Kronecker decomposition of pencils of quadrics and nonabelian apolarity

CANDIDATO: Vincenzo Galgano RELATORE: Prof. Giorgio Ottaviani CONTRORELATORE: Prof. Marco Franciosi



12 Giugno 2020

### Indice

- Kronecker-Weierstrass form for matrix pencils Strict equivalence and invariants Canonical forms
- 2 Classification of pencils of quadrics in  $\mathbb{P}^m_{\mathbb{C}}$ Pencils of quadrics and Segre symbol Position of projective lines of quadrics Singular parts in base loci
- **3** Tensor rank decomposition GL-equivalence in  $\mathbb{C}^2 \otimes \mathbb{C}^m \otimes \mathbb{C}^n$ Apolarity Theory Nonabelian Apolarity The case of symmetric pencils



### Strict equivalence

Set 
$$\operatorname{GL}_{k_1,\ldots,k_r} = \operatorname{GL}_{k_1}(\mathbb{C}) \times \ldots \times \operatorname{GL}_{k_r}(\mathbb{C}).$$

**Matrix pencil** of size  $m \times n$ :  $\mathcal{P} = \mu A + \lambda B$  where  $A, B \in \mathfrak{M}_{m \times n}(\mathbb{C})$ .

 $\mathfrak{M}_{m \times n}(\mathbb{C}[\mu, \lambda]_1) =$ space of matrix pencils of size  $m \times n$ 

Two matrix pencils  $\mathcal{P}$  and  $\mathcal{P}'$  are **strictly equivalent** if they are in the same orbit with respect to the group action

$$\begin{aligned} \operatorname{GL}_m(\mathbb{C}) \times \operatorname{GL}_n(\mathbb{C}) &\longrightarrow & \operatorname{Aut}\left(\mathfrak{M}_{m \times n}(\mathbb{C}[\mu, \lambda]_1)\right) \\ (P, Q) &\mapsto & \left( \ \mu A + \lambda B \mapsto \mu(P \cdot A \cdot {}^t Q) + \lambda(P \cdot B \cdot {}^t Q) \right) \end{aligned}$$

**Regular pencil:** m = n and  $det(\mu A + \lambda B) \neq 0$ . Singular pencil:  $m \neq n$  or  $det(\mu A + \lambda B) = 0$ .

### **Regular** invariants

Set  $g_k(\mu, \lambda) = \text{gcd}(k \times k \text{ minors of } \mathcal{P})$  and  $r = \max\{k \mid g_k(\mu, \lambda) \neq 0\}$ . Invariant polynomials: for i = 1 : r

$$d_i(\mu,\lambda) := \frac{g_i}{g_{i-1}} = \mu^{u_i} \prod_j e_{ij}(\mu,\lambda)^{w_{ij}} \stackrel{\overline{\mathbb{C}}=\mathbb{C}}{=} \mu^{u_i} \prod_j (a_{ij}\mu + \lambda)^{w_{ij}}$$

where  $e_{ij}(1,\lambda)$  are irreducible. Note that  $d_1|\ldots|d_r$ . **Elementary divisors:** the factors  $\mu^{u_i}$  and  $e_{ij}(\mu,\lambda)^{w_{ij}}$ . They define pencils of size  $u_i$  and  $w_{ij}$  respectively of the form

$$H_{u_i} = \begin{bmatrix} \mu & \lambda & & \\ & \ddots & \ddots & \\ & & \ddots & \lambda \\ & & & & \mu \end{bmatrix} \quad , \quad \mathfrak{J}_{w_{ij},a_{ij}} = \begin{bmatrix} \lambda + a_{ij}\mu & \mu & & \\ & \ddots & \ddots & \\ & & \ddots & \ddots & \\ & & & \ddots & \mu \\ & & & & \lambda + a_{ij}\mu \end{bmatrix}$$

### Singular invariants

Minimal indices for columns: the minima degrees  $0 \le \epsilon_1 \le \ldots \le \epsilon_p$  of the (linearly independent) solutions of the equation  $(\mu A + \lambda B)x(\mu, \lambda) = 0$ .

Minimal indices for rows: the minima degrees  $0 \le \eta_1 \le \ldots \le \eta_q$  of the (linearly independent) solutions of the equation  $(\mu \cdot A + \lambda \cdot B)x(\mu, \lambda) = 0.$ 

Let g and h be such that  $\epsilon_1 = \ldots = \epsilon_g = \eta_1 = \ldots = \eta_h = 0$ . For  $i \ge g$ , each  $\epsilon_i$  defines the pencil of size  $\epsilon_i \times (\epsilon_i + 1)$ 

$$R_{\epsilon_i} = \begin{bmatrix} \lambda & \mu & & \\ & \ddots & \ddots & \\ & & \lambda & \mu \end{bmatrix}$$

For  $j \ge h$ , each  $\eta_j$  defines the pencil  ${}^tR_{\eta_j}$  of size  $(\eta_j + 1) \times \eta_j$ .

### Kronecker-Weierstrass form

#### Theorem (Weierstrass, 1868 - Kronecker, 1890)

Every projective pencil  $\mu A + \lambda B$  is strictly equivalent to a canonical block-direct-sum of the form

$$0_{h\times g}\boxplus \Big( \mathop{\boxplus}\limits_{i=g+1}^{p} R_{\epsilon_{i}} \Big)\boxplus \Big( \mathop{\boxplus}\limits_{j=h+1}^{q} {}^{t}R_{\eta_{j}} \Big)\boxplus \Big( \mathop{\boxplus}\limits_{k=1}^{s} H_{u_{k}} \Big)\boxplus \Big( \mathop{\boxplus}\limits_{l,z} \mathfrak{J}_{w_{lz},a_{lz}} \Big)$$

where  $\epsilon_i$  and  $\eta_j$  are the minimal indices for columns and rows respectively, and  $\mu^{u_s}$  and  $(\lambda + a_{ij}\mu)^{w_{ij}}$  are the elementary divisors.

The Kronecker-Weierstrass form classifies the representatives in

$$\operatorname{GL}_{m}(\mathbb{C}) \xrightarrow{\mathfrak{M}_{m \times n}(\mathbb{C}[\mu, \lambda]_{1})} \operatorname{GL}_{n}(\mathbb{C})$$



### Symmetric pencils

We denote symmetric matrix pencils by  $\operatorname{Sym}^2 \mathbb{C}^m[\mu, \lambda]_1$ . Two symmetric pencils are **congruent** if they are in the same orbit with respect to the group action

$$\begin{aligned} \operatorname{GL}_m(\mathbb{C}) &\longrightarrow & \operatorname{Aut}\left(\operatorname{Sym}^2 \mathbb{C}^m[\mu, \lambda]_1\right) \\ T &\mapsto & \left(\mu A + \lambda B \mapsto \mu({}^tTAT) + \lambda({}^tTBT)\right) \end{aligned}$$

#### Proposition

Two symmetric pencils are strictly equivalent if and only if they are congruent.

#### Corollary

Two pencils of quadratic forms can be carried into one another by a non-singular transformation if and only if the corresponding symmetric pencils have same minimal indices and elementary divisors.

### Segre symbol

The intersection of two quadrics  $\mathcal{A} = {}^{t}XAX$  and  $\mathcal{B} = {}^{t}XBX$  in  $\mathbb{P}^{m}_{\mathbb{C}}$  is described by the symmetric pencil  $\mathcal{P} = \mu A + \lambda B$ . The **roots** of  $\mathcal{P}$  are the roots  $[y_i : -x_i] \in \mathbb{P}^1$  of the elementary divisors  $(x_i\mu + y_i\lambda)^{e_j^i}$ . The **Segre symbol** of  $\mathcal{P}$  is the ordered sequence of its invariants

$$\Sigma(\mathcal{P}) = [(e_1^1, \dots, e_{r_1}^1) \dots (e_1^k, \dots, e_{r_k}^k); \epsilon_{g+1}, \dots, \epsilon_p; g]$$

where k is the number of distinct roots and

$$r_1 \ge \dots \ge r_k \ , \ e_1^i \ge \dots \ge e_{r_i}^i \ , \ \epsilon_{g+1} \le \dots \le \epsilon_p$$
  
Example:  $\Sigma\left( \begin{bmatrix} \lambda & & \\ & \mu & \\ & & 0 \end{bmatrix} \right) = [1\ 1;\ ;1], \text{ while } \Sigma\left( \begin{bmatrix} \mu & \lambda & & \\ \lambda & & & 0 \end{bmatrix} \right) = [2;\ ;1].$ 

The Segre symbol does not uniquely define the pencil even up to  $\operatorname{GL}_{2,m}$ -action (i.e. up to strict equivalence and to  $\operatorname{GL}_2$ -action on  $\mathbb{P}^1$ ).

Up to  $\operatorname{GL}_2 \curvearrowright \mathbb{P}^1$ , we may assume the roots to be  $[1:-\frac{x_i}{y_i}]$ , hence represent them by  $z_i \in \mathbb{C}$  or better by a vector in  $\mathbb{C}^{(k)}/_{\sim}$  where

$$\mathbb{C}^{(k)} = \left\{ z \in \mathbb{C}^k \mid z_i \neq z_j \ \forall i \neq j \right\}$$

$$z \sim w \iff \exists \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2 : \forall i = 1 : k, \ w_i = \frac{az_i + b}{cz_i + d}$$

The quotient  $\mathbb{C}^{(k)}/_{\sim}$  parametrizes all the possible k-tuples of roots (up to  $\operatorname{GL}_2 \curvearrowright \mathbb{P}^1$ ): a class [v] is called a **continuous modulus**.

#### Proposition

A pencil of quadrics  $\mathcal{P}$  is uniquely determined (up to GL-action) by its Segre symbol and a continuous modulus  $[v] \in \mathbb{C}^{(k)}/_{\sim}$ .

#### Theorem

Let  $\mathcal{P}$  and  $\mathcal{Q}$  be two pencils of quadrics in  $\mathbb{P}^m$  with roots  $[\mu_i^{\mathcal{P}} : \lambda_i^{\mathcal{P}}]$ and  $[\mu_i^{\mathcal{Q}} : \lambda_i^{\mathcal{Q}}]$  for i = 1 : k. Then  $\mathcal{P}$  and  $\mathcal{Q}$  are projectively equivalent in  $\mathbb{P}^m$  if and only if they have the same Segre symbols.

### Projective space of quadrics

Set  $W = \{Q : \mathbb{C}^{m+1} \to \mathbb{C} \text{ quadric}\} \supset W_r = \{Q \in W \mid \operatorname{Rk}(Q) = r\}.$ For  $\mathcal{P} = \mu Q_1 + \lambda Q_2$  defined by linearly independent quadrics  $Q_1, Q_2 \in W \setminus \{0\}, \text{ set } L_{\mathcal{P}} \text{ its projective line in } \mathbb{P}W \text{ and } V(\mathcal{P}) \subset \mathbb{P}^m.$ 

#### Claim

The Kronecker class of a pencil of quadrics  $\mathcal{P}$  is uniquely determined by the *position* of the line  $L_{\mathcal{P}}$  with respect to the subvarieties  $\overline{\mathbb{P}W_r}$ and by the *singular part* Sing $(V(\mathcal{P}))$  of the base locus  $V(\mathcal{P})$ .

#### Be careful!

Not only the schematically-singular parts, but also the ones of dimension greater than the expected one: e.g., in  $\mathbb{P}^2$  of  $\operatorname{Sing}(V([2;;1]))$  is not only the double point  $(x^2, y)$  but also the line (x).

### Position of $L_{\mathcal{P}}$

For  $L_{\mathcal{P}} \subset \mathbb{P}W$  projective line of  $\mathcal{P}$ , set  $m_0(L_{\mathcal{P}}) = \min\{r \mid L_{\mathcal{P}} \subset \overline{\mathbb{P}W_r}\}$ . Given  $\{P_1, \ldots, P_{q_L}\} = L_{\mathcal{P}} \cap \overline{\mathbb{P}W_{m_0(L)-1}}$ , set  $\forall i \leq q_L, \forall j \leq k_i(L_{\mathcal{P}})$  $k_i(L_{\mathcal{P}}) = \max\{k \mid P_i \in \overline{\mathbb{P}W_{m_0(L)-k}}\}, m_{ij}(L_{\mathcal{P}}) = \operatorname{mult}_{P_i}(L_{\mathcal{P}} \cap \overline{\mathbb{P}W_{m_0(L_{\mathcal{P}})-j}})$ 

The set of values  $m_0, q_L, k_i, m_{ij}$  determines the **position** of  $L_{\mathcal{P}}$ .

#### Proposition

If 
$$\Sigma(\mathcal{P}) = \left[ (e_1^1, \dots, e_{r_1}^1) \dots (e_1^k, \dots, e_{r_k}^k); \epsilon_{g+1}, \dots, \epsilon_p; g \right]$$
, then  $L_{\mathcal{P}}$  has position:

(i) 
$$m_0(L_{\mathcal{P}}) = m + 1 - p;$$
  
(ii)  $q(L_{\mathcal{P}}) = k;$   
(iii)  $k_i(L_{\mathcal{P}}) = r_i \text{ for all } i = 1 : k;$   
(iv)  $m_{ij}(L_{\mathcal{P}}) = \sum_{l=1}^{r_i - j + 1} e_{r_i - l + 1}^i \text{ for all } i = 1 : k \text{ and } j = 1 : r_i$ 

1.

#### Lemma

Given  $\mathcal{P}, \mathcal{P}'$  two pencil of quadrics, their lines L, L' have similar position if and only if the pencils have Segre symbols with the same multiplicities (i.e. k = k' and  $e_j^i = (e')_j^i$ ) and same number of minimal indices (i.e. same p = p'), other than same continuous moduli.

If  $\mathcal{P}$  is regular, then it is uniquely determined by the position of  $L_{\mathcal{P}}$ . But if the pencil is singular, its position is enough <u>iff</u> m = 2, 3: this comes from combinatorial costraints on the sizes of Kronecker blocks.

| $\Sigma(\mathcal{P})$ | $L_{\mathcal{P}}$                            | $\det(\mathcal{P})$         | $q(L_{\mathcal{P}})$ | $L_{\mathcal{P}} \cap \overline{\mathbb{P}W_2}$ | $L_{\mathcal{P}} \cap \overline{\mathbb{P}W_1}$ |
|-----------------------|----------------------------------------------|-----------------------------|----------------------|-------------------------------------------------|-------------------------------------------------|
| [1 1 1]               | $\lambda x^2 + (\mu - \lambda)y^2 - \mu z^2$ | $\lambda(\lambda + \mu)\mu$ | 3                    | 1 + 1 + 1                                       | Ø                                               |
| $[2 \ 1]$             | $\mu x^2 - \mu z^2 + 2\lambda xy$            | $\lambda^2 \mu$             | 2                    | 2 + 1                                           | Ø                                               |
| $[(1 \ 1) \ 1]$       | $\lambda x^2 - \lambda y^2 + \mu z^2$        | $\lambda^2 \mu$             | 2                    | 2 + 1                                           | 1                                               |
| [3]                   | $\lambda y^2 + 2\lambda xz + 2\mu xy$        | $\lambda^3$                 | 1                    | 3                                               | Ø                                               |
| $[(2\ 1)]$            | $\mu x^2 + 2\lambda xy + \lambda z^2$        | $\lambda^3$                 | 1                    | 3                                               | 1                                               |
| [; 1; ]               | $\mu xz + \lambda xy$                        | 0                           | 0                    | $L_{\mathcal{P}}$                               | Ø                                               |
| $[1\ 1;;1]$           | $\mu y^2 + \lambda x^2$                      | 0                           | 2                    | $L_{\mathcal{P}}$                               | 1 + 1                                           |
| [2;;1]                | $\mu x^2 + \lambda x y$                      | 0                           | 1                    | $L_{\mathcal{P}}$                               | 2                                               |

### Singular components in $V(\mathcal{P})$

#### Lemma

Set  $\overline{k} = k - \#\{i \mid r_i = e_{r_i}^i = 1\}$ . Then  $\operatorname{Sing}(V(\mathcal{P}))$  has at least t components  $\mathcal{S}_1, \ldots, \mathcal{S}_t$  (with reduced structure) where

 $t = \begin{cases} \overline{k} & \text{if } p = g = 0 \text{ (no minimal indices)} \\ \max\{\overline{k}, 1\} & \text{if } p = g > 0 \text{ (only zero minimal indices)} \\ \overline{k} + 1 & \text{if } p > g \text{ (there are non-zero minimal indices)} \end{cases}$ 

Moreover, up to permutation of the  $S_i$ 's, it holds:

(i) each  $S_i$  is either a linear subspace of dimension  $d_i = r_i + p - 1$ (for  $e_{r_i}^i > 1$ ) or a quadrics of dimension  $d_i - 1$  and corank  $d_i + 1 - \#\{j \mid e_j^i = 1\}$  (for  $e_{r_i}^i = 1$ ).

(ii) If p > g (i.e. there are non-zero minimal indices), then in addition  $S_t = S_{\overline{k}+1}$  is either a projective bundle of type  $P(\epsilon_{g+1} \dots \epsilon_p)$  (for g = 0) or a join variety of type  $J(\epsilon_{g+1} \dots \epsilon_p; g - 1)$  (for g > 0).

#### Theorem (Dimca, 1983)

Two pencils of quadrics  $\mathcal P$  and  $\mathcal P'$  are equivalent if and only if

- (i) the lines  $L_{\mathcal{P}}, L_{\mathcal{P}'} \subset \mathbb{P}W$  have similar positions;
- (ii)~ the irreducible components of  $\mathrm{Sing}(V(\mathcal{P}))$  and  $\mathrm{Sing}(V(\mathcal{P}'))$  are isomorphic.

| $\Sigma(\mathcal{P})$ | $\overline{k}$ | t             | $d_i$ | $\operatorname{Sing}(V(\mathcal{P}))$ |
|-----------------------|----------------|---------------|-------|---------------------------------------|
| [1 1 1]               | 0              | 0             |       | Ø                                     |
| $[2 \ 1]$             | 1              | 1 (irred.)    | 0     | one double point                      |
| $[(1\ 1)\ 1]$         | 1              | 1 (reducible) | 0     | two double points                     |
| [3]                   | 1              | 1 (irred.)    | 0     | one triple point                      |
| $[(2\ 1)]$            | 1              | 1 (irred.)    | 0     | one (curv.) quadruple point           |
| [; 1; ]               | 0              | 1 (reducible) | 1     | a line and a disjoint point           |
| $[1\ 1;;1]$           | 0              | 1 (irred.)    | 0     | one (non-curv.) quadruple point       |
| [2;;1]                | 1              | 1 (reducible) | 1     | a line with embedded double point     |
| (y, x+2)<br>•         | • (9           | 1, x-2)       | ( 22  | (y,2)<br>.(y,2)                       |
| (x,                   | 22)            | 3=0           | (22,  | $(y^2+2x+xy,x^2)$                     |
| (a)                   | ) [2           | 1]            | (b)   | ) [(1 1) 1] (c) [3]                   |



### 2-slice tensors and $GL_{2,m,n}$ -action

2-slice tensor (of size  $m \times n$ ):  $T \in \mathbb{C}^2 \otimes \mathbb{C}^m \otimes \mathbb{C}^n$ . Decomposable ones:

 $\operatorname{Seg}(\mathbb{P}^1\times\mathbb{P}^{m-1}\times\mathbb{P}^{n-1})=\{[u\otimes v\otimes w]\mid u,v,w\}\subset\mathbb{P}(\mathbb{C}^2\otimes\mathbb{C}^m\otimes\mathbb{C}^n)$ 

where A and B are such that  ${}^tv\cdot A\cdot w=a$  ,  ${}^tv\cdot B\cdot w=b.$ 

$$\mathbb{C}^2 \otimes \mathbb{C}^m \otimes \mathbb{C}^n \longleftrightarrow \mathfrak{M}_{m \times n}(\mathbb{C}[\mu, \lambda]_1)$$

Two 2-slice tensors are  $\operatorname{GL}_{2,m,n}$ -equivalent if they are in the same orbit with respect to the group action

$$\begin{aligned} \operatorname{GL}_2(\mathbb{C}) \times \operatorname{GL}_m(\mathbb{C}) \times \operatorname{GL}_n(\mathbb{C}) &\longrightarrow & \operatorname{Aut}\left(\mathbb{C}^2 \otimes \mathbb{C}^m \otimes \mathbb{C}^n\right) \\ (M, P, Q) &\mapsto & \left( \begin{array}{cc} u \otimes v \otimes w \mapsto Mu \otimes Pv \otimes Qw \end{array} \right) \end{aligned}$$

### $GL_{2,m,n}$ -orbits

In general, there are infinitely many GL-orbits in  $\mathbb{C}^2\otimes\mathbb{C}^m\otimes\mathbb{C}^n$ 

#### Proposition

The tensor space  $\mathbb{C}^2 \otimes \mathbb{C}^m \otimes \mathbb{C}^n$  has finitely many GL-orbits if and only if  $m \leq 3$  or  $n \leq 3$ .

We get:

$$\operatorname{Im}(\gamma_T) = \operatorname{orb}_{\operatorname{GL}}(T)$$
,  $\operatorname{ker}(d(\gamma_T)_I) = \mathfrak{Lie}_I(\operatorname{stab}_{\operatorname{GL}}(T))$ 

 $\dim(\operatorname{orb}_{\operatorname{GL}}(T)) = \operatorname{Rk}(d(\gamma_T)_I) = 4 + m^2 + n^2 - \dim\left(\ker\left(d(\gamma_T)_I\right)\right)$ 

# $\operatorname{sym}\operatorname{Rk}_p$ in $\mathbb{C}^2\otimes\operatorname{Sym}^2(\mathbb{C}^{m+1})$

Symmetric 2-slice tensors: tensors in  $\mathbb{C}^2 \otimes \text{Sym}^2(\mathbb{C}^{m+1})$ . Decomposable ones:

 $\operatorname{Seg}(\mathbb{P}^1 \times \nu_2(\mathbb{P}^m)) = \left\{ [u \otimes l^2] \mid u \in \mathbb{C}^2, \ l \in \mathbb{C}^{m+1} \right\} \subset \mathbb{P}\left(\mathbb{C}^2 \otimes \operatorname{Sym}^2(\mathbb{C}^{m+1})\right)$ 

 $\mathbb{C}^2 \otimes \operatorname{Sym}^2(\mathbb{C}^{m+1}) \longleftrightarrow$  pencils of quadrics in  $\mathbb{P}^m_{\mathbb{C}}$ 

$$\begin{aligned} \operatorname{GL}_2(\mathbb{C}) \times \operatorname{GL}_{m+1}(\mathbb{C}) &\longrightarrow & \operatorname{Aut}\left(\mathbb{C}^2 \otimes \operatorname{Sym}^2(\mathbb{C}^{m+1})\right) \\ (M, P) &\mapsto & \left(u \otimes l^2 \mapsto Mu \otimes P \cdot l^2 \cdot {}^t P\right) \end{aligned}$$

The  $GL_{2,m+1}$ -orbits are finitely many if and only if  $m+1 \leq 3$ .

### Applarity Theory

#### Waring decomposition problem

Express  $f \in \operatorname{Sym}^d V$  as sum of powers of linear form  $\sum_{i=0}^r l_i^d$ .

**Apolar ideal**: 
$$f^{\perp} = \{g \in \operatorname{Sym}^{\bullet} V^{\vee} \mid g \cdot f = 0\} \subset \mathbb{C}[\partial_0, \dots, \partial_m].$$

#### Lemma (Apolarity)

 $\mathcal{Z}$  finite set of linear forms,  $\mathcal{I}_{\mathcal{Z}} = \{g \in \operatorname{Sym}^{\bullet} V^{\vee} \mid g(l) = 0 \ \forall l \in \mathcal{Z}\}.$ Then

$$f = \sum_{l \in \mathcal{Z}} l^d \iff \mathcal{I}_{\mathcal{Z}} \subseteq f^{\perp}$$

**Moral:** We look for a decomposition of f in the base locus of 0-dimensional ideals in  $f^{\perp}$ .

$$f^{\perp} = \{g \in \operatorname{Sym}^{\bullet} V^{\vee} \mid g \cdot f = 0\} = \sum_{k} \left\{ \ker(\widetilde{C_{k,f} : \operatorname{Sym}^{k} V^{\vee} \to \operatorname{Sym}^{d-k} V}) \right\}$$

#### Catalecticant algorithm

- (1) Construct  $C_{\lceil \frac{d}{2} \rceil, f} : \operatorname{Sym}^{\lceil \frac{d}{2} \rceil} V^{\vee} \to \operatorname{Sym}^{d \lceil \frac{d}{2} \rceil} V;$
- (2) Compute ker  $C_{\lceil \frac{d}{2} \rceil, f}$ ;
- (3) Compute the Krull dimension  $\dim_{\mathrm{Krull}}(\ker C_{\lceil \frac{d}{2} \rceil, f})$ :
  - (a) if it is  $\geq 1$ , the method fails!
  - (b) else compute  $\mathcal{Z} = \mathcal{Z}(\ker C_{\lceil \frac{d}{2} \rceil, f}) = \{[l_1], \dots, [l_r]\};$

# (4) Solve the linear system $f = \sum_{i=1}^{r} c_i l_i^d$ where $c_i$ are the indeterminates.

Since 
$$\operatorname{Sym}^{d}(\mathbb{C}^{m+1})^{\vee} \simeq H^{0}(\mathbb{P}^{m}, \mathcal{O}_{\mathbb{P}^{m}}(d)),$$

 $C_{k,f}: H^0(\mathbb{P}^m, \mathcal{O}(k)) \to H^0(\mathbb{P}^m, \mathcal{O}(d-k)))^{\vee}$ 

### Nonabelian Apolarity

For  $\mathcal{E}$  vector bundle over a variety X and  $\mathcal{L} \in \operatorname{Pic}(X)$  such that  $X \hookrightarrow \mathbb{P}(H^0(X, \mathcal{L})^{\vee})$ , the natural map

$$H^0(X,\mathcal{E})\otimes H^0(X,\mathcal{E}^{\vee}\otimes\mathcal{L})\to H^0(X,\mathcal{L})$$

leads to the linear map

$$H^0(X,\mathcal{E})\otimes H^0(X,\mathcal{L})^{\vee}\to H^0(X,\mathcal{E}^{\vee}\otimes\mathcal{L})^{\vee}$$

by fixing  $f \in H^0(X, \mathcal{L})^{\vee}$  we have

$$C_{\mathcal{E},f}: H^0(X,\mathcal{E}) \to H^0(X,\mathcal{E}^{\vee}\otimes \mathcal{L})^{\vee}$$

Let  $f = \sum_{i=1}^{r} z_i$  minimal and  $\mathcal{Z} = \{[z_1], \dots, [z_r]\} \subseteq \mathbb{P}(H^0(X, \mathcal{L})^{\vee}).$ 

#### Lemma (Oeding-Ottaviani, 2013)

If  $\operatorname{Rk}(C_{\mathcal{E},f}) = r \cdot \operatorname{Rk}(\mathcal{E})$ , then  $H^0(X, \mathcal{I}_{\mathcal{Z}} \otimes \mathcal{E}) = \ker(C_{\mathcal{E},f})$ .

### Eigenvectors of tensors

We can look for a decomposition of f in the base locus of ker $(C_{\mathcal{E},f})$ . But these are global sections. Anything better?

**Eigenvector** of  $M \in \text{Hom}(\text{Sym}^e V, \bigwedge^a V)$ :  $v \in V$  s.t.  $M(v^e) \land v = 0$ .

 $\ker(C_{\mathcal{E},f})$  and  $\ker(P_{\mathcal{E},f})$  have same common base locus, which corresponds to common eigenvectors for  $\ker(P_{\mathcal{E},f})$ .

### Nonabelian Applarity for pencils

**Goal:** Decompose a given  $(B_1, B_2) \in \mathbb{C}^2 \otimes \text{Sym}^2(\mathbb{C}^{m+1})$ .

 $\operatorname{Set}$ 

$$\mathcal{E} = \bigwedge^{a} Q(e) = Q(1) \simeq T\mathbb{P}^{m} , \ \mathcal{L} = \mathcal{O}(2) , \ \mathcal{E}^{\vee} \otimes \mathcal{L} = \Omega^{1}(2)$$
  
Then  $(B_{1}, B_{2}) \in H^{0}(\mathbb{P}^{m}, \mathcal{O}(2))^{\vee} \oplus H^{0}(\mathbb{P}^{m}, \mathcal{O}(2))^{\vee} \text{ and } C_{\mathcal{E},f} \text{ is}$   
 $C_{(B_{1}, B_{2})} : H^{0}(\mathbb{P}^{m}, T\mathbb{P}^{m}) \to H^{0}(\mathbb{P}^{m}, \Omega^{1}(2))^{\vee} \oplus H^{0}(\mathbb{P}^{m}, \Omega^{1}(2))^{\vee}$ 

• Up to isomorphism and up to scalars,  $C_{(B_1,B_2)}$  is exactly

$$C_{(B_1,B_2)}: \mathfrak{sl}_{m+1}(\mathbb{C}) \longrightarrow \bigwedge^2 V \oplus \bigwedge^2 V$$
$$A \mapsto \left(AB_1 - B_1({}^tA) , AB_2 - B_2({}^tA)\right)$$

- (B<sub>1</sub>, B<sub>2</sub>) is general, i.e. has Kronecker form of type diag(λ + a<sub>i</sub>μ)<sub>i</sub> with a<sub>i</sub> ≠ a<sub>j</sub> ≠ 0;
- $\ker(C_{(B_1,B_2)})$  is invariant for GL<sub>2</sub>-action.

#### Theorem

Let  $(B_1, B_2) \in \mathbb{C}^2 \otimes \operatorname{Sym}^2 \mathbb{C}^{m+1}$  be a general symmetric pencil. Then:

(i) all matrices in ker $(C_{(B_1,B_2)})$  have the same common eigenvectors  $v_1, \ldots, v_{m+1}$  which are induced by the vectors  $\tilde{v}_1, \ldots, \tilde{v}_{m+1}$  defining the Kronecker form

$$T_{(B_1,B_2)} \stackrel{\mathrm{GL}}{\sim} \sum_{i=1}^{m+1} \alpha_i \otimes \tilde{v}_i \otimes \tilde{v}_i$$

- $(ii) \ \ker(C_{(B_1,B_2)})$  has dimension m+1 in  $\mathfrak{gl}_{m+1}(\mathbb{C})$  and m in  $\mathfrak{sl}_{m+1}(\mathbb{C});$
- (*iii*) for  $C \in \ker(C_{(B_1,B_2)})$  general, in  $\mathfrak{gl}_{m+1}(\mathbb{C})$  it holds  $\ker(C_{(B_1,B_2)}) = \langle I, C, \dots, C^m \rangle_{\mathbb{C}}$ . In particular, in  $\mathfrak{sl}_{m+1}(\mathbb{C})$  it holds  $\ker(C_{(B_1,B_2)}) = \langle I, C, \dots, C^m \rangle_{\mathbb{C}} \cap \mathfrak{sl}_{m+1}(\mathbb{C})$ .

**Key:** The  $\operatorname{GL}_{m+1}$ -action conjugates the kernels, that is  $\forall P \in \operatorname{GL}_{m+1}(\mathbb{C}), \ \ker(C_{(PB_1({}^tP),PB_2({}^tP))}) = P^{-1} \cdot \ker(C_{(B_1,B_2)}) \cdot P.$ 

### Thanks for your attention!



è

For  $\epsilon_1 = 0, \epsilon_2 = 1, \epsilon_3 = 2, \eta_1 = 0, \eta_2 = 0, \eta_3 = 2, \mu^3, (\lambda + \mu)^2$ :

$$\begin{bmatrix} 0 & & & & & & \\ & \lambda & \mu & 0 & & & & \\ & & 0 & \lambda & \mu & 0 & & & \\ & & & 0 & \lambda & 0 & & & \\ & & & & \mu & \lambda & 0 & & \\ & & & & & 0 & \mu & & \\ & & & & & 0 & \mu & \lambda & \\ & & & & & 0 & 0 & \mu & \\ & & & & & & \lambda + \mu & \mu \\ & & & & & & \lambda + \mu & \mu \\ & & & & & & 0 & \lambda + \mu \end{bmatrix}$$

For 
$$\epsilon_1 = 0, \epsilon_2 = 0, \epsilon_3 = 2, \eta_1 = 0, \eta_2 = 1, \eta_3 = 2, \mu^2, (\lambda + \mu)^2, \lambda + \mu_3$$

$$\begin{bmatrix} 0 & 0 & & & & \\ & \lambda & \mu & 0 & & & \\ & 0 & \lambda & \mu & & & \\ & & & \lambda & 0 & & \\ & & & \mu & \lambda & & \\ & & & & \mu & \lambda & & \\ & & & & & 0 & \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & & & & \lambda + \mu & \\ & \lambda + \mu & \\ & \lambda + \mu & \\$$

24 of 24

### Rank in $\mathbb{C}^2 \otimes \mathbb{C}^m \otimes \mathbb{C}^n$

$$\operatorname{Rk}(\mathfrak{J}_{w,a}) = w + (1 - \delta_{w1})$$
,  $\operatorname{Rk}(R_{\epsilon}) = \epsilon + 1$ 

#### Theorem (Grigoriev-JàJà, 1979)

Let  $T \in \mathbb{C}^2 \otimes \mathbb{C}^m \otimes \mathbb{C}^n$  with minimal indices  $\epsilon_1, \ldots, \epsilon_p, \eta_1, \ldots, \eta_q$  and regular part  $\mathcal{K}$  of size N. Let  $\delta(\mathcal{K})$  be the number of its non-squarefree invariant polynomials. Then

$$Rk(T) = \sum_{i=1}^{p} (\epsilon_i + 1) + \sum_{j=1}^{q} (\eta_j + 1) + N + \delta(\mathcal{K})$$

The weight  $\delta(\mathcal{P}_T)$  depends on the number of non-squarefree invariant polynomials and not on the number of non-squarefree elementary divisors.

### Some regular base loci in $\mathbb{P}^3_{\mathbb{C}}$



Figura: Some base loci of pencils of quadrics in  $\mathbb{P}^3$ 

## Pencils of quadrics in $\mathbb{P}^2_{\mathbb{C}}$

| Pencil                                                                      | Segre sym.      | $\mathcal{A}$ | $\mathcal{B}$ | $V(\mathcal{P})$                                |
|-----------------------------------------------------------------------------|-----------------|---------------|---------------|-------------------------------------------------|
| $\begin{bmatrix} \lambda & & \\ & \lambda + \mu & \\ & \mu \end{bmatrix}$   | $[1 \ 1 \ 1]$   | $y^2 - z^2$   | $x^2 - y^2$   | four distinct points                            |
| $\begin{bmatrix} \mu & \lambda \\ \lambda & \\ & \mu \end{bmatrix}$         | [2 1]           | $x^2 - z^2$   | 2xy           | a double point and<br>two other points          |
| $\begin{vmatrix} \lambda \\ \lambda \\ \mu \end{vmatrix}$                   | $[(1 \ 1) \ 1]$ | $z^2$         | $x^2 - y^2$   | two double points                               |
| $\begin{bmatrix} \mu & \lambda \\ \mu & \lambda \\ \lambda & \end{bmatrix}$ | [3]             | 2xy           | $y^2 + 2xz$   | a curvilinear triple point<br>and another point |
| $\begin{bmatrix} \mu & \lambda \\ \lambda & & \\ & & \lambda \end{bmatrix}$ | $[(2 \ 1)]$     | $x^2$         | $2xy + z^2$   | a curvilinear<br>quadruple point                |
| $\begin{bmatrix} \lambda & \mu \\ \lambda & \mu \\ \mu & \mu \end{bmatrix}$ | [; 1; ]         | 2xz           | 2xy           | a line and<br>a disjoint point                  |
| $\begin{bmatrix} \lambda & & \\ & \mu & \\ & & 0 \end{bmatrix}$             | $[1 \ 1;;1]$    | $y^2$         | $x^2$         | a non-curvilinear<br>quadruple point            |
| $\begin{bmatrix} \mu & \lambda \\ \lambda & & \\ & & 0 \end{bmatrix}$       | [2;;1]          | $x^2$         | 2xy           | a line and an<br>embedded double point          |

24 of 24

# $\operatorname{GL}_{2,3,3}(\mathbb{C})\text{-orbits}$

| ${\cal P}_T$                                                                    | $\dim(\operatorname{orb}_{\operatorname{GL}}(T))$ | $\mathbf{R}\mathbf{k}$ | Rk | T                                                                                                                                                                                       |
|---------------------------------------------------------------------------------|---------------------------------------------------|------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} \lambda & & \\ & \mu & \\ & & \lambda + \mu \end{bmatrix}$     | 18                                                | 3                      | 3  | $a_2 \otimes b_1 \otimes c_1 + a_1 \otimes b_2 \otimes c_2 + + (a_2 + a_1) \otimes b_3 \otimes c_3$                                                                                     |
| $\begin{bmatrix} \lambda & & \\ & \lambda & \\ & & \mu \end{bmatrix}$           | 15                                                | 3                      | 3  | $\substack{a_2 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \\ + a_1 \otimes b_3 \otimes c_3}$                                                                               |
| $\begin{bmatrix} \lambda & \mu \\ & \lambda \\ & & \mu \end{bmatrix}$           | 17                                                | 4                      | 3  | $a_2 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \\ + (a_1 + a_2) \otimes b_3 \otimes c_3 + a_1 \otimes b_1 \otimes c_2$                                                    |
| $\begin{bmatrix} \lambda & & \\ & \lambda & \\ & & \lambda \end{bmatrix}$       | 10                                                | 3                      | 3  | $\substack{a_2 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \\ + a_2 \otimes b_3 \otimes c_3}$                                                                               |
| $\begin{bmatrix} \lambda & \mu \\ & \lambda \\ & & \lambda \end{bmatrix}$       | 14                                                | 4                      | 3  | $\substack{a_2 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \\ + a_2 \otimes b_3 \otimes c_3 + a_1 \otimes b_1 \otimes c_2}$                                                 |
| $\begin{bmatrix} \lambda & \mu \\ & \lambda & \mu \\ & & \lambda \end{bmatrix}$ | 16                                                | 4                      | 3  | $\begin{array}{c} a_2 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \\ + a_2 \otimes b_3 \otimes c_3 + a_1 \otimes b_1 \otimes c_2 + a_1 \otimes b_2 \otimes c_3 \end{array}$ |
| $\begin{bmatrix} \lambda & \mu \\ & \lambda & \mu \end{bmatrix}$                | 14                                                | 3                      | 3  | $\substack{a_2 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 + \\ + a_1 \otimes b_1 \otimes c_2 + a_1 \otimes b_2 \otimes c_3}$                                                 |
| $\begin{bmatrix} \lambda & \mu & \\ & \lambda \\ & & \mu \end{bmatrix}$         | 14                                                | 4                      | 3  | $\substack{a_2 \otimes b_1 \otimes c_1 + a_1 \otimes b_1 \otimes c_2 + \\ + a_2 \otimes b_2 \otimes c_3 + a_1 \otimes b_3 \otimes c_3}$                                                 |

### **Regular pencils in** $\mathbb{C}^2 \otimes \text{Sym}^2(\mathbb{C}^4)$

| Segre symbol       | $\dim$ | $\mathrm{symRk}_p$ | $\underline{\mathbf{Rk}}$ | T                                                                                                                                                                                         |
|--------------------|--------|--------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1 1 1 1]          | 19     | 4                  | 4                         | $\lambda \otimes x^2 + (\lambda + \mu) \otimes y^2 + (\lambda - \mu) \otimes z^2 + \mu \otimes w^2$                                                                                       |
| $[2\ 1\ 1]$        | 19     | 5                  | 4                         | $\lambda \otimes (x+y)^2 + (\mu - \lambda) \otimes x^2 - \lambda \otimes y^2 + \mu \otimes z^2 + (\lambda + \mu) \otimes w^2$                                                             |
| $[(1\ 1)\ 1\ 1]$   | 18     | 4                  | 4                         | $\lambda \otimes x^2 + \lambda \otimes y^2 + \mu \otimes z^2 + (\lambda + \mu) \otimes w^2$                                                                                               |
| [3 1]              | 18     | 5                  | 4                         |                                                                                                                                                                                           |
| $[(2\ 1)\ 1]$      | 17     | 5                  | 4                         | $\lambda \! \otimes \! (x \! + \! y)^2 \! + \! (\mu \! - \! \lambda) \! \otimes \! x^2 \! - \! \lambda \! \otimes \! y^2 \! + \! \lambda \! \otimes \! z^2 \! + \! \mu \! \otimes \! w^2$ |
| $[(1\ 1\ 1)\ 1]$   | 15     | 4                  | 4                         | $\lambda \otimes x^2 + \lambda \otimes y^2 + \lambda \otimes z^2 + \mu \otimes w^2$                                                                                                       |
| [2 2]              | 18     | 5                  | 4                         |                                                                                                                                                                                           |
| $[(1 \ 1) \ 2]$    | 17     | 5                  | 4                         | $\lambda \otimes x^2 + \lambda \otimes y^2 + \mu \otimes (z+w)^2 + (\lambda-\mu) \otimes z^2 - \mu \otimes w^2$                                                                           |
| $[(1\ 1)\ (1\ 1)]$ | 16     | 4                  | 4                         | $\lambda \otimes x^2 + \lambda \otimes y^2 + \mu \otimes z^2 + \mu \otimes w^2$                                                                                                           |
| [4]                | 17     | 5                  | 4                         |                                                                                                                                                                                           |
| $[(3\ 1)]$         | 17     | 5                  | 4                         |                                                                                                                                                                                           |
| $[(2 \ 2)]$        | 15     | 6                  | 4                         | $\lambda \otimes (x+y)^2 + (\mu-\lambda) \otimes x^2 - \lambda \otimes y^2 + \\ +\lambda \otimes (z+w)^2 + (\mu-\lambda) \otimes z^2 - \lambda \otimes w^2$                               |
| $[(2\ 1\ 1)]$      | 14     | 5                  | 4                         | $\lambda \otimes (x+y)^2 + (\mu - \lambda) \otimes x^2 - \lambda \otimes y^2 + \lambda \otimes z^2 + \lambda \otimes w^2$                                                                 |

[2 2] has one only invariant polynomial (non-squarefree), hence  $\delta = 1$ ; [(2 2)] has two invariant polynomials (non-squarefree), hence  $\delta = 2$ . This is why symRk<sub>p</sub>([2 2]) = 5 while symRk<sub>p</sub>([(2 2)]) = 6.