii
O𝑛 (K) Orthogonal group of degree 𝑛 over a field K. xii
SL𝑛 (K) Special linear group of degree 𝑛 over a field K. xii
SO𝑛 (K) Special orthogonal group of degree 𝑛 over a field K. xii
𝐼 Saturation of an ideal 𝐼 . 91
x[δ] Divided power monomial. 26
brk𝑇 Border rank of a tensor𝑇 . 4
brk𝑋 (p) 𝑋 -border rank of a point 𝑝 . 29
brks 𝑆 Symmetric border rank of a symmetric tensor 𝑆 . 5
brk 𝑓 Border rank of a polynomial 𝑓 . 3
D𝑛 Space of polynomials K[𝑦1, . . . , 𝑦𝑛]. 24
H𝑑

𝑛 Space of 𝑑-harmonic polynomials in 𝑛 variables. 34
R𝑛 Space of polynomials K[𝑥1, . . . , 𝑥𝑛]. 24
◦ Apolarity action. 25
crk𝑋 (p) 𝑋 -rank of a point 𝑝 . 30
crk 𝑓 Cactus rank of a polynomial 𝑓 . 4
d𝑓𝑝 Differential of a differentiable map 𝑓 at a point 𝑝 . 12
exp Exponential map. 14
X(𝑀 ) Set of vector fields over a manifold 𝑀 . 12
gl(𝑉 ) Lie algebra of the Lie group GL(𝑉 ). 17

111



112 Glossary of notations

sl2C Lie algebra of the Lie group SL2(C). 19
so3C Lie algebra of the Lie group O3C. 81
a𝑑 𝑑-Veronese embedding. 4
rk𝑇 Rank of a tensor𝑇 . 4
rk𝑋 (p) 𝑋 -rank of a point 𝑝 . 29
rkR 𝑓 Real rank of a polynomial 𝑓 . 8
rks 𝑆 Symmetric rank of a symmetric tensor 𝑆 . 5
rk 𝑓 Waring rank of a polynomial 𝑓 . 1
S𝑛−1 (𝑛 − 1)-dimensional sphere. 46
S𝑛−1
C Complexified (𝑛 − 1)-dimensional sphere. 46

𝜎𝑟 (𝑋 ) 𝑟 -th secant variety of a projective variety 𝑋 . 30
smrk𝑋 (p) 𝑋 -border rank of a point 𝑝 . 31
𝑓 ⊥ Apolar ideal of a polynomial 𝑓 . 25
𝑓∗𝑋 Pushforward of a vector field 𝑋 by a diffeomorphism 𝑓 . 12
𝑙
[𝑑 ]
a 𝑑-th divided power of the linear form associated to a point a. 27
𝑞𝑛 Quadratic form 𝑥2

1 + · · · + 𝑥
2
𝑛 . 5
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