Kronecker decomposition of pencils of quadrics and nonabelian apolarity

Candidato: Vincenzo Galgano Relatore: Prof. Giorgio Ottaviani
Controrelatore: Prof. Marco Franciosi

12 Giugno 2020

Indice

(1) Kronecker-Weierstrass form for matrix pencils

Strict equivalence and invariants
Canonical forms
(2) Classification of pencils of quadrics in $\mathbb{P}_{\mathbb{C}}^{m}$

Pencils of quadrics and Segre symbol
Position of projective lines of quadrics
Singular parts in base loci
(3) Tensor rank decomposition

GL-equivalence in $\mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}$
Apolarity Theory
Nonabelian Apolarity
The case of symmetric pencils

Strict equivalence

Set $\mathrm{GL}_{k_{1}, \ldots, k_{r}}=\mathrm{GL}_{k_{1}}(\mathbb{C}) \times \ldots \times \mathrm{GL}_{k_{r}}(\mathbb{C})$.
Matrix pencil of size $m \times n: \mathcal{P}=\mu A+\lambda B$ where $A, B \in \mathfrak{M}_{m \times n}(\mathbb{C})$.

$$
\mathfrak{M}_{m \times n}\left(\mathbb{C}[\mu, \lambda]_{1}\right)=\text { space of matrix pencils of size } m \times n
$$

Two matrix pencils \mathcal{P} and \mathcal{P}^{\prime} are strictly equivalent if they are in the same orbit with respect to the group action

$$
\begin{array}{ccc}
\mathrm{GL}_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C}) & \longrightarrow & \operatorname{Aut}\left(\mathfrak{M}_{m \times n}\left(\mathbb{C}[\mu, \lambda]_{1}\right)\right) \\
(P, Q) & \mapsto & \left(\mu A+\lambda B \mapsto \mu\left(P \cdot A \cdot{ }^{t} Q\right)+\lambda\left(P \cdot B \cdot{ }^{t} Q\right)\right)
\end{array}
$$

Regular pencil: $m=n$ and $\operatorname{det}(\mu A+\lambda B) \neq 0$. Singular pencil: $m \neq n$ or $\operatorname{det}(\mu A+\lambda B)=0$.

Regular invariants

Set $g_{k}(\mu, \lambda)=\operatorname{gcd}(k \times k$ minors of $\mathcal{P})$ and $r=\max \left\{k \mid g_{k}(\mu, \lambda) \neq 0\right\}$. Invariant polynomials: for $i=1: r$

$$
d_{i}(\mu, \lambda):=\frac{g_{i}}{g_{i-1}}=\mu^{u_{i}} \prod_{j} e_{i j}(\mu, \lambda)^{w_{i j}} \stackrel{\overline{\mathbb{C}}=\mathbb{C}}{=} \mu^{u_{i}} \prod_{j}\left(a_{i j} \mu+\lambda\right)^{w_{i j}}
$$

where $e_{i j}(1, \lambda)$ are irreducible. Note that $d_{1}|\ldots| d_{r}$.
Elementary divisors: the factors $\mu^{u_{i}}$ and $e_{i j}(\mu, \lambda)^{w_{i j}}$. They define pencils of size u_{i} and $w_{i j}$ respectively of the form

$$
H_{u_{i}}=\left[\begin{array}{cccc}
\mu & \lambda & & \\
& \ddots & \ddots & \\
& & \ddots & \lambda \\
& & & \mu
\end{array}\right] \quad, \quad \mathfrak{J}_{w_{i j}, a_{i j}}=\left[\begin{array}{cccc}
\lambda+a_{i j} \mu & \mu & & \\
& \ddots & \ddots & \\
& & \ddots & \mu \\
& & & \lambda+a_{i j} \mu
\end{array}\right]
$$

Singular invariants

Minimal indices for columns: the minima degrees
$0 \leq \epsilon_{1} \leq \ldots \leq \epsilon_{p}$ of the (linearly independent) solutions of the equation $(\mu A+\lambda B) x(\mu, \lambda)=0$.

Minimal indices for rows: the minima degrees $0 \leq \eta_{1} \leq \ldots \leq \eta_{q}$ of the (linearly independent) solutions of the equation
$\left(\mu \cdot{ }^{t} A+\lambda \cdot{ }^{t} B\right) x(\mu, \lambda)=0$.
Let g and h be such that $\epsilon_{1}=\ldots=\epsilon_{g}=\eta_{1}=\ldots=\eta_{h}=0$.
For $i \geq g$, each ϵ_{i} defines the pencil of size $\epsilon_{i} \times\left(\epsilon_{i}+1\right)$

$$
R_{\epsilon_{i}}=\left[\begin{array}{cccc}
\lambda & \mu & & \\
& \ddots & \ddots & \\
& & \lambda & \mu
\end{array}\right]
$$

For $j \geq h$, each η_{j} defines the pencil ${ }^{t} R_{\eta_{j}}$ of size $\left(\eta_{j}+1\right) \times \eta_{j}$.

Kronecker-Weierstrass form

Theorem (Weierstrass, 1868 - Kronecker, 1890)

Every projective pencil $\mu A+\lambda B$ is strictly equivalent to a canonical block-direct-sum of the form

$$
0_{h \times g} \boxplus\left(\underset{i=g+1}{\stackrel{p}{\boxplus}} R_{\epsilon_{i}}\right) \boxplus\left(\underset{j=h+1}{\boxplus}{ }^{t} R_{\eta_{j}}\right) \boxplus\left(\underset{k=1}{\stackrel{s}{\boxplus}} H_{u_{k}}\right) \boxplus\left(\underset{l, z}{\boxplus} \mathfrak{J}_{w_{l z}, a_{l z}}\right)
$$

where ϵ_{i} and η_{j} are the minimal indices for columns and rows respectively, and $\mu^{u_{s}}$ and $\left(\lambda+a_{i j} \mu\right)^{w_{i j}}$ are the elementary divisors.

The Kronecker-Weierstrass form classifies the representatives in

$$
\mathrm{GL}_{m}(\mathbb{C})^{\mathfrak{M}_{m \times n}\left(\mathbb{C}[\mu, \lambda]_{1}\right)} / \mathrm{GL}_{n}(\mathbb{C})
$$

Symmetric pencils

We denote symmetric matrix pencils by $\operatorname{Sym}^{2} \mathbb{C}^{m}[\mu, \lambda]_{1}$.
Two symmetric pencils are congruent if they are in the same orbit with respect to the group action

$$
\begin{array}{clc}
\mathrm{GL}_{m}(\mathbb{C}) & \longrightarrow & \operatorname{Aut}\left(\operatorname{Sym}^{2} \mathbb{C}^{m}[\mu, \lambda]_{1}\right) \\
T & \mapsto & \left(\mu A+\lambda B \mapsto \mu\left({ }^{t} T A T\right)+\lambda\left({ }^{t} T B T\right)\right)
\end{array}
$$

Proposition

Two symmetric pencils are strictly equivalent if and only if they are congruent.

Corollary

Two pencils of quadratic forms can be carried into one another by a non-singular transformation if and only if the corresponding symmetric pencils have same minimal indices and elementary divisors.

Segre symbol

The intersection of two quadrics $\mathcal{A}=^{t} X A X$ and $\mathcal{B}={ }^{t} X B X$ in $\mathbb{P}_{\mathbb{C}}^{m}$ is described by the symmetric pencil $\mathcal{P}=\mu A+\lambda B$. The roots of \mathcal{P} are the roots $\left[y_{i}:-x_{i}\right] \in \mathbb{P}^{1}$ of the elementary divisors $\left(x_{i} \mu+y_{i} \lambda\right)^{e_{j}^{i}}$. The Segre symbol of \mathcal{P} is the ordered sequence of its invariants

$$
\Sigma(\mathcal{P})=\left[\left(e_{1}^{1}, \ldots, e_{r_{1}}^{1}\right) \ldots\left(e_{1}^{k}, \ldots, e_{r_{k}}^{k}\right) ; \epsilon_{g+1}, \ldots, \epsilon_{p} ; g\right]
$$

where k is the number of distinct roots and

$$
\begin{gathered}
r_{1} \geq \ldots \geq r_{k}, \quad e_{1}^{i} \geq \ldots \geq e_{r_{i}}^{i}, \quad \epsilon_{g+1} \leq \ldots \leq \epsilon_{p} \\
\text { Example: } \Sigma\left(\left[\begin{array}{lll}
\lambda & & \\
& \mu & 0
\end{array}\right]\right)=[11 ; ; 1] \text {, while } \Sigma\left(\left[\begin{array}{ccc}
\mu & \lambda & \\
\lambda & & 0
\end{array}\right]\right)=[2 ; ; 1] .
\end{gathered}
$$

The Segre symbol does not uniquely define the pencil even up to $\mathrm{GL}_{2, m}$-action (i.e. up to strict equivalence and to GL_{2}-action on \mathbb{P}^{1}).

Up to $\mathrm{GL}_{2} \curvearrowright \mathbb{P}^{1}$, we may assume the roots to be $\left[1:-\frac{x_{i}}{y_{i}}\right]$, hence represent them by $z_{i} \in \mathbb{C}$ or better by a vector in $\mathbb{C}^{(k)} / \sim$ where

$$
\begin{gathered}
\mathbb{C}^{(k)}=\left\{z \in \mathbb{C}^{k} \mid z_{i} \neq z_{j} \forall i \neq j\right\} \\
z \sim w \Longleftrightarrow \exists\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{GL}_{2}: \forall i=1: k, w_{i}=\frac{a z_{i}+b}{c z_{i}+d}
\end{gathered}
$$

The quotient $\mathbb{C}^{(k)} / \sim$ parametrizes all the possible k-tuples of roots (up to $\mathrm{GL}_{2} \curvearrowright \mathbb{P}^{1}$): a class $[v]$ is called a continuous modulus.

Proposition

A pencil of quadrics \mathcal{P} is uniquely determined (up to GL-action) by its Segre symbol and a continuous modulus $[v] \in \mathbb{C}^{(k)} / \sim$.

Theorem

Let \mathcal{P} and \mathcal{Q} be two pencils of quadrics in \mathbb{P}^{m} with roots $\left[\mu_{i}^{\mathcal{P}}: \lambda_{i}^{\mathcal{P}}\right]$ and $\left[\mu_{i}^{\mathcal{Q}}: \lambda_{i}^{\mathcal{Q}}\right.$] for $i=1: k$. Then \mathcal{P} and \mathcal{Q} are projectively equivalent in \mathbb{P}^{m} if and only if they have the same Segre symbols.

Projective space of quadrics

Set $W=\left\{Q: \mathbb{C}^{m+1} \rightarrow \mathbb{C}\right.$ quadric $\} \supset W_{r}=\{Q \in W \mid \operatorname{Rk}(Q)=r\}$.
For $\mathcal{P}=\mu Q_{1}+\lambda Q_{2}$ defined by linearly independent quadrics
$Q_{1}, Q_{2} \in W \backslash\{0\}$, set $L_{\mathcal{P}}$ its projective line in $\mathbb{P} W$ and $V(\mathcal{P}) \subset \mathbb{P}^{m}$.

Claim

The Kronecker class of a pencil of quadrics \mathcal{P} is uniquely determined by the position of the line $L_{\mathcal{P}}$ with respect to the subvarieties $\overline{\mathbb{P} W_{r}}$ and by the singular part $\operatorname{Sing}(V(\mathcal{P}))$ of the base locus $V(\mathcal{P})$.

Be careful!

Not only the schematically-singular parts, but also the ones of dimension greater than the expected one: e.g., in \mathbb{P}^{2} of $\operatorname{Sing}(V([2 ; ; 1]))$ is not only the double point $\left(x^{2}, y\right)$ but also the line (x).

Position of $L_{\mathcal{P}}$

For $L_{\mathcal{P}} \subset \mathbb{P} W$ projective line of \mathcal{P}, set $m_{0}\left(L_{\mathcal{P}}\right)=\min \left\{r \mid L_{\mathcal{P}} \subset \overline{\mathbb{P}} W_{r}\right\}$.
Given $\left\{P_{1}, \ldots, P_{q_{L}}\right\}=L_{\mathcal{P}} \cap \overline{\mathbb{P} W_{m_{0}(L)-1}}$, set $\forall i \leq q_{L}, \forall j \leq k_{i}\left(L_{\mathcal{P}}\right)$
$k_{i}\left(L_{\mathcal{P}}\right)=\max \left\{k \mid P_{i} \in \overline{\mathbb{P} W_{m_{0}(L)-k}}\right\}, m_{i j}\left(L_{\mathcal{P}}\right)=\operatorname{mult}_{P_{i}}\left(L_{\mathcal{P}} \cap \overline{\mathbb{P} W_{m_{0}\left(L_{\mathcal{P}}\right)-j}}\right)$

The set of values $m_{0}, q_{L}, k_{i}, m_{i j}$ determines the position of $L_{\mathcal{P}}$.

Proposition

If $\Sigma(\mathcal{P})=\left[\left(e_{1}^{1}, \ldots, e_{r_{1}}^{1}\right) \ldots\left(e_{1}^{k}, \ldots, e_{r_{k}}^{k}\right) ; \epsilon_{g+1}, \ldots, \epsilon_{p} ; g\right]$, then $L_{\mathcal{P}}$ has position:
(i) $m_{0}\left(L_{\mathcal{P}}\right)=m+1-p$;
(ii) $q\left(L_{\mathcal{P}}\right)=k$;
(iii) $k_{i}\left(L_{\mathcal{P}}\right)=r_{i}$ for all $i=1: k$;
(iv) $m_{i j}\left(L_{\mathcal{P}}\right)=\sum_{l=1}^{r_{i}-j+1} e_{r_{i}-l+1}^{i}$ for all $i=1: k$ and $j=1: r_{i}$.

Lemma

Given $\mathcal{P}, \mathcal{P}^{\prime}$ two pencil of quadrics, their lines L, L^{\prime} have similar position if and only if the pencils have Segre symbols with the same multiplicities (i.e $k=k^{\prime}$ and $e_{j}^{i}=\left(e^{\prime}\right)_{j}^{i}$) and same number of minimal indices (i.e. same $p=p^{\prime}$), other than same continuous moduli.

If \mathcal{P} is regular, then it is uniquely determined by the position of $L_{\mathcal{P}}$. But if the pencil is singular, its position is enough iff $m=2,3$: this comes from combinatorial costraints on the sizes of Kronecker blocks.

$\Sigma(\mathcal{P})$	$L_{\mathcal{P}}$	$\operatorname{det}(\mathcal{P})$	$q\left(L_{\mathcal{P}}\right)$	$L_{\mathcal{P}} \cap \overline{\mathbb{P} W_{2}}$	$L_{\mathcal{P}} \cap \overline{\mathbb{P} W_{1}}$
$\left[\begin{array}{lll}11 & 1\end{array}\right]$	$\lambda x^{2}+(\mu-\lambda) y^{2}-\mu z^{2}$	$\lambda(\lambda+\mu) \mu$	3	$1+1+1$	\emptyset
$\left[\begin{array}{ll}2 & 1\end{array}\right]$	$\mu x^{2}-\mu z^{2}+2 \lambda x y$	$\lambda^{2} \mu$	2	$2+1$	\emptyset
$[(11)$	$1]$	$\lambda x^{2}-\lambda y^{2}+\mu z^{2}$	$\lambda^{2} \mu$	2	$2+1$
$[3]$	$\lambda y^{2}+2 \lambda x z+2 \mu x y$	λ^{3}	1	3	1
$[(21)]$	$\mu x^{2}+2 \lambda x y+\lambda z^{2}$	λ^{3}	1	3	\emptyset
$[; 1 ;]$	$\mu x z+\lambda x y$	0	0	$L_{\mathcal{P}}$	1
$[1 ; ; 1]$	$\mu y^{2}+\lambda x^{2}$	0	2	$L_{\mathcal{P}}$	$1+1$
$[2 ; ; 1]$	$\mu x^{2}+\lambda x y$	0	1	$L_{\mathcal{P}}$	2

Singular components in $V(\mathcal{P})$

Lemma

Set $\bar{k}=k-\#\left\{i \mid r_{i}=e_{r_{i}}^{i}=1\right\}$. Then $\operatorname{Sing}(V(\mathcal{P}))$ has at least t components $\mathcal{S}_{1}, \ldots, \mathcal{S}_{t}$ (with reduced structure) where

$$
t= \begin{cases}\bar{k} & \text { if } p=g=0 \text { (no minimal indices) } \\ \max \{\bar{k}, 1\} & \text { if } p=g>0 \text { (only zero minimal indices) } \\ \bar{k}+1 & \text { if } p>g \text { (there are non-zero minimal indices) }\end{cases}
$$

Moreover, up to permutation of the \mathcal{S}_{i} 's, it holds:
(i) each \mathcal{S}_{i} is either a linear subspace of dimension $d_{i}=r_{i}+p-1$ (for $e_{r_{i}}^{i}>1$) or a quadrics of dimension $d_{i}-1$ and corank $d_{i}+1-\#\left\{j \mid e_{j}^{i}=1\right\} \quad\left(\right.$ for $\left.e_{r_{i}}^{i}=1\right)$.
(ii) If $p>g$ (i.e. there are non-zero minimal indices), then in addition $\mathcal{S}_{t}=\mathcal{S}_{\bar{k}+1}$ is either a projective bundle of type $P\left(\epsilon_{g+1} \ldots \epsilon_{p}\right)$ (for $g=0$) or a join variety of type $J\left(\epsilon_{g+1} \ldots \epsilon_{p} ; g-1\right)($ for $g>0)$.

Theorem (Dimca, 1983)

Two pencils of quadrics \mathcal{P} and \mathcal{P}^{\prime} are equivalent if and only if
(i) the lines $L_{\mathcal{P}}, L_{\mathcal{P}^{\prime}} \subset \mathbb{P} W$ have similar positions;
(ii) the irreducible components of $\operatorname{Sing}(V(\mathcal{P}))$ and $\operatorname{Sing}\left(V\left(\mathcal{P}^{\prime}\right)\right)$ are isomorphic.

$\Sigma(\mathcal{P})$	\bar{k}	t	$d_{i} \quad \operatorname{Sing}(V(\mathcal{P}))$			
[111]	0	0	\square			
[21]	1	1 (irred.)	$0 \quad$ one double point			
[(11) 1]	1	1 (reducible)	two double points			
[3]	1	1 (irred.)	0 one triple point			
[(2 1)]	1	1 (irred.)	0 one (curv.) quadruple point			
[; 1;]	0	1 (reducible)	1 a line and a disjoint point			
[11; 1]	0	1 (irred.)				
[2; ; 1]	1	1 (reducible)	1 a line with embedded double point			
($y, x+z)$		x-z)	$\xrightarrow{\left(z^{2}, x+y\right)}$ 交 $z=0$. (y, z)	
$\underset{\left(x, z^{2}\right)}{\cdots \rightarrow-}-\vec{z}=0$			$\overrightarrow{\left(z^{2}, x-y\right)}-\underset{y}{z=0}$		$\underset{\left(y^{2}+2 x a, x y, x^{2}\right)}{y=0}$	
(a) $\left[\begin{array}{ll}2 & 1\end{array}\right]$			(b) $\left[\left(\begin{array}{lll}1 & 1\end{array}\right) 1\right]$		(c) $[3]$	

2-slice tensors and $\mathrm{GL}_{2, m, n^{-}}$-action

2-slice tensor (of size $m \times n$): $T \in \mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}$.

Decomposable ones:

$$
\operatorname{Seg}\left(\mathbb{P}^{1} \times \mathbb{P}^{m-1} \times \mathbb{P}^{n-1}\right)=\{[u \otimes v \otimes w] \mid u, v, w\} \subset \mathbb{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)
$$

\[

\]

where A and B are such that ${ }^{t} v \cdot A \cdot w=a,{ }^{t} v \cdot B \cdot w=b$.

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n} \longleftrightarrow \mathfrak{M}_{m \times n}\left(\mathbb{C}[\mu, \lambda]_{1}\right)
$$

Two 2-slice tensors are $\mathrm{GL}_{2, m, n}$-equivalent if they are in the same orbit with respect to the group action

$$
\begin{array}{clc}
\mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C}) & \longrightarrow & \operatorname{Aut}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}\right) \\
(M, P, Q) & \mapsto & (u \otimes v \otimes w \mapsto M u \otimes P v \otimes Q w)
\end{array}
$$

$\mathrm{GL}_{2, m, n}$-orbits

In general, there are infinitely many GL-orbits in $\mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}$

Proposition

The tensor space $\mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ has finitely many GL-orbits if and only if $m \leq 3$ or $n \leq 3$.

$$
\begin{array}{rllc}
\gamma_{T}: \quad \mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C}) & \longrightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n} \\
G & \mapsto & G \cdot T \\
d\left(\gamma_{T}\right)_{I}: \quad \mathfrak{g l}_{2}(\mathbb{C}) \times \mathfrak{g l}_{m}(\mathbb{C}) \times \mathfrak{g l}_{n}(\mathbb{C}) & \longrightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}
\end{array}
$$

We get:

$$
\operatorname{Im}\left(\gamma_{T}\right)=\operatorname{orb}_{\mathrm{GL}}(T), \operatorname{ker}\left(d\left(\gamma_{T}\right)_{I}\right)=\mathfrak{L i}_{I}\left(\operatorname{stab}_{\mathrm{GL}}(T)\right)
$$

$$
\operatorname{dim}\left(\operatorname{orb}_{\mathrm{GL}}(T)\right)=\operatorname{Rk}\left(d\left(\gamma_{T}\right)_{I}\right)=4+m^{2}+n^{2}-\operatorname{dim}\left(\operatorname{ker}\left(d\left(\gamma_{T}\right)_{I}\right)\right)
$$

symRk_{p} in $\mathbb{C}^{2} \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{m+1}\right)$

Symmetric 2 -slice tensors: tensors in $\mathbb{C}^{2} \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{m+1}\right)$. Decomposable ones:
$\operatorname{Seg}\left(\mathbb{P}^{1} \times \nu_{2}\left(\mathbb{P}^{m}\right)\right)=\left\{\left[u \otimes l^{2}\right] \mid u \in \mathbb{C}^{2}, l \in \mathbb{C}^{m+1}\right\} \subset \mathbb{P}\left(\mathbb{C}^{2} \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{m+1}\right)\right)$

$\mathbb{C}^{2} \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{m+1}\right) \longleftrightarrow$ pencils of quadrics in $\mathbb{P}_{\mathbb{C}}^{m}$

$$
\begin{array}{rll}
\mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{m+1}(\mathbb{C}) & \longrightarrow & \operatorname{Aut}\left(\mathbb{C}^{2} \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{m+1}\right)\right) \\
(M, P) & \mapsto & \left(u \otimes l^{2} \mapsto M u \otimes P \cdot l^{2} \cdot t P\right)
\end{array}
$$

The $\mathrm{GL}_{2, m+1}$-orbits are finitely many if and only if $m+1 \leq 3$.

Apolarity Theory

Waring decomposition problem

Express $f \in \operatorname{Sym}^{d} V$ as sum of powers of linear form $\sum_{i=0}^{r} l_{i}^{d}$.
Apolar ideal: $f^{\perp}=\left\{g \in \operatorname{Sym}^{\bullet} V^{\vee} \mid g \cdot f=0\right\} \subset \mathbb{C}\left[\partial_{0}, \ldots, \partial_{m}\right]$.

Lemma (Apolarity)

\mathcal{Z} finite set of linear forms, $\mathcal{I}_{\mathcal{Z}}=\left\{g \in \operatorname{Sym}^{\bullet} V^{\vee} \mid g(l)=0 \forall l \in \mathcal{Z}\right\}$. Then

$$
f=\sum_{l \in \mathcal{Z}} l^{d} \Longleftrightarrow \mathcal{I}_{\mathcal{Z}} \subseteq f^{\perp}
$$

Moral: We look for a decomposition of f in the base locus of 0 -dimensional ideals in f^{\perp}.
$f^{\perp}=\left\{g \in \operatorname{Sym}^{\bullet} V^{\vee} \mid g \cdot f=0\right\}=\sum_{k}\{\operatorname{ker}(\overbrace{\left(C_{k, f}: \operatorname{Sym}^{k} V^{\vee} \rightarrow \operatorname{Sym}^{d-k} V\right.}^{k \text {-th catalecticant map }})\}$

Catalecticant algorithm

(1) Construct $C_{\left\lceil\frac{d}{2}\right\rceil, f}: \operatorname{Sym}^{\left[\frac{d}{2}\right\rceil} V^{\vee} \rightarrow \operatorname{Sym}^{d-\left\lceil\frac{d}{2}\right\rceil} V$;
(2) Compute ker $C_{\left\lceil\frac{d}{2}\right\rceil, f}$;
(3) Compute the Krull dimension $\operatorname{dim}_{\text {Krull }}\left(\operatorname{ker} C_{\left\lceil\frac{d}{2}\right\rceil, f}\right)$:
(a) if it is ≥ 1, the method fails!
(b) else compute $\mathcal{Z}=\mathcal{Z}\left(\operatorname{ker} C_{\left\lceil\frac{d}{2}\right\rceil, f}\right)=\left\{\left[l_{1}\right], \ldots,\left[l_{r}\right]\right\}$;
(4) Solve the linear system $f=\sum_{i=1}^{r} c_{i} l_{i}^{d}$ where c_{i} are the indeterminates.

Since $\operatorname{Sym}^{d}\left(\mathbb{C}^{m+1}\right)^{\vee} \simeq H^{0}\left(\mathbb{P}^{m}, \mathcal{O}_{\mathbb{P}^{m}}(d)\right)$,

$$
\left.C_{k, f}: H^{0}\left(\mathbb{P}^{m}, \mathcal{O}(k)\right) \rightarrow H^{0}\left(\mathbb{P}^{m}, \mathcal{O}(d-k)\right)\right)^{\vee}
$$

Nonabelian Apolarity

For \mathcal{E} vector bundle over a variety X and $\mathcal{L} \in \operatorname{Pic}(X)$ such that $X \hookrightarrow \mathbb{P}\left(H^{0}(X, \mathcal{L})^{\vee}\right)$, the natural map

$$
H^{0}(X, \mathcal{E}) \otimes H^{0}\left(X, \mathcal{E}^{\vee} \otimes \mathcal{L}\right) \rightarrow H^{0}(X, \mathcal{L})
$$

leads to the linear map

$$
H^{0}(X, \mathcal{E}) \otimes H^{0}(X, \mathcal{L})^{\vee} \rightarrow H^{0}\left(X, \mathcal{E}^{\vee} \otimes \mathcal{L}\right)^{\vee}
$$

by fixing $f \in H^{0}(X, \mathcal{L})^{\vee}$ we have

$$
C_{\mathcal{E}, f}: H^{0}(X, \mathcal{E}) \rightarrow H^{0}\left(X, \mathcal{E}^{\vee} \otimes \mathcal{L}\right)^{\vee}
$$

Let $f=\sum_{i=1}^{r} z_{i}$ minimal and $\mathcal{Z}=\left\{\left[z_{1}\right], \ldots,\left[z_{r}\right]\right\} \subseteq \mathbb{P}\left(H^{0}(X, \mathcal{L})^{\vee}\right)$.

Lemma (Oeding-Ottaviani, 2013)

If $\operatorname{Rk}\left(C_{\mathcal{E}, f}\right)=r \cdot \operatorname{Rk}(\mathcal{E})$, then $H^{0}\left(X, \mathcal{I}_{\mathcal{Z}} \otimes \mathcal{E}\right)=\operatorname{ker}\left(C_{\mathcal{E}, f}\right)$.

Eigenvectors of tensors

We can look for a decomposition of f in the base locus of $\operatorname{ker}\left(C_{\mathcal{E}, f}\right)$. But these are global sections. Anything better?

Get Q from the Euler SES $\quad 0 \rightarrow \mathcal{O}_{\mathbb{P} V}(-1) \rightarrow \mathcal{O}_{\mathbb{P} V} \otimes V \rightarrow Q \rightarrow 0$. Set $\mathcal{E}=\bigwedge^{a} Q(e), \mathcal{L}=\mathcal{O}(d)$ and $\rho: L_{1} \rightarrow L_{0}$ presentation of \mathcal{E} :

$$
\begin{aligned}
& \operatorname{Hom}\left(\mathrm{Sym}^{e} V, \bigwedge^{a} V\right) \quad \operatorname{Hom}\left(\bigwedge^{m-a} V, \operatorname{Sym}^{d-e-1} V\right) \\
& \begin{array}{cc}
\simeq \mid & P_{\mathcal{E}, f} \\
H^{0}\left(\mathbb{P}^{m}, L_{1}\right) & \mid \simeq \\
H^{0}\left(\mathbb{P}^{m}, L_{0}^{\vee} \otimes \mathcal{L}\right)^{\vee}
\end{array} \\
& { }^{\alpha} \downarrow \quad \text { o } \quad{ }^{*} \\
& H^{0}\left(\mathbb{P}^{m}, \bigwedge^{a} Q(e)\right) \xrightarrow[C_{\mathcal{E}, f}]{ } H^{0}\left(\mathbb{P}^{m}, \bigwedge^{a} Q(e)^{\vee} \otimes \mathcal{L}\right)^{\vee}
\end{aligned}
$$

Eigenvector of $M \in \operatorname{Hom}\left(\operatorname{Sym}^{e} V, \bigwedge^{a} V\right): v \in V$ s.t. $M\left(v^{e}\right) \wedge v=0$.
$\operatorname{ker}\left(C_{\mathcal{E}, f}\right)$ and $\operatorname{ker}\left(P_{\mathcal{E}, f}\right)$ have same common base locus, which corresponds to common eigenvectors for $\operatorname{ker}\left(P_{\mathcal{E}, f}\right)$.

Nonabelian Apolarity for pencils

Goal: Decompose a given $\left(B_{1}, B_{2}\right) \in \mathbb{C}^{2} \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{m+1}\right)$.
Set

$$
\mathcal{E}=\bigwedge^{a} Q(e)=Q(1) \simeq T \mathbb{P}^{m}, \mathcal{L}=\mathcal{O}(2), \mathcal{E}^{\vee} \otimes \mathcal{L}=\Omega^{1}(2)
$$

Then $\left(B_{1}, B_{2}\right) \in H^{0}\left(\mathbb{P}^{m}, \mathcal{O}(2)\right)^{\vee} \oplus H^{0}\left(\mathbb{P}^{m}, \mathcal{O}(2)\right)^{\vee}$ and $C_{\mathcal{E}, f}$ is

$$
C_{\left(B_{1}, B_{2}\right)}: H^{0}\left(\mathbb{P}^{m}, T \mathbb{P}^{m}\right) \rightarrow H^{0}\left(\mathbb{P}^{m}, \Omega^{1}(2)\right)^{\vee} \oplus H^{0}\left(\mathbb{P}^{m}, \Omega^{1}(2)\right)^{\vee}
$$

- Up to isomorphism and up to scalars, $C_{\left(B_{1}, B_{2}\right)}$ is exactly

$$
\begin{array}{ccc}
C_{\left(B_{1}, B_{2}\right)}: & \mathfrak{s l}_{m+1}(\mathbb{C}) & \longrightarrow
\end{array} \bigwedge^{2} V \oplus \bigwedge^{2} V
$$

- $\left(B_{1}, B_{2}\right)$ is general, i.e. has Kronecker form of type $\operatorname{diag}\left(\lambda+a_{i} \mu\right)_{i}$ with $a_{i} \neq a_{j} \neq 0$;
- $\operatorname{ker}\left(C_{\left(B_{1}, B_{2}\right)}\right)$ is invariant for GL_{2}-action.

Theorem

Let $\left(B_{1}, B_{2}\right) \in \mathbb{C}^{2} \otimes \operatorname{Sym}^{2} \mathbb{C}^{m+1}$ be a general symmetric pencil. Then:
(i) all matrices in $\operatorname{ker}\left(C_{\left(B_{1}, B_{2}\right)}\right)$ have the same common eigenvectors v_{1}, \ldots, v_{m+1} which are induced by the vectors $\tilde{v}_{1}, \ldots, \tilde{v}_{m+1}$ defining the Kronecker form

$$
T_{\left(B_{1}, B_{2}\right)} \stackrel{\mathrm{GL}}{\sim} \sum_{i=1}^{m+1} \alpha_{i} \otimes \tilde{v}_{i} \otimes \tilde{v}_{i}
$$

(ii) $\operatorname{ker}\left(C_{\left(B_{1}, B_{2}\right)}\right)$ has dimension $m+1$ in $\mathfrak{g l}_{m+1}(\mathbb{C})$ and m in $\mathfrak{s l}_{m+1}(\mathbb{C}) ;$
(iii) for $C \in \operatorname{ker}\left(C_{\left(B_{1}, B_{2}\right)}\right)$ general, in $\mathfrak{g l}_{m+1}(\mathbb{C})$ it holds $\operatorname{ker}\left(C_{\left(B_{1}, B_{2}\right)}\right)=\left\langle I, C, \ldots, C^{m}\right\rangle_{\mathbb{C}}$. In particular, in $\mathfrak{s l}_{m+1}(\mathbb{C})$ it holds $\operatorname{ker}\left(C_{\left(B_{1}, B_{2}\right)}\right)=\left\langle I, C, \ldots, C^{m}\right\rangle_{\mathbb{C}} \cap \mathfrak{s l}_{m+1}(\mathbb{C})$.

Key: The GL_{m+1}-action conjugates the kernels, that is $\forall P \in \mathrm{GL}_{m+1}(\mathbb{C}), \operatorname{ker}\left(C_{\left(P B_{1}\left({ }^{t} P\right), P B_{2}\left({ }^{t} P\right)\right)}\right)=P^{-1} \cdot \operatorname{ker}\left(C_{\left(B_{1}, B_{2}\right)}\right) \cdot P$.

Thanks for your attention!

For $\epsilon_{1}=0, \epsilon_{2}=1, \epsilon_{3}=2, \eta_{1}=0, \eta_{2}=0, \eta_{3}=2, \mu^{3},(\lambda+\mu)^{2}$:

For $\epsilon_{1}=0, \epsilon_{2}=0, \epsilon_{3}=2, \eta_{1}=0, \eta_{2}=1, \eta_{3}=2, \mu^{2},(\lambda+\mu)^{2}, \lambda+\mu$:

Rank in $\mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}$

$$
\operatorname{Rk}\left(\mathfrak{J}_{w, a}\right)=w+\left(1-\delta_{w 1}\right), \operatorname{Rk}\left(R_{\epsilon}\right)=\epsilon+1
$$

Theorem (Grigoriev-JàJà, 1979)

Let $T \in \mathbb{C}^{2} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ with minimal indices $\epsilon_{1}, \ldots, \epsilon_{p}, \eta_{1}, \ldots, \eta_{q}$ and regular part \mathcal{K} of size N. Let $\delta(\mathcal{K})$ be the number of its non-squarefree invariant polynomials. Then

$$
\operatorname{Rk}(T)=\sum_{i=1}^{p}\left(\epsilon_{i}+1\right)+\sum_{j=1}^{q}\left(\eta_{j}+1\right)+N+\delta(\mathcal{K})
$$

The weight $\delta\left(\mathcal{P}_{T}\right)$ depends on the number of non-squarefree invariant polynomials and not on the number of non-squarefree elementary divisors.

Some regular base loci in $\mathbb{P}_{\mathbb{C}}^{3}$

Figura: Some base loci of pencils of quadrics in \mathbb{P}^{3}

Pencils of quadrics in $\mathbb{P}_{\mathbb{C}}^{2}$

$\mathrm{GL}_{2,3,3}(\mathbb{C})$-orbits

Regular pencils in $\mathbb{C}^{2} \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{4}\right)$

Segre symbol	dim	symRk_{p}	$\underline{\mathrm{Rk}}$	T
$\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$	19	4	4	$\lambda \otimes x^{2}+(\lambda+\mu) \otimes y^{2}+(\lambda-\mu) \otimes z^{2}+\mu \otimes w^{2}$
$\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]$	19	5	4	$\lambda \otimes(x+y)^{2}+(\mu-\lambda) \otimes x^{2}-\lambda \otimes y^{2}+\mu \otimes z^{2}+(\lambda+\mu) \otimes w^{2}$
$\left.\left[\begin{array}{lllll}(1 & 1\end{array}\right) 11\right]$	18	4	4	$\lambda \otimes x^{2}+\lambda \otimes y^{2}+\mu \otimes z^{2}+(\lambda+\mu) \otimes w^{2}$
$\left[\begin{array}{ll}3 & 1\end{array}\right]$	18	5	4	
$\left[\left(\begin{array}{lll}2 & 1\end{array}\right) 1\right]$	17	5	4	$\lambda \otimes(x+y)^{2}+(\mu-\lambda) \otimes x^{2}-\lambda \otimes y^{2}+\lambda \otimes z^{2}+\mu \otimes w^{2}$
$\left.\left[\begin{array}{llll}(1 & 1 & 1\end{array}\right) 1\right]$	15	4	4	$\lambda \otimes x^{2}+\lambda \otimes y^{2}+\lambda \otimes z^{2}+\mu \otimes w^{2}$
$\left[\begin{array}{lll}2 & 2\end{array}\right]$	18	5	4	
[(1 1) 2]	17	5	4	$\lambda \otimes x^{2}+\lambda \otimes y^{2}+\mu \otimes(z+w)^{2}+(\lambda-\mu) \otimes z^{2}-\mu \otimes w^{2}$
$\left[\left(\begin{array}{ll}1 & 1\end{array}\right)\left(\begin{array}{ll}1\end{array}\right)\right]$	16	4	4	$\lambda \otimes x^{2}+\lambda \otimes y^{2}+\mu \otimes z^{2}+\mu \otimes w^{2}$
[4]	17	5	4	
[(3 1)]	17	5	4	
$\left.\left[\begin{array}{ll}(2)\end{array}\right)\right]$	15	6	4	$\begin{aligned} & \lambda \otimes(x+y)^{2}+(\mu-\lambda) \otimes x^{2}-\lambda \otimes y^{2}+ \\ & +\lambda \otimes(z+w)^{2}+(\mu-\lambda) \otimes z^{2}-\lambda \otimes w^{2} \end{aligned}$
[(2 $\left.\begin{array}{l}1 \\ 1\end{array}\right)$]	14	5	4	$\lambda \otimes(x+y)^{2}+(\mu-\lambda) \otimes x^{2}-\lambda \otimes y^{2}+\lambda \otimes z^{2}+\lambda \otimes w^{2}$

[2 2] has one only invariant polynomial (non-squarefree), hence $\delta=1$; [(2)] has two invariant polynomials (non-squarefree), hence $\delta=2$. This is why $\operatorname{symRk}_{p}\left(\left[\begin{array}{ll}2 & 2\end{array}\right)=5\right.$ while $\operatorname{symRk}_{p}([(22)])=6$.

