

Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM
DOTTORATO DI RICERCA IN
MATEMATICA, INFORMATICA, STATISTICA
CURRICULUM IN MATEMATICA
CICLO XXXII
Sede amministrativa Università degli Studi di Firenze
Coordinatore Prof. Graziano Gentili

The Distance Function from the Variety of partially symmetric rank-one Tensors

Settore Scientifico Disciplinare MAT/03

Dottorando
Tutore
Luca Sodomaco
Prof. Giorgio Ottaviani

Coordinatore
Prof. Graziano Gentili

Acknowledgements/Ringraziamenti

Giorgio Ottaviani è stato molto più che un advisor per me. Gentile ed amichevole fin dal mio primo giorno di dottorato, ha sempre trovato del tempo per me, anche più volte alla settimana, per discutere sull'argomento di tesi e su altri progetti di ricerca. Tutto questo nonostante i suoi numerosi impegni, sia didattici che istituzionali come Direttore del Dipartimento.

C'è anche un'altra cosa da dire: forse ispirato dalle numerose foto di Bartali e Coppi presenti nel suo ufficio, mai come in questi tre anni ho seguito il ciclismo. Ricordo con piacere alcuni dialoghi di matematica terminati guardando una tappa del Giro d'Italia o del Tour de France!

A maggior ragione, sarò sempre grato alla relatrice della mia Tesi Magistrale, Emilia Mezzetti, per avermi suggerito Giorgio Ottaviani come possibile advisor di dottorato. Seppure in modalità e contesti diversi, entrambi mi hanno colpito per la capacità di estrapolare e trasmettere, agli studenti così come al pubblico di un seminario, la bellezza e la potenza di alcuni risultati importanti della Geometria Algebrica.

I would like to thank Kristian Ranestad and Antonio Lerario for reviewing this thesis as well as for our fruitful math discussions. Moreover, they suggested various interesting lines of advanced research connected to the main results of this thesis.

Tra le persone del Dipartimento che ho conosciuto in questi tre anni, vorrei in particolare ringraziare due ormai cari amici. Daniele, per la bontà d'animo e per l'umiltà che lo contraddistingue. Grazie per avermi fatto conoscere le tradizioni della Lunigiana, dagli immancabili testaroli al Falò di San Geminiano (quello vero!). Ringrazio anche Francesco, per avermi sopportato come compagno di ufficio, e per tutte le belle serate in centro a Firenze, magari condite da degli ottimi ravioli cinesi!

Vorrei pure ringraziare gli altri matematici italiani che lavorano o che sono stati ospiti del Dipartimento, e tutti gli altri con cui ho passato dei piacevoli momenti: Nicoletta, Giuliano, Riccardo, Roberta e i "Central Park", i cui componenti sono Caterina, Arturo (e Livia!) e la matematica ad honorem Sara.

Chiaramente non posso non parlare di Matteo Gallet, una persona straordinaria che conoscevo già da quando avevo iniziato l'Università a Trieste. Grazie per la meticolosità e la professionalità con cui hai spontaneamente letto e revisionato i miei preprint. A prescindere da quale sia la mia prospettiva futura, cercherò sempre di fare tesoro dei numerosi consigli matematici e di vita che mi hai dato.

I would like to thank the organizers of the Summer School P.R.A.G.MAT.I.C. 2017, which took place at the University of Catania. Moreover, I thank the Professors Enrico Carlini, Huy Tài Hà, Brian Harbourne and Adam Van Tuyl for their beautiful lectures. I will always remember that wonderful three weeks for having been my very first opportunity to make research in groups. For this reason, I am grateful to my collaborators Francesco, Łucja and Bill, and to all the other friends which I met during that wonderful experience.

About one year later, I participated in the Nonlinear Algebra Semester period at ICERM, Brown University. The organizers, as well as the participants, contributed to creating a very stimulating and friendly environment. Especially I would like to thank my friend and flatmate Iman, for the nice moments passed together and the exciting trips to Boston and New York.

Apart from those two important events of my doctoral life, I attended several conferences and schools, each of them left me something unique. There are a few people with whom I shared more than one of those meetings, and which helped me with their advice. In particular, I am indebted to Alessandro, Anna, Beatriz, Elisa, Emanuele, Fulvio, Kathlén, Maddie, Mareike, Marina, Navid, Nihdi and Sara.

Questa avventura a Firenze è iniziata esattamente nello stesso modo in cui si è conclusa: con una montagna di valigie e sogni da portare con me, e l'immancabile compagnia della mia inseparabile amica Stella. Ti sarò eternamente grato per avermi incoraggiato più di tutti gli altri a scegliere di intraprendere il cammino del dottorato. Sicuramente senza il tuo appoggio sarebbe stato molto più difficile raggiungere questo traguardo, che dedico a te.

Inoltre, l'ultimo anno di dottorato sarebbe stato molto più grigio senza la presenza e l'affetto delle mie stupende coinquiline Nicoletta, Marianna e Isabella (le Figure 3.2 e 3.3 sono anche merito suo!), ognuna con le sue qualità. È stato particolarmente complicato per me abbandonare l'appartamento e le nostre piccole abitudini. Sicuramente il legame di amicizia non si spezzerà!

Grazie a Daniele, ho anche conosciuto una bellissima realtà di Firenze che è la ASD Atletica Castello. Pur non essendo esattamente un fulmine di guerra come podista, mi sono divertito un sacco durante e dopo gli allenamenti (soprattutto dopo!), e non vedo l'ora di ripetere le immancabili partite a calcino con Daniele, Federica, Marta e i miei super colleghi "cuochi etnici" Daniele e Tina.

Dulcis in fundo, non voglio dimenticarmi delle persone più importanti per me, cioè i miei genitori. Non posso ancora sapere se un giorno avrò il privilegio di diventare un professore universitario, o se le circostanze mi porteranno a cambiare direzione. In ogni caso, vi ringrazio per aver creduto in questo percorso, e soprattutto perchè so che potrò sempre contare sul vostro immenso aiuto e ascolto, anche se mi troverò a centinaia di chilometri di distanza.

Contents

List of Figures vii
Introduction ix
1 Preliminaries 1
1.1 Orthogonality vs polarity in Euclidean space 1
1.2 The ED degree of an algebraic variety 3
1.3 ED degree for affine cones and duality 10
1.4 The Chow ring of a projective variety 14
1.5 Polar classes of projective varieties 16
1.6 Overview of holomorphic vector bundles 19
1.7 Chern classes of smooth projective varieties 24
1.8 ED degree formulas in terms of Chern and Chern-Mather classes 27
2 The distance from the variety of rank-one symmetric tensors 31
2.1 E-eigenvalues and E-eigenvectors of symmetric tensors 34
2.2 The E-characteristic polynomial of a symmetric tensor 40
2.3 The product of the E-eigenvalues of a symmetric tensor 46
2.4 The case of binary symmetric tensors 56
3 On the orthogonal stability of binary and ternary forms 67
3.1 Semistability and stability criteria 71
3.2 Stability criteria for binary forms 73
3.3 An orthogonal stability criterion for harmonic ternary forms 77
3.4 A dictionary between harmonic ternary forms and binary forms 80
3.5 Geometrical description of the stability for harmonic ternary forms 85
4 The ED polynomial of an algebraic variety 97
4.1 Definition of the ED polynomial 99
4.2 First properties of the ED polynomial 102
4.3 The highest coefficient of the ED polynomial 112
4.4 The lowest coefficient of the ED polynomial 116
5 The ED polynomial of a Segre-Veronese variety 125
5.1 The distance from a Segre-Veronese variety 129
5.2 On the zero loci of the extreme coefficients 135
5.3 The product of the singular values of a tensor 141
5.4 The case of binary tensors 153
Bibliography 166

List of Figures

1 The matrices $U, U_{J} \in \sigma_{k}\left(X^{\mathbb{R}}\right)$ and $U-U_{J} \in \sigma_{n_{1}-k}\left(X^{\mathbb{R}}\right)$. xv
2 The slices $U_{j}^{(1)}$ and $U_{j}^{(2)}$ appearing in $g_{j}(U)$ xxi
3 The evolute Σ_{X} of the ellipse $X^{\mathbb{R}}$ divides \mathbb{R}^{2} into two chambers. xxiv
1.1 A point $P \in H_{\infty}$ and its polar hyperplane P^{\perp}. 3
1.2 The normal lines from $u \in \mathbb{R}^{2}$ to the cardioid $X^{\mathbb{R}} \subset \mathbb{R}^{2}$. 4
1.3 The Voronoi cell of the cuspidal cubic $X: x_{1}^{3}-x_{2}^{2}=0$ at the origin 6
1.4 A point u varying in \mathbb{R}^{2} and the critical points for $\delta_{u}^{\mathbb{R}}$ on the ellipse 9
1.5 The bottlenecks of the lemniscata in \mathbb{R}^{2}. 11
1.6 The bijection between critical points of δ_{u} on X and on its dual X^{\vee} 12
1.7 The first polar variety of a plane conic. 18
2.1 A plane cubic X_{f} non-transversal to the isotropic quadric Q. 55
2.2 The bisector hypersurface of the rational normal curve $X_{(3)} \subset \mathbb{P}_{\mathbb{C}}^{3}$. 61
2.3 The ED discriminant $\Sigma_{X_{(3)}}$ of the rational normal curve $X_{(3)} \subset \mathbb{P}_{\mathrm{C}}^{3}$. 62
3.1 Non-stable and non-semistable harmonic plane quintics. 70
3.2 The locus of non-semistable cubics for $\operatorname{SO}(2, \mathbb{C})$. 75
3.3 The loci of non-stable and non-semistable quartics for $\mathrm{SO}(2, \mathbb{C})$ 76
3.4 The non-stable harmonic plane conic $C_{a b}=L_{a} \cup L_{b}$ in $\left(\mathbb{P}_{\mathrm{c}}^{2}\right)^{\vee}$ 80
3.5 Examples of harmonic plane cubics for $\mathrm{SO}(3, \mathbb{C})$. 93
3.6 Examples of harmonic plane quartics for $\mathrm{SO}(3, \mathbb{C})$. 95
4.1 A critical point $x \in X$ for δ_{u} on the "three leaved clover" $X \subset \mathbb{R}^{2}$. 101
4.2 An example of the variety defined by $\Delta_{\varepsilon^{2}}$ EDpoly $_{X, u}\left(\varepsilon^{2}\right)$. 105
4.3 The lowest coefficients of the ED polynomials of X and \bar{X}. 107
4.4 The ED polynomial of an affine subspace. 111
4.5 Comparing the ED discriminants Σ_{C} and $\Sigma_{\bar{C}}$ 116
5.1 Singular tensors $\sigma x \in X_{\mu}$ and critical points $u-\sigma x \in X_{\mu}^{\vee}$ for $\delta_{F, \mu, u} .133$
5.2 The sequences $\left\{f_{k}\right\} \subset X_{\mu}^{\vee}$ and $\left\{u_{k}-f_{k}\right\} \subset X_{\mu}$. 139
5.3 The slices $u_{j}^{(1)}$ and $u_{j}^{(2)}$ appearing in the computation of $f_{4,\{j\}}$ 158
5.4 The slices $f_{\{1,2\}}^{(r s)}$ appearing in the expression of $f_{4,\{1,2\}}(u)$. 159

Introduction

Best rank- k approximation for matrices

This thesis is motivated by questions as the following classical one:
Question 1. Among all real $n_{1} \times n_{2}$ matrices of rank at most k, which one is closest to an assigned real matrix U ?

If not specified, in this thesis we adopt a coordinate-free notation, since most of the objects and properties presented are invariant with respect to a certain group action. For example, any real $n_{1} \times n_{2}$ matrix may be thought as an element of the tensor product $V^{\mathbb{R}}:=V_{1}^{\mathbb{R}} \otimes V_{2}^{\mathbb{R}}$ of two real vector spaces $V_{1}^{\mathbb{R}}$ and $V_{2}^{\mathbb{R}}$ of dimensions n_{1} and n_{2}, respectively.

The rank of a matrix $U \in V^{\mathbb{R}}$, denoted by $\operatorname{rk}(U)$, is the minimum positive integer k such that U can be written as the sum of k decomposable matrices in $V^{\mathbb{R}}$, namely matrices of the form $v_{1} \otimes v_{2}$ for some vectors $v_{j} \in V_{j}^{\mathbb{R}}, j \in\{1,2\}$. Having fixed coordinate systems in $V_{1}^{\mathbb{R}}$ and $V_{2}^{\mathbb{R}}$, the number $\operatorname{rk}(U)$ coincides with the more classical notion of rank, namely the maximum number of linearly independent rows or columns of the array of format $n_{1} \times n_{2}$ associated to U. In particular, the array associated to a rank-one matrix is of the form $v_{1} v_{2}^{T}$ for some column arrays $v_{j} \in \mathbb{R}^{n_{j}}, j \in\{1,2\}$.

For the moment, $X^{\mathbb{R}}$ denotes the set of matrices in $V^{\mathbb{R}}$ of rank at most one. Note that $X^{\mathbb{R}}$ is a real cone through the origin in $V^{\mathbb{R}}$. In general, a subset $Z \subset \mathbb{K}^{n}$ (usually $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$) is a cone when $z \in Z$ implies $\lambda z \in Z$ for all $\lambda \in \mathbb{K}$. For this reason, $X^{\mathbb{R}}$ may be regarded as a subset of the projective space $\mathbb{P}\left(V^{\mathbb{R}}\right)$ as well. Hopefully without leading to confusion, we often use the same notation for a projective subset $Z \subset \mathbb{P}\left(\mathbb{K}^{n}\right)$ and for its associated cone $Z \subset \mathbb{K}^{n}$.

The set $X^{\mathbb{R}}$ is among the most deeply known varieties in Algebraic Geometry. Indeed, it is the affine cone of the image of the Segre embedding

$$
\begin{equation*}
\text { Seg : } \mathbb{P}\left(V_{1}^{\mathbb{R}}\right) \times \mathbb{P}\left(V_{2}^{\mathbb{R}}\right) \rightarrow \mathbb{P}\left(V^{\mathbb{R}}\right), \quad \operatorname{Seg}\left(\left[v_{1}\right],\left[v_{2}\right]\right):=\left[v_{1} \otimes v_{2}\right] . \tag{0.0.1}
\end{equation*}
$$

Instead the set of matrices in $V^{\mathbb{R}}$ of rank at most $1 \leq k \leq \min \left\{n_{1}, n_{2}\right\}$ is the affine cone of the subset

$$
\begin{equation*}
\bigcup_{\ldots, P_{k} \in X^{\mathbb{R}}}\left\langle P_{1}, \ldots, P_{k}\right\rangle \subset V^{\mathbb{R}} \tag{0.0.2}
\end{equation*}
$$

where $\left\langle P_{1}, \ldots, P_{k}\right\rangle$ denotes the projective subspace generated by the points $P_{1}=$ $\left[v_{1}\right], \ldots, P_{k}=\left[v_{k}\right]$. The Zariski closure of the set introduced in (0.0.2) coincides with the known k-th secant variety of the projective variety $X^{\mathbb{R}}$ and is denoted by $\sigma_{k}\left(X^{\mathbb{R}}\right)$. Actually, in this case the set in (0.0.2) is already closed, hence it is equal to $\sigma_{k}\left(X^{\mathbb{R}}\right)$. Topologically speaking, this means that if a matrix $U \in V^{\mathbb{R}}$ is the limit of a sequence of matrices of rank k, then U has rank at most k as well. In the next section, we provide an example in which this property is not true any more for tensors.

Note that there is a sequence of inclusions (assuming $n_{1} \leq n_{2}$)

$$
\{0\} \subset X^{\mathbb{R}}=\sigma_{1}\left(X^{\mathbb{R}}\right) \subset \sigma_{2}\left(X^{\mathbb{R}}\right) \subset \cdots \subset \sigma_{n_{1}}\left(X^{\mathbb{R}}\right)=V^{\mathbb{R}} .
$$

In particular, for all $1 \leq k \leq n_{1}-1$, the singular locus of $\sigma_{k}\left(X^{\mathbb{R}}\right)$ is precisely $\sigma_{k-1}\left(X^{\mathbb{R}}\right)$. Since $\sigma_{k}\left(X^{\mathbb{R}}\right)$ are all projective varieties, they are cut out by homogeneous polynomials. The way for obtaining them is suggested by the intuition: indeed, the condition for a matrix $U=\left(u_{i j}\right) \in V^{\mathbb{R}}$ to have rank at most k is expressed algebraically by requiring all its minors of order $k+1$ to vanish. Moreover, the projective codimension and the degree of $\sigma_{k}\left(X^{\mathbb{R}}\right)$ are respectively (see [HT])

$$
\operatorname{codim}\left(\sigma_{k}\left(X^{\mathbb{R}}\right)\right)=\left(n_{1}-k\right)\left(n_{2}-k\right), \quad \operatorname{deg}\left(\sigma_{k}\left(X^{\mathbb{R}}\right)\right)=\prod_{j=0}^{n_{1}-1-k} \frac{\binom{n_{2}+j}{k}}{\binom{k+j}{k}} .
$$

Let us go back to Question 1, which can be reformulated as follows.
Question 2. Which are the critical points $A \in \sigma_{k}\left(X^{\mathbb{R}}\right)$ of the distance function from a fixed matrix $U \in V^{\mathbb{R}}$ to the affine variety $\sigma_{k}\left(X^{\mathbb{R}}\right)$?

The expression "distance function" in Question 2 establishes that a distance in $V^{\mathbb{R}}$ has been already defined. In other words, we need to fix an inner product $q^{\mathbb{R}}$ on $V^{\mathbb{R}}$. The associated quadratic form, denoted by $q^{\mathbb{R}}$ as well, induces a squared distance function

$$
\begin{equation*}
\delta^{\mathbb{R}}: V_{\mathbb{R}}^{\mathbb{R}} \times V^{\mathbb{R}} \rightarrow \mathbb{R}, \quad \delta^{\mathbb{R}}(A, B):=q^{\mathbb{R}}(A-B) . \tag{0.0.3}
\end{equation*}
$$

In addition, if we fix a matrix $U \in V^{\mathbb{R}}$ in one of the two arguments of $\delta^{\mathbb{R}}$, then we obtain the squared distance function from U defined by $\delta_{U}^{\mathbb{R}}(A):=\delta^{\mathbb{R}}(U, A)$ for all
$A \in V^{\mathbb{R}}$. A classical inner product over $V^{\mathbb{R}}$ is defined as follows. First, we assume that both $V_{1}^{\mathbb{R}}$ and $V_{2}^{\mathbb{R}}$ are equipped with inner products $q_{1}^{\mathbb{R}}$ and $q_{2}^{\mathbb{R}}$, respectively. Afterwards, we define the inner product of two decomposable matrices $x_{1} \otimes x_{2}$ and $y_{1} \otimes y_{2}$ as

$$
\begin{equation*}
q_{F}^{\mathbb{R}}\left(x_{1} \otimes x_{2}, y_{1} \otimes y_{2}\right):=q_{1}^{\mathbb{\mathbb { R }}}\left(x_{1}, y_{1}\right) q_{2}^{\mathbb{R}}\left(x_{2}, y_{2}\right) \tag{0.0.4}
\end{equation*}
$$

and then we extend the definition to the whole vector space $V^{\mathbb{R}}$, using the fact that decomposable matrices span $V^{\mathbb{R}}$. The most remarkable property of the squared distance $\delta_{F}^{\mathbb{R}}$ induced by the inner product $q_{F}^{\mathbb{R}}$ already defined is its invariance with respect to the group $\mathrm{SO}\left(V_{1}^{\mathbb{R}}\right) \times \mathrm{SO}\left(V_{2}^{\mathbb{R}}\right)$. Postponing a rigorous definition to the next chapters, this means that the distance $\delta_{F}^{\mathbb{R}}$ is compatible with the action by rotations on $V^{\mathbb{R}}$ of the subgroup $\mathrm{SO}\left(V_{1}^{\mathbb{R}}\right) \times \mathrm{SO}\left(V_{2}^{\mathbb{R}}\right) \subset \mathrm{SO}\left(V^{\mathbb{R}}\right)$.

Given a matrix $U \in V^{\mathbb{R}}$, a critical point of $\delta_{F, U}^{\mathbb{R}}$ is a smooth point $A \in \sigma_{k}\left(X^{\mathbb{R}}\right)$ such that

$$
\begin{equation*}
q_{F}^{\mathbb{R}}(U-A, B)=0 \quad \forall B \in T_{A}\left(\sigma_{k}\left(X^{\mathbb{R}}\right)\right), \tag{0.0.5}
\end{equation*}
$$

where $T_{A}\left(\sigma_{k}\left(X^{\mathbb{R}}\right)\right)$ denotes the tangent space of $\sigma_{k}\left(X^{\mathbb{R}}\right)$ at A. In general, tangent spaces of secant varieties of projective varieties are described through the

Theorem 0.0.1 (Terracini Lemma). Let $Z \subset \mathbb{P}_{\mathbb{K}}^{n}$ be an irreducible variety. If $\operatorname{char}(\mathbb{K})=0$, then

$$
T_{z}\left(\sigma_{k}(Z)\right)=\left\langle T_{z_{1}}(Z), \ldots, T_{z_{k}}(Z)\right\rangle
$$

for all z in an open subset of $\sigma_{k}(Z), z_{1}, \ldots, z_{k} \in Z, z \in\left\langle z_{1}, \ldots, z_{k}\right\rangle$.
Thanks to the previous theorem, we need to compute only the tangent spaces of the smooth variety $X^{\mathbb{R}}$. More precisely, given a rank-one matrix $A=\xi \otimes \eta \in X^{\mathbb{R}}$, we have the identity

$$
\begin{equation*}
T_{A}\left(X^{\mathbb{R}}\right)=\left\langle v_{1} \otimes \eta+\xi \otimes v_{2} \mid v_{1} \in V_{1}^{\mathbb{R}}, v_{2} \in V_{2}^{\mathbb{R}}\right\rangle . \tag{0.0.6}
\end{equation*}
$$

Indeed, any curve $A(t):=\xi(t) \otimes \eta(t)$ over $X^{\mathbb{R}}$ with $A(0):=A$ has derivative at $t=0$ defined by $A^{\prime}(0)=\xi^{\prime}(0) \otimes \eta+\xi \otimes \eta^{\prime}(0)$. Since the vectors $\xi^{\prime}(0)$ and $\eta^{\prime}(0)$ are arbitrary, we get the identity (0.0.6). Therefore, by Theorem 0.0.1, the tangent space of $\sigma_{k}\left(X^{\mathbb{R}}\right)$ at the smooth point $A=\xi_{1} \otimes \eta_{1}+\cdots+\xi_{k} \otimes \eta_{k} \in \sigma_{k}\left(X^{\mathbb{R}}\right)$ is

$$
\begin{equation*}
T_{A}\left(\sigma_{k}\left(X^{\mathbb{R}}\right)\right)=\left\langle\sum_{j=1}^{k} v_{j}^{(1)} \otimes \eta_{j}+\xi_{j} \otimes v_{j}^{(2)} \mid v_{j}^{(l)} \in V_{l}^{\mathbb{R}} \forall j\right\rangle . \tag{0.0.7}
\end{equation*}
$$

Hence, the condition for $A=\xi_{1} \otimes \eta_{1}+\cdots+\xi_{k} \otimes \eta_{k}$ to be critical for $\delta_{F, U}^{\mathrm{R}}$ restricted to $\sigma_{k}\left(X^{\mathbb{R}}\right)$ is

$$
\begin{equation*}
q_{F}^{\mathbb{\mathrm { B }}}\left(U-A, \sum_{j=1}^{k} v_{j}^{(1)} \otimes \eta_{j}+\xi_{j} \otimes v_{j}^{(2)}\right)=0 \tag{0.0.8}
\end{equation*}
$$

for all $v_{j}^{(l)} \in V_{l}^{\mathbb{R}}$, and all $1 \leq j \leq k$. Throughout the thesis, we indicate with [n] the set $\{1, \ldots, n\}$ for all integers $n \geq 1$.

Theorem 0.0.2 (Singular Value Decomposition). Any matrix $U \in V^{\mathbb{R}}$ may be written as

$$
\begin{equation*}
U=\sum_{j=1}^{n_{1}} \sigma_{j}\left(u_{j}^{(1)} \otimes u_{j}^{(2)}\right), \tag{0.0.9}
\end{equation*}
$$

where $\sigma_{1} \geq \cdots \geq \sigma_{n_{1}}$ are nonnegative real numbers, while $\left\{u_{1}^{(1)}, \ldots, u_{n_{1}}^{(1)}\right\}$ and $\left\{u_{1}^{(2)}, \ldots, u_{n_{2}}^{(2)}\right\}$ are orthonormal bases of $V_{1}^{\mathbb{R}}$ and $V_{2}^{\mathbb{R}}$, respectively. The decomposition (0.0.9) is called Singular Value Decomposition (SVD) of U. The numbers σ_{j} are called singular values of U, while for all $j \in\left[n_{1}\right]$, the pair $\left(u_{j}^{(1)}, u_{j}^{(2)}\right)$ is a singular vector pair of U. If the singular values are all distinct, then all singular vector pairs are unique up to a simultaneous change of sign.

Now assume that (0.0.9) is a SVD of the matrix U. Define

$$
\begin{equation*}
U_{J}:=\sum_{j \in J} \sigma_{j}\left(u_{j}^{(1)} \otimes u_{j}^{(2)}\right) \tag{0.0.10}
\end{equation*}
$$

for all $J \subset\left[n_{1}\right]$. Then

$$
\begin{aligned}
& q_{F}^{\mathbb{R}}\left(U-U_{J}, \sum_{s \in J} v_{s}^{(1)} \otimes u_{s}^{(2)}+u_{s}^{(1)} \otimes v_{s}^{(2)}\right)= \\
& =q_{F}^{\mathbb{R}}\left(\sum_{j \notin J} \sigma_{j}\left(u_{j}^{(1)} \otimes u_{j}^{(2)}\right), \sum_{s \in J} v_{s}^{(1)} \otimes u_{s}^{(2)}+u_{s}^{(1)} \otimes v_{s}^{(2)}\right)= \\
& =\sum_{j \notin J} \sum_{s \in J} \sigma_{j}\left[q_{1}^{\mathbb{R}}\left(u_{j}^{(1)}, v_{s}^{(1)}\right) q_{2}^{\mathbb{R}}\left(u_{j}^{(2)}, u_{s}^{(2)}\right)+q_{1}^{\mathbb{R}}\left(u_{j}^{(1)}, u_{s}^{(1)}\right) q_{2}^{\mathbb{R}}\left(u_{j}^{(2)}, v_{s}^{(2)}\right)\right],
\end{aligned}
$$

and the last expression is zero since $q_{1}^{\mathbb{R}}\left(u_{j}^{(1)}, u_{s}^{(1)}\right)=q_{2}^{\mathbb{R}}\left(u_{j}^{(2)}, u_{s}^{(2)}\right)=0$ for all $j \notin J$ and $s \in J$. This means that the matrix U_{J} defined above is a critical point of the distance function $\delta_{F, U}^{\mathbb{R}}$ on $\sigma_{k}\left(X^{\mathbb{R}}\right)$. Moreover, one can prove that every critical point must be of this form. Indeed, we have the following result.

Theorem 0.0.3 (Eckart-Young). Consider a matrix $U \in V^{\mathbb{R}}$ and its SVD as in (0.0.9). Let $1 \leq k \leq \operatorname{rk}(U)$. Then all the critical points on $\sigma_{k}\left(X^{\mathbb{R}}\right)$ of the distance function $\delta_{F, U}^{\mathbb{R}}$ (induced by the orthogonally invariant quadratic form $q_{F}^{\mathbb{R}}$ in $V^{\mathbb{R}}$) are of the form U_{J} in (0.0.10) for all subsets $J \subset[\operatorname{rk}(U)]$ of cardinality k. If the nonzero singular values of U are distinct then the number of critical points is $\binom{\mathrm{rk}(U)}{k}$.

As a corollary of Theorem 0.0.3, one may verify from the definition of SVD that the the distance between U and a critical point $U_{J} \in \sigma_{k}\left(X^{\mathbb{R}}\right)$ is

$$
\begin{equation*}
q_{F}^{\mathbb{R}}\left(U-U_{J}\right)=\sum_{j \notin J} \sigma_{j}^{2} \tag{0.0.11}
\end{equation*}
$$

In particular, a global minimizer of $\delta_{F, U}^{\mathbb{R}}$ is obtained choosing $J=[k]$, and the corresponding minimum is $\sigma_{k+1}^{2}+\cdots+\sigma_{n_{1}}^{2}$. This is often called a best rank-k approximation of the matrix U.

Theorem 0.0.3 gives a complete answer to Question 2, at least when the chosen inner product over $V^{\mathbb{R}}$ is the one introduced in (0.0.4). In the next chapters, we will see that, choosing a "sufficiently good" inner product $q^{\mathbb{R}}$ on $V^{\mathbb{R}}$ (in a sense made clearer throughout the thesis), the number of critical points of the associated function $\delta_{U}^{\mathbb{R}}$ could be still determined a priori, even though critical points are much harder to compute.

In our applications and examples, we always assume that $V_{j}=\mathbb{R}^{n_{j}}$ and that $q_{j}^{\mathbb{R}}$ is the standard Euclidean inner product, for all $j \in\{1,2\}$. Then, the orthogonally invariant inner product $q_{F}^{\mathbb{R}}$ introduced via the identities in (0.0.4) has the more familiar expression

$$
q_{F}^{\mathbb{R}}(U, A)=\operatorname{tr}\left(U^{T} A\right) \quad \forall U=\left(u_{i j}\right), A=\left(a_{i j}\right) \in \mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}
$$

In particular, it coincides with the well-known Frobenius inner product on $\mathbb{R}^{n_{1}} \otimes$ $\mathbb{R}^{n_{2}}$, which justifies the notation $q_{F}^{\mathbb{R}}$. The number $\operatorname{tr}\left(U^{T} A\right)$ is the trace of $U^{T} A$.

In this coordinate-based setting, the SVD of U written in (0.0.9) has the matricial expression

$$
\begin{equation*}
U=U_{1} \Sigma U_{2}^{T} \tag{0.0.12}
\end{equation*}
$$

On one hand, U_{1} and U_{2} are the orthogonal matrices whose columns are formed by vectors $u_{j}^{(1)}$ and $u_{j}^{(2)}$, respectively. On the other hand, the matrix Σ has zero values at the entries (i, j) with $i \neq j$ and its diagonal entries are the singular values of U.

In addition, all the critical points on $\sigma_{k}\left(X^{\mathbb{R}}\right)$ of $\delta_{F, U}^{\mathbb{R}}$ are given by

$$
\begin{equation*}
U_{1} \Sigma_{J} U_{2}^{T}, \quad \Sigma_{J}:=\sum_{j \in J} \Sigma_{j} \quad \forall J \subset[\operatorname{rk}(U)] \tag{0.0.13}
\end{equation*}
$$

where Σ_{j} is the $n_{1} \times n_{2}$ matrix whose (j, j)-th element is σ_{j}, while all the other entries of Σ_{j} are zero.

The Eckart-Joung Theorem does not provide only a method for solving Question 2. Starting from the definition of singular value and identity (0.0.12), one verifies that

$$
U u_{j}^{(2)}=\sigma_{j} u_{j}^{(1)} \text { and } U^{T} u_{j}^{(1)}=\sigma_{j} u_{j}^{(2)} \quad \forall j \in\left[n_{1}\right] .
$$

In particular, the squared singular values σ_{i}^{2} are the eigenvalues of both the symmetric matrices $U U^{T}$ and $U^{T} U$. That is, the singular values of U are the roots of the characteristic polynomial of $U U^{T}$

$$
\begin{equation*}
\operatorname{det}\left(U U^{T}-\varepsilon^{2} I_{n_{1}}\right)=0, \tag{0.0.14}
\end{equation*}
$$

where $I_{n_{1}}$ is the identity matrix of order n_{1}. Note that the polynomial at the left-hand side of equation (0.0.14) is homogeneous of degree $2 n_{1}$ in the ring of polynomials in the entries of U and ε and with real coefficients.

Changing our perspective, if we fix $\varepsilon \geq 0$, equation (0.0.14) describes an affine hypersurface in $V^{\mathbb{R}}$. Can we describe its points?

The answer can be found again looking at the Eckart-Joung Theorem. Motivated by identity (0.0 .11) when $k+1=\operatorname{rk}(U)=n_{1}$, one may interpret the hypersurface defined by equation (0.0.14) as the locus of matrices $U \in V^{\mathbb{R}}$ admitting a best rank- $\left(n_{1}-1\right)$ approximation of length ε. In other words, we are describing the so-called ε-offset of the variety $\sigma_{n_{1}-1}\left(X^{\mathbb{R}}\right)$.

More in general, one might describe the ε-offset of $\sigma_{k}\left(X^{\mathbb{R}}\right)$ for all $k \in\left[n_{1}\right]$ via the singular values of U, but there are only two cases in which we get a "nice" formula: the above-mentioned case $k=n_{1}-1$, and the case $k=1$, which we are going to explain.

To this aim, we need to make another observation. Let $U \in V^{\mathbb{R}}$ be a matrix of full rank and let $U_{\{1\}}+\cdots+U_{\left\{n_{1}\right\}}$ be its SVD. Applying identity (0.0.11) for some $J \subset\left[n_{1}\right]$ with $|J|=k$ and for its complement $\left[n_{1}\right] \backslash J$, we can derive a simple, but substantial, identity involving two squared distances: one between U and a critical point U_{J} of $\delta_{F, U}^{\mathbb{R}}$ on $\sigma_{k}\left(X^{\mathbb{R}}\right)$, the other between U and the associated critical point $U_{\left[n_{1}\right] \backslash J}$ of $\delta_{F, U}^{\mathbb{R}}$ on $\sigma_{n_{1}-k}\left(X^{\mathbb{R}}\right)$, namely

$$
\begin{equation*}
q_{F}^{\mathbb{R}}\left(U-U_{J}\right)+q_{F}^{\mathbb{R}}\left(U_{J}\right)=q_{F}^{\mathbb{R}}\left(U_{\left[n_{1}\right] \backslash J}\right)+q_{F}^{\mathbb{\mathbb { R }}}\left(U_{J}\right)=q_{F}^{\mathbb{\mathbb { R }}}(U) . \tag{0.0.15}
\end{equation*}
$$

When $k=1, J=\{j\}$ for some $j \in\left[n_{1}\right]$ and $q_{F}^{\mathbb{R}}\left(U_{J}\right)=\sigma_{j}^{2}$. On one hand, we have that $q_{F}^{\mathbb{R}}\left(U_{J}\right)$ is a root of the characteristic polynomial introduced in (0.0.14). On the other hand, $q_{F}^{\mathrm{R}}\left(U-U_{J}\right)$ is a root of the polynomial

$$
\begin{equation*}
\operatorname{det}\left[U U^{T}-\left(q_{F}^{\mathbb{R}}(U)-\lambda^{2}\right) I_{n_{1}}\right]=0 . \tag{0.0.16}
\end{equation*}
$$

In a similar fashion of equation (0.0.14), equation (0.0.16) describes the λ-offset of the variety $\sigma_{1}\left(X^{\mathbb{R}}\right)=X^{\mathbb{R}}$. Thus we found an easy way to switch between the family of offsets of either $\sigma_{n_{1}-1}\left(X^{\mathbb{R}}\right)$ or $X^{\mathbb{R}}$. More in general, simply from identity (0.0 .15) one could determine the equation of any offset of $\sigma_{k}\left(X^{\mathbb{R}}\right)$ from the corresponding equations of the offsets of $\sigma_{n_{1}-k}\left(X^{\mathbb{R}}\right)$.

In fact, this nice relation is not just a coincidence. Indeed, it turns out that $\sigma_{n_{1}-k}\left(X^{\mathbb{R}}\right)$ is the dual affine cone of $\sigma_{k}\left(X^{\mathbb{R}}\right)$ (see Definition 1.3.1).

Figure 1: The matrices $U, U_{J} \in \sigma_{k}\left(X^{\mathbb{R}}\right)$ and $U-U_{J} \in \sigma_{n_{1}-k}\left(X^{\mathbb{R}}\right)$.

Summing up, in Questions 1 and 2 we considered the problem of computing the best rank- k approximation of a real rectangular matrix. The answer comes from the celebrated Eckart-Joung Theorem, which uses the Singular Value Decomposition of a matrix. In a slightly wider perspective, this theorem allows us to compute the family of offset hypersurfaces of all determinantal varieties, and to derive a nice duality property.

From matrices to tensors

Motivated by the results stated above, mathematicians tried to understand if the best rank-k approximation problem for matrices might be restated and solved for tensors of any format as well.

Given nonnegative integers $1 \leq n_{1} \leq \cdots \leq n_{d}$, a real tensor of format $n_{1} \times$ $\cdots \times n_{d}$ is any element of the tensor product

$$
V^{\mathbb{R}}:=V_{1}^{\mathbb{R}} \otimes \cdots \otimes V_{d}^{\mathbb{R}}
$$

of d real vector spaces $V_{1}^{\mathbb{R}}, \ldots, V_{d}^{\mathbb{R}}$ of dimensions n_{1}, \ldots, n_{d}, respectively. Our choice is to omit the dependence from $\underline{n}:=\left(n_{1}, \ldots, n_{d}\right)$ in the notation of $V^{\mathbb{R}}$. This dependence is made clearer from the context in the single chapters and examples. In coordinates, a tensor $T \in V^{\mathbb{R}}$ is indicated by an \underline{n}-dimensional array of real numbers $\left(T_{i_{1} \cdots i_{d}}\right)$, where $i_{j} \in\left[n_{j}\right]$ for all $j \in[d]$.

A tensor $T \in V^{\mathbb{R}}$ is decomposable (or is a rank-one tensor) if $T=v_{1} \otimes \cdots \otimes v_{d}$ for some vectors $v_{j} \in V_{j}^{\mathbb{R}}$ for all $j \in[d]$. Keeping in mind the matrix intuition, the rank of a tensor $T \in V^{\mathbb{R}}$, denoted by $\mathrm{rk}(T)$, is the minimum positive integer k such that T can be written as the sum of k decomposable tensors of $V^{\mathbb{R}}$.

In this section, we denote by $X_{d}^{\mathbb{R}}$ the affine cone of tensors in $V^{\mathbb{R}}$ of rank at most one. This is known as the affine cone of the image of the Segre embedding

$$
\begin{equation*}
\operatorname{Seg}_{d}: \prod_{j=1}^{d} \mathbb{P}\left(V_{j}^{\mathbb{R}}\right) \rightarrow \mathbb{P}\left(V^{\mathbb{R}}\right), \quad \operatorname{Seg}_{d}\left(\left[v_{1}\right], \ldots,\left[v_{d}\right]\right):=\left[v_{1} \otimes \cdots \otimes v_{d}\right] \tag{0.0.17}
\end{equation*}
$$

For brevity, we do not indicate explicitly the dependence from \underline{n} in the notation for both Seg_{d} and $X_{d}^{\mathbb{R}}$ as well. For $d=2$, we have that $\operatorname{Seg}_{2}=\operatorname{Seg}$ and $X_{2}^{\mathbb{R}}=X^{\mathbb{R}}$ as in the previous section.

Mimicking (0.0.2) in the matrix case, the set of tensors of rank at most k is the union of all linear spans of k points of the projective variety $X^{\mathbb{R}}$. We show through an example extracted from [Lan, §2.4.5] that in this case this union is not closed. Suppose that $d=3$ and consider the tensor

$$
T=v_{1} \otimes v_{2} \otimes w_{3}+v_{1} \otimes w_{2} \otimes v_{3}+w_{1} \otimes v_{2} \otimes v_{3} \in V^{\mathbb{R}} .
$$

As the presentation of T suggests, $\operatorname{rk}(T) \leq 3$. One can verify that actually $\operatorname{rk}(T)=3$, but T can be written as the limit of a sequence of tensors of rank at most two:

$$
T=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left[\left(v_{1}+\varepsilon w_{1}\right) \otimes\left(v_{2}+\varepsilon w_{2}\right) \otimes\left(v_{3}+\varepsilon w_{3}\right)-v_{1} \otimes v_{2} \otimes v_{3}\right] .
$$

This example suggests to introduce the border rank of a tensor $T \in V^{\mathbb{R}}$, denoted by $\underline{\mathrm{rk}}(T)$, as the minimum k such that T belongs to the k-secant variety $\sigma_{k}\left(X_{d}^{\mathbb{R}}\right)$. Note that $\operatorname{rk}(T) \geq \underline{\mathrm{rk}}(T)$. Equality holds in the case of matrices $(d=2)$, but the above example tells us that the inequality might be strict even for $d=3$.

Unlike the case of matrices, finding the generators for the ideal of $\sigma_{k}\left(X_{d}^{\mathbb{R}}\right)$ is a very hard task. When $k=1$, the usual way to compute equations for $\sigma_{1}\left(X_{d}^{\mathbb{R}}\right)=X_{d}^{\mathbb{R}}$ is by following this idea: a tensor $T \in V^{\mathbb{R}}$ is decomposable if and only if it can be written as

$$
\begin{equation*}
T=v_{j} \otimes T_{j}, \quad v_{j} \in V_{j}^{\mathbb{R}}, T_{j} \in \otimes_{i \neq j} V_{j}^{\mathbb{R}} \tag{0.0.18}
\end{equation*}
$$

for all $j \in[d]$. Now T written in (0.0.18) is a rank-one matrix, hence all its 2×2 minors must vanish. In this way, one obtains all the equations for $X_{d}^{\mathbb{R}}$ and observes that the ideal of $X^{\mathbb{R}}$ is generated by quadrics. This approach is no longer useful for computing the equations of the higher order secant varieties of $X_{d}^{\mathbb{R}}$.

Let us equip the tensor space $V^{\mathbb{R}}$ with the most natural inner product. First, suppose that $q_{j}^{\mathbb{\mathbb { R }}}$ is an arbitrary inner product on $V_{j}^{\mathbb{R}}$, for all $j \in[d]$. The Frobenius inner product of two decomposable tensors $x_{1} \otimes \cdots \otimes x_{d}$ and $y_{1} \otimes \cdots \otimes y_{d}$ is defined as

$$
\begin{equation*}
q_{F}^{\mathbb{R}}\left(x_{1} \otimes \cdots \otimes x_{d}, y_{1} \otimes \cdots \otimes y_{d}\right):=q_{1}^{\mathbb{R}}\left(x_{1}, y_{1}\right) \cdots q_{d}^{\mathbb{R}}\left(x_{d}, y_{d}\right), \tag{0.0.19}
\end{equation*}
$$

and is extended to $V^{\mathbb{R}}$ by linearity. If we assume for all $j \in[d]$ that $V_{j}^{\mathbb{R}}=\mathbb{R}^{n_{j}}$ and that $q_{j}^{\mathbb{R}}$ is the standard Euclidean inner product, then

$$
\begin{equation*}
q_{F}^{\mathbb{R}}(T, U)=\sum_{i_{1}, \ldots, i_{d}} T_{i_{1}, \ldots, i_{d}} U_{i_{1}, \ldots, i_{d}} \tag{0.0.20}
\end{equation*}
$$

for all $T=\left(T_{i_{1}, \ldots, i_{d}}\right)$ and $U=\left(U_{i_{1}, \ldots, i_{d}}\right)$ in $\mathbb{R}^{n_{1}} \otimes \cdots \otimes \mathbb{R}^{n_{d}}$. The induced squared distance function is again $\delta_{F}^{\mathbb{R}}(U, T):=q_{F}^{\mathbb{R}}(U-T)$ for all $U, T \in V^{\mathbb{R}}$. Moreover, the squared distance function from a tensor $U \in V^{\mathbb{R}}$ is $\delta_{F, U}^{\mathbb{R}}(A):=\delta_{F}^{\mathbb{R}}(U, A)$ for all $A \in V^{\mathbb{R}}$.

Consider the following restatement of Question 2 in this generalized setting, at least in the case $k=1$.

Question 3. Given a tensor $U \in V^{\mathbb{R}}$, find all critical points of the distance function $\delta_{F, U}^{\mathbb{R}}$ over the Segre product $X_{d}^{\mathbb{R}}$.

In the previous section, we naively did not care much about possible non-real solutions of Question 2: indeed, every real matrix admits only real singular values and singular vector pairs. This is no longer true for higher format real tensors. In fact, the following result includes a generalization of singular values and singular vector pairs for real tensors, which might be non-real. If so, they are discarded when trying to find a real solution of Question 3. We refer to critical points of $\delta_{F, U}^{\mathrm{R}}$ on $X_{d}^{\mathbb{R}}$ simply as decomposable critical tensors.

In the statement below, we consider the complexifications $V_{j}:=V_{j}^{\mathbb{R}} \otimes \mathbb{C}$, $V:=V^{\mathbb{R}} \otimes \mathbb{C}$ and the complex algebraic variety $X_{d}:=X_{d}^{\mathbb{C}}$ (defined by the common complex zeros of the generators of the ideal of $X_{d}^{\mathbb{R}}$). In addition, the distance function $\delta_{F, U}^{\mathbb{R}}$ is extended to a complex-valued function $\delta_{F, U}: X_{d} \rightarrow \mathbb{C}$, which is not a Hermitian inner product. This approach is followed in general throughout the thesis: indeed, even if $\delta_{F, U}$ has the meaning of a distance function only over the reals, the complex critical points of $\delta_{F, U}$ are necessary to depict all the metric information about the real variety $X_{d}^{\mathbb{R}}$. For example, an important is being played by the isotropic tensors of V, which are all tensors $T \in V$ such that $q_{F}(T)=0$.

Theorem 0.0.4 (Lim, Qi). Given a real tensor $U \in V^{\mathbb{R}}$, the non-isotropic decomposable critical tensors for U correspond to tensors $\sigma\left(x_{1} \otimes \cdots \otimes x_{d}\right) \in \prod_{j \in[d]} V_{j}$ such that $q_{j}\left(x_{j}\right)=1$ for all $j \in[d]$ and

$$
q_{F}\left(U, x_{1} \otimes \cdots \otimes x_{j-1} \otimes_{-} \otimes x_{j+1} \otimes \cdots \otimes x_{d}\right)=\sigma \cdot q_{j}\left(x_{j},,_{-}\right) \quad \forall j \in[d]
$$

for some $\sigma \in \mathbb{C}$, called singular value of U. The corresponding d-ple $\left(x_{1}, \ldots, x_{d}\right)$ is called singular vector d-ple for U.

Note that both sides of relation (0.0.21) correspond to linear operators on V_{j}. In applications, more precisely when q_{F} is expressed as in (0.0.20), the system (0.0.21) may be rewritten as

$$
\begin{equation*}
U \cdot\left(x_{1} \otimes \cdots \otimes x_{j-1} \otimes x_{j+1} \otimes \cdots \otimes x_{d}\right)=\sigma x_{j} \quad \forall j \in[d] \tag{0.0.22}
\end{equation*}
$$

where at the left-hand side the dot means tensor contraction.
The best rank-one approximation problem stated in Question 3 is solved by the following result.

Theorem 0.0.5 (Lim). Let $U \in V^{\mathbb{R}}$. Then U always admits real singular values and real singular vector d-ples. In particular, if $\tilde{\sigma}$ is a singular value of U such that $\tilde{\sigma}^{2}$ is maximum, and if $\left(\tilde{x}_{1}, \ldots, \tilde{x}_{d}\right)$ is a singular d-ple associated with $\tilde{\sigma}$, then $\tilde{\sigma}\left(\tilde{x}_{1} \otimes \ldots \otimes \tilde{x}_{d}\right)$ is the best rank-one approximation of U.

Anyway, there are various considerations left about the singular values and the singular vector d-ples of a tensor. The first question one could formulate is: how many possible distinct singular values can a tensor have? How many of them can be real?

We already know that every matrix $U \in V^{\mathbb{R}}=\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}$ admits n_{1} real nonnegative singular values, counted with multiplicity. For higher dimensional tensors, we need to distinguish between the problems of either computing all the singular values of a tensor, or restricting only to the real ones.

If we are in the first case, there is a positive result which actually counts the number of critical decomposable tensors for an (eventually non-real) $U \in V$. There is a reasonable price to pay, as well as many results in Algebraic Geometry: indeed, this number is constant for "almost all choices" of $U \in V$, or for a general $U \in V$, meaning out of some Zariski closed set of V.

Theorem 0.0.6 (Friedland, Ottaviani). Let $U \in V^{\mathbb{R}}$ be general. Then U admits $c(\underline{n})$ distinct singular values. The integer $c(\underline{n})$ is the coefficient in the monomial $h_{1}^{n_{1}-1} \cdots h_{d}^{n_{d}-1}$ in the polynomial

$$
\begin{equation*}
\prod_{i=1}^{d} \frac{\hat{h}_{i}^{n_{i}}-h_{i}^{n_{i}}}{\hat{h}_{i}-h_{i}}, \quad \hat{h}_{i}:=\sum_{j \neq i} h_{j} \tag{0.0.23}
\end{equation*}
$$

With a little effort, one might verify that amazingly $c\left(n_{1}, n_{2}\right)=n_{1}$, thus recovering the matrix case. We explore further details of formula (0.0.23) and some other related formulas in Chapters 2 and 5.

The second problem is even more complicated than the first. Geometrically speaking, there exists a certain hypersurface of $V^{\mathbb{R}}$ which divides the space $V^{\mathbb{R}}$ into "chambers". In each of these regions, the number of real singular values,
counted with multiplicity, is constant. In this thesis, we deal with the problem of counting the number of real critical points of the distance function from a real algebraic variety in relatively easier cases.

Next, we might discuss how to compute the ε-offset of the Segre product X_{d}, and of its corresponding dual affine cone $X_{d}^{\vee} \subset V$. In the case of matrices, the solution was quite straightforward thanks to the "characteristic polynomial trick" of equation (0.0.14).

For higher dimensional tensors, in general what we can do is replacing the characteristic polynomial in (0.0.14) with the unique generator (up to scalars) of the ideal

$$
\begin{equation*}
I_{U} \cap \mathbb{C}\left[U_{i_{1}, \ldots, i_{d}}, \sigma\right], \tag{0.0.24}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{U} \subset \mathbb{C}\left[x_{j, 1}, \ldots, x_{j, n_{j}}, U_{i_{1}, \ldots, i_{d}}, \sigma\right] \tag{0.0.25}
\end{equation*}
$$

is the ideal generated by the equations in (0.0.21) together with the conditions $q_{j}\left(x_{j}\right)=1$ for all $j \in[d]$. The fact that the ideal in (0.0.24) is principal is explained in a more general setting in Section 4.1.

Example 0.0.7. Let us examine an example for $d=3$ and $n_{1}=n_{2}=n_{3}=2$. For a tensor $U=\left(U_{i j k}\right) \in \mathbb{R}^{2} \otimes \mathbb{R}^{2} \otimes \mathbb{R}^{2}$, the singular vector triple system in (0.0.22) becomes

$$
\left\{\begin{array}{l}
U \cdot x_{2} \otimes x_{3}=\sigma x_{1} \\
U \cdot x_{1} \otimes x_{3}=\sigma x_{2} \\
U \cdot x_{1} \otimes x_{2}=\sigma x_{3}
\end{array}\right.
$$

together with the conditions $x_{j, 1}^{2}+x_{j, 2}^{2}=1$ for all $j \in[3]$. By the formula (0.0.23), a general tensor U admits six critical decomposable tensors $\sigma\left(x_{1} \otimes x_{2} \otimes x_{3}\right)$. They are described by the ideal I_{U} in (0.0.25). Eliminating the variables $x_{j, 1}, x_{j, 2}$ $(1 \leq j \leq 3)$ from I_{U} produces a principal ideal. Its unique generator, up to sign, has the form

$$
\begin{equation*}
f\left(U_{i j k}, \sigma^{2}\right)=\sum_{j=0}^{6} c_{j}(U) \sigma^{2 j} \tag{0.0.26}
\end{equation*}
$$

where $c_{j}(U)$ is a homogeneous polynomial in the entries $U_{i j k}$ of degree $20-2 j$ for all $0 \leq j \leq 6$. It turns out that, for every nonnegative value $\sigma \geq 0$, the equation $f\left(U_{i j k}, \sigma^{2}\right)=0$ defines the σ-offset of X_{3}^{\vee}. Again we might replace the variable σ^{2} with the expression $q_{F}(U)-\varepsilon^{2}$. Then the equation $f\left(U_{i j k}, q_{F}(U)-\varepsilon^{2}\right)=0$ defines the ε-offset of X_{3}, as we wanted.

Let us look more closely at the polynomial $f\left(U_{i j k}, \sigma^{2}\right)$. The first thing to observe is that $\operatorname{deg}_{\varepsilon^{2}}\left[f\left(U_{i j k}, \sigma^{2}\right)\right]=6$, namely the expected number of singular
values of U. In particular, the highest coefficient $c_{6}(U)$ has degree eight and is the product of the following four quadratic polynomials:

$$
\begin{aligned}
& \theta_{1}(U)=\left(U_{111}-U_{122}-U_{212}-U_{221}\right)^{2}+\left(U_{222}-U_{211}-U_{121}-U_{112}\right)^{2}, \\
& \theta_{2}(U)=\left(U_{111}+U_{122}+U_{212}-U_{221}\right)^{2}+\left(U_{222}+U_{211}+U_{121}-U_{112}\right)^{2}, \\
& \theta_{3}(U)=\left(U_{111}+U_{122}-U_{212}+U_{221}\right)^{2}+\left(U_{222}+U_{211}-U_{121}+U_{112}\right)^{2}, \\
& \theta_{4}(U)=\left(U_{111}-U_{122}+U_{212}+U_{221}\right)^{2}+\left(U_{222}-U_{211}+U_{121}+U_{112}\right)^{2} .
\end{aligned}
$$

Moreover, the variety $\mathcal{V}\left(\theta_{1} \cdots \theta_{4}\right) \subset \mathbb{P}(V) \cong \mathbb{P}_{\mathbb{C}}^{7}$ coincides with the dual Segre embedding of the product $Q_{1} \times Q_{2} \times Q_{3}$ of the isotropic quadrics

$$
Q_{1}=Q_{2}=Q_{3}=\{[1, \sqrt{-1}],[1,-\sqrt{-1}]\} \subset \mathbb{P}_{\mathrm{c}}^{1} .
$$

Geometrically speaking, $\operatorname{Seg}_{3}\left(Q_{1} \times Q_{2} \times Q_{3}\right) \subset \mathbb{P}(V)$ may be thought as the six vertex "cube" of decomposable tensors of the form $x_{1} \otimes x_{2} \otimes x_{3}$, where $x_{j}=$ $(1, \pm \sqrt{-1})$ for all $j \in[3]$. Each polynomial $\theta_{j}(U)$ defines a pair of conjugate hyperplanes dual to a pair of conjugate vertices of $\left[\operatorname{Seg}_{3}\left(Q_{1} \times Q_{2} \times Q_{3}\right)\right]^{\vee}$.

This fact marks a first important difference between matrices and tensors: the existence of a positive degree leading coefficient in the equation of the ε-offset of X_{d}^{\vee}, or in other words, the non-integrality of the function $\delta_{F, U}$ over X_{d}^{\vee}. Instead, the lowest coefficient $c_{0}(U)$ can be written in the form

$$
\begin{equation*}
c_{0}(U)=\operatorname{Det}(U)^{2} \cdot g(U) . \tag{0.0.27}
\end{equation*}
$$

On one hand, the polynomial $\operatorname{Det}(U)$ defines the dual Segre product X_{3}^{\vee} and is called the hyperdeterminant of U, somehow generalizing the notion of determinant of a square matrix. Its development is

$$
\begin{align*}
\operatorname{Det}= & {\left[\operatorname{det}\left(\begin{array}{ll}
U_{111} & U_{122} \\
U_{211} & U_{222}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
U_{121} & U_{112} \\
U_{221} & U_{212}
\end{array}\right)\right]^{2} } \tag{0.0.28}\\
& -4 \operatorname{det}\left(\begin{array}{ll}
U_{111} & U_{112} \\
U_{211} & U_{212}
\end{array}\right) \operatorname{det}\left(\begin{array}{ll}
U_{121} & U_{122} \\
U_{221} & U_{222}
\end{array}\right)
\end{align*}
$$

On the other hand, the polynomial $g(U)$ is the product of the following three quartic forms:

$$
\begin{align*}
& g_{1}(U)=\operatorname{det}\left[\left(U_{1}^{(1)}+\sqrt{-1} U_{1}^{(2)}\right)\left(U_{1}^{(1)}-\sqrt{-1} U_{1}^{(2)}\right)\right], \\
& g_{2}(U)=\operatorname{det}\left[\left(U_{2}^{(1)}+\sqrt{-1} U_{2}^{(2)}\right)\left(U_{2}^{(1)}-\sqrt{-1} U_{2}^{(2)}\right)\right], \tag{0.0.29}\\
& g_{3}(U)=\operatorname{det}\left[\left(U_{3}^{(1)}+\sqrt{-1} U_{3}^{(2)}\right)\left(U_{3}^{(1)}-\sqrt{-1} U_{3}^{(2)}\right)\right] .
\end{align*}
$$

The three factors $g_{1}(U), g_{2}(U)$ and $g_{3}(U)$ of $g(U)$ represent three quartic hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{7}$. Each of them is the union of two conjugate quadric hypersurfaces.

In turn, the singular locus of each of these quadric hypersurfaces has dimension three and meets the Segre product X_{3} in a quadric surface. Finally, these six quadric surfaces may be interpreted as the two dimensional "faces" of the cube $\operatorname{Seg}_{3}\left(Q_{1} \times Q_{2} \times Q_{3}\right)$ of totally isotropic rank-one tensors, as Figure 2 suggests.

Figure 2: The slices $U_{j}^{(1)}$ and $U_{j}^{(2)}$ appearing in $g_{j}(U)$.

The results of Example 0.0.7 outline the core of this thesis. We investigate more on the "non-integrality" of the distance function $\delta_{F, U}$ for tensors, using the Frobenius inner product. In particular, we determine the zero loci of the lowest and the highest coefficient of the generator of the ideal in (0.0.24). Moreover, in the case of a "hypercube format" tensor, namely for $n_{1}=\cdots=n_{d}=n$ for some $n \geq 1$, we compute all the exponents of the factors appearing in the abovementioned coefficient. This leads to the following closed formula for the product of the singular values of a general tensor $U \in V$.

Theorem 0.0.8. Let $n \geq 1, d \geq 2$, and $\underline{n}=(n, \ldots, n)$. For all subsets $J \subset[d]$, we define

$$
\begin{equation*}
X_{d, J}:=\operatorname{Seg}_{d}\left(Y_{1} \times \cdots \times Y_{d}\right) \subset \mathbb{P}\left(V_{1} \otimes \cdots \otimes V_{d}\right) \tag{0.0.30}
\end{equation*}
$$

where $Y_{j}:=Q_{j}$ if $j \in J$ and $Y_{j}:=\mathbb{P}\left(V_{j}\right)$ otherwise. Moreover, we define $f_{d, J}$ to be the equation of $X_{d, J}^{\vee}$, when it is a hypersurface, otherwise $f_{d, J}:=1$. For $J=\emptyset$ the polynomial $f_{d}:=f_{d, \emptyset}$ coincides with the hyperdeterminant of a tensor.

1. (Theorem 5.0.5) Assume that the linear system \mathcal{S}_{d} defined in Remark 5.3.19 has maximal rank. Pick a tensor $U \in V_{1} \otimes \cdots \otimes V_{d}$. If U admits the maximum number $c(\underline{n})$ (see Theorem 0.0.6) of singular values, counted with multiplicity (hypothesis verified for a general U), their squared product has the following rational expression:

$$
\begin{equation*}
\left(\sigma_{1} \cdots \sigma_{c(\underline{n})}\right)^{2}=\prod_{j=0}^{d} g_{j}(U)^{2-j}, \quad g_{j}:=\prod_{|J|=j} f_{d, J} \quad \forall 0 \leq j \leq d \tag{0.0.31}
\end{equation*}
$$

2. (Proposition 5.3.18) When $d \in\{2,3,4\}$, the system \mathcal{S}_{d} has maximal rank and the product formula (0.0.31) is true for all $n \geq 2$:

$$
\left(\sigma_{1} \cdots \sigma_{c(\underline{n})}\right)^{2}= \begin{cases}g_{0}(U)^{2}=\operatorname{det}(U)^{2} & \text { for } d=2 \\ \frac{g_{0}(U)^{2} g_{1}(U)}{g_{3}(U)} & \text { for } d=3 \\ \frac{g_{0}(U)^{2} g_{1}(U)}{g_{3}(U) g_{4}(U)^{2}} & \text { for } d=4\end{cases}
$$

3. (Proposition 5.4.4) In the binary case $n=2$, the linear system \mathcal{S}_{d} has maximal rank $d-1$ and the formula (0.0.31) is true for any $d \geq 1$.

The proof of Theorem 0.0 .8 in the case $n=2$ is the core of the single-authored paper [Sod]. When $n \geq 3$, so far the assumption on \mathcal{S}_{d} has been checked for all positive integers n and d less than 100 . The right-hand side of (0.0 .31) should be interpreted as the ratio between the lowest and the highest coefficient of the analogous of the polynomial in (0.0 .26), which for all $\sigma \geq 0$ describes the σ-offset of X_{d}^{\vee}. Note that the exponents on the right-hand side of (0.0.31) may be positive or negative so that the product of the singular values has a rational expression. When $d=2$, formula (0.0 .31) simply recovers the fact that the product of the singular values of a square matrix is equal to its determinant.

The distance from a real algebraic variety

Questions 1, 2 and 3 and all its related problems are all instances of a very general question:

Given a data point u and an algebraic variety $X^{\mathbb{R}}$ in a real n-dimensional Euclidean space $\left(V^{\mathbb{R}}, q^{\mathbb{R}}\right)$, which is the closest point $x \in X^{\mathbb{R}}$ to u ? How many critical points does $\delta_{u}^{\mathbb{R}}$ admit for a general data point u ? What are the main properties of the ε-offset of $X^{\mathbb{R}}$ with respect to the metric $q^{\mathbb{R}}$?

This problem is very natural in Real Algebraic Geometry. In the first two sections, we concentrated on the distance from the varieties of matrices of rank at most k as well as tensors of rank one.

The road map to study the distance from a real algebraic variety is essentially the same that we took previously. The squared distance function in exam is again

$$
\delta_{u}^{\mathbb{R}}: X^{\mathbb{R}} \rightarrow \mathbb{R}, \quad \delta_{u}^{\mathbb{R}}(x):=q^{\mathbb{R}}(u-x)
$$

and the critical values of $\delta_{u}^{\mathbb{R}}$ are attained at the smooth points $x \in X^{\mathbb{R}}$ such that the gradient $\nabla q^{\mathbb{R}}(u-x)$ is orthogonal to the tangent space $T_{x}\left(X^{\mathbb{R}}\right)$. For the standard Euclidean distance, $\nabla q^{\mathbb{R}}(u-x)=2(u-x)$. Of course, even if the original
problem is set over the reals, we need to consider the complex variety $X=X^{\text {c }}$ and extend the quadratic form $q^{\mathbb{R}}$ to a complex-valued function $q: X \rightarrow \mathbb{C}$, which is not a Hermitian inner product. Algebraically speaking, critical points of δ_{u} are obtained requiring the rank of the augmented Jacobian matrix

$$
\binom{\nabla q(u-x)}{\operatorname{Jac}(f)(x)}
$$

to be strictly lower than $c+1$, where c is the codimension of X and $(f)=$ $\left(f_{1}, \ldots, f_{s}\right)$ is the ideal of X. In other words, all minors of size $c+1$ of the above matrix must vanish simultaneously.

Clearly, we have to get rid of the singular points of X, where the previous condition is satisfied trivially. Algebraically, this is achieved by saturating the previously obtained ideal with respect to the ideal of the singular locus of X. We may call the resulting ideal as the critical ideal of X, and we denote it by $I_{\text {crit }}(X)$.

As we show in detail in Chapter 4, for a general choice of data point $u \in V$, the ideal $I(X)$ in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is zero-dimensional and consists of all (complex) critical points $x \in X$ of the function δ_{u}. Their number, namely the degree of $I_{\text {crit }}(X)$, is constant on a Zariski open subset of V and is called the Euclidean distance degree of X. It is denoted by $\operatorname{EDdegree~}(X)$. It was introduced by Draisma, Horobeţ, Ottaviani, Sturmfels and Thomas in [DHOST].

For example, the ED degree of the determinantal variety $\sigma_{k}(X)$ of matrices of rank at most k is $\binom{n_{1}}{k}$ by Theorem 0.0.3. Or the ED degree of the variety X_{d} of rank-one tensors is expressed by the Friedland-Ottaviani formula (0.0.23).

On the other hand, if we restrict to the real part $V^{\mathbb{R}}$, there exists a hypersurface, called Euclidean Distance discriminant (ED discriminant) of X and denoted by Σ_{X}, that divides the space $V^{\mathbb{R}}$ into chambers. If we let $u \in V^{\mathbb{R}}$ vary in each one of these chambers, the number of critical points of $\delta_{u}^{\mathbb{R}}$ is constant. The first example of this phenomenon is provided by the ED discriminant of the ellipse $X^{\mathbb{R}}: 4 x_{1}^{2}+x_{2}^{2}-1=0 \subset \mathbb{R}^{2}:$

$$
\begin{aligned}
\Sigma_{X}: & 64 x_{1}^{6}+48 x_{1}^{4} x_{2}^{2}+12 x_{1}^{2} x_{2}^{4}+x_{2}^{6}-432 x_{1}^{4} \\
& +756 x_{1}^{2} x_{2}^{2}-27 x_{2}^{4}+972 x_{1}^{2}+243 x_{2}^{2}-729=0
\end{aligned}
$$

For plane curves, the ED discriminant Σ_{X} is usually called the evolute of $X^{\mathbb{R}}$ and has the property that the tangent lines to Σ_{X} correspond to the normal lines to X^{R}.

It turns out that the ideal

$$
I_{\text {crit }}(X)+\left(\varepsilon^{2}-q(u-x)\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{n}, \varepsilon\right]
$$

Figure 3: The evolute Σ_{X} of the ellipse $X^{\mathbb{R}}$ divides \mathbb{R}^{2} into two chambers. If the data point u is picked in the internal chamber, then the number of critical points of $\delta_{u}^{\mathbb{R}}$ is four. Otherwise, it is two.
defines a variety of dimension n. Its projection (by elimination of the variables x_{i}, in a similar fashion of Example 0.0 .7 where the x_{i} 's correspond to the entries of the given tensor U) in $\mathbb{C}\left[u_{1}, \ldots, u_{n}, \varepsilon\right]$ is generated by a single polynomial in ε^{2}. In a joint work with Ottaviani [OS], we denote this generator (defined up to a scalar factor) by EDpoly $X_{X, u}\left(\varepsilon^{2}\right)$ and we call it Euclidean Distance polynomial (ED polynomial) of X at u (see Definition 4.1.3). For any $u \in V^{\mathbb{R}}$, EDpoly $_{X, u}\left(\varepsilon^{2}\right)$ has among its roots the distance from u to $X^{\mathbb{R}}$. In addition, for any fixed real value $\varepsilon \geq 0$, the equation

$$
\operatorname{EDpoly}_{X, u}\left(\varepsilon^{2}\right)=0
$$

defines the hypersurface of all data $u \in V^{\mathbb{R}}$ having distance ε from $X^{\mathbb{R}}$, namely the ε-offset of X^{R}. The ε^{2}-degree of EDpoly ${ }_{X, u}\left(\varepsilon^{2}\right)$ coincides with the Euclidean Distance degree of X (see Theorem 4.2.2).

The ED polynomial of a real algebraic variety is undoubtedly the most important tool of this thesis. Indeed, a relevant part of this thesis is devoted to the study of its main properties. Here we briefly outline the main ones.

First, we show that the ED polynomial of an affine cone X and of its dual affine cone X^{\vee} are linked by the following formula which enhances [DHOST, Theorem 5.2]:

Theorem (Theorem 4.2.8). Let $X \subset V$ be an affine cone and X^{\vee} its dual in V. Then

$$
\operatorname{EDpoly}_{X, u}\left(\varepsilon^{2}\right)=\operatorname{EDpoly}_{X^{\vee}, u}\left(q(u)-\varepsilon^{2}\right)
$$

The last identity was essentially applied in (0.0.15) and for rank-one tensors, and its meaning is that projective duality corresponds to variable reflection for the ED polynomial.

Next, we focus on the extreme coefficients of EDpoly $X_{X, u}\left(\varepsilon^{2}\right)$. Here, transversality between X and the isotropic quadric Q plays a crucial role. In particular, it is sufficient to prove that the highest coefficient of the ED polynomial is a scalar, as the following result states.

Theorem (Corollary 4.3.7). Let $X \subset \mathbb{P}(V)$ be a projective variety. If X is transversal to Q, according to Definition 4.3 .3 then for any data point $u \in V$

$$
\text { EDpoly }_{X, u}\left(\varepsilon^{2}\right)=\sum_{j=0}^{d} p_{j}(u) \varepsilon^{2 j}
$$

where $d=\operatorname{EDdegree}(X)$ and $p_{j}(u)$ is a homogeneous polynomial in the coordinates of u of degree $2 d-2 j$. In particular, $p_{d}(u)=p_{d} \in \mathbb{C}, \operatorname{deg}\left(p_{0}\right)=2 d$ and the $E D$ polynomial of X is an integral algebraic function.

In the other direction, the lowest coefficient of the ED polynomial describes the data points $u \in V$ having "distance zero" from X. If we restrict to the real points, we essentially recover the variety $X^{\mathbb{R}}$, plus another possible locus of real data points. But if we allow non-real solutions, there is always a hypersurface of isotropic vectors having "distance zero" from X.

Theorem (Theorem 4.4.6). Let $X \subset V$ be an affine cone such that $X \cup X^{\vee} \not \subset Q$. Then the locus of zeros $u \in V$ of $\mathrm{EDpoly}_{X, u}(0)$ is

$$
X \cup\left(X^{\vee} \cap Q\right)^{\vee} .
$$

In particular, at least one between X and $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface.
The last result describes set-theoretically the vanishing locus of the lowest coefficient EDpoly ${ }_{X, u}(0)$. With a stronger assumption, we can determine also "scheme-theoretically" the condition for a data point $u \in V$ to have distance zero from X. In other words, we give a more precise description of the lowest term of the ED polynomial, with reasonable transversality assumptions.

Theorem (Theorem 4.4.12). Let $X \subset \mathbb{P}(V)$ be an irreducible variety and suppose that X and X^{\vee} are transversal to Q. Let $u \in V$ be a data point.

1. If $\operatorname{codim}(X) \geq 2$, then $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface and

$$
\text { EDpoly }_{X, u}(0)=g
$$

up to a scalar factor, where g is the equation of $\left(X^{\vee} \cap Q\right)^{\vee}$. Moreover $X \subset\left(X^{\vee} \cap Q\right)^{\vee}$.
2. If X is a hypersurface, then

$$
\operatorname{EDpoly}_{X, u}(0)=f^{2} g
$$

up to a scalar factor, where f is the equation of X and g is either the constant 1 if X is a hyperplane, or the equation of $\left(X^{\vee} \cap Q\right)^{\vee}$.

Structure of the thesis

In this introduction, we have chosen to regard the best rank- k approximation problem only for nonsymmetric tensors. Actually, in this thesis we consider tensors with partial symmetry as well, starting from symmetric tensors.

After the preliminary Chapter 1, in Chapter 2 we introduce the basic tools of Spectral Theory of symmetric tensors, which is useful for the problem of symmetric tensor approximation. On one hand, we recall the definition of E-eigenvector and E-eigenvalue of a symmetric tensor. On the other hand, we introduce the notion of E-characteristic polynomial of a symmetric tensor, which is defined as the multivariate resultant of a certain homogeneous polynomial system. The rest of the chapter is devoted to the study of the extreme coefficients of the Echaracteristic polynomial of a symmetric tensor. The results of this chapter are based on the single-authored paper [Sod18]. In particular, the main result is Theorem 2.0.2, which provides a rational formula for the product of the E-eigenvalues of a symmetric tensor. This formula is generalized later in Theorem 5.0.5. In the last part of the chapter, we investigate binary symmetric tensors, called also binary forms, and we derive a formula for the E-characteristic polynomial of a harmonic binary form, which points out that the E-eigenvalues of a real harmonic binary form are all real.

Nevertheless, we want to separate the study of symmetric tensors from the general case of partially symmetric tensors because the proof of Theorem 2.0.2 uses resultant theory, which we do not consider for the rest of the thesis.

In Chapter 3 we remain in the context of symmetric tensors, and we focus on harmonic symmetric tensors. The main results in this direction are Proposition 3.0.3 and Theorem 3.0.4, which describe completely all the elements of the space $H^{d} \mathbb{C}^{3}$ of harmonic ternary forms of degree d which are stable or semistable under
the action of the complex orthogonal group $\mathrm{SO}(3, \mathbb{C})$. Thanks to the $\mathrm{SO}(3, \mathbb{C})$ equivariant harmonic decomposition of the space $S^{d} \mathbb{C}^{3}$, these results allow us to give sufficient conditions of stability and semistability in the whole space $S^{d} \mathbb{C}^{3}$. Afterwards, we produce an example of a real harmonic ternary form with non-real E-eigenvalues.

In Chapter 4 we change our perspective. This chapter intends to frame the previous ones in the general setting of Real Algebraic Geometry of Data as well as setting up the necessary tools used in the final Chapter 5. After stating the problem of computing the distance from a real algebraic variety, the core of this chapter is devoted to the main properties of the ED polynomial of a real algebraic variety. The main results are based on the joint paper with Ottaviani [OS].

Finally, we come back to tensors again. The main results of this thesis are collected in Chapter 5. There we study the ED polynomial of a Segre-Veronese variety, whose roots are the singular values of a partially symmetric tensor. First, we describe completely the vanishing loci of the highest and lowest coefficient of the ED polynomial of such a variety. Second, when restricting to tensors of hypercube format, we compute the multiplicities of the factors appearing in the lowest and highest coefficients. The main result is the above-cited Theorem 5.0.5. Part of this chapter achieves the single-authored paper [Sod], where the product formula is proved for binary tensors.

Chapter 1 Preliminaries

This chapter might be viewed as a toolkit for the development of the thesis. In what follows, we aim at giving a compact exposition of the main definitions and already known results that will be applied in the next chapters.

In the first part, we set up the notation and stress the notion of orthogonality that we adopt. Then we recall the definition of the most important invariant for this thesis, the Euclidean Distance degree of an algebraic variety X in any complexified Euclidean space (V, q), starting from irreducible affine varieties.

When X is an affine cone, we may read it projectively. In this context, we are allowed to introduce a notion of dual affine cone X^{\vee} of X. Armed with this definition, we recall a result in [DHOST] which states that the ED degrees of a projective variety and its dual variety coincide.

If additionally, the variety considered is transversal to the isotropic quadric Q associated with the quadratic form q, then its ED degree is expressed as the sum of the polar classes of the variety. For this reason and for their applications in Chapters 2, 4 and 5, we dedicate Section 1.5 to the construction of the polar classes of a projective variety.

Also, in Section 1.7 we furnish a basic introduction to the Chern classes of a projective variety: indeed, Chern classes may be computed via polar classes, and vice-versa. Moreover, the ED degree formula in Theorem 5.1.1, stated in the nonsymmetric case in Theorem 0.0.6, is derived basically from the computation of the top Chern class of a certain vector bundle over a Segre-Veronese product of projective spaces.

1.1 Orthogonality vs polarity in Euclidean space

As suggested in the introduction, up to different notation, our ambient space is a real n-dimensional Euclidean space $\left(V^{\mathbb{R}}, q^{\mathbb{R}}\right)$. In most cases, we suppose that
x_{1}, \ldots, x_{n} is a system of coordinates of $V^{\mathbb{R}}$. Moreover, the quadratic form $q^{\mathbb{R}}$ has the expression $q^{\mathbb{R}}(x)=x^{T} A x$ for some positive definite real $n \times n$ matrix $A=A\left(q^{\mathbb{R}}\right)$. Up to a linear change of coordinates, we assume that A is the identity matrix I_{n}, namely $q^{\mathbb{R}}(x)=\sum_{i=1}^{n} x_{i}^{2}$. By abuse of notation, we denote with the same letter the quadratic form $q^{\mathbb{R}}$ and its associated bilinear form, in other words we have $q^{\mathbb{R}}(x, x)=q^{\mathbb{R}}(x)$.

Finally, we define $V:=V^{\mathbb{R}} \otimes \mathbb{C}$ and the function $q: V \rightarrow \mathbb{C}$ by $q(x):=$ $x^{T} A x$, where A is the symmetric matrix associated to the quadratic form $q^{\mathbb{R}}$. In particular, q is not induced by a Hermitian inner product on V. The wider space V admits nonzero vectors x such that $q(x)=0$, called isotropic vectors. The quadratic equation $q(x)=0$ defines the isotropic quadric $Q \subset V$, whose only real point is the origin. The quadric Q has no real points in the projective setting.

Now let us look at V as an affine chart of $\mathbb{P}_{\mathrm{c}}^{n}=\mathbb{P}(V \oplus \mathbb{C})=V \cup H_{\infty}$, where $H_{\infty} \cong \mathbb{P}(V)$ is the hyperplane at infinity of V. In coordinates, we introduce a new variable x_{0} and hence H_{∞} has equation $x_{0}=0$. Every vector $x=\left(x_{1}, \ldots, x_{n}\right) \in$ V corresponds to the point $[(1, x)]=\left[\left(1, x_{1}, \ldots, x_{n}\right)\right] \in \mathbb{P}_{\mathrm{c}}^{n}$. In the following, we indicate by $\langle x\rangle$ the point $[(0, x)] \in H_{\infty}$. For each affine variety $X \subset V$, we denote by \bar{X} the closure of X in the Zariski topology of $\mathbb{P}_{\mathrm{c}}^{n}$. Moreover, we define $X_{\infty}:=\bar{X} \cap H_{\infty}$. In particular, the points at infinity of Q fill the smooth quadric $Q_{\infty} \subset H_{\infty}$.

Summing up, from the lines above we see that every choice of a quadratic form $q^{\mathbb{R}}$ in $V^{\mathbb{R}}$ produces a unique projective quadric $Q_{\infty}=\mathcal{V}(q) \subset H_{\infty}$. This approach is very useful for understanding better the notion of orthogonality in V. Indeed, orthogonality in V corresponds essentially to polarity in H_{∞}, with respect to the definition below (see [Pie15, §4]).

Definition 1.1.1. Let Q_{∞} be a smooth quadric in H_{∞}. Then it induces a polarity, classically called a reciprocity, between points and hyperplanes in H_{∞}. The polar hyperplane P^{\perp} of a point $P \in H_{\infty}$ is the linear span of the points on Q_{∞} such that the tangent hyperplane to Q at that point contains P. In coordinates, $q=q\left(x_{1}, \ldots, x_{n}\right)$ induces an isomorphism

$$
\begin{array}{cccc}
\varphi_{q}: & H_{\infty} & \rightarrow & \left(H_{\infty}\right)^{*}=\left\{\text { hyperplanes of } H_{\infty}\right\} \\
& P=\left[p_{1}, \ldots, p_{n}\right] & \mapsto & P^{\perp}: \sum_{i=1}^{n} p_{i} \frac{\partial q}{\partial x_{i}}=0
\end{array}
$$

If $W \subset H_{\infty}$ is a subspace of dimension r, then we can associate to W the dual space of $\varphi_{q}(W)$, which is a subspace of H_{∞} of dimension $n-r-1$. We denote this subspace by W^{\perp}.

Therefore, given an affine space $L \subset V$ and a point $u \in V$, the orthogonal space to L passing through u is constructed as follows: we consider $L_{\infty} \subset H_{\infty}$

Figure 1.1: A point $P \in H_{\infty}$ and its polar hyperplane P^{\perp}.
and we associate to it the subspace $\left(L_{\infty}\right)^{\perp}$ via the polarity φ_{q} of Definition 1.1.1. Hence the desired orthogonal space is

$$
u+L^{\perp}:=\left\langle[(u, 1)],\left(L_{\infty}\right)^{\perp}\right\rangle \cap V .
$$

1.2 The ED degree of an algebraic variety

Now we have all the necessary metric information to proceed. We fix a radical ideal $I\left(X^{\mathbb{R}}\right):=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and we let $X^{\mathbb{R}} \subset V^{\mathbb{R}}$ be the real zero locus of $I\left(X^{\mathbb{R}}\right)$. In other words, $X^{\mathbb{R}}$ is a real algebraic variety in $V^{\mathbb{R}}$. We denote by $X \subset V$ the complex zero locus of $I(X):=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. We indicate by $\operatorname{Jac}(f)=\operatorname{Jac}\left(f_{1}, \ldots, f_{s}\right)$ the $s \times n \operatorname{Jacobian}$ matrix, whose entry in row i and column j is the partial derivative $\partial f_{i} / \partial x_{j}$. The ideal of the singular locus $X_{\text {sing }}$ of X is defined by

$$
I\left(X_{\text {sing }}\right):=I(X)+\langle c \times c \text { minors of } \operatorname{Jac}(f)\rangle
$$

where c is the codimension of X.
Our aim is to pick a data point $u \in V$ (usually in $V^{\mathbb{R}}$) and look for the critical points $x \in X$ of the squared distance function $\delta_{u}: X \rightarrow \mathbb{C}$. They are attained at smooth points $x \in X$ such that the vector $u-x$ is in the normal space $N_{x} X:=\left(T_{x} X\right)^{\perp}$, according to Definition 1.1.1. We stress that both $N_{x} X$ and $T_{x} X$ are linear spaces in V. The corresponding affine spaces passing through x are denoted by $x+N_{x} X$ and $x+T_{x} X$, respectively.

Algebraically speaking, $x \in X_{\mathrm{sm}}$ is a critical point of δ_{u} if the gradient ∇q at $u-x$ lives in the row space of the jacobian matrix $\operatorname{Jac}(f)$ of X at x. When q is the standard Euclidean metric, $\nabla q(u-x)=2(u-x)$. An indicative example is depicted in Figure 1.2. This constructions suggests to define an ideal, called the
critical ideal of X, as (see the formula (2.1) [DHOST])
$I_{\text {crit }}(X):=\left(I(X)+\left\langle(c+1) \times(c+1)-\right.\right.$ minors of $\left.\left.\binom{\nabla q(u-x)}{\operatorname{Jac}(f)(x)}\right\rangle\right): I\left(X_{\text {sing }}\right)^{\infty}$.
The critical ideal $I_{\text {crit }}(X)$ lives in the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{n}\right]$ and defines an affine variety in $V \times V$. The geometrical idea behind this property is that we are letting the data point u vary in V, hence its coordinate should be treated as indeterminates independent from the x_{i} 's.

Figure 1.2: The cardioid $X^{\mathbb{R}}:\left(x_{1}^{2}+x_{2}^{2}-2 x_{1}\right)^{2}-4\left(x_{1}^{2}+x_{2}^{2}\right)=0$ and a point $u \in \mathbb{R}^{2}$ admitting three normal lines to $X^{\mathbb{R}}$.

Definition 1.2.1. The variety in $V \times V$ defined by the critical ideal $I_{\text {crit }}(X)$ is called $E D$ correspondence of X and is denoted by $\mathcal{E}(X)$.

More precisely, the ED correspondence may be described as

$$
\mathcal{E}(X)=\overline{\left\{(x, u) \in X \times V \mid x \in X_{\mathrm{sm}}, x \text { critical point of } \delta_{u}\right\}} .
$$

Now consider the diagram below:

The two maps π_{1} and π_{2} are the projections onto the two factors of $X \times V$.

Theorem 1.2.2. [DHOST, Theorem 4.1] The ED correspondence $\mathcal{E}(X)$ of an irreducible variety $X \subset V$ of codimension c is an irreducible variety of dimension n inside $V \times V$. The projection π_{1} is an affine vector bundle of rank c over X_{sm}. Over general data points $u \in V$, the second projection π_{2} has finite fibers $\pi_{2}^{-1}(u)$ of constant cardinality.

Given a data point $u \in V$, we have that

$$
\pi_{2}^{-1}(u) \cong\left\{x \in X_{\mathrm{sm}} \mid x \text { critical point of } \delta_{u}\right\}
$$

hence the cardinality $\left|\pi_{2}^{-1}(u)\right|$ counts the number of critical points of δ_{u}.
Definition 1.2.3. Let $X \subset V$ be an irreducible variety. The cardinality of the general fiber of π_{2} is called $E D$ degree of X and is denoted by EDdegree (X).

Remark 1.2.4. On one hand, the singular points of X are not taken into account when defining the critical ideal of X, namely the invariant EDdegree (X) counts only smooth local minima, maxima and saddle points on X of the squared distance function δ_{u}. Indeed, the squared distance function $\delta_{u}: X \rightarrow \mathbb{C}$ cannot be differentiated at the singular points of X.

On the other hand, the singular points of X might be local minima, maxima or saddle points of δ_{u}. For example, let X be the cuspidal cubic of equation $x_{1}^{3}-x_{2}^{2}=0$. It turns out that the cusp $(0,0)$ is a global minimum of δ_{u} for any data point u contained in the light blue region showed in Figure 1.3. This region is known as the Voronoi cell of X at $(0,0)$. Its boundary is the quartic curve

$$
\partial \operatorname{Vor}_{(0,0)} X: 27 y^{4}+128 x^{3}+72 x y^{2}+32 x^{2}+y^{2}+2 x=0 .
$$

More generally, the Voronoi cell of X at the point $x \in X$ is the set of all $u \in V$ such that x is the closest point to u on X. A detailed study of the Voronoi cells of algebraic varieties and of their algebraic boundaries is done in [CRSW].

By Theorem 1.2.2, the ED degree of an algebraic variety is, in fact, an algebraic invariant of X, and somehow measures the algebraic complexity of computing the distance from X. Note that we started by considering a real affine variety X^{R}, but the notion of ED degree is related to complex algebraic varieties. In particular, we can compute the ED degree of the isotropic quadric Q.

Proposition 1.2.5. Let $Q \subset V$ be the isotropic quadric defined by the quadratic form q. Then EDdegree $(Q)=0$.

Proof. By construction, EDdegree (Q) counts the number of critical points of δ_{u} on Q for a general point $u \in V$, or rather, the number of normal spaces to Q that can be drawn from u.

Figure 1.3: The Voronoi cell $\operatorname{Vor}_{(0,0)} X$ of the cuspidal cubic $X: x_{1}^{3}-x_{2}^{2}=0$ at the origin. As shown on the right, the real locus of $\operatorname{Vor}_{(0,0)} X$ contains the real locus of the evolute Σ_{X} of X. If we draw a circumference centered at a point u between the green and the blue curve, we see that the origin is closer to u than any critical point of $\delta_{u}^{\mathbb{R}}$.

Note that, if $x \in Q$ and $x \neq 0$, then x is a smooth point of Q and $T_{x} Q$ is the subspace of vectors $v \in V$ such that $q(x, v)=0$. At infinity, we have that $\left(T_{x} Q\right)_{\infty}$ coincides with $T_{\langle x\rangle}\left(Q_{\infty}\right) \subset H_{\infty}$. By Definition 1.1.1, the polar subspace to $T_{\langle x\rangle}\left(Q_{\infty}\right)$ is the point $\langle x\rangle$. This means that, moving back in V, the normal space $N_{x} Q$ is the line spanned by the vector x. In particular, $N_{x} Q \subset T_{x} Q$ or, affinely, $x+N_{x} Q \subset x+T_{x} Q$.

Summing up, it is immediate that, if x is a critical point of δ_{u}, then necessarily the vector $u-x$ must be proportional to x. In particular, $u-x \in Q$, hence $u \in Q$. This contradicts the fact that u is general in V. From this we conclude that EDdegree $(Q)=0$.

The following lemma is an immediate property coming from the definition of ED degree.

Lemma 1.2.6. Let $X \subset V$ be an irreducible affine variety and let $v \in V$. Then EDdegree $(v+X)=\operatorname{EDdegree}(X)$, namely the ED degree is invariant under translation in V.

The simplest affine varieties to consider are the affine subspaces of V. We compute their ED degree in the following proposition.

Proposition 1.2.7. Let $L \subset V$ be an affine subspace. If L is transversal to Q out of the origin, then $\operatorname{EDdegree}(L)=1$. Otherwise EDdegree $(L)=0$.

Proof. Applying Lemma 1.2.6, we can assume that $L \subset V$ is a linear space.
Assume first that L is not transversal to Q away from the origin. Then there exists $y \in Q, y \neq 0$ such that the linear span between $T_{y} Q$ and L does not generate V, namely $L \subset T_{y} Q$. Going at infinity, we have the inclusion $L_{\infty} \subset\left(T_{y} Q\right)_{\infty}=T_{\langle y\rangle}\left(Q_{\infty}\right)$.

Consider the linear system \mathcal{L} of hyperplanes in H_{∞} supported by L_{∞}. For each element $W \in \mathcal{L}, W^{\perp}$ is a point in $T_{\langle y\rangle}\left(Q_{\infty}\right)$. The union of all these points generates the polar subspace $\left(L_{\infty}\right)^{\perp}$, which is contained in $T_{\langle y\rangle}\left(Q_{\infty}\right)$. Going back to V, from the above argument we conclude that the orthogonal space L^{\perp} to L must be contained in $T_{y} Q$ as L itself.

Now pick a general point $u \in V$. If there exists a critical point $x \in L$ for δ_{u}, then $u-x \in L^{\perp} \subset T_{y} Q$. In particular, $q(y, u-x)=0$. Since $x \in L \subset T_{y} Q$, $q(y, x)=0$ as well. Therefore $u \in T_{y} Q$, but this contradicts the generality assumption on u. The contradiction comes from the assumption that there exists such a critical point $x \in L$. From this we conclude that $\operatorname{EDdegree}(L)=0$.

Otherwise L is transversal to Q. In this case, the orthogonal space L^{\perp} is such that $V=L \oplus L^{\perp}$. In particular, L^{\perp} defines the orthogonal projection $\pi_{L^{\perp}}: V \rightarrow L$ onto L. For each data point $u \in V$, the point $\pi_{L^{\perp}}(u)$ is the unique critical point for δ_{u} on L. In particular, EDdegree $(L)=1$.

Example 1.2.8. In the vector space \mathbb{C}^{2} equipped with the Euclidean quadratic form $q=x_{1}^{2}+x_{2}^{2}$, we let L be the line of equation $x_{1}+\sqrt{-1} x_{2}=0$. In particular, L is generated by the vector $(1, \sqrt{-1})$ and $L^{\perp}=L$. Consider a point $u=$ $\left(u_{1}, u_{2}\right) \in \mathbb{C}^{2}$ and assume that there exist $x \in L, x=\lambda(1, \sqrt{-1})$, such that $u-x$ is orthogonal to $(1, \sqrt{-1})$. The equation $q\left(\left(u_{1}-\lambda, u_{2}-\sqrt{-1}\right),(1, \sqrt{-1})\right)=0$ simplifies to $u_{1}+\sqrt{-1} u_{2}=0$, namely $u \in L^{\perp}$. This implies that EDdegree $(L)=$ 0 . The result is the one expected since L is contained in the isotropic quadric $Q \subset \mathbb{C}^{2}$.

Remark 1.2.9. If $L \subset V$ is the complexification of a real affine space $L^{\mathbb{R}} \subset V^{\mathbb{R}}$ such that $L^{\mathbb{R}} \neq\{0\}$, then automatically L is transversal to Q out of the origin. In particular, EDdegree $(L)=1$ by Proposition 1.2.7.

In the following, we always consider an affine variety X not contained in the isotropic quadric Q. This is related to the following fact, which is the second part of [DHOST, Theorem 4.1].
Proposition 1.2.10. Given an irreducible variety $X \subset V$, if $T_{x} X \cap N_{x} X=\{0\}$ at some point $x \in X_{\mathrm{sm}}$, then π_{2} is a dominant map and $\operatorname{EDdegree}(X)$ is positive. In particular, if X admits at least one real smooth point, then $\operatorname{EDdegree}(X)>0$.

Example 1.2.11. In the following M2 code [GS], the ED degree of a plane curve in $X \subset \mathbb{C}^{2}$ is displayed by the command degree IsatX. When X is the cardioid whose real points are depicted in Figure 1.2, one may verify with the code below that $\operatorname{EDdegree}(X)=3$. Note that all the three critical points in Figure 1.2 are real. We show in Figure 1.4 that some of the critical points might be non-real depending on the data point chosen.

```
R = QQ[x_1, x_2,u_1,u_2];
IX = ideal((x_1^2+x_2^2-2*x_1)^ 2-4*(x_1^2+x_2^2));
ISingX = IX+minors(codim IX,compress transpose jacobian IX);
jacX = matrix{{u_1-x_1,u_2-x_2}}||(compress transpose jacobian IX);
IcritX = minors((codim IX)+1, jacX);
IsatX = saturate(IX+J,ISingX);
codim IsatX, degree IsatX
```

Let us look again at the projection π_{2} in (1.2.2). The branch locus of π_{2} corresponds to the closure of the set of data points $u \in V$ for which there are fewer than EDdegree (X) complex critical points of δ_{u}. This fact leads to the following definition.

Definition 1.2.12. The branch locus of π_{2} defines an affine variety $\Sigma_{X} \subset V$, which we call the $E D$ discriminant of X and we indicate with Σ_{X}.

In most cases, the ED discriminant is a hypersurface of V, by the NagataZariski Purity Theorem (see [Zar, Nag]). The reason for this name appears when restricting to the real space $V^{\mathbb{R}}$. In this case, the real part of the ED discriminant $\Sigma_{X^{\mathbb{R}}}:=\left(\Sigma_{X}\right)^{\mathbb{R}}$ divides the vector space $V^{\mathbb{R}}$ into chambers. If we let the real data point u vary in one of these chambers, then the number of real critical points of $\delta_{u}^{\mathbb{R}}$ is constant. In particular, when u is approaching $\Sigma_{X^{\mathbb{R}}}$, either two real critical points of $\delta_{u}^{\mathbb{R}}$ or two non-real conjugate critical points of δ_{u} are collapsing together. This is visualized in Figure 1.4 in the case of the ED discriminant of the ellipse $X^{\mathbb{R}}: x_{1}^{2}+4 x_{2}^{2}-4=0$. Or, looking back at Remark 1.2.4, the ED discriminant of the cuspidal cubic $X: x_{1}^{3}-x_{2}^{2}=0$ is the quartic curve

$$
\Sigma_{X}: 6561 y^{4}+18432 x^{3}+15552 x y^{2}+6144 x^{2}+288 y^{2}+512 x=0
$$

which separates the region of real data points providing two real critical points (to the right of Σ_{X}) from the region of real data points providing no real critical points (to the left of Σ_{X}) (see the right image of Figure 1.3).

In the next section, we focus on affine cones on V, namely projective varieties $X \subset \mathbb{P}(V)$. As a quick preview, we mention a formula by Trifogli for the degree of Σ_{X} in a special case.

Figure 1.4: On the left, a data point u admitting two critical points for $\delta_{u}^{\mathbb{R}}$, while the other two are complex-conjugate. On the right, u goes in the internal region of the evolute $\Sigma_{X^{\mathbb{R}}}$ and acquires two more critical points for $\delta_{u}^{\mathbb{R}}$.

Theorem 1.2.13 (Trifogli). If X is a general hypersurface of degree d in $\mathbb{P}(V)$ then

$$
\operatorname{deg}\left(\Sigma_{X}\right)=d(n-1)(d-1)^{n-1}+2 d(d-1) \frac{(d-1)^{n-1}-1}{d-2}
$$

For instance, when $n=2$ the above formula tells us that the degree of the ED discriminant of a general projective plane curve C of degree d is

$$
\operatorname{deg}\left(\Sigma_{C}\right)=3 d(d-1)
$$

The ED discriminant $\Sigma_{C^{\mathbb{R}}}$ of a real affine plane curve $C^{\mathbb{R}} \subset \mathbb{R}^{2}$ coincides with the curve classically known as the evolute of $C^{\mathbb{R}}$. To see this, we recall that the evolute of $C^{\mathbb{R}}$ is by definition the envelope of the normal lines to $C^{\mathbb{R}}$. More generally, the evolute is an instance of what is called an envelope of a family of curves in \mathbb{R}^{2} : in our case, the family of all normal lines to $C^{\mathbb{R}}$. By construction, the envelope is tangent to each element of the family at some point. More specifically, the evolute $\Sigma_{C^{\mathbb{R}}}$ is tangent to each normal line to $C^{\mathbb{R}}$ at some point. In other words, if we pick a point $u \in \mathbb{R}^{2}$ and we want to draw all normal lines to $C^{\mathbb{R}}$ passing through u, then it is equivalent to drawing all tangent lines to $\Sigma_{C^{\mathbb{R}}}$ passing through u. Since the number of normal lines exiting from u is equal to the number of real critical points of $\delta_{u}^{\mathbb{R}}$, and two normal lines collapse together when $u \in \Sigma_{C^{\mathbb{R}}}$, then the evolute $\Sigma_{C^{\mathbb{R}}}$ coincides with the real part of the ED discriminant of C.

Keeping in mind the above description, it is straightforward to notice that if two critical points of $\delta_{u}^{\mathbb{R}}$ coincide, then their corresponding normal lines to $C^{\mathbb{R}}$ coincide as well. The converse is not true since there exist distinct pairs of critical points $\left(x_{1}, x_{2}\right)$ of $\delta_{u}^{\mathbb{R}}$ such that their associated normal lines to $C^{\mathbb{R}}$ coincide. This happens when the curve $C^{\mathbb{R}}$ has a bottleneck between the two points x_{1} and x_{2}.

More generally, a bottleneck of a smooth algebraic variety $X \subset V$ is a pair of distinct points $\left(x_{1}, x_{2}\right) \in X$ such that the normal spaces at x_{1} and x_{2} contain the line spanned by x and y. As the previous definition suggests, the determination of all bottlenecks of a variety X is closely related to the computation of the ED degree of X. It turns out that the number of (complex) bottlenecks of a variety X is, in fact, another invariant of X and is called the bottleneck degree of X. In practice, the bottleneck degree of X measures the complexity of computing all bottlenecks of X. In this thesis, we do not enter into the details of this important invariant. An excellent reference for the bottlenecks and the bottleneck degree of an algebraic variety is [DEW].

Remark 1.2.14. The only property that we want to observe and that descends almost immediately from the definition of bottleneck of a plane curve is the following: given a curve $C^{\mathbb{R}} \subset \mathbb{R}^{2}$, a pair $\left(x_{1}, x_{2}\right) \in C^{\mathbb{R}}$ is a bottleneck of $C^{\mathbb{R}}$ if and only if the common normal line joining x_{1} and x_{2} is bitangent to the envelope $\Sigma_{C^{\mathbb{R}}}$. Figure 1.5 confirms this fact when $C^{\mathbb{R}}$ is the lemniscata of equation

$$
\left(x_{1}^{2}+x_{2}^{2}\right)^{2}-2\left(x_{1}^{2}-x_{2}^{2}\right)=0
$$

and its evolute is the sextic curve

$$
\begin{aligned}
\Sigma_{C^{\mathbb{R}}}: & 729 x_{1}^{6}+729 x_{1}^{4} x_{2}^{2}-729 x_{1}^{2} x_{2}^{4}-729 x_{2}^{6}-1944 x_{1}^{4}+ \\
& +1944 x_{1}^{2} x_{2}^{2}-1944 x_{2}^{4}+1728 x_{1}^{2}-1728 x_{2}^{2}-512=0 .
\end{aligned}
$$

1.3 ED degree for affine cones and duality

In this section, X represents an affine cone (through the origin) in V, meaning that if $x \in X$, then $\lambda x \in X$ for all $\lambda \in \mathbb{C}$. As we anticipated in the introduction, for affine cones we consider the following notion of duality.
Definition 1.3.1. Let X be an irreducible affine cone in a Euclidean space (V, q). The dual affine cone of X is

$$
X^{\vee}:=\overline{\bigcup_{x \in X_{\mathrm{sm}}} N_{x} X} \subset V
$$

where $N_{x} X:=\left(T_{x} X\right)^{\perp}$ is the normal space at $x \in X$ defined via the polarity map φ_{q} of Definition 1.1.1. If X is a non-reduced variety, then X^{\vee} is the empty set.

The last relation requires a few clarifications. Given a real Euclidean space $\left(V^{\mathbb{R}}, q^{\mathbb{R}}\right)$, the inner product $q^{\mathbb{R}}$ induces a natural isomorphism between $V^{\mathbb{R}}$ and the

Figure 1.5: For the lemniscata $C \subset \mathbb{C}^{2}$ whose real part is depicted above, we get that there are six real bottlenecks, which correspond to three pairs of real points with coinciding normal lines. This number has been computed with a M2 code inspired by [DEW, §1.1], where we have removed the singular locus of C.
dual vector space $V^{\mathbb{R}^{*}}:=\left\{l: V^{\mathbb{R}} \rightarrow \mathbb{R} \mid l\right.$ is linear $\}$, which takes a vector $v \in V^{\mathbb{R}}$ and associates it to the linear map $w \mapsto q(v, w)$. This isomorphism is natural, namely, it does not depend on the orthonormal basis of $V^{\mathbb{R}}$ chosen. Therefore, in the following, we always identify any vector space with its dual.

We remark that Definition 1.3 .1 is equivalent to the standard definition of the dual of a projective variety as in [Tev, Definition 1.1]. The variety X^{\vee} is an irreducible affine cone as well. Note that if X is a linear subspace, then $X^{\vee}=X^{\perp}$, the orthogonal subspace with respect to q.

Following the assumptions on X of the preceding section, we always consider affine cones X such their respective dual affine cones X^{\vee} are not contained in the isotropic quadric Q.

A slightly different approach to define the dual affine cone of X comes with the following definition.

Definition 1.3.2. Let $X \subset V$ be an irreducible affine cone. The conormal variety of X is the correspondence

$$
\mathcal{N}(X):=\overline{\left\{(x, y) \in V \times V \mid x \in X_{\mathrm{sm}} \text { and } y \in N_{x} X\right\}}
$$

The ideal of the conormal variety in $\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ is

$$
N(X):=\left(I(X)+\left\langle(c+1) \times(c+1)-\text { minors of }\binom{y}{J(f)}\right\rangle\right): I\left(X_{\text {sing }}\right)^{\infty} .
$$

It is known that, if $X \subset V$ is an irreducible affine cone, then $\mathcal{N}(X)$ is irreducible in $V \times V$ and has dimension $n-1$. One might consider the diagram

and verify that the projection of $\mathcal{N}(X)$ onto the second factor V is precisely the dual affine cone X^{\vee}. The well-known Biduality Theorem (see [GKZ, Chapter 1]) states that $\mathcal{N}(X)$ equals $\mathcal{N}\left(X^{\vee}\right)$ up to swapping the two factors. The consequence is that $\left(X^{\vee}\right)^{\vee}=X$. For this reason, we write $\mathcal{N}\left(X, X^{\vee}\right)$ for $\mathcal{N}(X)$ and $N\left(X, X^{\vee}\right)$ for $N(X)$.

The conormal variety $\mathcal{N}\left(X, X^{\vee}\right)$ plays a crucial role in the proof of the following important result, which we will apply several times in the next chapters.
Theorem 1.3.3. [DHOST, Theorem 5.2] Let $X \subset V$ be an irreducible affine cone and $u \in V$ a general data point. The map

$$
\begin{array}{rllc}
\varphi_{u}: & V & \rightarrow & V \tag{1.3.2}\\
& x & \mapsto & u-x
\end{array}
$$

gives a bijection from the critical points of δ_{u} on X to the critical points of δ_{u} on X^{\vee}. Consequently, $\operatorname{EDdegree}(X)=\operatorname{EDdegree}\left(X^{\vee}\right)$. If we restrict to the real points, the map is proximity-reversing: the closer a real critical point $x \in X$ is to the data point $u \in V^{\mathbb{R}}$, the further $u-x \in X^{\vee}$ is from u.

Figure 1.6: The bijection between critical points of δ_{u} on X and on its dual X^{\vee}.

Proof. Let $u \in V$ be a general point. If $x \in X$ is a critical point of δ_{u}, then $u-x \in N_{x} X$. In turn, this implies that the pair $(x, u-x)$ belongs to the conormal variety $\mathcal{N}\left(X, X^{\vee}\right)$. By the generality of $u, u-x$ is a smooth point on X^{\vee}. In addition, the Biduality Theorem implies that $x=u-(u-x) \in N_{u-x}\left(X^{\vee}\right)$,
namely $u-x$ is a critical point of δ_{u} on X^{\vee}. In particular, the map φ_{u} defined in (1.3.2) sends critical points of δ_{u} on X into critical points of δ_{u} on X^{\vee}. Since the above argument may be repeated with X^{\vee} in place of X, this map φ_{u} is in fact a bijection between the two mentioned sets of critical points.

Now observe that, since X and X^{\vee} are affine cones, the vectors x and $u-x$ above are orthogonal, hence the Pythagorean Theorem tells us that $q(u-x)+$ $q(x)=q(u)$. In particular, this means that φ_{u} is proximity-reversing.

It is clear that the conormal variety $\mathcal{N}\left(X, X^{\vee}\right)$ and the ED correspondences $\mathcal{E}(X)$ and $\mathcal{E}\left(X^{\vee}\right)$ are closely related. Indeed, there is another correspondence that somehow rules all three. It is introduced in the next definition.

Definition 1.3.4. Let $X \subset V$ be an irreducible affine cone. The joint $E D$ correspondence of X and X^{\vee} is

$$
\begin{aligned}
\mathcal{E}\left(X, X^{\vee}\right) & :=\overline{\left\{(x, u-x, u) \in V_{x} \times V_{y} \times V_{u} \mid x \in X_{\mathrm{sm}} \text { and } u-x \in N_{x} X\right\}} \\
& =\overline{\left\{(u-y, y, u) \in V_{x} \times V_{y} \times V_{u} \mid y \in X_{\mathrm{sm}}^{\vee} \text { and } u-y \in N_{x} X^{\vee}\right\}}
\end{aligned}
$$

Now we might consider the three projections of $\mathcal{E}\left(X, X^{\vee}\right)$ onto either one of the three product spaces $V_{x} \times V_{u}, V_{y} \times V_{u}$ and $V_{x} \times V_{y}$. In the first two cases, we recover the ED correspondence $\mathcal{E}(X)$ and $\mathcal{E}\left(X^{\vee}\right)$, respectively. In the last case, we get the conormal variety $\mathcal{N}\left(X, X^{\vee}\right)$. The affine variety $\mathcal{E}\left(X, X^{\vee}\right)$ is irreduible of dimension n, since $\mathcal{E}(X)$ has these properties. The projection $\mathcal{E}\left(X, X^{\vee}\right) \rightarrow \mathcal{E}(X)$ is birational with inverse $(x, u) \mapsto(x, u-x, u)$.

Every affine cone $X \subset V$ may be associated to a projective variety in $\mathbb{P}(V)$. With a little abuse of notation, we denote this variety by X as well. Moreover, we define the $E D$ degree of a projective variety in $\mathbb{P}(V)$ as the ED degree of the corresponding affine cone in V.

It turns out that the notions of ED correspondence, joint ED correspondence have a projective counterpart. We state their definition and an analogue of Theorem 1.2.2 for completeness. Consider the map

$$
\begin{array}{ccc}
\varphi: \quad(V \backslash\{0\}) \times V & \rightarrow & \mathbb{P}(V) \times V \\
(x, u) & \mapsto & ([x], u)
\end{array}
$$

Definition 1.3.5. The closure of $\varphi\left(\mathcal{E}_{X} \cap[(V \backslash\{0\}) \times V]\right)$ is called the projective $E D$ correspondence of X, and it is denoted by $\mathcal{P E}(X)$.

Similarly to (1.2.2) we might consider the following diagram of projections
involving the ED correspondence $\mathcal{P E}(X)$:

Theorem 1.3.6. [DHOST, Theorem 4.4] Let $X \subset \mathbb{P}(V)$ be an irreducible variety not contained in the isotropic quadric Q. Then the projective $E D$ correspondence $\mathcal{P E}(X)$ of X is an n-dimensional irreducible variety in $\mathbb{P}(V) \times V$. Its projection onto X is a vector bundle over $X_{\mathrm{sm}} \backslash Q$ of rank $c+1$. The fiber over general data points u of its projection onto V are finite of cardinality equal to EDdegree((X).

Mimicking to the case of the projective ED correspondence, we define

$$
\begin{array}{cccc}
\varphi: \quad(V \backslash\{0\}) \times(V \backslash\{0\}) \times V & \rightarrow & \mathbb{P}(V) \times \mathbb{P}(V) \times V \\
& \mapsto, y, u) & \mapsto & ([x],[y], u)
\end{array}
$$

Definition 1.3.7. The closure of

$$
\varphi\left\{\mathcal{E}\left(X, X^{\vee}\right) \cap[(V \backslash\{0\}) \times(V \backslash\{0\}) \times V]\right\}
$$

is called the projective joint $E D$ correspondence of X, and it is denoted by $\mathcal{P E}\left(X, X^{\vee}\right)$.

When $X \subset V$ is an affine cone, we could derive nice formulas for EDdegree (X) involving several important intrinsic invariants of Algebraic Geometry like polar classes, Chern classes (for smooth varieties) and Chern-Mather classes (for singular varieties). We recall a very short summary of these invariants in the next sections, together with the main results which include them in the ED degree philosophy.

1.4 The Chow ring of a projective variety

In this brief section, we outline the definition and some basic facts related to the Chow groups and the Chow ring of a projective variety. It is a necessary step towards the definition of the polar classes and the Chern classes of a projective variety. All the necessary material is taken from [Ful, Chapter 8]. Following the idea of the previous sections, we adopt a coordinate-free approach and consider a projective space $\mathbb{P}(V)$ for some complex n-dimensional vector space V.

Let $X \subset \mathbb{P}(V)$ be a smooth, irreducible projective variety of dimension $\operatorname{dim}(X)=m$. For all $d \geq 0$, we denote by $Z^{d}(X)$ the free abelian group generated by d-cocycles of X (or $(m-d)$-cycles of X), namely formal linear combinations

$$
\alpha=\sum \alpha_{i} V_{i}
$$

with integer coefficients of d-codimensional irreducible subvarieties $V_{i} \subset X$. A d-cocycle $\alpha \in Z^{d}(X)$ is principal if it is of the form $\alpha=\operatorname{div}(f)$, where f is a rational function on a subvariety Y of codimension $d-1$ in X. Two d-cocycles α and β are rationally equivalent if $\alpha-\beta$ is a sum of principal d-cocycles. Rational equivalence is an equivalence relation in $Z^{d}(X)$ and is denoted by \sim.
Definition 1.4.1. The d-th Chow group $A^{d}(X)$ is the quotient group $Z^{d}(X) / \sim$.
For example, it turns out that the first Chow group $A^{1}(X)$ coincides with the Picard group of X (see [Ful, Chapter 2, §1]). In particular, consider the case $X=\mathbb{P}(V)$. Then $A^{1}(\mathbb{P}(V))=\operatorname{Pic}(\mathbb{P}(V)) \cong \mathbb{Z}$, and its generator is the class of a hyperplane, denoted by H.

Consider the direct sum $A^{*}(X):=\bigoplus_{i \geq 0} A^{i}(X)$, which is clearly an abelian group with respect to the addition of rational equivalence classes of cycles. One might turn $A^{*}(X)$ into a graded ring by defining a suitable product

$$
A^{d}(X) \times A^{e}(X) \rightarrow A^{d+e}(X)
$$

Let V and W be two irreducible subvarieties of codimensions d and e in X, respectively. If V and W intersect transversally (for a discussion of the precise meaning of transversality we refer, for example, to [Sch]), their intersection $V \cap W$ is a subvariety of codimension $d+e$ in X. Otherwise, if V and W do not intersect transversally, the smoothness of X allows us to replace V with another cocycle $\alpha=\sum \alpha_{i} V_{i}$ on X which is rationally equivalent to V and which intersects W transversally. This property is classically known as the Moving Lemma (see [Ful, Chapter 11, §4]). Moreover, one may verify that the two subvarieties $V \cap W$ and $\alpha \cap W$ are rationally equivalent as well.
Definition 1.4.2. The intersection product of two rational equivalence classes $[V] \in A^{d}(X)$ and $[W] \in A^{e}(X)$ of irreducible subvarieties V and W in X is

$$
[V][W]:=[\alpha \cap W]=\left[\sum \alpha_{i}\left(V_{i} \cap W\right)\right] \in A^{d+e}(X)
$$

where α is any d-cocycle in X which is rationally equivalent to V and which meets W transversally.

Proposition 1.4.3. [Ful, Proposition 8.3] The group $A^{*}(X)$ equipped with the intersection product is a graded ring and is called the Chow ring (or intersection ring) of X.

Example 1.4.4. Going back to the example $X=\mathbb{P}(V)$, for all $d \geq 0$, the d th Chow group of $\mathbb{P}(V)$ is $A^{d}(\mathbb{P}(V))=\left(H^{d}\right) \cong \mathbb{Z}$, where H^{d} is the class of a linear space of codimension d, namely the product of $d 1$-codimensional general hyperplanes of $\mathbb{P}(V)$. In particular, H^{n-1} denotes the class of a point, so it has empty intersection with a general hyperplane. In other words, $H^{n}=0$ and therefore the n-th Chow goup of $\mathbb{P}(V)$ is $A^{n}(\mathbb{P}(V))=0$. Moreover, $H^{n}=$ 0 is the only relation involving H. Summing up, the Chow ring of $\mathbb{P}(V)$ is $A^{*}(\mathbb{P}(V)) \cong \mathbb{Z}[H] /\left(H^{n}\right)$. In particular, if $Y \subset \mathbb{P}(V)$ is an irreducible subvariety of codimension d, then its rational equivalence class $[Y] \in A^{d}(\mathbb{P}(V))$ is given by $c H^{d}$. The coefficient c corresponds to the number of points of intersection between Y and a general linear subspace of $\mathbb{P}(V)$ of dimension d. In other words, c is equal to the degree of Y.
Example 1.4.5. Let $X \subset \mathbb{P}(V) \cong \mathbb{P}^{m-1}$ and $Y \subset \mathbb{P}(W) \cong \mathbb{P}^{n-1}$ be two smooth projective varieties and consider their product $X \times Y$ embedded in $\mathbb{P}(V \otimes W)$. There exists a homomorphism of rings $A^{*}(X) \otimes A^{*}(Y) \rightarrow A^{*}(X \times Y)$ which preserves the grading of the Chow rings involved. When $X=\mathbb{P}(V)$ and $Y=$ $\mathbb{P}(W)$, then $A^{*}(\mathbb{P}(V)) \otimes A^{*}(\mathbb{P}(W)) \cong A^{*}(\mathbb{P}(V) \times \mathbb{P}(W))$. From this fact and Example 1.4.4, one can derive that

$$
A^{*}(\mathbb{P}(V) \times \mathbb{P}(W)) \cong \frac{\mathbb{Z}[s, t]}{\left(s^{m}, t^{n}\right)},
$$

where s and t correspond to the pullbacks of the hyperplane classes of $\mathbb{P}(V)$ and $\mathbb{P}(W)$ via the two projections of $\mathbb{P}(V) \times \mathbb{P}(W)$ onto the factors $\mathbb{P}(V)$ and $\mathbb{P}(W)$, respectively. In particular, the rational equivalence class $[Z] \in A^{d}(X \times Y)$ of an irreducible subvariety $Z \subset X \times Y$ of codimension d may be written as

$$
[Z]=c_{0} s^{d}+c_{1} s^{d-1} t+\cdots+c_{d} t^{d}
$$

where the vector of coefficients $\left(c_{0}, \ldots, c_{d}\right)$ is known as the multidegree of Z in $X \times Y$.

1.5 Polar classes of projective varieties

Let V be an n-dimensional complex vector space and let $X \subset V$ be an irreducible affine cone, namely $X \subset \mathbb{P}(V)$ as an irreducible projective variety. The main tool of this section is the conormal variety $\mathcal{N}\left(X, X^{\vee}\right)$ introduced in Definition 1.3.2. One may verify that $\mathcal{N}\left(X, X^{\vee}\right)$ is an irreducible subvariety of codimension n in $\mathbb{P}(V) \times \mathbb{P}(V)$. Applying the facts outlined in Section 1.4, we may consider the rational equivalence class $\left[\mathcal{N}\left(X, X^{\vee}\right)\right] \in A^{*}(\mathbb{P}(V) \times \mathbb{P}(V))$. Following Example 1.4.5, we have that

$$
A^{*}(\mathbb{P}(V) \times \mathbb{P}(V)) \cong \frac{\mathbb{Z}[s, t]}{\left(s^{n}, t^{n}\right)}
$$

and

$$
\begin{equation*}
\left[\mathcal{N}\left(X, X^{\vee}\right)\right]=\delta_{0} s^{n-1} t+\cdots+\delta_{n-2} s t^{n-1} \tag{1.5.1}
\end{equation*}
$$

for some nonnegative integers $\delta_{i}=\delta_{i}(X)$. Geometrically speaking, $\delta_{j}(X)$ counts the number of intersections between $\mathcal{N}\left(X, X^{\vee}\right)$ and a subvariety of the form $L \times M \subset \mathbb{P}(V) \times \mathbb{P}(V)$, where L and M are linear subspaces of $\mathbb{P}(V)$ of dimensions $n-1-j$ and $j+1$, respectively.

Actually, the coefficients $\delta_{j}(X)$ may be introduced in a more formal way using the Gauss map of a projective variety. For completeness, we briefly outline this second approach, which is nicely explained in [Pie15].

We denote by $G(k+1, V)=\mathbb{G}(k, \mathbb{P}(V))$ the Grassmannian of $(k+1)$-dimensional vector subspaces of V, namely of k-dimensional projective subspaces of $\mathbb{P}(V)$. Let $j \geq 0$ and $L_{j} \subset \mathbb{P}(V)$ be a linear space of codimension $k-(j-2)$. Define

$$
\Sigma\left(L_{j}\right):=\left\{M \in G(k+1, V) \mid \operatorname{dim}\left(M \cap L_{j}\right) \geq j-1\right\}
$$

Actually, $\Sigma\left(L_{j}\right)$ is an example of a Schubert variety (see [GH, Chapter 1, §5]).
Example 1.5.1. Assume that $V \cong \mathbb{C}^{3}$ and that $k=1$. Then $G(2, V)$ is the dual space $\mathbb{P}(V)^{\vee}$. If we let L_{1} be a general point of $\mathbb{P}(V)$, then necessarily $j=1$ and

$$
\Sigma\left(L_{1}\right)=\left\{M \in \mathbb{P}(V)^{\vee} \mid \operatorname{dim}\left(M \cap L_{1}\right) \geq 0\right\}=\left\{\text { lines in } \mathbb{P}(V) \text { containing } L_{1}\right\}
$$

Having fixed k, if L and L^{\prime} are two linear spaces of codimension $k-(j-2)$ in $\mathbb{P}(V)$, it turns out that the corresponding subvarieties $\Sigma(L)$ and $\Sigma\left(L^{\prime}\right)$ are projectively equivalent, hence their rational equivalence classes are equal. So we denote simply by Σ_{j} the variety $\Sigma\left(L_{j}\right)$.

Now consider a projective variety X of dimension m in $\mathbb{P}(V)$. The Gauss map associated to X is the rational map

$$
\begin{array}{cccc}
\gamma_{X}: & X & \cdots & G(m+1, V) \tag{1.5.2}\\
x & \longmapsto & T_{x} X
\end{array}
$$

which is defined over the smooth points of X.
Definition 1.5.2. The j-th polar variety associated to $X \subset \mathbb{P}(V)$ is

$$
\mathcal{P}_{j}(X):=\gamma_{X}^{-1}\left(\Sigma_{j}\right)=\left\{x \in X \mid \operatorname{dim}\left(T_{x} X \cap L_{j}\right) \geq j-1\right\}
$$

It turns out that the degree of $\mathcal{P}_{j}(X)$ is precisely the coefficient $\delta_{n-2-j}(X)$ introduced in (1.5.1). In the literature, the integers $\delta_{n-2-j}(X)$ are ofter regarded as the polar classes (or polar ranks) of X, representing the whole rational equivalence classes of the $\mathcal{P}_{j}(X)$'s.

Example 1.5.3. For example, let $V \cong \mathbb{C}^{3}$ and X be a smooth conic in $\mathbb{P}(V)$. For $j=0$, one could see easily from Definition 1.5.2 that $\mathcal{P}_{0}(X)=X$, hence $\delta_{1}(X)=\operatorname{deg}(X)=2$. Instead for j we have
$\mathcal{P}_{1}(X)=\left\{x \in X \mid T_{x} X\right.$ passes through a general point $\left.u \in \mathbb{P}(V)\right\}=\left\{x_{1}, x_{2}\right\}$,
where x_{1} and x_{2} are depicted in Figure 1.7. Hence, $\delta_{0}(X)=2$. Note that, dually

Figure 1.7: The first polar variety of a plane conic.
speaking, the general point u corresponds to a general line which intersects X^{\vee} in the two points representing the tangent lines $T_{x_{1}} X$ and $T_{x_{2}} X$. In other words, $\delta_{0}(X)=2$ corresponds to the degree of the conic X^{\vee}.

Actually, what happens in Example 1.5.3 is true for any irreducible projective variety $X \subset \mathbb{P}(V)$. On one hand, $\delta_{0}(X)=\operatorname{deg}\left(X^{\vee}\right)$ if X^{\vee} is a hypersurface. On the other hand, $\delta_{n-2}(X)=\operatorname{deg}(X)$. This is confirmed by the interpretation given after relation (1.5.1): the invariant $\delta_{0}(X)$ counts the points of intersection between $\mathcal{N}\left(X, X^{\vee}\right)$ and a general subvariety $\mathbb{P}(V) \times M$, where M is a line. This, in turn, is the number of points of intersections between X^{\vee} and the line M, namely $\operatorname{deg}\left(X^{\vee}\right)$. More in general, we have following result.
Theorem 1.5.4. [Hol, Theorem 3.4] If $\delta_{j}(X)=0$ for all $j<l$ and $\delta_{l}(X) \neq 0$, then $\operatorname{dim}\left(X^{\vee}\right)=n-2-l$ and $\delta_{l}(X)=\operatorname{deg}\left(X^{\vee}\right)$.

One of the reasons why the polar classes of a projective variety $X \subset \mathbb{P}(V)$ are important for our upcoming computations lies in the following important result.

Theorem 1.5.5. [DHOST, Theorem 5.4] If $\mathcal{N}\left(X, X^{\vee}\right)$ does not intersect the diagonal $\Delta(\mathbb{P}(V)) \subset \mathbb{P}(V) \times \mathbb{P}(V)$, then

$$
\operatorname{EDdegree}(X)=\delta_{0}(X)+\cdots+\delta_{n-2}(X)
$$

Hence, for example the ED degree of the smooth conic X of Example 1.5.3 (with respect to an isotropic quadric Q such that $\mathcal{N}\left(X, X^{\vee}\right)$ satisfies the hypothesis of Theorem 1.5.5) is EDdegree $(X)=\delta_{0}(X)+\delta_{1}(X)=4$, somehow confirming the right picture in Figure 1.4.

In Proposition 4.4 .8 we furnish a sufficient condition for $\mathcal{N}\left(X, X^{\vee}\right)$ not to intersect $\Delta(\mathbb{P}(V))$, in terms of Whitney stratifications of X (see Definition 4.3.3). For example, the hypothesis of Theorem 1.5.5 is satisfied when $X \cap Q$ is a smooth variety disjoint from the singular locus of X.

The polar classes of X are projective invariants of X, and are closely related to another family of invariants associated to vector bundles on X, the so-called Chern classes of smooth projective varieties. When we say "Chern classes of X " we mean the Chern classes of the tangent bundle $\mathcal{T} X \rightarrow X$ (see Definition 1.6.6). In Section 1.7, we provide a rough introduction to Chern classes of holomorphic vector bundles in the easiest possible way.

1.6 Overview of holomorphic vector bundles

Before introducing Chern classes, we recall the notion of a holomorphic vector bundle and state some useful properties. The main references used are $[\mathrm{EH}$, Chapter 5] and [GH, Chapter 0, §5]. For brevity, after the next definition, we avoid repeating the word "holomorphic" to address a vector bundle.

Definition 1.6.1. Let E and M be complex manifolds. A holomorphic vector bundle $\pi: E \rightarrow M$ consists of a family $\left\{E_{x}\right\}_{x \in M}$ of complex vector spaces parametrized by M such that

1. $E:=\bigcup_{x \in M} E_{x}$,
2. The projection $\pi: E \rightarrow M$ taking E_{x} to x is holomorphic, and
3. For every $x_{0} \in M$, there exists an open set U in M containing x_{0} and a biholomorphic map

$$
\varphi_{U}: \pi^{-1}(U) \longrightarrow U \times \mathbb{C}^{k}
$$

taking the vector space E_{x} isomorphically onto $\{x\} \times \mathbb{C}^{k}$ for each $x \in U$. The map φ_{U} is called a (holomorphic) trivialization of E over U.

The dimension of the fibers E_{x} of E is called the rank of E. In particular, a rank-one vector bundle is called a line bundle. For any pair of trivializations $\varphi_{U_{\alpha}}$ and $\varphi_{U_{\beta}}$, the map

$$
g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \longrightarrow \mathrm{GL}\left(\mathbb{C}^{k}\right), \quad g_{\alpha \beta}(x):=\left.\left(\varphi_{U_{\alpha}} \circ \varphi_{U_{\beta}}^{-1}\right)\right|_{\{x\} \times \mathbb{C}^{k}}
$$

is holomorphic. The maps $g_{\alpha \beta}$ are called transition functions for E relative to the trivializations $\varphi_{U_{\alpha}}, \varphi_{U_{\beta}}$. The transition functions of E satisfy the relations

$$
\begin{aligned}
g_{\alpha \beta}(x) \cdot g_{\beta \alpha}(x) & =I d & \text { for all } x \in U_{\alpha} \cap U_{\beta} \\
g_{\alpha \beta}(x) \cdot g_{\beta \gamma}(x) \cdot g_{\gamma \alpha}(x) & =I d & \text { for all } x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma} .
\end{aligned}
$$

Conversely, every open cover $\mathcal{U}=\left\{U_{\alpha}\right\}$ of M with holomorphic maps $g_{\alpha \beta}: U_{\alpha} \cap$ $U_{\beta} \rightarrow \mathrm{GL}\left(\mathbb{C}^{k}\right)$ satisfying the two above identities yields a unique vector bundle $E \rightarrow M$ with transition functions $\left\{g_{\alpha \beta}\right\}$.

Given vector bundles $E \rightarrow M$ and $F \rightarrow M, F$ is a subbundle of E (and we write $F \subset E$) if $F_{x} \subset E_{x}$ for all $x \in M$ and F is a submanifold of E. If $F \subset E$, we can define the quotient bundle E / F given by $(E / F)_{x}:=E_{x} / F_{x}$.

Given a holomorphic map $f: M \rightarrow N$ between complex manifolds and a vector bundle $E \rightarrow N$, we define the pullback bundle $f^{*} E$ by setting $\left(f^{*} E\right)_{x}=E_{f(x)}$.

A (holomorphic) morphism of vector bundles $E \rightarrow M$ and $F \rightarrow M$ is a holomorphic map $f: E \rightarrow F$ such that $f\left(E_{x}\right) \subset F_{x}$ and $f_{x}:=\left.f\right|_{E_{x}}: E_{x} \rightarrow F_{x}$ is linear.

If $f: E \rightarrow F$ is a morphism of vector bundles over M, then

$$
\operatorname{Ker}(f):=\bigcup_{x \in M} \operatorname{Ker}\left(f_{x}\right) \subset E, \quad \operatorname{Im}(f):=\bigcup_{x \in M} \operatorname{Im}\left(f_{x}\right) \subset F
$$

are subbundles of E and F, respectively if and only if the maps f_{x} all have the same rank.

Two vector bundles $E \rightarrow M$ and $F \rightarrow M$ are isomorphic if there exists a morphism of vector bundles $f: E \rightarrow F$ such that f_{x} is an isomorphism for all $x \in M$.

The first example of a vector bundle over M of rank k is the product bundle $M \times \mathbb{C}^{k}$, also called trivial bundle. More in general, a vector bundle $E \rightarrow M$ of rank k is trivial if it is isomorphic to $M \times \mathbb{C}^{k}$.

If $\left(E, g_{\alpha \beta}\right)$ and $\left(F, h_{\alpha \beta}\right)$ are vector bundles over M of rank k and l respectively, we can construct many interesting vector bundles over M like

1. the direct sum (or Whitney sum) $\left(E \oplus F, j_{\alpha \beta}\right)$, where $(E \oplus F)_{x}:=E_{x} \oplus F_{x}$ and

$$
j_{\alpha \beta}(x):=\left(\begin{array}{cc}
g_{\alpha \beta}(x) & 0 \\
0 & h_{\alpha \beta}(x)
\end{array}\right) \in \mathrm{GL}\left(\mathbb{C}^{k} \oplus \mathbb{C}^{l}\right),
$$

2. the tensor product $\left(E \otimes F, j_{\alpha \beta}\right)$, where $(E \otimes F)_{x}:=E_{x} \otimes F_{x}$ and

$$
j_{\alpha \beta}(x):=g_{\alpha \beta}(x) \otimes h_{\alpha \beta}(x) \in \mathrm{GL}\left(\mathbb{C}^{k} \otimes \mathbb{C}^{l}\right)
$$

3. the dual $\left(E^{\vee}, j_{\alpha \beta}\right)$, where $E_{x}^{\vee}:=\left(E_{x}\right)^{\vee}$ and $j_{\alpha \beta}(x):=\left[g_{\alpha \beta}^{T}(x)\right]^{-1} \in \mathrm{GL}\left(\mathbb{C}^{k}\right)$,
4. the r-th exterior power $\left(\wedge^{r} E, j_{\alpha \beta}\right)$, where $\left(\wedge^{r} E\right)_{x}:=\wedge^{r}\left(E_{x}\right)$ and

$$
j_{\alpha \beta}(x):=\wedge^{r} g_{\alpha \beta}(x) \in \operatorname{GL}\left(\wedge^{r} \mathbb{C}^{k}\right)
$$

In particular, $\left(\wedge^{k} E, j_{\alpha \beta}\right)$ is a line bundle with transition functions

$$
j_{\alpha \beta}(x):=\operatorname{det}\left(g_{\alpha \beta}(x)\right) \in \mathbb{C}^{*}
$$

and is called the determinant bundle of E.
From the constructions listed above and the basic operations of inclusion, quotient, and pullback, one may build other useful vector bundles. For example, given vector bundles $E \rightarrow M$ and $F \rightarrow M$, it turns out that the vector bundle $F \otimes E^{\vee}$ is isomorphic to another interesting vector bundle over M, namely the Hom-bundle $\operatorname{Hom}(E, F)$, whose fibers are $(\operatorname{Hom}(E, F))_{x}:=\operatorname{Hom}\left(E_{x}, F_{x}\right)$ for all $x \in M$.

Definition 1.6.2. A (holomorphic) section of a vector bundle $E \rightarrow M$ over $U \subset M$ is a holomorphic map $\sigma: U \rightarrow E$ such that $\sigma(x) \in E_{x}$ for all $x \in U$. A global section of a vector bundle $E \rightarrow M$ is a section defined over all of M. A vector bundle $E \rightarrow M$ is globally generated if there exist global sections $\sigma_{1}, \ldots, \sigma_{r}$ such that the vectors $\sigma_{1}(x), \ldots, \sigma_{r}(x)$ span E_{x} for all $x \in M$.

In the following, we denote by \mathcal{O}_{M} the sheaf of holomorphic functions of the complex manifold M. For every open subset $U \subset M, \mathcal{O}_{M}(U)=\Gamma\left(U, \mathcal{O}_{M}\right)$ is the ring of regular functions on U. For a detailed introduction to sheaves on manifolds, we refer to $[\mathrm{GH}$, Chapter 0, §3].

Definition 1.6.3. For a vector bundle $E \rightarrow M$ and an open subset $U \subset M$, the sections of M over U form an $\mathcal{O}_{M}(U)$-module which defines locally a presheaf over M. One may verify that this presheaf is, in fact, a sheaf of \mathcal{O}_{M}-modules and is called the sheaf of sections of $E \rightarrow M$.

In particular, \mathcal{O}_{M} corresponds to the sheaf of sections of the trivial line bundle $M \times \mathbb{C} \rightarrow M$. For a positive integer k, the direct sum of k copies of \mathcal{O}_{M} is defined as $\mathcal{O}_{M}(U)^{\oplus k}$ for all $U \subset M$. It is indicated by $\mathcal{O}_{M}^{\oplus k}$. More generally, an $\mathcal{O}_{M^{-}}$ module is free (locally free) of rank k if it is isomorphic (locally isomorphic) to $\mathcal{O}_{M}^{\oplus k}$.

The following result yields a useful dictionary between vector bundles over a complex manifold M and locally free \mathcal{O}_{M}-modules.
Proposition 1.6.4. The set of vector bundles of rank k over a complex manifold M and the set of locally free \mathcal{O}_{M}-modules of rank k are in bijection. The bijection is defined by sending a vector bundle $E \rightarrow M$ to its sheaf of sections.

Motivated by the previous result, in the following we denote with the same symbol E both a vector bundle over M and its associated sheaf of sections.

We make a further consideration before introducing the degeneracy loci of a vector bundle morphism.

Remark 1.6.5. Let M be a compact complex manifold and let \mathcal{F} be an $\mathcal{O}_{M^{-}}$ module. Then there is a one to one correspondence between morphisms of sheaves $\varphi: \mathcal{O}_{M} \rightarrow \mathcal{F}$ and global sections of \mathcal{F}, namely elements of $\Gamma(M, \mathcal{F})$.

In fact, let $\varphi: \mathcal{O}_{M} \rightarrow \mathcal{F}$ be a morphism of sheaves. Then for every open subset $U \subset M$ we have a homomorphism of $\mathcal{O}_{M}(U)$-modules $\varphi_{U}: \mathcal{O}_{M}(U) \rightarrow \mathcal{F}(U)$. In particular for $U=M$ we have the homomorphism $\varphi_{M}: \Gamma\left(M, \mathcal{O}_{M}\right) \rightarrow \Gamma(M, \mathcal{F})$. Since M is compact, every holomorphic function $M \rightarrow \mathbb{C}$ is constant. In other words, $\Gamma\left(M, \mathcal{O}_{M}\right) \cong \mathbb{C}$. This implies that φ_{M} determines and is determined by the image of $1 \in \mathbb{C}$ in $\Gamma(M, \mathcal{F})$.

Conversely, let $\sigma \in \Gamma(M, \mathcal{F})$ be a global section of \mathcal{F} and define the ring homomorphism $\varphi_{M}: \mathbb{C} \rightarrow \Gamma(M, \mathcal{F})$ such that $\varphi_{M}(1):=\sigma$. Then for every open subset $U \subset M$ we can define a ring homomorphism $\varphi_{U}: \Gamma\left(U, \mathcal{O}_{M}\right) \rightarrow \Gamma(U, \mathcal{F})$ in order to make the following diagram commute:

Here the vertical arrows are the restriction maps respectively of \mathcal{O}_{M} and \mathcal{F}. This gives rise to a morphism of sheaves $\varphi: \mathcal{O}_{M} \rightarrow \mathcal{F}$.

As a corollary of last remark, we obtain that there is a one to one correspondence between morphisms $\varphi: \mathcal{O}_{M}^{\oplus r} \rightarrow \mathcal{F}$ and sets $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ of global sections of \mathcal{F}.

Our prototype for a smooth manifold is the projective space $\mathbb{P}(V)$ associated to an n-dimensional complex vector space V. We briefly list the first mostly used vector bundles on $\mathbb{P}(V)$:

1. The trivial line bundle $\mathbb{P}(V) \times L$, where L is a one dimensional complex vector space, is indicated by $\mathcal{O}:=\mathcal{O}_{\mathbb{P}(V)}$. Therefore, any trivial bundle $E \rightarrow \mathbb{P}(V)$ of rank r is of the form $E=\mathcal{O}^{\oplus r}=\mathcal{O} \otimes \mathbb{C}^{r}$.
2. the tautological line bundle on $\mathbb{P}(V)$ is the subbundle of \mathcal{F}, usually indicated by $\mathcal{O}(-1):=\mathcal{O}_{\mathbb{P}(V)}(-1)$, such that, for each point $x=[v] \in \mathbb{P}(V)$, the fiber $\mathcal{O}(-1)_{x}$ is the line spanned by v.
3. The hyperplane bundle of $\mathbb{P}(V)$ is the dual $\mathcal{O}(-1)^{\vee}$ of the tautological bundle and is usually denoted by $\mathcal{O}(1)$.
4. For $d>0$, we define the line bundle $\mathcal{O}(d):=\mathcal{O}(1)^{\otimes d}$. Analogously, for $d<0$ we define $\mathcal{O}(d):=\mathcal{O}(-d)^{\vee}$.

Analogously, one might consider a smooth projective variety $X \subset \mathbb{P}(V)$ and define the vector bundles $X \times L$ and $\mathcal{O}_{X}(d)$ for all $d \in \mathbb{Z}$. Clearly one might consider the above vector bundles as "bricks" for constructing other vector bundles on X. Besides the above-mentioned vector bundles, it is not easy to construct higher-rank vector bundles on X.

Actually, there is another vector bundle which we can associate naturally to X, the tangent bundle $\mathcal{T} X \rightarrow X$. Let $\left\{U_{i}\right\}_{i}$ be a finite open covering of X given by charts $\varphi_{i}: U \rightarrow \varphi_{i}\left(U_{i}\right) \subset \mathbb{C}^{m}$, where $m=\operatorname{dim}(X)$. For example, when $X=\mathbb{P}(V)$, one might consider the standard open covering $\mathbb{P}(V)=\bigcup_{i=1}^{n} U_{i}$, where

$$
U_{i}:=\left\{\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{P}(V) \mid x_{i} \neq 0\right\} \quad \forall i \in[n]
$$

and the charts $\varphi_{i}: U_{i} \rightarrow \mathbb{C}^{n}$ defined as

$$
\varphi_{i}\left(\left[x_{1}, \ldots, x_{n}\right]\right):=\left(\frac{x_{1}}{x_{i}}, \ldots, \frac{\widehat{x_{i}}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right) .
$$

Definition 1.6.6. The Jacobian of the transition maps $\varphi_{i j}=\varphi_{i} \circ \varphi_{j}^{-1}: \varphi_{j}\left(U_{i} \cap\right.$ $\left.U_{j}\right) \cong \varphi_{i}\left(U_{i} \cap U_{j}\right)$ is the matrix

$$
J\left(\varphi_{i j}\right)\left(\varphi_{j}(x)\right) \doteq\left(\frac{\partial^{k} \varphi_{i j}}{\partial x_{l}}\left(\varphi_{j}(x)\right)\right)_{k, l}
$$

The tangent bundle of X is the vector bundle $\mathcal{T} X$ of $\operatorname{rank} m=\operatorname{dim}(X)$ given by the transition functions

$$
g_{i j}(x) \doteq J\left(\varphi_{i j}\right)\left(\varphi_{j}(x)\right)
$$

The cotangent bundle of X is the dual of $\mathcal{T} X$ and is denoted by Ω_{X}.
The above definition is independent of the open covering $\left\{U_{i}\right\}_{i}$ and the charts $\left\{\varphi_{i}\right\}_{i}$ chosen.

Proposition 1.6.7 (Euler sequence). On $\mathbb{P}(V)$ there exists a natural short exact sequence of vector bundles

$$
\begin{equation*}
0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}(1) \otimes V \longrightarrow \mathcal{T} \mathbb{P}(V) \longrightarrow 0 \tag{1.6.1}
\end{equation*}
$$

Proof. From the definition of tautological line bundle $\mathcal{O}(-1)$ we get a short exact sequence

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O} \otimes V \rightarrow \mathcal{Q} \rightarrow 0
$$

where \mathcal{Q} is the quotient bundle of rank n. Tensoring with $\mathcal{O}(1)$ we get the sequence

$$
0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(1) \otimes V \rightarrow \mathcal{Q}(1) \rightarrow 0
$$

Now let us examine the action $\sigma: \mathrm{GL}(V) \times \mathbb{P}(V) \rightarrow \mathbb{P}(V)$ of $\mathrm{GL}(V)$ on $\mathbb{P}(V)$ defined by $\sigma(g,[v]):=[g(v)]$. This action induces, for every $[v] \in \mathbb{P}(V)$, the map

$$
\sigma_{[v]}: \mathrm{GL}(V) \rightarrow \mathbb{P}(V), \quad \sigma_{[v]}(g):=\sigma(g,[v])=[g(v)] \forall g \in \mathrm{GL}(V) .
$$

The differential at $g=I d$ of $\sigma_{[v]}$ is the surjective linear map

$$
D \sigma_{[v]}: T_{I d} \operatorname{GL}(V)=\mathfrak{g l}(V) \rightarrow T_{[v]} \mathbb{P}(V), \quad D \sigma_{[v]}(g):=g(v) \forall g \in \mathfrak{g l}(V) .
$$

Then we have

$$
\begin{aligned}
T_{[v]} \mathbb{P}(V) & \cong \frac{\mathfrak{g l}(V)}{\operatorname{ker}\left(D \sigma_{[v]}\right)}=\frac{\mathfrak{g l}(V)}{\{g \mid g(v) \in\langle v\rangle\}} \cong \operatorname{Hom}\left(\langle v\rangle, \frac{V}{\langle v\rangle}\right)= \\
& =\operatorname{Hom}\left(\mathcal{O}(-1)_{v}, \mathcal{Q}_{v}\right) \cong \mathcal{Q}_{v} \otimes \mathcal{O}(1)_{v}=[\mathcal{Q} \otimes \mathcal{O}(1)]_{v}=\mathcal{Q}(1)_{v} .
\end{aligned}
$$

Therefore $\mathcal{Q}(1) \cong \mathcal{T} \mathbb{P}(V)$, concluding the proof.
It turns out that, if Y is a projective subvariety of X, then there is a canonical injection $\left.\mathcal{T} Y \subset \mathcal{T} X\right|_{Y}$, where $\left.\mathcal{T} X\right|_{Y}$ denotes the restriction to Y of the tangent bundle of X. This gives rise to the definition of another important vector bundle on $Y \subset X$.

Definition 1.6.8. Let Y be a projective subvariety of X. The normal bundle of Y in X, denoted by $\mathcal{N}_{Y / X} \rightarrow Y$, is the cokernel of the natural injection $\left.\mathcal{T} Y \subset \mathcal{T} X\right|_{Y}$. Moreover, the following is a short exact sequence of vector bundles on Y, called normal bundle sequence of Y :

$$
\begin{equation*}
\left.0 \longrightarrow \mathcal{T} Y \longrightarrow \mathcal{T} X\right|_{Y} \longrightarrow \mathcal{N}_{Y / X} \longrightarrow 0 \tag{1.6.2}
\end{equation*}
$$

The above short exact sequence is used in Example 1.7.4 in the case of a hypersurface $X \subset \mathbb{P}(V)$.

1.7 Chern classes of smooth projective varieties

There are various motivations and ways to define Chern classes. The original approach to Chern as well as other characteristic classes came from algebraic topology in the 1930s. Nevertheless, Chern's approach in the influential paper [Che] was different and used differential geometry. During his valuable collaboration with Weil in the 1940s, they proved that the differential and the topological approaches are equivalent.

A more axiomatic approach to Chern classes was given by Grothendieck in [Gro]. The description of Chern classes that we follow is based on degeneracy
loci of holomorphic vector bundle morphisms and requires further reasonable assumptions that are satisfied in all our forthcoming applications.

Let X be a smooth, irreducible projective variety in $\mathbb{P}(V)$ and let $E \rightarrow X$ be a vector bundle of rank e. One could associate to E a list of classes $c_{j} \in A^{j}(X)$, for all $1 \leq j \leq e$, the so called Chern classes of E. Of particular relevance is the top Chern class $c_{\text {top }}(E)=c_{e}(E)$. When $e=\operatorname{dim}(X)$, then $c_{\text {top }}(E) \in$ $A^{\operatorname{dim}(X)}(X)$, so it is a 0 -cycle, or a sum of classes of points. Since rational equivalence preserves the sum of the cofficients of a 0 -cycle, we can associate to $c_{\text {top }}(E)$ an integer, called the top Chern number of E. The total Chern class of E is $c(E):=1+c_{1}(E)+\cdots+c_{\text {top }}(E)$.

Above all the properties of Chern classes, basically, there are two formal rules (or rather "axioms", following Grothendieck's approach) that Chern classes must satisfy and which allow us to start with some basic computations. On one hand, if $L \rightarrow X$ is a line bundle and D is a Cartier divisor such that $L=\mathcal{O}(D)$, then $c(L)=1+D$, namely $c_{1}(L)$ is the rational equivalence class of D. On the other hand, if we consider any short exact sequence

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

of vector bundles on X, the Whitney sum property states that $c(B)=c(A) c(C)$. In particular, the total Chern class of a direct sum of bundles is the product of the total Chern classes of the summands.

Example 1.7.1 (Chern classes of the tangent bundle to $\mathbb{P}(V)$). It turns out that every line bundle on $\mathbb{P}(V)$ is of the form $\mathcal{O}(d)=\mathcal{O}_{\mathbb{P}(V)}(d)$ for some $d \in \mathbb{Z}$. The Cartier divisor associated to this line bundle is $d H$, where H is again the class of a hyperplane in $\mathbb{P}(V)$. In particular, we have that $c_{1}(\mathcal{O}(d))=d H$ and $c(\mathcal{O}(d))=1+d H$. More in general, considering the direct sum $\mathcal{O}(d) \oplus \mathcal{O}(e)$, we have

$$
c(\mathcal{O}(d) \oplus \mathcal{O}(e))=c(\mathcal{O}(d)) c(\mathcal{O}(e))=(1+d H)(1+e H)=1+(d+e) H+d e H^{2}
$$

These facts, joint with the Euler sequence in (1.6.1), allow us to compute the total Chern class of $\mathcal{T} \mathbb{P}(V)$. Indeed, from (1.6.1) we get

$$
c\left(\mathcal{O}_{\mathbb{P}(V)}\right) c(\mathcal{T} \mathbb{P}(V))=c\left(\mathcal{O}_{\mathbb{P}(V)}(1) \otimes V\right)
$$

On the left-hand side we have $c\left(\mathcal{O}_{\mathbb{P}(V)}\right)=c\left(\mathcal{O}_{\mathbb{P}(V)}(0)\right)=1+0 H=1$, whereas on the right-hand side $c\left(\mathcal{O}_{\mathbb{P}(V)}(1) \otimes V\right)=(1+H)^{n}$. Therefore, we conclude that $c(\mathcal{T} \mathbb{P}(V))=(1+H)^{n}$. In particular, $\operatorname{since} \operatorname{rk}(\mathcal{T} \mathbb{P}(V))=n-1$, the top Chern number of $\mathcal{T P}(V)$ is n.

Actually, Chern classes can be constructed geometrically using degeneracy loci of vector bundle morphisms associated to E, when E is globally generated (this hypothesis is satisfied by the vector bundles considered in this thesis).

So let $E \rightarrow X$ be a globally generated vector bundle of rank $e \leq \operatorname{dim}(X)$. Fix r general global sections $\sigma_{1}, \ldots, \sigma_{r} \in \Gamma(X, E)$, where $r \leq e$. Equivalently, by Remark 1.6.5, let $\varphi: \mathcal{O}_{X}^{\oplus r} \rightarrow E$ be a general morphism, where here we are considering E as the sheaf of sections of the vector bundle $E \rightarrow X$.

Observe that for every $x \in X$ the map φ_{x} is, in fact, a linear map between vector spaces. Therefore, φ can be interpreted as a family of linear maps between vector spaces. In other words, for every $x \in X$ we get vectors $\sigma_{1}(x), \ldots, \sigma_{r}(x)$ in the fiber E_{x}. Since we are assuming that the φ is general, we might expect that the $\sigma_{i}(x)$'s to be linearly independent for almost all $x \in M$.

Definition 1.7.2. For all $j \leq r$, the j-th degeneracy locus of φ is

$$
D_{j}(\varphi):=\left\{x \in X \mid \operatorname{rk}\left(\varphi_{x}\right) \leq j\right\} .
$$

In particular, the $(r-1)$-th degeneracy locus $D(\varphi):=D_{r-1}(\varphi)$ is the locus of points x at which the linear map φ_{x} does not have full rank.

Note that the set $D_{i}(\varphi)$ has a natural structure of subscheme of X defined by the ideal generated by the minors of φ of order $i+1$. From this fact one may conclude for example that $D(\varphi)$ has codimension $e-r+1$ in X, namely $D(\varphi) \in A^{e-r+1}(X)$.

For our purposes, the next Theorem may be regarded as a definition of the Chern classes of a vector bundle $E \rightarrow X$, provided that E is globally generated.

Theorem 1.7.3. [Ful, Example 14.4.3] For a globally generated vector bundle $E \rightarrow X$ of rank e, and a general morphism $\varphi: \mathcal{O}_{X}^{\oplus r} \rightarrow E$ with $r \leq e$, the cycle $D(\varphi)$ is rationally equivalent to $c_{e-r+1}(E)$.

In particular, if $\varphi^{\prime}: \mathcal{O}_{X}^{\oplus r} \rightarrow E$ is another such general morphism, then the cycles $D(\varphi)$ and $D\left(\varphi^{\prime}\right)$ are rationally equivalent.

Example 1.7.4 (Chern classes of projective hypersurfaces). Let X be a projective hypersurface of degree d in $\mathbb{P}(V)$. Then X may be interpreted as the degeneracy locus $D(\varphi)$ of a morphism $\varphi: \mathcal{O}_{\mathbb{P}(V)} \rightarrow \mathcal{O}_{\mathbb{P}(V)}(d)$, namely of a global section s of the line bundle $\mathcal{O}_{\mathbb{P}(V)}(d)$. In particular, X belongs to the class $c_{1}\left(\mathcal{O}_{\mathbb{P}(V)}(d)\right)=d H$, where H is the class of a hyperplane in $\mathbb{P}(V)$. We denote by h the restriction of H to X, namely $h=c_{1}\left(\mathcal{O}_{X}(1)\right)$.

In this case, the short exact sequence in (1.6.2) becomes

$$
\left.0 \longrightarrow \mathcal{T} X \longrightarrow \mathcal{T} \mathbb{P}(V)\right|_{X} \longrightarrow \mathcal{N}_{X / \mathbb{P}(V)} \longrightarrow 0
$$

Note that $\mathcal{N}_{X / \mathbb{P}(V)}$ is in fact a line bundle on X, since X is a hypersurface. Moreover, it turns out that $\mathcal{N}_{X / \mathbb{P}(V)}=\mathcal{O}_{X}(d)$ (see for example [Huy, Proposition 2.4.7]). Then, from the Whitney sum property we have that

$$
c(\mathcal{T} X) c\left(\mathcal{O}_{X}(d)\right)=c\left(\left.\mathcal{T} \mathbb{P}(V)\right|_{X}\right)
$$

where $c\left(\left.\mathcal{T} \mathbb{P}(V)\right|_{X}\right)=(1+h)^{n}$ following Example 1.7.1 and $c\left(\mathcal{O}_{X}(d)\right)=1+d h$. Therefore the total Chern class of X (that is, the total Chern class of $\mathcal{T} X$) is

$$
\begin{equation*}
c(\mathcal{T} X)=\frac{(1+h)^{n}}{1+d h}=\sum_{i, j=0}^{n-2}\binom{n}{i}(-d)^{j} h^{i+j}=\sum_{s=0}^{n-2}\left[\sum_{i=0}^{s}\binom{n}{i}(-d)^{s-i}\right] h^{s} . \tag{1.7.1}
\end{equation*}
$$

In particular, since $\operatorname{deg}\left(h^{n-2}\right)=\operatorname{deg}(X)=d$, the degree of $c_{\text {top }}(\mathcal{T} X)$ is

$$
\operatorname{deg}\left(c_{\mathrm{top}}(\mathcal{T} X)\right)=\operatorname{deg}\left(c_{n-2}(\mathcal{T} X)\right)=d \sum_{i=0}^{n-2}\binom{n}{i}(-d)^{n-2-i}
$$

and coincides with the topological Euler characteristic of X, by the Gauss-Bonnet formula (see for example [Huy, p. 235]).

1.8 ED degree formulas in terms of Chern and Chern-Mather classes

The main result recovered in Theorem 1.5.5 is a formula, based on polar classes, for the ED degree of a projective variety $X \subset \mathbb{P}(V)$ which is somehow transversal to the isotropic quadric Q.

In the previous section, we recovered the computation of the Chern classes $c_{i}(X)=c_{i}(\mathcal{T} X)$ of a smooth projective variety $X \subset \mathbb{P}(V)$ of dimension m. It turns out that these invariants are related with the polar classes $\delta_{i}(X)$ by the following formula (see [Hol]):

$$
\begin{equation*}
\delta_{i}(X)=\sum_{j=0}^{m-i}(-1)^{j}\binom{m+1-j}{i+1} c_{j}(X) \cdot h^{m-j} \quad \forall 0 \leq i \leq n-2 \tag{1.8.1}
\end{equation*}
$$

where $h=c_{1}\left(\mathcal{O}_{X}(1)\right)$ is the hyperplane class.
The last identities lead to the following important result, which is an alternative formulation of the Catanese-Trifogli formula for the ED degree of X (see [CT, p. 6026]).

Theorem 1.8.1. [DHOST, Theorem 5.8] Let X be a smooth irreducible variety of dimension m in $\mathbb{P}(V)$, and suppose that X is transversal to the isotropic quadric Q. Then

$$
\operatorname{EDdegree}(X)=\sum_{i=0}^{m}(-1)^{i}\left(2^{m+1-i}-1\right) c_{i}(X) \cdot h^{m-i}
$$

where $h=c_{1}\left(\mathcal{O}_{X}(1)\right)$ is the hyperplane class.
The last result or its original formulation by Catanese and Trifogli is useful to determine the EDdegree of a smooth variety $X \subset \mathbb{P}(V)$, at least when its Chern classes are enough easy to compute. For example, one might derive the ED degree of a general hypersurface in $\mathbb{P}(V)$.
Proposition 1.8.2. For all $n \geq 2$ define the integer

$$
N:= \begin{cases}2(n-1) & \text { if } d=2 \tag{1.8.2}\\ d \frac{(d-1)^{n-1}-1}{d-2} & \text { if } d \geq 3\end{cases}
$$

If the hypersurface $X \subset \mathbb{P}(V)$ of degree d is general, then $\operatorname{EDdegree}(X)=N$.
The above result is a special case of [DHOST, Corollary 2.10]. For example, a general plane curve $C \subset \mathbb{P}_{\subset}^{2}$ has EDdegree $(C)=d^{2}$ and a general surface $S \subset \mathbb{P}_{\mathbb{C}}^{3}$ has EDdegree $(S)=d\left(d^{2}-d+1\right)$.

Remaining in the case of a projective hypersurface $X \subset \mathbb{P}(V)$, things get more difficult if we allow X to have isolated singularities. Recalling from [Dol, $\S 1.2 .3]$ that $\mu(X, x)$ is the Milnor number of an isolated singularity $x \in X$ (more in general, of a complete intersection variety $X \subset \mathbb{P}(V)$), we have the following ED degree formula.
Proposition 1.8.3. [Pie15, p. 146] Let $X \subset \mathbb{P}(V)$ be a hypersurface of degree d with only isolated singularities. For any point $x \in X_{\text {sing }}$, let

$$
e(X, x):=\mu(X, x)+\mu(H \cap X, x)
$$

where H is a general hyperplane section of X containing x. Then

$$
\begin{equation*}
\operatorname{EDdegree}(X)=N-\sum_{x \in X_{\mathrm{sing}}} e(X, x), \tag{1.8.3}
\end{equation*}
$$

where the integer N was defined in (1.8.2).
It is known (see [Dol, Example 1.2.3]) that if $x \in X$ is a singular point of type A_{k}, then

$$
\mu(X, x)=k, \quad \mu(H \cap X, x)=1 .
$$

This gives the formula of the ED degree of a hypersurface with s singularities of type $A_{k_{1}}, \ldots, A_{k_{s}}$

$$
\operatorname{EDdegree}(X)=N-\left(k_{1}+1\right)-\cdots-\left(k_{s}+1\right) .
$$

In particular, if we consider a plane curve $C \subset \mathbb{P}_{\mathrm{c}}^{2}$ of degree d with with δ ordinary nodes and κ ordinary cusps, the ED degree of C is

$$
\begin{equation*}
\operatorname{EDdegree}(C)=d^{2}-2 \delta-3 \kappa \tag{1.8.4}
\end{equation*}
$$

Proposition 1.8.3 is the first example recalled of an ED degree formula related to non-smooth projective varieties. In this wider perspective, the Chern classes of smooth projective varieties are replaced by the so-called Chern-Mather classes, introduced by MacPherson in [Mac74]. Another excellent introduction to ChernMather classes is furnished by Aluffi in [Alu18].

Roughly speaking, Chern-Mather classes are constructed as follows. Let $X \subset$ $\mathbb{P}(V)$ be a projective variety of dimension m and consider the Gauss map γ_{X} defined in (1.5.2). The Nash blow-up of X is the closure \widetilde{X} of the image of γ_{X}. It comes equipped with a proper map $\nu: \widetilde{X} \rightarrow X$.

Now let $\mathcal{U} \rightarrow G(m+1, V)$ be the universal bundle over the Grassmannian $G(m+1, V)$, where $\mathcal{U}:=\{(v, W) \in V \times G(m+1, V) \mid v \in W\}$. In particular, $\operatorname{rk}(\mathcal{U})=m+1$. Similarly as in the proof of Proposition 1.6.7, the vector bundle \mathcal{U} gives a short exact sequence

$$
0 \rightarrow \mathcal{U} \rightarrow \mathcal{O} \otimes V \rightarrow \mathcal{Q} \rightarrow 0
$$

where \mathcal{Q} denotes again the quotient bundle. Then $\operatorname{rk}(\mathcal{Q})=n-k-1$ and $\mathcal{Q} \otimes \mathcal{U}^{\vee}$ is isomorphic to the tangent bundle $\mathcal{T} G(m+1, V)$.

Since \widetilde{X} is a smooth variety, we can consider the Chern classes of the restriction to \widetilde{X} of the universal bundle \mathcal{U} and, in turn, their push-forward to X with respect to the map ν. The resulting classes are called the Chern-Mather classes of X and are denoted as $c_{i}^{M}(X)$. They agree with Chern classes if X is smooth.

Aluffi proves in [Alu18] the following generalization of Theorem 1.8.1. Below we use a slightly different convention than in [Alu18]. Indeed, for us $c_{i}^{M}(X)$ is the component of dimension $m-i$ (as with standard Chern classes), while in Aluffi's paper it is the component of dimension i.
Theorem 1.8.4. [Alu18, Proposition 2.9] Let X be an irreducible variety of dimension m in $\mathbb{P}(V)$, and suppose that X is transversal to the isotropic quadric Q. Then

$$
\begin{equation*}
\operatorname{EDdegree}(Y)=\sum_{i=0}^{m}(-1)^{i}\left(2^{m+1-i}-1\right) c_{i}^{M}(Y) \cdot h^{m-i} \tag{1.8.5}
\end{equation*}
$$

The polar classes $\delta_{i}(X)$ of a non-smooth projective variety $X \subset \mathbb{P}(V)$ may be written in terms of Chern-Mather classes as well, thus generalizing the classical formula in (1.8.1). This generalization is due to Piene ([Pie88, Theorem 3] and [Pie78]), see also [Alu18, Proposition 3.13]:

$$
\begin{equation*}
\delta_{i}(X)=\sum_{j=0}^{m-i}(-1)^{j}\binom{m+1-j}{i+1} c_{j}^{M}(X) \cdot h^{m-j} \quad \forall 0 \leq i \leq n-2 . \tag{1.8.6}
\end{equation*}
$$

The integer at the right-hand side of (1.8.6) is always nonnegative. For example, when $\delta_{0}(X) \neq 0$, then X^{\vee} is a hypersurface (see Theorem 1.5.4) of degree

$$
\begin{equation*}
\operatorname{deg}\left(X^{\vee}\right)=\delta_{0}(X)=\sum_{j=0}^{m}(-1)^{j}(m+1-j) c_{j}^{M}(X) \cdot h^{m-j} \tag{1.8.7}
\end{equation*}
$$

Chapter 2

The distance from the variety of rank-one symmetric tensors

In the introduction, we focused on the best rank-one approximation problem for rectangular matrices as well as higher-order format tensors, with respect to the Frobenius inner product. The key result, for matrices, is the Eckart-Joung Theorem which uses the SVD of a matrix. The tensor counterpart is due to Lim and is reported in Theorem 0.0.5. It is based on singular values and singular vector tuples of tensors. In particular, we intentionally did not consider tensors with (partial) symmetry.

Actually, we may think of the Eckart-Joung Theorem as a generalization of the classical Spectral Theorem, which is related to real symmetric matrices. This important result tells us that, given a symmetric bilinear operator $f \in S^{2} V^{\mathbb{R}}$, then f admits n real eigenvectors $u_{1}, \ldots, u_{n} \in V^{\mathbb{R}}$ forming an orthonormal basis of $V^{\mathbb{R}}$, and n associated real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, not necessarily distinct. Each eigenvector-eigenvalue pair $\left(u_{j}, \lambda_{j}\right)$ is a solution of the equation

$$
\begin{equation*}
f(u)=\lambda u \Longleftrightarrow(f-\lambda I d)(u)=0, \tag{2.0.1}
\end{equation*}
$$

where $I d$ denotes the identity operator in $S^{2} V^{\mathbb{R}}$. In particular, each eigenvalue λ_{j} is such that the operator $f-\lambda_{j} I d$ is not invertible. If we call A_{f} and I the symmetric matrices associated to the operators f and $I d$, respectively, we have that each λ_{j} is a root of the characteristic polynomial

$$
\begin{equation*}
\psi_{A_{f}}(\lambda):=\operatorname{det}\left(A_{f}-\lambda I\right) \tag{2.0.2}
\end{equation*}
$$

The Spectral Theorem tells us more. If we let $U=\left(u_{1}|\cdots| u_{n}\right)$ be the orthogonal matrix formed by the normalized eigenvectors of f, and we let $D=$
$\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the matrix whose diagonal elements are the eigenvalues of f, then A_{f} admits the spectral decomposition

$$
\begin{equation*}
A_{f}=U D U^{T}=\lambda_{1} u_{1}^{2}+\cdots+\lambda_{n} u_{n}^{2} \tag{2.0.3}
\end{equation*}
$$

Moreover, assume that $S^{2} V^{\mathbb{R}}$ is equipped with the restriction of the Frobenius inner product $q_{F}^{\mathbb{R}}$ introduced in (0.0.4) for matrices and later generalized to higher format tensors in (0.0.19). This makes $\left(S^{2} V^{\mathbb{R}}, q_{F}^{\mathbb{R}}\right)$ a real Euclidean space. Then all rank-one symmetric matrices which are critical points of the function $\delta_{A_{f}}^{\mathbb{R}}$ defined as in (0.0.3) with respect to the inner product $q_{F}^{\mathbb{R}}$ are of the form

$$
\begin{equation*}
X=U D_{i} U^{T}=\lambda_{i} u_{i}^{2}, \quad D_{i}:=\operatorname{diag}\left(0, \ldots, \lambda_{i}, \ldots, 0\right) . \tag{2.0.4}
\end{equation*}
$$

What is more, the closest rank-one symmetric matrix to A_{f} corresponds to the largest eigenvalue of f in absolute value, as the following relation suggests:

$$
q_{F}^{\mathbb{R}}\left(A_{f}-\lambda_{i} u_{i}^{2}\right)-q_{F}^{\mathbb{\mathbb { R }}}\left(A_{f}-\lambda_{j} u_{j}^{2}\right)=\lambda_{i}^{2}-\lambda_{j}^{2} \quad \forall 1 \leq i, j \leq n .
$$

The goal of this chapter is basically to replay the above itinerary in the space of real symmetric tensors of degree $d \geq 3$. If $\left(V^{\mathbb{R}}, q^{\mathbb{R}}\right)$ is, as usual, an n-dimensional real Euclidean space, the d-th symmetric power $S^{d} V^{\mathbb{R}} \subset V^{\mathbb{R} \otimes d}$ describes all the symmetric tensors of degree d over $V^{\mathbb{R}}$. The set of all real symmetric tensors of (symmetric) rank one is the affine cone of the d-th Veronese embedding of $V^{\mathbb{R}}$. In this chapter, we indicate this affine cone with $X_{(d)}^{\mathbb{R}}$. We equip the space $S^{d} V^{\mathbb{R}}$ with the restriction $q_{F}^{\mathbb{R}}$ of the Frobenius inner product over $V^{\mathbb{R} \otimes d}$ induced by $q^{\mathbb{R}}$. As pointed out in the introduction, for our investigations we need to extend the Euclidean space ($V^{\mathbb{R}}, q^{\mathbb{R}}$) to its complexification (V, q). This, in turn, yields an extension from the real Euclidean space ($S^{d} V^{\mathbb{R}}, q_{F}^{\mathbb{R}}$) to the complex space $\left(S^{d} V, q_{F}\right)$. A precise definition of q_{F} is furnished in Section 2.1. The variety defined by the common complex zeros of the elements in $I\left(X_{(d)}^{\mathbb{R}}\right)$ is denoted by $X_{(d)}$.

In the assumption given above, for a given real symmetric tensor $f \in S^{d} V^{\mathbb{R}}$, one could study the critical points on $X_{(d)}^{\mathrm{R}}$ of the squared distance function $\delta_{F, f}^{\mathbb{R}}(g):=q_{F}^{\mathbb{R}}(f-g)$. By a result of Lim and Qi, these, in turn, are defined in terms of the so-called E-eigenvectors and E-eigenvalues of f. E-eigenvectors and E-eigenvalues of symmetric tensors may be regarded as the cornerstone of the Spectral Theory of symmetric tensors. Their definition is clearly inspired by the normalized eigenvalues and eigenvectors of a symmetric matrix $(d=2)$. As a matter of fact, one might frame E-eigenvectors and E-eigenvalues as the symmetric counterpart of the singular vector d-ples and singular values of a nonsymmetric tensor in $V^{\mathbb{R} \otimes d}$, which we presented in Theorem 0.0.4. In Section 2.1 we recall the definition of E-eigenvectors and E-eigenvalues and their main properties.

The other main character of this chapter is the E-characteristic polynomial $\psi_{f}(\lambda)$ of a symmetric tensor $f \in S^{d} V$, which generalizes well the notion of characteristic polynomial $\psi_{f}(\lambda)=\operatorname{det}\left(f-\lambda I_{n}\right)$ of a symmetric matrix $f \in S^{2} V$. It is defined in Section 2.2. The E-eigenvalues of $f \in S^{d} V$ are roots of ψ_{f}, but the converse is true only for regular symmetric tensors (see Definition 2.2.6 and [Qi07, Theorem 4]). In particular, for a general symmetric tensor $f \in S^{d} V$, the degree of $\psi_{f}(\lambda)$ is equal to the number of (distinct) E-eigenvalues of f, and corresponds to the ED degree of $X \subset S^{d} V$ (introduced in general in Definition 1.2.3) with respect to the isotropic quadric $Q_{F}:=\mathcal{V}\left(q_{F}\right)$. The computation of this number is due to Cartwright and Sturmfels and is reported below.

Theorem 2.0.1. [CS, Theorem 5.5] For all $n \geq 2$, define the integer $N:=n$ for $d=2$, whereas $N:=\left((d-1)^{n}-1\right) /(d-2)$ for $d \geq 3$. Every symmetric tensor $f \in S^{d} V$ has at most N distinct E-eigenvalues when d is even, and at most N pairs $(\lambda,-\lambda)$ of distinct E-eigenvalues when d is odd. This bound is attained for general symmetric tensors. In particular, EDdegree $(X)=N$ with respect to the isotropic quadric Q_{F}.

This fact was previously conjectured in [NQWW] and is confirmed by FriedlandOttaviani formula in Theorem 5.1.1 (see also [OO]). However, this result had already essentially been known in complex dynamics due to Fornæss and Sibony, who in [FS] discuss global questions of iteration of rational maps in higher dimension.

Our main contributions in this chapter are related especially to the study of the coefficients of $\psi_{f}(\lambda)$. In the following, \widetilde{Q} denotes the Veronese embedding in $\mathbb{P}\left(S^{d} V\right)$ of the isotropic quadric $Q:=\mathcal{V}(q) \subset \mathbb{P}(V)$, whereas $\Delta_{\widetilde{Q}}(f)$ is the \widetilde{Q}-discriminant of f, namely the equation of \widetilde{Q}^{\vee}, when it is a hypersurface (see Section 2.1). We show that the highest coefficient of $\psi_{f}(\lambda)$, when it has maximum degree, is the $(d-2)$-th power (respectively the $((d-2) / 2)$-th power) when d is odd (respectively when d is even) of $\Delta_{\widetilde{Q}}(f)$. This fact, together with a known formula for the lowest coefficient of $\psi_{f}(\lambda)$, leads to a closed formula for the product of the E-eigenvalues of f when ψ_{f} has maximum degree, which generalizes the fact that the determinant of a symmetric matrix is equal to the product of its eigenvalues.

Theorem 2.0.2. [Sod18, Main Theorem] Let $f \in S^{d} V^{\mathbb{R}}$ be a real symmetric tensor of degree $d \geq 2$. If f admits the maximum number $N=\operatorname{EDdegree}(X)$ of E-eigenvalues (counted with multiplicity) defined in Theorem 2.0.1, then their product is

$$
\begin{equation*}
\lambda_{1} \cdots \lambda_{N}= \pm \frac{\operatorname{Res}\left(\frac{1}{d} \nabla f\right)}{\Delta_{\widetilde{Q}}(f)^{\frac{d-2}{2}}} \tag{2.0.5}
\end{equation*}
$$

Theorem 2.0.2 is the main result of this chapter and its proof is developed in Section 2.3. We note (see Lemma 2.3.10) that the assumption of Theorem 2.0.2 is satisfied for a general f, and it corresponds geometrically to the fact that the hypersurface $\mathcal{V}(f) \subset \mathbb{P}(V)$ is transversal to the isotropic quadric Q (see Remark 2.3.11). We stress that the polynomial $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)$ appearing in the numerator of (2.0.5) is equal to the classical discriminant $\Delta_{d}(f)$ of f times a constant factor. For the definition of discriminant of a homogeneous polynomial and a relation between Res $\left(\frac{1}{d} \nabla f\right)$ and $\Delta_{d}(f)$ we refer to Section 2.2. Moreover, the product of the E-eigenvalues of f is a priori equal to the right-hand side of (2.0.5) times a constant factor depending only on n and d. Using the definitions of resultant and \widetilde{Q}-discriminant, we prove via Lemma 2.3.1 that this constant factor is (in absolute value) 1 by specializing to the family of scaled Fermat polynomials. However, the identity (2.0.5) is given up to sign since the definition of E-eigenvalue has this sign ambiguity.

The combination of Theorem 2.0.1 and Theorem 2.0.2 shows that the degree of the E-characteristic polynomial ψ_{f} is equal to N (or $2 N$, depending on d even or odd), whereas it is smaller than the "expected" one exactly when f admits at least an isotropic eigenvector. This in particular motivated our research on the geometric meaning of the vanishing of the leading coefficient of ψ_{f}. Therefore Theorem 2.0.2 describes that, if the coefficients of f annihilate the polynomial $\Delta_{\tilde{Q}}(f)$, then some of the E-eigenvalues of f have gone "to infinity": in practice, f admits at least an isotropic eigenvector whose corresponding eigenvalue does not appear as a root of the E-characteristic polynomial ψ_{f}. We stress that both numerator and denominator in (2.0.5) are orthogonal invariants of f, namely polynomials in the coefficients of f that are invariant under the orthonormal linear changes of coordinates in f.

The results presented in this chapter will be generalized later in Chapter 5 in the context of partially symmetric tensors, including the case of nonsymmetric tensors presented in Theorem 0.0.8. Nevertheless, we chose to separate the case of symmetric tensors from all the other ones. The main reason is that, unlike all the other cases, some of the proofs are based on the theory of resultants of a homogeneous polynomial system, which we summarize in Section 2.2.

2.1 E-eigenvalues and E-eigenvectors of symmetric tensors

In this section we recall the main properties of E-eigenvectors and E- eigenvalues of symmetric tensors. We start by setting our notation more in detail. Let $V^{\mathbb{R}}$ be an n-dimensional real vector space. Given an integer $d \geq 2$, the tensor product
$V^{\mathbb{R} \otimes d}$ of d copies of $V^{\mathbb{R}}$ describes all real tensors of format $n^{\times d}$, or tensors of order d on $V^{\mathbb{R}}$. An excellent reference for spaces of tensors and the algebraic geometry related to them is [Lan]. Consider the projection operator $\pi_{S}: V^{\mathbb{R} \otimes d} \rightarrow V^{\mathbb{R} \otimes d}$ defined on decomposable elements by

$$
\pi_{S}\left(x_{1} \otimes \cdots \otimes x_{d}\right)=\frac{1}{d!} \sum_{\sigma \in S_{d}} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(d)}
$$

where S_{d} is the group of permutations of d elements. The map π_{S} is in fact a projection, since $\pi_{S}^{2}(T)=\pi_{S}(T)$ for all $T \in V^{\mathbb{R} \otimes d}$.
Definition 2.1.1. The symmetric product of d vectors x_{1}, \ldots, x_{d} is the vector $x_{1} \cdots x_{d}:=\pi_{S}\left(x_{1} \otimes \cdots \otimes x_{d}\right) \in V^{\mathbb{R} \otimes d}$. The image $\pi_{S}\left(V^{\mathbb{R} \otimes d}\right)$ is called the d th symmetric power of $V^{\mathbb{R}}$ and it is denoted by $S^{d} V^{\mathbb{R}}$. Its elements are called symmetric tensors of order d on $V^{\mathbb{R}}$.

Actually, if we want to consider real tensors of order d on $V^{\mathbb{R}}$ as d-linear maps $V^{\mathbb{R} \times d} \rightarrow \mathbb{R}$, we should consider the tensor product $\left(V^{\mathbb{R} *}\right)^{\otimes d}$, where $V^{\mathbb{R}^{*}}:=$ $\left\{f: V^{\mathbb{R}} \rightarrow \mathbb{R} \mid f\right.$ is linear $\}$ is the dual vector space of $V^{\mathbb{R}}$. In particular, the space $S^{d} V^{\mathbb{R}^{*}}$ corresponds to the space of symmetric d-linear maps on $V^{\mathbb{R}}$, namely d-linear maps $f: V^{\mathbb{R} \times d} \rightarrow \mathbb{R}$ such that, for all $x_{1}, \ldots, x_{d} \in V^{\mathbb{R}}$,

$$
f\left(x_{\sigma(1)}, \ldots, x_{\sigma(d)}\right)=f\left(x_{1}, \ldots, x_{d}\right)
$$

for every permutation $\sigma \in S_{d}$.
In fact, there is another interpretation of $S^{d} V^{\mathbb{R}^{*}}$ as the space of degree d homogeneous polynomial functions on $V^{\mathbb{R}}$. In other words, given a multilinear map $f \in S^{d} V^{\mathbb{R}^{*}}$, the map sending $x \in V^{\mathbb{R}}$ to $f(x, \ldots, x) \in \mathbb{R}$ is polynomial and homogeneous of degree d. Thus, having fixed a basis $\left(x_{1}, \ldots, x_{n}\right)$ of $V^{\mathbb{R}}$, a symmetric tensor $f \in S^{d} V^{\mathbb{R}^{*}}$ may be seen simply as a d-dimensional array $f=\left(c_{i_{1} \cdots i_{d}}\right)_{1 \leq i_{j} \leq n}$ of real numbers which are symmetric under permutations of the indices. The corresponding homogeneous polynomial of degree d is

$$
f=\sum_{i_{1}, \ldots, i_{d}=1}^{n} c_{i_{1} \cdots i_{d}} x_{i_{1}} \cdots x_{i_{d}} .
$$

Actually, we adopt a different notation and write f as

$$
\begin{equation*}
f=\sum_{|\alpha|=d}\binom{d}{\alpha} f_{\alpha} x^{\alpha} \tag{2.1.1}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n},|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}, x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $\binom{d}{\alpha}:=\frac{d!}{\alpha_{1}!\cdots \alpha_{n}!}$ is the multinomial coefficient. In particular, we suppose that $\left(f_{\alpha}\right)_{\alpha}$ is a system of coordinates for $S^{d} V^{\mathbb{R}}$.

As we show throughout this chapter, the advantage of treating symmetric tensors as homogeneous polynomials (or forms) is that we can associate with every $f \in S^{d} V^{\mathbb{R}^{*}}$ a projective hypersurface $X_{f}:=\mathcal{V}(f) \subset \mathbb{P}\left(V^{\mathbb{R}}\right)$ of degree d. Geometrically speaking, it is obtained as a hyperplane section of $X_{(d)}^{\mathbb{R}}$, here viewed as a projective variety in $\mathbb{P}\left(S^{d} V^{\mathbb{R}^{*}}\right)$.

Remark 2.1.2. In the following, we fix a positive definite symmetric bilinear form $q^{\mathbb{R}}$ on $V^{\mathbb{R}}$. This assumption allows us to identify the two vector spaces $V^{\mathbb{R}}$ and $V^{\mathbb{R}^{*}}$. Therefore, if not specified, we always deal with $V^{\mathbb{R} \otimes d}$ as well as $S^{d} V^{\mathbb{R}}$ even if its elements are viewed as (symmetric) multilinear maps or, in the symmetric case, homogeneous polynomials. Indeed, our aim is to focus more on the metric properties of $S^{d} V^{\mathbb{R}^{*}}$.

Definition 2.1.3. A symmetric tensor $f \in S^{d} V^{\mathbb{R}}$ has (real) symmetric rank one if $f=l^{d}$ for some linear form $l=\xi_{1} x_{1}+\cdots+\xi_{n} x_{n} \in V^{\mathbb{R}}$. Symmetric tensors of rank one fill the affine cone $X_{(d)}^{\mathrm{R}}$ of the image of the d-th Veronese embedding of $\mathbb{P}\left(V^{\mathbb{R}}\right)$

$$
v_{d}: \mathbb{P}\left(V^{\mathbb{R}}\right) \hookrightarrow \mathbb{P}\left(S^{d} V^{\mathbb{R}}\right), \quad v_{d}([l]):=\left[l^{d}\right] .
$$

More in general, the (real) symmetric rank of $f \in S^{d} V^{\mathbb{R}}$ is the smallest positive integer r such that $f=l_{1}^{d}+\cdots+l_{r}^{d}$ for some linear forms $l_{j} \in V^{\mathbb{R}}$.

We remark that, in a slightly wider perspective, the variety $v_{d}\left(\mathbb{P}\left(V^{\mathbb{R}}\right)\right)$ is the restriction to $\mathbb{P}\left(S^{d} V^{\mathbb{R}}\right)$ of the Segre embedding of d copies of $\mathbb{P}\left(V^{\mathbb{R}}\right)$ introduced in its full generality in (0.0.17).

In the introduction of this chapter, we set the Frobenius inner product as the Euclidean structure over the space $S^{d} V^{\mathbb{R}}$. How does it work explicitly?

In a coordinate-free way, the Frobenius inner product $q_{F}^{\mathbb{R}}$ of two symmetric tensors of rank one l^{d} and \tilde{l}^{d} is

$$
\begin{equation*}
q_{F}^{\mathbb{R}}\left(l^{d}, \tilde{l}^{d}\right):=q^{\mathbb{R}}(l, \tilde{l})^{d}, \tag{2.1.2}
\end{equation*}
$$

where $q^{\mathbb{R}}$ is a fixed inner product on $V^{\mathbb{R}}$. If we consider two symmetric products of linear forms $f=l_{1} \cdots l_{d}$ and $g=\tilde{l}_{1} \cdots \tilde{l}_{d}$, then

$$
q_{F}^{\mathbb{\mathbb { R }}}(f, g)=\frac{1}{d!} \sum_{\sigma \in S_{d}} q^{\mathbb{R}}\left(l_{1}, \tilde{l}_{\sigma(1)}\right) \cdots q^{\mathbb{R}}\left(l_{d}, \tilde{l}_{\sigma(d)}\right) .
$$

More generally, if we consider two symmetric tensors $f=\left(f_{\alpha}\right)_{\alpha}$ and $g=\left(g_{\alpha}\right)_{\alpha}$ written as in (2.1.1), and if we assume that the basis $\left(x_{1}, \ldots, x_{n}\right)$ of $V^{\mathbb{R}}$ is orthonormal, it turns out that

$$
q_{F}^{\mathbb{R}}(f, g)=\sum_{|\alpha|=d}\binom{d}{\alpha} f_{\alpha} g_{\alpha}
$$

Thus in particular the squared Frobenius norm of $f=\left(f_{\alpha}\right)_{\alpha} \in S^{d} V^{\mathbb{R}}$ is

$$
\begin{equation*}
q_{F}^{\mathbb{R}}(f)=q_{F}^{\mathbb{R}}(f, f)=\sum_{|\alpha|=d}\binom{d}{\alpha} f_{\alpha}^{2} \tag{2.1.3}
\end{equation*}
$$

Definition 2.1.4. Let $f \in S^{d} V^{\mathbb{R}}$ and consider the function $\delta_{F, f}^{\mathbb{R}}: X_{(d)}^{\mathbb{R}} \rightarrow \mathbb{R}$ defined by $\delta_{F, f}^{\mathbb{R}}\left(x^{d}\right):=q_{F}^{\mathbb{R}}\left(f-x^{d}\right)$ for all $x \in V^{\mathbb{R}}$. Then a critical rank-one symmetric tensor for f is a critical point $x^{d} \in X_{(d)}^{\mathbb{R}}$ of $\delta_{F, f}^{\mathbb{R}}$.

The notions of E-eigenvalue and E-eigenvector of a symmetric tensor were proposed independently by Lek-Heng Lim and Liqun Qi in [Lim, Qi05] in the more general setting of n-dimensional tensors of order d on V, namely elements of $V^{\otimes d}$. There are different types of eigenvectors and eigenvalues in the literature, see [CS, HHLQ, NQWW, Qi07, QL].

Definition 2.1.5. Given a symmetric tensor $f \in S^{d} V$, a nonzero vector $x \in V$ such that $q(x)=1$ is called an E-eigenvector of f (where the "E" stands for "Euclidean") if there exists $\lambda \in \mathbb{C}$ such that x is a solution of the equation

$$
\begin{equation*}
q_{F}\left(f, x^{d-1} \cdot _\right)=\lambda q\left(x, _\right) \tag{2.1.4}
\end{equation*}
$$

The scalar λ corresponding to x is called an E-eigenvalue of f, while the pair (λ, x) is called an E-eigenpair of f. The corresponding power $x^{d} \in S^{d} V$ is called an E-eigentensor of f. In particular, for even order $d,(\lambda, x)$ is an E-eigenpair of f if and only if $(\lambda,-x)$ is so; for odd order $d,(\lambda, x)$ is an E-eigenpair of f if and only if $(-\lambda,-x)$ is so.

If $x \in V$ is a solution of (2.1.4) such that $q(x)=0$, we call x an isotropic eigenvector of f.

An E-eigenvalue λ of $f \in S^{d} V^{\mathbb{R}}$ is called a Z-eigenvalue of f if it has a real E-eigenvector x. In this case, the corresponding E-eigenvector x is called a Z eigenvector of f associated with λ.

By an eigenvector of f we mean any solution of equation (2.1.4), whether it has unit norm or not.

Note that both sides of relation (2.1.4) correspond to linear operators on V. If we assume that q is defined as $q(x)=x_{1}^{2}+\cdots+x_{n}^{2}$, we can rewrite the system (2.1.4) as

$$
\begin{equation*}
\frac{1}{d} \nabla f(x)=\lambda x \tag{2.1.5}
\end{equation*}
$$

where ∇f is the gradient of the corresponding homogeneous polynomial. The factor $1 / d$ appearing in (2.1.5) follows the notation in [Qi05] conformed to the symmetric case.

Observe that, if (λ, x) satisfies (2.1.4), then $\left(\alpha^{d-2} \lambda, \alpha x\right)$ satisfies (2.1.4) for any nonzero $\alpha \in \mathbb{C}$. This is why we impose the additional quadratic equation $q(x)=1$ in Definition 2.1.5.

At this point, it is important to stress how different is the behavior of symmetric tensors of order $d \geq 3$ compared with symmetric matrices $(d=2)$. First of all, Definition 2.1.5 agrees with the standard definition of normalized eigenvalue and normalized eigenvector of a symmetric matrix. Instead, if we consider nonsymmetric square matrices, then the notion of E-eigenvector excludes the nonzero complex eigenvectors x such that $q(x)=0$. In addition, despite the case of symmetric matrices, there exist real symmetric tensors of order $d \geq 3$ admitting non-real E-eigenvalues. An example is shown below.
Example 2.1.6. Assume that $n=2, d=5$ and consider the symmetric tensor

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{5}+x_{2}^{5},
$$

written as a binary form of degree five. Assuming that $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$, the system analogous to (2.1.5), together with the normalization condition, is

$$
\left\{\begin{array}{l}
x_{1}^{4}=\lambda x_{1} \\
x_{2}^{4}=\lambda x_{2} \\
x_{1}^{2}+x_{2}^{2}=1
\end{array}\right.
$$

Let $\theta=e^{\frac{2}{3} \pi \sqrt{-1}}$ be a third root of unity. It is not difficult to verify that $x=$ $\left(\theta / \sqrt{1+\theta^{2}}, 1 / \sqrt{1+\theta^{2}}\right)$ is a non-real E-eigenvector of f with corresponding Eeigenvalue $\lambda=\sqrt{-1}$. The binary form f is an instance of a Fermat polynomial, which are treated in detail in Lemma 2.3.1.

The absence of non-real eigenvalues and eigenvectors is just one of the properties of symmetric matrices that fail for symmetric tensors of higher degree. Nevertheless, a positive result is the following:
Theorem 2.1.7. [QL, Theorem 2.18] Consider a symmetric tensor $f \in S^{d} V^{\mathbb{R}}$. Then f always has Z-eigenvalues.

Z-eigenvalues are important since they are the fundamental tool for determining the best rank-one approximation of a real symmetric tensor. A remarkable fact observed in [Lim, Qi05] is that the Z-eigenvectors of $f \in S^{d} V^{\mathbb{R}}$ correspond to the critical points of the function $f: V^{\mathbb{R}} \rightarrow \mathbb{R}$ restricted on the affine variety $\left\{x \in V^{\mathbb{R}} \mid q(x)=1\right\}$. Hence, if $q(x)=x_{1}^{2}+\cdots+x_{n}^{2}$, the Z-eigenvectors of f are the normalized real solutions x, in orthonormal coordinates, of:

$$
\operatorname{rank}\binom{\nabla f(x)}{x} \leq 1
$$

Theorem 2.1.8 (Lim, variational principle). Suppose that $f \in S^{d} V^{\mathbb{R}}$. The critical rank-one symmetric tensors for f are exactly of the form x^{d}, where x is an eigenvector of f. Moreover, if λ_{*} is a Z-eigenvalue of f such that $\left|\lambda_{*}\right|$ is maximum, and if x_{*} is a Z-eigenvector associated with λ_{*}, then $\lambda_{*} x_{*}^{d}$ is a best rank-one approximation of f.

This interpretation is used by Draisma, Ottaviani and Tocino in [DOT], where they deal more in general with the best rank-k approximation problem for tensors.

Let us examine again Definition 2.1.5. Another consequence is the following property, where we are assuming (without loss of generality) that the complex form q is induced by the standard inner product $q^{\mathbb{R}}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}$ on $V^{\mathbb{R}}$.

Proposition 2.1.9. Let $f \in S^{d} V$. If (λ, x) is an E-eigenpair of f, then $\lambda=f(x)$.
Proof. Apply the operator $q\left({ }_{-}, x\right)$ on both sides of equation (2.1.4). Then we have

$$
q\left(\frac{1}{d} \nabla f(x), x\right)=q(\lambda x, x)
$$

Using Euler's identity, the left hand side of last identity is equal to $f(x)$, whereas by linearity and the fact that $q(x)=1$ the right-hand side is equal to λ.

Note that, as a consequence of the previous result, every Z-eigenvalue of $f \in S^{d} V^{\mathbb{R}}$ is a real E-eigenvalue, but a real E-eigenvalue is not necessarily a Z-eigenvalue.

So far we did not mention another important property of E-eigenvalues, which somehow motivated Definition 2.1.5. We are talking about their invariance with respect to an orthonormal linear change of coordinates in V. More precisely, the set of automorphisms $A \in \operatorname{Aut}(V)$ that preserve the bilinear product $q\left(__{-}\right.$, , i.e., such that $q(A x, A y)=q(x, y)$ for all $x, y \in V$, forms the orthogonal group $\mathrm{O}(V)$ and is a subgroup of $\operatorname{Aut}(V)$. The special orthogonal group $\mathrm{SO}(V)$ is defined as the set of all A in $\mathrm{O}(V)$ with determinant 1. An $\mathrm{SO}(V)$-invariant (or orthogonal invariant) for $f \in S^{d} V$ is a polynomial in the coefficients of f that does not vary under the action of $\mathrm{SO}(V)$ on the coefficients of f, where the above-mentioned action is the one induced by the linear action of $\mathrm{SO}(V)$ on the coordinates of V. We will treat in more detail this topic in Chapter 3. The main result is the following.

Theorem 2.1.10. [Qi07, Theorem 1] Given $f \in S^{d} V$, the set of the E-eigenvalues of f is a $\mathrm{SO}(V)$-invariant of f.

2.2 The E-characteristic polynomial of a symmetric tensor

In this section, we study a fundamental tool for computing the E-eigenvalues of a symmetric tensor, namely its E-characteristic polynomial. Actually, the definition of E-characteristic polynomial needs the knowledge of the resultant of a set of m homogeneous polynomials in m variables (see [CLO, GKZ]). It is introduced via the following proposition.
Proposition 2.2.1. Let f_{1}, \ldots, f_{m} be m homogeneous polynomials of positive degrees d_{1}, \ldots, d_{m} respectively in the variables z_{1}, \ldots, z_{m}. Then there is a unique polynomial $\operatorname{Res}\left(f_{1}, \ldots, f_{m}\right)$ over \mathbb{Z} in the coefficients of f_{1}, \ldots, f_{m} such that
i) $\operatorname{Res}\left(f_{1}, \ldots, f_{m}\right)=0$ if and only if the system $f_{1}=\cdots=f_{m}=0$ has a solution in $\mathbb{P}_{\mathbb{C}}^{m-1}$.
ii) $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)=\left(a_{1} \cdots a_{m}\right)^{(d-1)^{m-1}}$, where $f\left(z_{1}, \ldots, z_{m}\right)=a_{1} z_{1}^{d}+\cdots+a_{m} z_{m}^{d}$, $a_{1}, \ldots, a_{m} \in \mathbb{C}$, is the scaled Fermat polynomial.
iii) $\operatorname{Res}\left(f_{1}, \ldots, f_{m}\right)$ is irreducible, even when regarded as a polynomial over \mathbb{C} in the coefficients of f_{1}, \ldots, f_{m}.

The normalization assumption of $i i$) coincides with the classical definition made in [CLO, Chapter 3, Theorem 2.3 and Theorem 3.5] and in [GKZ, p. 427].

The degree of the resultant is known in general.
Proposition 2.2.2. $\operatorname{Res}\left(f_{1}, \ldots, f_{m}\right)$ is a homogeneous polynomial of degree $\prod_{j \neq i} d_{j}$ with respect to the coefficients of f_{i} for all $i \in[m]$. Hence the total degree of $\operatorname{Res}\left(f_{1}, \ldots, f_{m}\right)$ is

$$
\operatorname{deg} \operatorname{Res}\left(f_{1}, \ldots, f_{m}\right)=\sum_{i=1}^{m} d_{1} \cdots d_{i-1} d_{i+1} \cdots d_{m}
$$

In particular, when all the forms f_{1}, \ldots, f_{m} have the same degree d, the resultant has degree d^{m-1} in the coefficients of each f_{i}, namely $\operatorname{deg} \operatorname{Res}\left(f_{1}, \ldots, f_{m}\right)=$ $m d^{m-1}$.

The notion of resultant is closely related to the classical notion of discriminant of a homogeneous polynomial of degree d in m variables. An excellent reference for the theory of resultants and discriminants is [GKZ]. The problem of computing the discriminant of a homogeneous polynomial is a particular case of a more general geometric problem, that is, finding the equations of the dual X^{\vee} of an irreducible projective variety $X \subset \mathbb{P}(V)$ (see [GKZ, Hol, Tev]), which in this thesis was introduced in Definition 1.3.1.

As we outlined in (1.3.1), the dual variety X^{\vee} is obtained as the image of the conormal variety $\mathcal{N}\left(X, X^{\vee}\right)$ via the projection onto $V=V^{*}$ and is an irreducible variety. Moreover, since $\operatorname{dim}\left(\mathcal{N}\left(X, X^{\vee}\right)\right)=n-2$, it follows that $\operatorname{dim}\left(X^{\vee}\right) \leq n-2$ and we expect that in "typical" cases X^{\vee} is a hypersurface.
Definition 2.2.3. Let $X \subset \mathbb{P}(V)$ be a projective variety. If X^{\vee} is a hypersurface, then it is defined by the vanishing of a homogeneous polynomial, denoted by Δ_{X} and called the X-discriminant. We assume the X-discriminant to have relatively prime integer coefficients: in this way, Δ_{X} is defined up to sign. If X^{\vee} is not a hypersurface, then we set $\Delta_{X}:=1$.

If $X \subset \mathbb{P}(V)$ is an irreducible variety such that X^{\vee} is a hypersurface, then Δ_{X} is an irreducible homogeneous polynomial over the complex numbers. When X is the Veronese variety $X_{(d)}$ introduced in Definition 2.1.3, then it is known that, for all $d>1, X_{(d)}^{\vee}$ is a hypersurface and its equation coincides, up to a constant factor, with the discriminant $\Delta_{d}(h)$ of a homogeneous polynomial h of degree d in n variables.

Now we have all the necessary tools to introduce the E-characteristic polynomial of a symmetric tensor. If not otherwise specified, we assume that $q(x)=$ $x_{1}^{2}+\cdots+x_{n}^{2}$ is the complex form associated with the standard Euclidean inner product in $V^{\mathbb{R}}$.
Definition 2.2.4. Given $f \in S^{d} V$, when d is even the E-characteristic polynomial ψ_{f} of f is defined by $\psi_{f}(\lambda):=\operatorname{Res}\left(F_{\lambda}\right)$, where $\lambda \in \mathbb{C}$ and $\operatorname{Res}\left(F_{\lambda}\right)$ is the resultant of the n-dimensional vector

$$
\begin{equation*}
F_{\lambda}(x):=\frac{1}{d} \nabla f(x)-\lambda q(x)^{\frac{d-2}{2}} x \tag{2.2.1}
\end{equation*}
$$

When d is odd, the E-characteristic polynomial is defined as $\psi_{f}(\lambda):=\operatorname{Res}\left(G_{\lambda}\right)$, where $\operatorname{Res}\left(G_{\lambda}\right)$ is the resultant of the $(n+1)$-dimensional vector

$$
\begin{equation*}
G_{\lambda}\left(x_{0}, x\right):=\binom{x_{0}^{2}-q(x)}{\frac{1}{d} \nabla f(x)-\lambda x_{0}^{d-2} x} . \tag{2.2.2}
\end{equation*}
$$

For $d=2$, the E-characteristic polynomial agrees with the characteristic polynomial $\psi_{A_{f}}(\lambda)$ of a symmetric matrix A_{f} viewed in (2.0.2). In this case, the roots of $\psi_{A_{f}}$ are all the eigenvalues of f, and if the coefficients of f are real, then the roots of $\psi_{A_{f}}$ are all real by the Spectral Theorem. Moreover, the leading coefficient of $\psi_{A_{f}}$ is 1 , implying that its constant term is equal to the product of the eigenvalues of f, that is the determinant of A_{f}.

The interesting fact is that this happens only for $d=2$: as we show throughout this chapter, given $f \in S^{d} V$ with $d>2$, then some of the roots of the Echaracteristic polynomial ψ_{f} may not be real even though the coefficients of f
are real. However, there exist symmetric tensors with only real E-eigenvalues, as shown by Maccioni in [Mac] and Kozhasov in [Koz]. Moreover, the leading coefficient of ψ_{f} is a homogeneous polynomial over \mathbb{Z} in the coefficients of f with a positive degree for $d>2$.

Theorem 2.1.10 states that the symmetric functions of the E-eigenvalues of f are orthogonal invariants of f, giving rise to the following corollary (see [LQZ, Theorem 3.3]):

Corollary 2.2.5. Given $f \in S^{d} V$, all the coefficients of the E-characteristic polynomial ψ_{f} are $\mathrm{SO}(V)$-invariants of f.

Given $f \in S^{d} V$, we observe that if d is even there exists a nonzero constant $c \in \mathbb{Z}$ such that

$$
\begin{equation*}
\psi_{f}(\lambda):=\operatorname{Res}\left(F_{\lambda}(x)\right)=c \cdot \Delta_{d}\left(f(x)-\lambda q(x)^{\frac{d}{2}}\right) \tag{2.2.3}
\end{equation*}
$$

where the n-dimensional vector $F_{\lambda}(x)$ was introduced in (2.2.1) (see again [GKZ, Proposition XIII, 1.7]). On the other hand, a relation equivalent to (2.2.3) is no longer possible for odd d : in (2.2.2), an additional variable x_{0} is required to make the polynomial ψ_{f} well-defined.

In the study of the E-characteristic polynomial ψ_{f}, a crucial role is played by a family of particular symmetric tensors, the ones admitting at least a singular point on the isotropic quadric Q.

Definition 2.2.6. A symmetric tensor $f \in S^{d} V$ is irregular if there exists a nonzero vector $x \in V$ such that $q(x)=0$ and $\nabla f(x)=0$. Otherwise f is called regular.

Clearly, any symmetric matrix $(d=2)$ corresponds to a regular symmetric tensor. Instead for $d \geq 3$ there exists symmetric tensors that are not regular.

Example 2.2.7. Assume that $n=2, d=4$ and consider the quartic binary form $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}\right)^{2}$. Then the condition $\nabla f(x)=0$ becomes

$$
\left\{\begin{array}{l}
x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)=0 \\
x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)=0
\end{array}\right.
$$

Since the vectors $(1, \sqrt{-1})$ and $(1,-\sqrt{-1})$ are isotropic solutions of the previous system, then f is not regular. Note that, in this example, every vector $x \in V$ such that $q(x)=1$ is an E-eigenvector of f with eigenvalue $\lambda=1$ (see [OT, Lemma 3.7]).

The first general property about irregular symmetric tensors is that, when $d>2$, their E-characteristic polynomial is identically zero.

Proposition 2.2.8. Given $f \in S^{d} V$ with $d>2$, if f is irregular then ψ_{f} is the zero polynomial.

Proof. Suppose that f is irregular. Then, by Definition 2.2.6 there exists a nonzero vector $x \in V$ such that $q(x)=0$ and $\nabla f(x)=0$. Looking at Definition 2.2.4, this implies that, for even $d>2, x$ is a solution of the system $F_{\lambda}(x)=0$ for all $\lambda \in \mathbb{C}$, whereas for odd $d>2$, the pair $(0, x)$ is a solution of the system $G_{\lambda}\left(x_{0}, x\right)=0$ for all $\lambda \in \mathbb{C}$. By resultant theory, this means that $\psi_{f}(\lambda)=0$ for all $\lambda \in \mathbb{C}$, namely ψ_{f} is identically zero.

Remark 2.2.9. The statement of Proposition 2.2 .8 is no longer true for $d=2$. In fact, for $d=2$ and any $n \geq 1$ there exist irregular symmetric tensors $f \in S^{d} V$ such that ψ_{f} is not identically zero. For example, the polynomial $f(x)=\left(x_{1}+\right.$ $\left.\sqrt{-1} x_{2}\right)^{2}+x_{3}^{2}+\cdots+x_{n}^{2}$ is irregular because the vector $(1, \sqrt{-1}, 0, \ldots, 0)$ is a solution of $\nabla f(x)=0$, whereas one can easily check that $\psi_{f}(\lambda)=\lambda^{2}(1-\lambda)^{n-2}$, hence it is not identically zero.

The notion of regularity of a symmetric tensor plays a crucial role in the following result.

Theorem 2.2.10. Suppose that $d \geq 3$. Given $f \in S^{d} V$, every E-eigenvalue of f is a root of the E-characteristic polynomial ψ_{f}. If f is regular, then every root of ψ_{f} is an E-eigenvalue of f.

Proof. For completeness we recover and adapt the proofs in [Qi07, Theorem 4] and in [QL, Theorem 2.23]. Suppose that $x \in V$ is an E-eigenvector of f and $\lambda \in$ \mathbb{C} is the E-eigenvalue associated with λ. Then looking at Definition 2.2.4, when d is even we get that x and $-x$ are nonzero solutions of the system $F_{\lambda}(x)=0$; when d is odd, $(1, x)$ and $(-1,-x)$ are nonzero solutions of the system $G_{\lambda}\left(x_{0}, x\right)=0$. Therefore λ is a root of ψ_{f} by Proposition 2.2.1.

On the other hand, suppose that f is regular and let $\lambda \in \mathbb{C}$ be a root of ψ_{f}. By Definition 2.2.4 and Proposition 2.2.1, when d is even there exists a nonzero vector $x \in V$ such that $F_{\lambda}(x)=0$ for that λ; when d is odd, there exists a nonzero vector $x \in V$ and $x_{0} \in \mathbb{C}$ such that $G_{\lambda}\left(x_{0}, x\right)=0$ for that λ. If $q(x)=0$, both $F_{\lambda}(x)=0$ and $G_{\lambda}\left(x_{0}, x\right)=0$ yield the condition $\nabla f(x)=0$, which cannot be satisfied because of the regularity of f. Hence $q(x) \neq 0$ and we define $\tilde{x}:=x / q(x)$. Therefore, when d is even the equation (2.1.4) is satisfied by (λ, \tilde{x}) and $(\lambda,-\tilde{x})$, while for odd d it is satisfied by (λ, \tilde{x}) and $(-\lambda,-\tilde{x})$. This implies that λ is an E-eigenvalue of f.

Example 2.2.11. Let us consider the case in which d is even and $f=q(x)^{\frac{d}{2}}$. Then equation (2.1.4) becomes $q(x)^{\frac{d-2}{2}} x=\lambda x$: this means, if $d=2$, that every nonzero vector $x \in V$ such that $q(x)=1$ is an E-eigenvector of f with Eeigenvalue $\lambda=1$ (and in fact the E-characteristic polynomial of f is $\psi_{f}(\lambda)=$ $\left.(\lambda-1)^{n}\right)$. Instead for $d>2$ every nonzero vector $x \in V$ such that $q(x)=1$ is an E-eigenvector of f with corresponding E-eigenvalue $\lambda=1$, and every nonzero vector $x \in V$ such that $q(x)=0$ is an isotropic eigenvector of f. In particular f is irregular for $d>2$, and in fact in this case the E-characteristic polynomial of f is identically zero by Proposition 2.2.8.

The greatest difference among eigenvectors of a symmetric matrix and eigenvectors of a symmetric tensor of degree $d>2$ is related to the presence or not of isotropic eigenvectors. Suppose that $f \in S^{d} V$ admits an isotropic eigenvector x and let $P:=[x]$ be the corresponding point of the isotropic quadric $Q \subset \mathbb{P}(V)$. In the same fashion of Proposition 2.1.9, this time we have that $f(x)=0$, that is, $P \in X_{f}$. As we show in Section 2.3, equation (2.1.4) acquires a new interesting meaning: the isotropic eigenvectors of f are all the nonzero vectors x such that $[x]=: P \in X_{f} \cap Q$ and P is singular for X_{f} (and hence f is irregular) or P is smooth for X_{f} and X_{f} is tangent to Q at P.

We study more in detail the coefficients of the E-characteristic polynomial of a symmetric tensor. Given a general $f \in S^{d} V$, from Theorem 2.0.1 and Theorem 2.2.10 we have that $\operatorname{deg}\left(\psi_{f}\right) \leq N$ for even d, where N is the integer defined in Theorem 2.0.1. Thus ψ_{f} can be written as

$$
\begin{equation*}
\psi_{f}(\lambda)=\sum_{j=0}^{N} c_{j} \lambda^{j} \tag{2.2.4}
\end{equation*}
$$

where for all $0 \leq j \leq N$ the coefficient $c_{j}=c_{j}(n, d)$ is a homogeneous polynomial in the coefficents of f. Otherwise if d is odd and (λ, x) is an E-eigenpair of f, then $(-\lambda,-x)$ is an E-eigenpair of f as well. This means that for odd d the E-characteristic polynomial ψ_{f} has maximum degree N in λ^{2} and in particular it contains only even power terms of λ. Hence ψ_{f} can be written explicitly as

$$
\begin{equation*}
\psi_{f}(\lambda)=\sum_{j=0}^{N} c_{2 j} \lambda^{2 j} . \tag{2.2.5}
\end{equation*}
$$

Now we focus on the constant term of the E-characteristic polynomial ψ_{f}. In particular we recover the fact that, when nonzero, the constant term of ψ_{f} is a power of $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)$ times a constant factor.

Theorem 2.2.12. [LQZ, Theorem 3.5] Let $f \in S^{d} V$. Then for even d we have that

$$
\begin{equation*}
c_{0}=c \cdot \operatorname{Res}\left(\frac{1}{d} \nabla f\right), \tag{2.2.6}
\end{equation*}
$$

while for odd d we have that

$$
\begin{equation*}
c_{0}=c \cdot \operatorname{Res}\left(\frac{1}{d} \nabla f\right)^{2} \tag{2.2.7}
\end{equation*}
$$

for some constant $c \in \mathbb{Z}$ depending on n and d.
Proof. The relations (2.2.6) and (2.2.7) are trivially satisfied when f is irregular (compare with Proposition 2.2.8), so we can assume f regular. When d is even, from relation (2.2.1) we have that

$$
c_{0}=\psi_{f}(0)=\left.\operatorname{Res}\left(F_{\lambda}\right)\right|_{\{\lambda=0\}}=c \cdot \operatorname{Res}\left(F_{0}\right)=c \cdot \operatorname{Res}\left(\frac{1}{d} \nabla f\right)
$$

for some constant $c=c(n, d) \in \mathbb{Z}$.
Now suppose that d is odd. From relation (2.2.2) we have that

$$
c_{0}=\psi_{f}(0)=\left.\operatorname{Res}\left(G_{\lambda}\right)\right|_{\{\lambda=0\}}=c \cdot \operatorname{Res}\left(G_{0}\right), \quad G_{0}\left(x_{0}, x\right)=\binom{x_{0}^{2}-q(x)}{\frac{1}{d} \nabla f(x)}
$$

for some constant $c=c(n, d) \in \mathbb{Z}$. In order to prove relation (2.2.7), it is sufficient to prove that

$$
\begin{equation*}
\operatorname{Res}\left(G_{0}\right)=\operatorname{Res}\left(\frac{1}{d} \nabla f\right)^{2} \tag{2.2.8}
\end{equation*}
$$

First of all, we prove that the system

$$
\left\{\begin{array}{l}
x_{0}^{2}-q(x)=0 \tag{2.2.9}\\
\frac{1}{d} \nabla f(x)=0
\end{array}\right.
$$

has a nonzero solution if and only if $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)=0$. Let $\left(x_{0}, x\right)$ be a nonzero solution of (2.2.9). In particular, x is a nonzero solution of $\nabla f(x)=0$. Thus, $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)=0$. On the other hand, suppose that $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)=0$. Then $\nabla f(x)=$ 0 admits a nonzero solution x and $\left(q(x)^{\frac{1}{2}}, x\right)$ is a nonzero solution of (2.2.9).

Hence the equations $\operatorname{Res}\left(G_{0}\right)=0$ and $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)=0$ define the same variety. By definition $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)$ is an irreducible polynomial over \mathbb{Z} in the coefficients of f. Therefore

$$
\operatorname{Res}\left(G_{0}\right)=\operatorname{Res}\left(\frac{1}{d} \nabla f\right)^{k}
$$

for some positive integer k. Since the polynomial $x_{0}^{2}-q(x)$ is quadratic, from Proposition 2.2.2 we have that $\operatorname{Res}\left(G_{0}\right)$ is a homogeneous polynomial in the coefficients of $\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}$ of degree $2(d-1)^{n-1}$. On the other hand, the degree of $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)^{k}$ is $k(d-1)^{n-1}$. Therefore relation (2.2.9) is satisfied only if $k=2$. This completes the proof.

We apply the following result when we study the degree of the leading coefficient and of the constant term of ψ_{f}, viewed as polynomials in the coefficients of f (see [LQZ, Proposition 3.6]).

Proposition 2.2.13. Consider $f \in S^{d} V$ and let ψ_{f} be its E-characteristic polynomial written as in (2.2.4), (2.2.5).
i) When d is even, c_{i} is a homogeneous polynomial in the coefficients of f with degree $n(d-1)^{n-1}-i$. In particular $\operatorname{deg}\left(c_{N}\right)=n(d-1)^{n-1}-N=: \varphi_{n}(d)$, where N is the integer defined in Theorem 2.0.1. In particular $\varphi_{n}(2)=0$ for all $n \geq 2$.
ii) When d is odd, $c_{2 i}$ is a homogeneous polynomial in the entries of f with degree $2 n(d-1)^{n-1}-2 i$. In particular $\operatorname{deg}\left(c_{2 N}\right)=2 n(d-1)^{n-1}-2 N=$ $2 \varphi_{n}(d)$.

Remark 2.2.14. It can be easily shown that the polynomial $\varphi_{n}(d)$ defined in Proposition 2.2.13 is a strictly increasing function in the variable d. This fact, together with Proposition 2.2.13, implies that c_{N} (respectively $c_{2 N}$) has positive degree in the coefficients of f for all $n \geq 2$ and $d>2$.

We have this natural question: is there a geometric meaning for the vanishing of the leading coefficient of ψ_{f} ? The answer is positive and is stated in Proposition 2.3.9.

2.3 The product of the E-eigenvalues of a symmetric tensor

In this section we give the proof of Theorem 2.0.2. The proof starts with an example: in fact, the next lemma studies the product of the E-eigenvalues of a particular class of symmetric tensors, the scaled Fermat polynomials

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}^{d}+\cdots+a_{n} x_{n}^{d}, \quad a_{1}, \ldots, a_{n} \in \mathbb{C} . \tag{2.3.1}
\end{equation*}
$$

This result is important to prove the identity (2.0.5) up to sign in the statement of Theorem 2.0.2.

Lemma 2.3.1. Let $d \geq 2$ and suppose that f is the scaled Fermat polynomial in (2.3.1). The product $\lambda_{1} \cdots \lambda_{N}$ of the E-eigenvalues of f, where N is the number defined in Theorem 2.0.1, can be written as

$$
\begin{equation*}
\lambda_{1} \cdots \lambda_{N}=\frac{\operatorname{Res}\left(\frac{1}{d} \nabla f\right)}{h^{\frac{d-2}{2}}} \tag{2.3.2}
\end{equation*}
$$

where $h=h\left(a_{1}, \ldots, a_{n}\right)$ is a homogeneous polynomial of degree $2 \varphi_{n}(d) /(d-2)$ and the polynomial $\varphi_{n}(d)$ was defined in Proposition 2.2.13. Moreover, the leading term of h with respect to the lexicographic term order is monic and it is equal to

$$
L T_{L e x}(h)=\prod_{s=1}^{n} a_{s}^{2 \frac{(d-1)^{n-1}-(d-1)^{s-1}}{d-2}}
$$

Proof. In this case, rewriting the number N of E-eigenvalues as

$$
N=\sum_{j=1}^{n}\binom{n}{j}(d-2)^{j-1}
$$

the binomial $\binom{n}{j}$ denotes the number of E-eigenvalues for f whose corresponding E-eigenvectors have exactly j nonzero coordinates, while the factor $(d-2)^{j-1}$ corresponds to the number of ($j-1$)-arrangements (allowing repetitions) of the elements of $\{0,1, \ldots, d-3\}$, for all $j \in[n]$.

Let $x=\left(x_{1}, \ldots, x_{n}\right)$, with $q(x)=1$ be an E-eigenvector of f. We have

$$
\begin{equation*}
a_{i} x_{i}^{d-1}=\lambda x_{i} \quad \forall i \in[n] . \tag{2.3.3}
\end{equation*}
$$

Suppose that exactly j coordinates of x are nonzero, call them $x_{k_{1}}, \ldots, x_{k_{j}}$ with indices $1 \leq k_{1}<\cdots<k_{j} \leq n$. Moreover, we write $a_{i}=\xi_{i}^{d-2}$ for all $i \in[n]$.

Looking at (2.3.3), if $\bar{x}_{i} \neq 0$ we obtain that $\lambda=a_{i} x_{i}^{d-2}=\left(\xi_{i} x_{i}\right)^{d-2}$ for all $i \in[n]$. Moreover, considering (2.3.3) with respect to the indices $i_{1}<i_{2}$, we get the relations $a_{i_{1}} x_{i_{1}}^{d-1}=\lambda x_{i_{1}}, a_{i_{2}} x_{i_{2}}^{d-1}=\lambda x_{i_{2}}$, from which we obtain the equation

$$
x_{i_{1}} x_{i_{2}} \prod_{k=0}^{d-3}\left(\xi_{i_{1}} x_{i_{1}}-\varepsilon^{k} \xi_{i_{2}} x_{i_{2}}\right)=0
$$

where ε is a $(d-2)$-th root of unity. This means that, for any indices $i_{1}<i_{2}$ it could be that $x_{i_{1}}=0, x_{i_{2}}=0$ or $\xi_{i_{1}} x_{i_{1}}=\varepsilon^{k} \xi_{i_{2}} x_{i_{2}}$ for some $k \in\{0,1, \ldots, d-3\}$. Therefore the coordinates of x, when nonzero, can be always written as

$$
x_{k_{l}}=\left(\frac{1}{q(x)}\right)^{\frac{1}{2}} \xi_{k_{1}} \cdots \widehat{\xi_{k_{l}}} \cdots \xi_{k_{j}} \varepsilon^{\alpha_{k_{l}}}
$$

where $\alpha_{k_{l}} \in\{0,1, \ldots, d-3\}$ for all $l \in[j]$. Since $|\varepsilon|=1$, we can assume $\alpha_{k_{1}}=0$. In addition to this, the squared norm of x can be written as

$$
q(x)=\xi_{k_{2}}^{2} \cdots \xi_{k_{j}}^{2}+\sum_{l=2}^{j} \xi_{k_{1}}^{2} \cdots \widehat{\xi_{k_{l}}^{2}} \cdots \xi_{k_{j}}^{2} \varepsilon^{2 \alpha_{k_{l}}}
$$

and the E-eigenvalue corresponding to x is

$$
\lambda=\left(\xi_{k_{l}} x_{k_{l}}\right)^{d-2}=\left(\frac{1}{q(x)}\right)^{\frac{d-2}{2}} a_{k_{1}} \cdots a_{k_{j}}
$$

From this argument we obtain that the product of the E-eigenvalues of the scaled Fermat polynomial f is equal to

$$
\lambda_{1} \cdots \lambda_{N}=\frac{g}{h^{\frac{d-2}{2}}},
$$

where $g=g\left(a_{1}, \ldots, a_{n}\right)$ and $h=h\left(a_{1}, \ldots, a_{n}\right)$ are equal respectively to

$$
\begin{align*}
g & :=\prod_{j=1}^{n} \prod_{1 \leq k_{1}<\cdots<k_{j} \leq n} \prod_{\alpha_{k_{2}}, \ldots, \alpha_{k_{j}}=0}^{d-3} a_{k_{1}} \cdots a_{k_{j}}, \tag{2.3.4}\\
h & :=\prod_{j=1}^{n} \prod_{1 \leq k_{1}<\cdots<k_{j} \leq n} \prod_{\alpha_{k_{2}}, \ldots, \alpha_{k_{j}}=0}^{d-3}\left(\xi_{k_{2}}^{2} \cdots \xi_{k_{j}}^{2}+\sum_{l=2}^{j} \xi_{k_{1}}^{2} \cdots \widehat{\xi_{k_{l}}^{2}} \cdots \xi_{k_{j}}^{2} \varepsilon^{2 \alpha_{k_{l}}}\right) . \tag{2.3.5}
\end{align*}
$$

Now consider in particular the polynomial g defined in (2.3.4). We have that

$$
\begin{aligned}
g & =\prod_{j=1}^{n} \prod_{1 \leq k_{1}<\cdots<k_{j} \leq n}\left(a_{k_{1}} \cdots a_{k_{j}}\right)^{(d-2)^{j-1}} \\
& =\prod_{j=1}^{n}\left(a_{1} \cdots a_{n}\right)^{\binom{n-1}{j-1}(d-2)^{j-1}} \\
& =\left(a_{1} \cdots a_{n}\right)^{(d-1)^{n-1}},
\end{aligned}
$$

where the last polynomial coincides exactly with $\operatorname{Res}\left(\frac{1}{d} \nabla f\right)$ by Proposition 2.2.1. On the other hand, having fixed Lex as term order in $\mathbb{Z}\left[a_{1}, \ldots, a_{n}\right]$, the leading term of h is equal to

$$
\begin{aligned}
L T_{L e x}(h) & =\prod_{j=2}^{n} \prod_{1 \leq k_{1}<\cdots<k_{j} \leq n} \prod_{\alpha_{k_{2}}, \ldots, \alpha_{k_{j}}=0}^{d-3} \xi_{k_{1}}^{2} \cdots \xi_{k_{j-1}}^{2} \varepsilon^{2 \alpha_{k_{j}}} \\
& =\prod_{j=2}^{n} \prod_{1 \leq k_{1}<\cdots<k_{j} \leq n}\left(\xi_{k_{1}}^{2} \cdots \xi_{k_{j-1}}^{2}\right)^{(d-2)^{j-1}} .
\end{aligned}
$$

Observe that in the last product (with j fixed) the factors $\xi_{1}^{2(d-2)^{j-1}}, \ldots, \xi_{j-1}^{2(d-2)^{j-1}}$ appear $\binom{n-1}{j-1}$ times, while $\xi_{s}^{2(d-2)^{j-1}}$ appears $\binom{n-1}{j-1}-\binom{s-1}{j-1}$ times for $j \leq s \leq n$. Hence (assuming $\binom{a}{b}=0$ for $a<b$)

$$
\begin{aligned}
L T_{\text {Lex }}(h) & =\prod_{j=2}^{n} \prod_{s=1}^{n} \xi_{s}^{2\left[\binom{n-1}{j-1}-\binom{s-1}{j-1}\right](d-2)^{j-1}} \\
& =\prod_{s=1}^{n} \xi_{s}^{2\left[(d-1)^{n-1}-(d-1)^{s-1}\right]} \\
& =\prod_{s=1}^{n} a_{s}^{2 \frac{(d-1)^{n-1}-(d-1)^{s-1}}{d-2}}
\end{aligned}
$$

Remark 2.3.2. Observe that in Lemma 2.3 .1 the degree of $L T_{\text {Lex }}(h)$, that is the total degree of h, is

$$
\begin{aligned}
\frac{2}{d-2} \sum_{s=1}^{n}\left[(d-1)^{n-1}-(d-1)^{s-1}\right] & =\frac{2}{d-2}\left[n(d-1)^{n-1}-\frac{(d-1)^{n}-1}{d-2}\right] \\
& =\frac{2}{d-2} \varphi_{n}(d)
\end{aligned}
$$

where $\varphi_{n}(d)$ was introduced in Proposition 2.2.13 and $d \geq 3$. This value is the one expected as shown in the sequel.

Now consider the variety $\widetilde{Q}=v_{d}(Q)$, namely the Veronese embedding in $\mathbb{P}\left(S^{d} V\right)$ of the isotropic quadric $Q \subset \mathbb{P}(V)$. In particular, \widetilde{Q} is a smooth projective variety, hence we can introduce the Chern classes of \widetilde{Q} in order to compute its polar classes $\delta_{i}(\widetilde{Q})$, according to the relations (1.8.1).

Lemma 2.3.3. In the hypotheses above, $\delta_{0}(\widetilde{Q})=2 \sum_{k=0}^{n-2} \alpha_{k} d^{k}$, where

$$
\begin{equation*}
\alpha_{k}:=(k+1) \sum_{j=0}^{n-2-k}\binom{n}{j}(-1)^{j} 2^{n-2-k-j} . \tag{2.3.6}
\end{equation*}
$$

Proof. First of all we compute the Chern polynomial of the tangent bundle $\mathcal{T} Q$, for brevity indicated with $c(Q)$ (this computation was performed in Example 1.7.4):

$$
c(Q)=\frac{(1+h)^{n}}{1+2 h}=\sum_{i, j=0}^{n-2}\binom{n}{i}(-2)^{j} h^{i+j}=\sum_{s=0}^{n-2}\left(\sum_{i=0}^{s}\binom{n}{i}(-2)^{s-i}\right) h^{s}
$$

where $h=c_{1}\left(\mathcal{O}_{Q}(1)\right)$. Then we compute the polar class $\delta_{0}(\widetilde{Q})$ using an equivalent formulation of (1.8.1) with $m=n-2$ and [Tev, Theorem 7.2], taking into account that $\widetilde{Q}=v_{d}(Q)$.

$$
\begin{aligned}
\delta_{0}(\widetilde{Q}) & =\sum_{k=0}^{n-2}(-1)^{n-2-k}(k+1) \operatorname{deg}\left(c_{n-2-k}(\widetilde{Q})\right) \\
& =\sum_{k=0}^{n-2}(-1)^{n-1-k}(k+1) \operatorname{deg}\left[\left(\sum_{j=0}^{n-2-k}\binom{n}{j}(-2)^{n-2-k-j}\right) h^{n-2-k}(d h)^{k}\right] \\
& =\sum_{k=0}^{n-2}(k+1) \operatorname{deg}\left[\left(\sum_{j=0}^{n-2-k}\binom{n}{j}(-1)^{j} 2^{n-2-k-j}\right) d^{k} h^{n-2}\right] \\
& =2 \sum_{k=0}^{n-2}(k+1)\left[\sum_{j=0}^{n-2-k}\binom{n}{j}(-1)^{j} 2^{n-2-k-j}\right] d^{k} .
\end{aligned}
$$

In the following technical Lemma, we rewrite the polynomial $\varphi_{n}(d)$ defined in Proposition 2.2.13 in a useful way for the sequel.

Lemma 2.3.4. Let $\varphi_{n}(d)$ be the polynomial defined in Proposition 2.2.13. Then $\varphi_{n}(d)=(d-2) \sum_{k=0}^{n-2} \beta_{k} d^{k}$, where

$$
\begin{equation*}
\beta_{k}:=(k+1) \sum_{l=0}^{n-2-k}\binom{k+l+1}{l}(-1)^{l} . \tag{2.3.7}
\end{equation*}
$$

Proof. With a bit of work, the polynomial $\varphi_{n}(d)$ can be rewritten as

$$
\varphi_{n}(d)=(d-2) \sum_{k=0}^{n-2}(k+1)(d-1)^{k}=(d-2) \sum_{k=0}^{n-2} \beta_{k} d^{k},
$$

where

$$
\begin{aligned}
\beta_{k} & =\sum_{i=k}^{n-2}(i+1)\binom{i}{k}(-1)^{i-k} \\
& =\sum_{l=0}^{n-2-k}(l+k+1)\binom{l+k}{k}(-1)^{l} \\
& =\sum_{l=0}^{n-2-k}\left[\frac{l(l+k)!}{l!k!}+\frac{(k+1)(l+k)!}{l!k!}\right](-1)^{l}
\end{aligned}
$$

$$
\begin{aligned}
& =(k+1) \sum_{l=0}^{n-2-k}\left[\binom{k+l}{k+1}+\binom{k+l}{k}\right](-1)^{l} \\
& =(k+1) \sum_{l=0}^{n-2-k}\binom{k+l+1}{l}(-1)^{l}
\end{aligned}
$$

Now we prove that the degree of the leading coefficient of ψ_{f} is a multiple of the polar class $\delta_{0}(\widetilde{Q})$ computed in Lemma 2.3.3.

Proposition 2.3.5. For any $n \geq 2$ and for any $0 \leq k \leq n-2, \alpha_{k}=\beta_{k}$. In particular,

$$
\begin{equation*}
\varphi_{n}(d)=\frac{d-2}{2} \delta_{0}(\widetilde{Q}) \tag{2.3.8}
\end{equation*}
$$

Proof. From the identities (2.3.6) and (2.3.7) we see that both α_{k} and β_{k} are multiples of $k+1$. In particular, we have to prove that

$$
\begin{equation*}
\sum_{j=0}^{n-2-k}\binom{n}{j}(-1)^{j} 2^{n-2-k-j}=\sum_{j=0}^{n-2-k}\binom{k+j+1}{j}(-1)^{j} . \tag{2.3.9}
\end{equation*}
$$

The proof is by induction on n. If $n=2$, both the sides of the equality are equal to 1 . Suppose now that the equality is true at the n-th step. At the $(n+1)$-th step, the right-hand side of the equality is

$$
\sum_{j=0}^{n-1-k}\binom{k+j+1}{j}(-1)^{j}=\sum_{j=0}^{n-2-k}\binom{k+j+1}{j}(-1)^{j}+(-1)^{n-1-k}\binom{n}{n-k}
$$

while the left-hand side at the $(n+1)$-th step is equal to

$$
\begin{aligned}
& \sum_{j=0}^{n-1-k}\binom{n+1}{j}(-1)^{j} 2^{n-1-k-j}= \\
&=2^{n-1-k}+\sum_{j=1}^{n-1-k}\binom{n+1}{j}(-1)^{j} 2^{n-1-k-j} \\
&=2^{n-1-k}+\sum_{j=1}^{n-1-k}\left[\binom{n}{j}+\binom{n}{j-1}\right](-1)^{j} 2^{n-1-k-j} \\
&=\sum_{j=0}^{n-1-k}\binom{n}{j}(-1)^{j} 2^{n-1-k-j}+\sum_{j=1}^{n-1-k}\binom{n}{j-1}(-1)^{j} 2^{n-1-k-j}
\end{aligned}
$$

$$
\begin{aligned}
= & 2 \sum_{j=0}^{n-2-k}\binom{n}{j}(-1)^{j} 2^{n-2-k-j}+(-1)^{n-1-k}\binom{n}{n-k}+ \\
& +\sum_{j=0}^{n-2-k}\binom{n}{j}(-1)^{j+1} 2^{n-2-k-j} \\
= & \sum_{j=0}^{n-2-k}\binom{n}{j}(-1)^{j} 2^{n-2-k-j}+(-1)^{n-1-k}\binom{n}{n-1-k}
\end{aligned}
$$

By applying the induction hypothesis we conclude the proof of (2.3.9).
Remark 2.3.6. Matteo Gallet suggested an alternative proof of the identity (2.3.9), applying the so-called "Zeilberger's Algorithm" (see [Zei90, Zei91]). For example, using the Mathematica package HolonomicFunctions, developed by Cristoph Koutschan (see [Kou]), the code

```
Annihilator[Sum[Binomial[n,j]*(-1)^j*2^(n-2-k-j),{j,0,n-2-k}],{S[k],S[n]}]
Annihilator[Sum[Binomial[k+j+1,j]*(-1)^j,{j,0,n-2-k}],{S[k],S[n]}]
```

provides the operators that annihilate the left-hand and right-hand side in (2.3.9), respectively, thus showing that (2.3.9) holds true.

Corollary 2.3.7. Consider the isotropic quadric $Q \subset \mathbb{P}(V)$ and its Veronese embedding $\widetilde{Q} \subset \mathbb{P}\left(S^{d} V\right)$ with the same notations as before. Then \widetilde{Q}^{\vee} is a hypersurface of $\mathbb{P}\left(S^{d} V\right)$ of degree $\operatorname{deg}\left(\widetilde{Q^{\vee}}\right)=\delta_{0}(\widetilde{Q})$.

Proof. From Remark 2.2.14 and Proposition 2.3.5 we have that $\delta_{0}(\widetilde{Q})$ is a positive integer for all $n \geq 2$ and $d>2$. Applying Theorem 1.5.4 we conclude the proof.

Summing up, there is an explicit formula for the degree of the leading coefficient of ψ_{f} in terms of the degree of the dual variety of Q embedded in $\mathbb{P}\left(S^{d} V\right)$ via the Veronese map, stated in the following corollary.

Corollary 2.3.8. Given $f \in S^{d} V$, if f is general then

$$
\operatorname{deg}\left(c_{N}\right)=\frac{d-2}{2} \operatorname{deg}\left(\widetilde{Q}^{\vee}\right)
$$

when d is even, while

$$
\operatorname{deg}\left(c_{2 N}\right)=(d-2) \operatorname{deg}\left(\widetilde{Q}^{\vee}\right)
$$

when d is odd.

In the following, we prove that the leading coefficient of ψ_{f} is a power of the discriminant $\Delta_{\widetilde{Q}}(f)$, where the exponent was obtained in Corollary 2.3.8. The next two lemmas clarify the geometrical meaning of the vanishing of the polynomial c_{N} (respectively $\left.c_{2 N}\right)$.
Lemma 2.3.9. Assume that $d>2$ and let $f \in S^{d} V$. Then the leading coefficient of ψ_{f} vanishes if and only if the system

$$
\left\{\begin{array}{l}
\frac{1}{d} \nabla f(x)=\lambda x \tag{2.3.10}\\
q(x)=0
\end{array}\right.
$$

called deficit system in [LQZ], has a nontrivial solution.
Proof. If f is irregular, from Definition 2.2.6 we have that the system (2.3.10) has a nontrivial solution when $\lambda=0$, while from Proposition 2.2 .8 we have that ψ_{f} is identically zero.

Suppose instead that f is regular. By Theorem 2.2 .10 the roots of ψ_{f} are exactly the E-eigenvalues of f and for even d we have $\operatorname{deg}\left(\psi_{f}\right) \leq N$, whereas for odd $d \operatorname{deg}\left(\psi_{f}\right) \leq 2 N$. However, we know by Theorem 2.0.1 that a general f has N distinct E-eigenvalues when d is even, and N pairs $(\lambda,-\lambda)$ of distinct E-eigenvalues when d is odd, which means that ψ_{f} would have exactly N distinct roots when d is even, and $2 N$ distinct roots when d is odd. On the other hand, Eeigenvalues are the normalized solutions x of equation (2.1.4), and by definition ψ_{f} is the resultant of the homogeneization of the system whose equations are (2.1.4) and the condition $q(x)=1$. The solutions at infinity of this system are precisely the solution of the system (2.3.10). Hence a symmetric tensor f such that ψ_{f} has not the maximum degree provides a nontrivial solution of the system (2.3.10), or equivalently admits an isotropic eigenvector.

Lemma 2.3.10. Given $f \in S^{d} V$, the system (2.3.10) has a nontrivial solution if and only if the coefficients of f annihilate the polynomial $\Delta_{\widetilde{Q}}(f)$, namely f is represented by a point of \widetilde{Q}^{\vee}.

Proof. Suppose that x is a solution of (2.3.10). By regularity of f we have that $\lambda \neq 0$. Moreover, $P=[x]$ is a smooth point of f, and f is tangent to Q at P. This means that f, thought as a point of $\mathbb{P}\left(S^{d} V\right)$, belongs to \widetilde{Q}^{\vee}, namely its coefficients annihilate the polynomial $\Delta_{\widetilde{Q}}(f)$. The converse is true by reversing the implications.

Remark 2.3.11. One could ask if the condition on f to have the maximum number of E-eigenvalues imposed in Theorem 2.0.2 has a geometric counterpart. For example, this condition is not the same as requiring X_{f} to be regular: although any symmetric tensor f having the maximum number of E-eigenvalues
is necessarily regular, there exist regular symmetric tensors f admitting at least one isotropic eigenvector. The right property to consider is revealed by Lemma 2.3.10, which shows that $f \in S^{d} V$ admits an isotropic eigenvector if and only if the hypersurface X_{f} and the isotropic quadric Q are tangent. This means that the condition on f in Theorem 2.0.2 is satisfied if and only if X_{f} is transversal to Q.

Remark 2.3.11 is even more interesting when considering the following result (see [Alu00, Claim 3.2]):
Proposition 2.3.12. If two smooth hypersurfaces of degree d_{1}, d_{2} in projective space are tangent along a positive dimensional set, then $d_{1}=d_{2}$.

An immediate consequence of Proposition 2.3.12 is the following
Corollary 2.3.13. Given $f \in S^{d} V$ with $d>2$, if X_{f} is smooth then f has always a finite number of isotropic eigenvectors.

Aiming at explaining better Lemma 2.3.10, below we give an example of a symmetric tensor f admitting an isotropic eigenvector, with a study of the tangency between the variety X_{f} and the isotropic quadric Q. Moreover, we compute explicitly the E-characteristic polynomial ψ_{f} and observe that $\operatorname{deg}\left(\psi_{f}\right)<N$.

Example 2.3.14 (A plane cubic admitting an isotropic eigenvector). First of all, we recall that due to Theorem 2.0.1, a general ternary form has $N=d^{2}-d+1$ E-eigenvalues. Consider the cubic ternary form

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right)= & 342 \sqrt{-1} x_{1}^{3}-522 \sqrt{-1} x_{1} x_{2}^{2}-389 \sqrt{-1} x_{1}^{2} x_{3} \\
& +79 \sqrt{-1} x_{2}^{2} x_{3}-474 \sqrt{-1} x_{1} x_{3}^{2}+95 \sqrt{-1} x_{3}^{3} \\
& -773 x_{1}^{2} x_{2}+191 x_{2}^{3}-48 x_{1} x_{2} x_{3}+175 x_{2} x_{3}^{2} .
\end{aligned}
$$

It can be easily verified that the vector $x=(0,1,-\sqrt{-1})$ is an isotropic eigenvector of f. In particular the projective curve X_{f} is tangent to the isotropic quadric Q at $[x] \in \mathbb{P}^{2}$, and the common tangent line has equation $x_{2}-\sqrt{-1} x_{3}=0$. In order to represent graphically this situation, we consider the change of coordinates

$$
z_{1}=-\sqrt{-1} x_{1}, \quad z_{2}=x_{2}+\sqrt{-1} x_{3}, \quad z_{3}=x_{2}-\sqrt{-1} x_{3} .
$$

In the z_{i} 's the quadric Q (the red curve in the affine representation of Figure 2.1) has equation $z_{1}^{2}-z_{2} z_{3}=0$. The image of the isotropic eigenvector x is $z=(0,2,0)$, while the image of the projective curve X_{f} (the blue curve in Figure 2.1) is the projective curve of equation

$$
\begin{aligned}
g\left(z_{1}, z_{2}, z_{3}\right)= & 342 z_{1}^{3}+581 z_{1}^{2} z_{2}+192 z_{1}^{2} z_{3}+498 z_{1} z_{2} z_{3} \\
& +139 z_{2}^{2} z_{3}+24 z_{1} z_{3}^{2}+48 z_{2} z_{3}^{2}+4 z_{3}^{3} .
\end{aligned}
$$

Figure 2.1: The isotropic quadric Q and the plane cubic X_{f} in the affine plane $z_{2}=2$. They are not transversal at the origin.

The presence of an isotropic eigenvector can be detected by computing explicitly the E-characteristic polynomial of f as well. In order to compute $\psi_{f}(\lambda)$ we used the following Macaulay2 code [GS] (for the package Resultants see [Sta]), taking into account Definition 2.2.4 modified according to the given change of coordinates:

```
loadPackage "Resultants"; KK=QQ[t]; R=KK[z_0..z_3];
f=342*z_1^3+581*z_1^2*z_2+192*z_1^2*z_3+498*z_1*z_2*z_3+139*z_2^2*z_3+
24*z_1*z_3^2+48*z_2*z_3^2+4*z_3^3;
F_0=z_0^2-(-z_1~2+z_2*z_3);
F_1=diff(z_1,f)/3+t*z_0*z_1;
F_2=diff(z_2,f)/3+diff(z_3,f)/3-t*z_0*(z_2+z_3)/2;
F_3=diff(z_2,f)/3-diff(z_3,f)/3+t*z_0*(z_2-z_3)/2;
Echarpoly=resultant({F_0,F_1,F_2,F_3}, Algorithm=>"Macaulay");
factor Echarpoly
```

The output of factor Echarpoly is

$$
\begin{aligned}
\psi_{g}(\lambda)= & 22405379203945800000 \lambda^{12} \\
& +1737672597491537284396875 \lambda^{10} \\
& +45686609440492531312122181875 \lambda^{8} \\
& +538619871002221271247213134552625 \lambda^{6} \\
& +2746031584320556852962647720783548350 \lambda^{4} \\
& +2137752598886514957981090279414043391031 \lambda^{2} \\
& +13843807659909379464027427753236120270069196 .
\end{aligned}
$$

Since a general cubic ternary form has seven E-eigenvalues, we expect that the degree of ψ_{f} is fourteen, but in this case $\operatorname{deg}\left(\psi_{f}\right)=12$. This confirms that f has one isotropic eigenvector and six E-eigenvectors (counted with multiplicity) up to sign.

Returning to the proof of Theorem 2.0.2, an immediate consequence of Corollary 2.3.8 and Lemmas 2.3.9 and 2.3.10 is the following formula for the leading coefficient of the E-characteristic polynomial of a symmetric tensor.

Theorem 2.3.15. Given $f \in S^{d} V$ and $d>2$, if f does not admit isotropic eigenvectors, then

$$
\begin{equation*}
c_{N}=e \cdot \Delta_{\widetilde{Q}}(f)^{\frac{d-2}{2}} \tag{2.3.11}
\end{equation*}
$$

when d is even, while

$$
\begin{equation*}
c_{2 N}=e \cdot \Delta_{\widetilde{Q}}(f)^{d-2} \tag{2.3.12}
\end{equation*}
$$

when d is odd, for some integer constant $e=e(n, d)$.
Proof. Applying Lemma 2.3.9 and Lemma 2.3.10 we obtain that the varieties $\left\{c_{N}=0\right\}$ and $\left\{\Delta_{\widetilde{Q}}(f)=0\right\}$ coincide. The proof for the case $n=2$ is postponed to Section 2.4, where we treat more in detail binary forms. If $n>2$, then \widetilde{Q} is an irreducible hypersurface and the variety \widetilde{Q}^{\vee} is irreducible as well. Corollary 2.3.7 tells us that \widetilde{Q}^{\vee} is in fact a hypersurface. Hence, for even $d, c_{N}=e \cdot \Delta_{\widetilde{Q}}(f)^{j}$, whereas for odd d we have $c_{2 N}=e \cdot \Delta_{\widetilde{Q}}(f)^{k}$ for some integer constant $e=$ $e(n, d)$ and positive integers j, k. Moreover, from Corollary 2.3.8 we have that $j=(d-2) / 2$ and $k=d-2$.

Proof of Theorem 2.0.2. Theorems 2.2.12 and 2.3.15 describe respectively the constant term c_{0} and the leading coefficient c_{N} (or $c_{2 N}$) of the E-characteristic polynomial ψ_{f} of a general symmetric tensor f, up to a constant integer factor. Moreover, the product of the E-eigenvalues of f is c_{0} / c_{N} (respectively $c_{0} / c_{2 N}$). If we restrict to the class of scaled Fermat polynomials, as in Lemma 2.3.1, we notice that the integers c and e of Theorems 2.2.12 and 2.3.15 have to coincide, for the leading term of the denominator in (2.3.2) is monic and by definition $\Delta_{\widetilde{Q}}(f)$ has relatively prime integer coefficients. This concludes the proof.

2.4 The case of binary symmetric tensors

In this final section, we focus on the case of binary forms $(n=2)$ and complete the proof of Theorem 2.0.2, recovering the results of Li , Qi and Zhang in [LQZ]. In particular, we show that in this particular case equation (2.0.5) can be rewritten more explicitly. Here any element of $S^{d} V$ is represented by a binary form

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\sum_{j=0}^{d}\binom{d}{j} a_{j} x_{1}^{d-j} x_{2}^{j}, \quad a_{0}, \ldots, a_{d} \in \mathbb{C} \tag{2.4.1}
\end{equation*}
$$

According to Theorem 2.0.1, a general binary form f of degree d admits $N=d$ E-eigenvectors. As one can easily see from relation (2.1.4), the E-eigenvectors of f are the normalized solutions $\left(x_{1}, x_{2}\right)$ of the equation $D(f)=0$, where the discriminant operator D is

$$
\begin{equation*}
D(f):=x_{1} \frac{\partial f}{\partial x_{2}}-x_{2} \frac{\partial f}{\partial x_{1}} \tag{2.4.2}
\end{equation*}
$$

The operator D is well-known and its properties are collected in [Mac].
We are interested in the E-characteristic polynomial ψ_{f} of a regular binary form f. We know that $\operatorname{deg}\left(\psi_{f}\right)=d$ in the even case, while $\operatorname{deg}\left(\psi_{f}\right)=2 d$ in the odd case. A remarkable formula for the leading coefficient of the E-characteristic polynomial of a 2-dimensional tensor of order d is given in [LQZ]. We show that this formula can be simplified a lot in the symmetric case.

Following the argument used in [LQZ], the isotropic eigenvectors of f are the solutions of the following simplified version of the system (2.3.10):

$$
\begin{cases}\sum_{j=1}^{d}\binom{d-1}{j-1} a_{j-1} x_{1}^{d-j} x_{2}^{j-1} & =\lambda x_{1} \tag{2.4.3}\\ \sum_{j=1}^{d}\binom{d-1}{j-1} a_{j} x_{1}^{d-j} x_{2}^{j-1} & =\lambda x_{2} \\ x_{1}^{2}+x_{2}^{2} & =0 .\end{cases}
$$

We observe that all the nontrivial solutions $\left(x_{1}, x_{2}\right)$ of (2.4.3) are nonzero multiples of $(1, \sqrt{-1})$ or $(1,-\sqrt{-1})$. Substituting $(1, \sqrt{-1})$ to (2.4.3) and eliminating λ we obtain the condition

$$
\begin{equation*}
\sum_{j=0}^{d}\binom{d}{j} a_{j} \sqrt{-1}^{j}=0 \tag{2.4.4}
\end{equation*}
$$

In the same manner, considering instead the vector $(1,-\sqrt{-1})$ we obtain the condition

$$
\begin{equation*}
\sum_{j=0}^{d}\binom{d}{j} a_{j}(-\sqrt{-1})^{j}=0 \tag{2.4.5}
\end{equation*}
$$

Therefore, if the binary form f has at least one isotropic eigenvector, then the product of the left-hand sides of equations (2.4.4) and (2.4.5) vanishes. On the other hand, if this product is zero, then $(1, \sqrt{-1})$ or $(1,-\sqrt{-1})$ is a solution of the system (2.4.3) and is in turn an isotropic eigenvector of f.

We observe that the left-hand sides in (2.4.4) and (2.4.5) have an interesting interpretation. Consider the linear change of coordinates defined by the equations

$$
x_{1}=\gamma_{11} z_{1}+\gamma_{12} z_{2}, \quad x_{2}=\gamma_{21} z_{1}+\gamma_{22} z_{2}
$$

Applying this change of coordinates, the binary form $f\left(x_{1}, x_{2}\right)$ is transformed into the binary form $\widetilde{f}\left(z_{1}, z_{2}\right)$ in the new variables z_{1}, z_{2} defined by

$$
\widetilde{f}\left(z_{1}, z_{2}\right)=\sum_{j=0}^{d}\binom{d}{j} a_{j}\left(\gamma_{11} z_{1}+\gamma_{12} z_{2}\right)^{d-j}\left(\gamma_{21} z_{1}+\gamma_{22} z_{2}\right)^{j}=\sum_{j=0}^{d}\binom{d}{j} \widetilde{a}_{j} z_{1}^{d-j} z_{2}^{j},
$$

where (see [Stu, Proposition 3.6.1])

$$
\begin{equation*}
\tilde{a}_{j}=\sum_{k=0}^{d}\left[\sum_{l=\max (0, k-j)}^{\min (k, d-j)}\binom{d-j}{l}\binom{j}{k-l} \gamma_{11}^{l} \gamma_{12}^{k-l} \gamma_{21}^{d-j-l} \gamma_{22}^{j-k+l}\right] a_{k} \tag{2.4.6}
\end{equation*}
$$

for all $0 \leq j \leq d$. Let us introduce the new coordinates

$$
z_{1}=-\frac{\sqrt{-1}}{2}\left(x_{1}+\sqrt{-1} x_{2}\right), \quad z_{2}=-\frac{\sqrt{-1}}{2}\left(x_{1}-\sqrt{-1} x_{2}\right) .
$$

The inverse change of coordinates has equations

$$
x_{1}=\sqrt{-1}\left(z_{1}+z_{2}\right), \quad x_{2}=z_{1}-z_{2} .
$$

With this choice, applying formula (2.4.6) the coefficients \widetilde{a}_{j} of the transformed binary form $\widetilde{f}\left(z_{1}, z_{2}\right)$ are

$$
\widetilde{a}_{j}=\sum_{k=0}^{d}\left[\sum_{l=\max (0, k-j)}^{\min (k, d-j)}\binom{d-j}{l}\binom{j}{k-l} \sqrt{-1}^{2(j+l)-k}\right] a_{k}
$$

for all $0 \leq j \leq d$. In particular the extreme coefficients become

$$
\widetilde{a}_{0}=\sum_{j=0}^{d}\binom{d}{j} a_{j} \sqrt{-1}^{j}, \quad \widetilde{a}_{d}=(-1)^{d} \sum_{j=0}^{d}\binom{d}{j} a_{j}(-\sqrt{-1})^{j} .
$$

Therefore, if we define $b_{0}:=\widetilde{a}_{0}$ and $b_{d}:=(-1)^{d} \widetilde{a}_{d}$, then the left-hand sides of equations (2.4.4) and (2.4.5) are equal to b_{0} and b_{d}, respectively. Moreover, we observe that the product $b_{0} b_{d}$ has integer coefficients even though some of the
coefficients of b_{0} and b_{d} have nonzero imaginary part: in fact we see that

$$
\begin{align*}
b_{0} b_{d} & =\sum_{j, k=0}^{d}\binom{d}{j}\binom{d}{k} a_{j} a_{k}(-1)^{j} \sqrt{-1}^{j+k} \\
& =\sum_{s=0}^{2 d}\left[\sum_{j=\min (0, s-d)}^{\max (s, d)}\binom{d}{j}\binom{d}{s-j} a_{j} a_{s-j}(-1)^{j}\right] \sqrt{-1}^{s}, \tag{2.4.7}
\end{align*}
$$

where in the last relation all summands corresponding to odd indices s vanish. Since the coefficient of a_{0}^{2} in the expression of $b_{0} b_{d}$ is 1 , we conclude that $b_{0} b_{d}=$ $\Delta_{\widetilde{Q}}(f)$ up to sign. In particular $\widetilde{Q}^{\vee}=\left\{b_{0} b_{d}=0\right\}$: in fact in this case \widetilde{Q} is the union of two distinct points (more precisely, the classes of the rank-one symmetric tensors $\left(x_{1}+\sqrt{-1} x_{2}\right)^{d}$ and $\left.\left(x_{1}-\sqrt{-1} x_{2}\right)^{d}\right)$, while the variety \widetilde{Q}^{\vee} is the quadric union of the hyperplanes $\left\{b_{0}=0\right\},\left\{b_{d}=0\right\}$. In particular, the hyperplane $\left\{b_{0}=0\right\}$ parametrizes the binary forms having $(1, \sqrt{-1})$ as isotropic eigenvector, while $\left\{b_{d}=0\right\}$ parametrizes the binary forms having $(1,-\sqrt{-1})$ as isotropic eigenvector.

Regarding the leading coefficient of the E-characteristic polynomial ψ_{f}, the previous argument suggests that it must coincide with $c b_{0}^{i} b_{d}^{j}$ for some $c=c(d) \in$ \mathbb{Z}. Since ψ_{f} is a polynomial in the indeterminates a_{0}, \ldots, a_{d} with integer coefficients, it follows that $i=j$. Hence, for even $d, c_{d}=e \Delta_{\widetilde{Q}}(f)^{p}$, whereas for odd d we have $c_{2 d}=e \Delta_{\widetilde{Q}}(f)^{q}$ for some $e=e(d) \in \mathbb{Z}$ and positive integers p, q. From Corollary 2.3 .8 we have that $p=(d-2) / 2$ and $q=d-2$, thus completing the proof of Theorem 2.3.15 in the case $n=2$.

Remark 2.4.1. If we specialize to the class of scaled Fermat binary forms

$$
f\left(x_{1}, x_{2}\right)=\alpha x_{1}^{d}+\beta x_{2}^{d}, \quad \alpha, \beta \in \mathbb{C}
$$

from relation (2.4.7) we confirm the statement of Lemma 2.3.1 by observing that

$$
\Delta_{\widetilde{Q}}(f)=\alpha^{2}+\left(1+(-1)^{d}\right) \sqrt{-1}^{d} \alpha \beta+\beta^{2} .
$$

Example 2.4.2 (E-characteristic polynomial of a binary cubic form). In this computational example we derive symbolically the E-characteristic polynomial of the cubic binary form

$$
f\left(x_{1}, x_{2}\right)=a_{0} x_{1}^{3}+3 a_{1} x_{1}^{2} x_{2}+3 a_{2} x_{1} x_{2}^{2}+a_{3} x_{2}^{3}
$$

The Macaulay2 code used is

```
restart
loadPackage "Resultants"; d=3; KK=QQ[a_0..a_d,t]; R=KK[x_0, x_1, x_2];
f=sum(d+1,j->binomial(d,j)*a_j*x_1^(d-j)*x_2^j);
F_0=x_0^2-x_1^2-x_2^2;
F_1=diff(x_1,f)/d-t*x_0^(d-2)*x_1;
F_2=diff(x_2,f)/d-t*x_0^(d-2)*x_2;
Echarpoly=resultant({F_0,F_1,F_2}, Algorithm=>"Macaulay");
factor Echarpoly
```

The output obtained is

$$
\begin{aligned}
\psi_{f}\left(\lambda^{2}\right)= & -\left(a_{0}^{2}+9 a_{1}^{2}-6 a_{0} a_{2}+9 a_{2}^{2}-6 a_{1} a_{3}+a_{3}^{2}\right) \lambda^{6} \\
& +\left(a_{0}^{4}+12 a_{0}^{2} a_{1}^{2}+24 a_{1}^{4}-6 a_{0}^{3} a_{2}-12 a_{0} a_{1}^{2} a_{2}+9 a_{0}^{2} a_{2}^{2}+45 a_{1}^{2} a_{2}^{2}\right. \\
& -8 a_{0} a_{2}^{3}+24 a_{2}^{4}-6 a_{0}^{2} a_{1} a_{3}-8 a_{1}^{3} a_{3}-12 a_{0} a_{1} a_{2} a_{3}-12 a_{1} a_{2}^{2} a_{3} \\
& \left.+3 a_{0}^{2} a_{3}^{2}+9 a_{1}^{2} a_{3}^{2}-6 a_{0} a_{2} a_{3}^{2}+12 a_{2}^{2} a_{3}^{2}-6 a_{1} a_{3}^{3}+a_{3}^{4}\right) \lambda^{4} \\
& -2\left(8 a_{1}^{6}-24 a_{0} a_{1}^{4} a_{2}+21 a_{0}^{2} a_{1}^{2} a_{2}^{2}+6 a_{1}^{4} a_{2}^{2}-4 a_{0}^{3} a_{2}^{3}-15 a_{0} a_{1}^{2} a_{2}^{3}+12 a_{0}^{2} a_{2}^{4}\right. \\
& +6 a_{1}^{2} a_{2}^{4}+8 a_{2}^{6}+4 a_{0}^{2} a_{1}^{3} a_{3}-6 a_{0}^{3} a_{1} a_{2} a_{3}-6 a_{0}^{2} a_{1} a_{2}^{2} a_{3}-15 a_{1}^{3} a_{2}^{2} a_{3} \\
& -24 a_{1} a_{2}^{4} a_{3}+a_{0}^{4} a_{3}^{2}+6 a_{0}^{2} a_{1}^{2} a_{3}^{2}+12 a_{1}^{4} a_{3}^{2}-3 a_{0}^{3} a_{2} a_{3}^{2}-6 a_{0} a_{1}^{2} a_{2} a_{3}^{2}+6 a_{0}^{2} a_{2}^{2} a_{3}^{2} \\
& \left.+21 a_{1}^{2} a_{2}^{2} a_{3}^{2}+4 a_{0} a_{2}^{3} a_{3}^{2}-3 a_{0}^{2} a_{1} a_{3}^{3}-4 a_{1}^{3} a_{3}^{3}-6 a_{0} a_{1} a_{2} a_{3}^{3}+a_{0}^{2} a_{3}^{4}\right) \lambda^{2} \\
& +\left(3 a_{1}^{2} a_{2}^{2}-4 a_{0} a_{2}^{3}-4 a_{1}^{3} a_{3}+6 a_{0} a_{1} a_{2} a_{3}-a_{0}^{2} a_{3}^{2}\right)^{2}
\end{aligned}
$$

Note in particular that the lowest coefficient of ψ_{f} is the square of the discriminant of f, whereas the highest coefficient agrees with formula (2.4.7). Moreover, the λ^{2}-discriminant of ψ_{f} may be written, up to scalars, as

$$
\Delta_{\lambda^{2}}\left[\psi_{f}\left(\lambda^{2}\right)\right]=\left(a_{0}^{2}+9 a_{1}^{2}-6 a_{0} a_{2}+9 a_{2}^{2}-6 a_{1} a_{3}+a_{3}^{2}\right) g_{1}^{2} g_{2}^{3}
$$

On one hand, as pointed out in Proposition 4.2.4, the hypersurface cut out by the polynomial $g_{1}(f)$ corresponds to the bisector hypersurface $B\left(X_{(3)}, X_{(3)}\right)$, namely the locus of binary cubic forms admitting two distinct critical rank-one symmetric binary cubics at the same distance from f. The expression of g_{1} in coordinates is the following (see also Figure 2.2):

$$
\begin{aligned}
g_{1}(f)= & 2 a_{0} a_{1}^{3}-3 a_{0}^{2} a_{1} a_{2}+3 a_{1}^{3} a_{2}-6 a_{0} a_{1} a_{2}^{2}-3 a_{1} a_{2}^{3}+a_{0}^{3} a_{3}+3 a_{0} a_{1}^{2} a_{3} \\
& +6 a_{1}^{2} a_{2} a_{3}-3 a_{0} a_{2}^{2} a_{3}-2 a_{2}^{3} a_{3}+3 a_{1} a_{2} a_{3}^{2}-a_{0} a_{3}^{3} .
\end{aligned}
$$

On the other hand, the hypersurface cut out by the polynomial $g_{2}(f)$ corresponds to the ED discriminant $\Sigma_{X_{(3)}}$, namely the locus of binary cubic forms having two coinciding critical rank-one symmetric binary cubics. The expression of g_{2} in

Figure 2.2: The bisector hypersurface $B\left(X_{(3)}, X_{(3)}\right)$ of the rational normal curve $X_{(3)} \subset \mathbb{P}_{\mathrm{C}}^{3}$ in the affine chart $a_{3}=1$.
coordinates is the following (see also Figure 2.3):

$$
\begin{aligned}
g_{2}(f)= & 4 a_{0}^{2} a_{1}^{2}+32 a_{1}^{4}-4 a_{0}^{3} a_{2}-52 a_{0} a_{1}^{2} a_{2}+24 a_{0}^{2} a_{2}^{2}+61 a_{1}^{2} a_{2}^{2}-48 a_{0} a_{2}^{3} \\
& +32 a_{2}^{4}-4 a_{0}^{2} a_{1} a_{3}-48 a_{1}^{3} a_{3}+34 a_{0} a_{1} a_{2} a_{3}-52 a_{1} a_{2}^{2} a_{3}+a_{0}^{2} a_{3}^{2} \\
& +24 a_{1}^{2} a_{3}^{2}-4 a_{0} a_{2} a_{3}^{2}+4 a_{2}^{2} a_{3}^{2}-4 a_{1} a_{3}^{3} .
\end{aligned}
$$

We conclude this chapter focusing on complex harmonic binary forms. Let $\Delta: S^{d} V \rightarrow S^{d-2} V$ denote the Laplace operator defined in coordinates by

$$
\Delta f\left(x_{1}, \ldots, x_{n}\right):=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} f}{\partial x_{n}^{2}}
$$

Definition 2.4.3. The subspace in $S^{d} V$ of complex harmonic forms in n indeterminates is

$$
H^{d} V:=\operatorname{ker}(\Delta) \subset S^{d} V
$$

Figure 2.3: The ED discriminant $\Sigma_{X_{(3)}}$ of the rational normal curve $X_{(3)} \subset \mathbb{P}_{\mathbb{C}}^{3}$ in the affine chart $a_{3}=1$.

With an induction argument one may prove that the map Δ is surjective, thus implying that

$$
\begin{equation*}
\operatorname{dim}\left(H^{d} V\right)=\operatorname{dim}\left(S^{d} V\right)-\operatorname{dim}\left(S^{d-2} V\right)=\binom{d+n-1}{n-1}-\binom{d+n-3}{n-1} \tag{2.4.8}
\end{equation*}
$$

Hence, in our case $n=2$ we have that $\operatorname{dim}\left(H^{d} V\right)=2$. In particular, if x_{1} and x_{2} denote the linear forms associated to the vectors $(1,0)$ and $(0,1)$ of V, we define the linear forms $z_{1}=x_{1}+\sqrt{-1} x_{2}$ and $z_{2}=x_{1}-\sqrt{-1} x_{2}$. One may verify that z_{1}^{d} and z_{2}^{d} belong to $H^{d} V$ and are linearly independent, hence they form a basis of $H^{d} V$. Then any complex harmonic binary form $g \in S^{d} V$ can be written as

$$
\begin{equation*}
g=a z_{1}^{d}+b z_{2}^{d}, \quad[a, b] \in \mathbb{P}_{\mathrm{c}}^{1} \tag{2.4.9}
\end{equation*}
$$

We prove the following result.
Proposition 2.4.4. Consider g as in (2.4.9). Then its characteristic polynomial is equal to (up to a scalar factor)

$$
\psi_{f}(\lambda)=\left(4 a b-\lambda^{2}\right)^{\frac{d}{2}}
$$

for even d and

$$
\psi_{f}(\lambda)=\left(4 a b-\lambda^{2}\right)^{d}
$$

for odd d.
Proof. Developing the identity (2.4.9), we have that

$$
g=a z_{1}^{d}+b z_{2}^{d}=a\left(x_{1}+\sqrt{-1} x_{2}\right)^{d}+b\left(x_{1}-\sqrt{-1} x_{2}\right)^{d}
$$

Then the gradient of g with respect to the variables x_{1} and x_{2} is

$$
\frac{\partial g}{\partial x_{1}}=d\left(a z_{1}^{d-1}+b z_{2}^{d-1}\right), \quad \frac{\partial g}{\partial x_{2}}=\sqrt{-1} d\left(a z_{1}^{d-1}-b z_{2}^{d-1}\right)
$$

We compute the E-eigenvectors $x=\left(x_{1}, x_{2}\right) \in V$ of g via the system (2.1.5). They correspond to the normalized solutions of the equation $D(g)=0$, where D is the discriminant operator defined in (2.4.2):

$$
\frac{1}{d} D(g)=x_{2}\left(a z_{1}^{d-1}+b z_{2}^{d-1}\right)-\sqrt{-1} x_{1}\left(a z_{1}^{d-1}-b z_{2}^{d-1}\right)=-\sqrt{-1}\left(a z_{1}^{d}-b z_{2}^{d}\right)
$$

More precisely, the equation $D(g)=0$ simplifies to

$$
a\left(x_{1}+\sqrt{-1} x_{2}\right)^{d}-b\left(x_{1}-\sqrt{-1} x_{2}\right)^{d}=0
$$

The left hand side of the last equation can be factorized as

$$
\begin{aligned}
a\left(x_{1}+\sqrt{-1} x_{2}\right)^{d}-b\left(x_{1}-\sqrt{-1} x_{2}\right)^{d} & =\prod_{j=0}^{d-1}\left[\xi\left(x_{1}+\sqrt{-1} x_{2}\right)-\varepsilon^{j} \eta\left(x_{1}-\sqrt{-1} x_{2}\right)\right] \\
& =\prod_{j=0}^{d-1}\left[\left(\xi-\varepsilon^{j} \eta\right) x_{1}+\sqrt{-1}\left(\xi+\varepsilon^{j} \eta\right) x_{2}\right]
\end{aligned}
$$

where $\xi^{d}=a$ and $\eta^{d}=b$. Hence the eigenvectors are

$$
v_{j}=\left(-\sqrt{-1}\left(\xi+\varepsilon^{j} \eta\right), \xi-\varepsilon^{j} \eta\right), \quad j \in\{0, \ldots, d-1\} .
$$

In addition, the norm of v_{j} is equal to

$$
q\left(v_{j}\right)^{\frac{1}{2}}=\sqrt{-\left(\xi+\varepsilon^{j} \eta\right)^{2}+\left(\xi-\varepsilon^{j} \eta\right)^{2}}=\sqrt{-4 \varepsilon^{j} \xi \eta}=2 \sqrt{-1} \sqrt{\varepsilon^{j} \xi \eta}
$$

Summing up, the E-eigenvectors of g are (call them v_{j} again)

$$
\begin{equation*}
v_{j}=\frac{1}{2 \sqrt{-1} \sqrt{\varepsilon^{j} \xi \eta}}\left(-\sqrt{-1}\left(\xi+\varepsilon^{j} \eta\right), \xi-\varepsilon^{j} \eta\right), \quad j \in\{0, \ldots, d-1\} \tag{2.4.10}
\end{equation*}
$$

In this case, the system (2.1.5) becomes

$$
\frac{1}{d} \frac{\partial g}{\partial x}=\lambda x, \quad \frac{1}{d} \frac{\partial g}{\partial y}=\lambda y
$$

If we substitute the coordinates of v_{j} in (2.4.10) in the first equation (substituting in the second equation would lead to the same result), then we get the identity

$$
a\left(\frac{-\varepsilon^{j} \eta}{\sqrt{\varepsilon^{j} \xi \eta}}\right)^{d-1}+b\left(\frac{-\xi}{\sqrt{\varepsilon^{j} \xi \eta}}\right)^{d-1}=-\frac{\xi+\varepsilon^{j} \eta}{2 \sqrt{\varepsilon^{j} \xi \eta}} \lambda .
$$

Solving for λ the last equation gives an expression for the E-eigenvalues of g :

$$
\begin{aligned}
\lambda & =(-1)^{d-2} 2 \frac{\left(a \varepsilon^{j(d-1)} \eta^{d-1}+b \xi^{d-1}\right) \varepsilon^{j} \xi \eta}{\sqrt{a b}\left(\xi+\varepsilon^{j} \eta\right)} \\
& =(-1)^{d-2} 2 \frac{a b\left(\xi+\varepsilon^{j} \eta\right)}{\sqrt{a b}\left(\xi+\varepsilon^{j} \eta\right)} \\
& =(-1)^{d-2} 2 \sqrt{a b}
\end{aligned}
$$

In the original variables x_{1} and x_{2}, a complex harmonic binary form $h \in H^{d} V$ may be written as

$$
h\left(x_{1}, x_{2}\right)=\sum_{i=0}^{d}\binom{d}{i} a_{i} x_{1}^{d-i} x_{2}^{i}, \quad a_{i}= \begin{cases}(-1)^{\frac{i}{2}} \xi & \text { if } i \text { is even } \tag{2.4.11}\\ (-1)^{\frac{i-1}{2}} \eta & \text { if } i \text { is odd }\end{cases}
$$

for some $[\xi, \eta] \in \mathbb{P}_{\mathbb{C}}^{1}$
Example 2.4.5. For $d=4$, a general harmonic binary form is

$$
f=\xi x_{1}^{4}+4 \eta x_{1}^{3} x_{2}-6 \xi x_{1}^{2} x_{2}^{2}-4 \eta x_{1} x_{2}^{3}+\xi x_{2}^{4}, \quad[\xi, \eta] \in \mathbb{P}_{\mathbb{c}}^{1}
$$

The analogous statement to Proposition 2.4.4 is the following.
Corollary 2.4.6. Consider f as in (2.4.11). Then its E-characteristic polynomial is equal to (up to a scalar factor)

$$
\psi_{f}(\lambda)=\left(\xi^{2}+\eta^{2}-\lambda^{2}\right)^{\frac{d}{2}}
$$

if d is even and

$$
\psi_{f}(\lambda)=\left(\xi^{2}+\eta^{2}-\lambda^{2}\right)^{d}
$$

if d is odd.
The last corollary yields another interesting fact.

Corollary 2.4.7. Every E-eigenvalue of a real harmonic binary form $g \in H^{d} V^{\mathbb{R}}$ is a Z-eigenvalue.

The last corollary does not generalize to real harmonic forms in more than two variables. Indeed, we show in Example 3.5.9 that there exist real harmonic ternary forms which admit non-real E-eigenvalues, starting from the case $d=3$.

Chapter 3

On the orthogonal stability of binary and ternary forms

In Chapter 2 we outlined the main properties of the Euclidean eigenvalues and eigenvectors of a degree d symmetric tensor $f \in S^{d} V$ on some complex vector space $V=V^{\mathbb{R}} \otimes \mathbb{C}$, where $\left(V^{\mathbb{R}}, q^{\mathbb{R}}\right)$ is our usual starting real Euclidean space of dimension n. Moreover, we stressed two facts

1. In Theorem 2.2.10, we reported that the roots of the E-characteristic polynomial $\psi_{f}(\lambda)$ of a regular symmetric tensor $f \in S^{d} V$ correspond to the E-eigenvalues of f.
2. In Remark 2.3 .11 we observed that a symmetric tensor $f \in S^{d} V$ admits the maximum number of E-eigenvalues, counted with multiplicity, if and only if the hypersurface $X_{f} \subset \mathbb{P}(V)$ defined by f is transversal to the isotropic $Q \subset \mathbb{P}(V)$ defined via the quadratic function $q: V \rightarrow \mathbb{C}$ associated, in turn, with the quadratic form $q^{\mathbb{R}}$ on $V^{\mathbb{R}}$. Moreover, transversality between X_{f} and Q is not related to the regularity of f.
Transversality between a projective variety $X \subset \mathbb{P}(V)$ and the isotropic quadric Q plays an important role in this chapter as well as in the forthcoming ones. Moreover, here we want to stress another property shared by the E-eigenvalues of $f \in S^{d} V$ and the coefficients of the E-characteristic polynomial $\psi_{f}(\lambda)$, namely their invariance with respect to the complex special orthogonal group $\mathrm{SO}(V)$ (see Theorem 2.1.10 and Corollary 2.2.5).

We recall that the complex orthogonal group $\mathrm{O}(V)$ is the subgroup of $\mathrm{GL}(V)$ of invertible linear operators of V that preserve a fixed bilinear form: in our case, the bilinear form $q: V \times V \rightarrow \mathbb{C}$ associated to the inner product $q^{\mathbb{R}}$ on $V^{\mathbb{R}}$. For the rest of the chapter, we assume that $q(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$ is the bilinear form associated to the standard Euclidean inner product in $V^{\mathbb{R}}=\mathbb{R}^{n}$. The group $\mathrm{O}(V)$
is, in fact, an example of a matrix Lie group and has two connected components. The component of $\mathrm{O}(V)$ containing the identity Id_{V} is precisely the complex special orthogonal group $\mathrm{SO}(V)$.

By our assumption, in the following we adopt the notations $\mathrm{GL}(V)=\mathrm{GL}(n, \mathbb{C})$, $\mathrm{O}(V)=\mathrm{O}(n, \mathbb{C}), \mathrm{SO}(V)=\mathrm{SO}(n, \mathbb{C})$ and similarly for the other known matrix Lie groups on V. In particular, $\mathrm{SO}(n, \mathbb{C})$ is the subgroup of complex matrices A of size n such that $A^{T} A=I$ and $\operatorname{det}(A)=1$. Note that the matrix Lie groups $\mathrm{O}(n, \mathbb{C})$ and $\mathrm{SO}(n, \mathbb{C})$ are different from the unitary group $\mathrm{U}(n)$ and the special unitary group $\mathrm{SU}(n)$. The last two are defined analogously to $\mathrm{O}(n, \mathbb{C})$ and $\operatorname{SO}(n, \mathbb{C})$, but with respect to a Hermitian inner product on \mathbb{C}^{n}. Note that the bilinear form q fixed is symmetric rather than conjugate-symmetric. Our main references for the theory about matrix Lie groups, matrix Lie algebras and representation theory are $[\mathrm{Hal}, \mathrm{FH}]$.

The space $S^{d} \mathbb{C}^{n}$ is a $\mathrm{GL}(n, \mathbb{C})$-module via the representation

$$
\begin{equation*}
\rho_{d}: \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathrm{GL}\left(S^{d} \mathbb{C}^{n}\right), \quad \rho_{d}(g)(f(x)):=f\left(g^{-1}(x)\right) \tag{3.0.1}
\end{equation*}
$$

for all $f \in S^{d} \mathbb{C}^{n}$ and all $g \in \mathrm{GL}(n, \mathbb{C})$. In this chapter, the elements of $\mathbb{P}\left(S^{d} \mathbb{C}^{n}\right)$ are called forms of degree d in n variables. Our aim is to investigate the action of the subgroup $\mathrm{SO}(n, \mathbb{C})$ on $\mathbb{P}\left(S^{d} \mathbb{C}^{n}\right)$. In particular, a very hard task in Geometric Invariant Theory is the computation of all stable and semistable elements of $\mathbb{P}\left(S^{d} \mathbb{C}^{n}\right)$ for the action of $\operatorname{SO}(n, \mathbb{C})$. For the notion of semistability and stability with respect to the action of an algebraic group G on a projective variety X, we refer to Section 3.1. All the necessary material is provided essentially from $[\mathrm{LeP}]$.

The theory of stable and semistable binary forms $(n=2)$ with respect to the action of the special linear group $\mathrm{SL}(2, \mathbb{C})$ (that is, the subgroup of $\mathrm{GL}(2, \mathbb{C})$ of complex 2×2 matrices with determinant 1) as well as the group $\mathrm{SO}(2, \mathbb{C})$ has been extensively studied since the XIX century. In Section 3.2 we report the classical result by Hilbert in this direction, which uses the well-known Hilbert-Mumford criterion stated in Theorem 3.1.6.

The core of this chapter deals with the action of the complex orthogonal group $\mathrm{SO}(3, \mathbb{C})$ on the space $S^{d} \mathbb{C}^{3}$ of complex ternary forms. In order to give conditions for stability and semistability on $S^{d} \mathbb{C}^{3}$, a crucial role is played by the space of harmonic ternary forms $H^{d} \mathbb{C}^{3} \subset S^{d} \mathbb{C}^{3}$, introduced in Definition 2.4.3. It has dimension $2 d+1$ by formula (2.4.8). This space is important since every form in $S^{d} \mathbb{C}^{3}$ admits a unique harmonic decomposition, as stated below.

Theorem 3.0.1. Let $q \in S^{2} \mathbb{C}^{3}$ be the quadratic form $q(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ fixed by the group $\mathrm{SO}(3, \mathbb{C})$. The space $S^{d} \mathbb{C}^{3}$ admits the following $\mathrm{SO}(3, \mathbb{C})$-equivariant
decomposition

$$
S^{d} \mathbb{C}^{3}=\bigoplus_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor} q^{k} H^{d-2 k} \mathbb{C}^{3}
$$

that is, every polynomial $f \in S^{d} \mathbb{C}^{3}$ admits a unique harmonic decomposition

$$
f= \begin{cases}f_{d}+q f_{d-2}+\cdots+q^{\frac{d}{2}} f_{0} & \text { for even } d \\ f_{d}+q f_{d-2}+\cdots+q^{\frac{d-1}{2}} f_{1} & \text { for odd } d\end{cases}
$$

where we call $f_{d-2 k} \in H^{d-2 k} \mathbb{C}^{3}$ the harmonic form associated to f of degree $d-2 k$, for all $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor$.

The harmonic decomposition stated above allows us to give the following stability condition.

Proposition 3.0.2. Let $f \in S^{d} \mathbb{C}^{3}$ be a ternary form and consider its unique harmonic decomposition as in Theorem 3.0.1. Then f is stable (semistable) with respect to $\mathrm{SO}(3, \mathbb{C})$ if at least one of the harmonic forms $f_{d-2 k}$ associated to f is stable (semistable) with respect to $\mathrm{SO}(3, \mathbb{C})$.

A relevant part of this chapter is devoted to the study of the $\mathrm{SO}(3, \mathbb{C})$-stability and semistability in the space $H^{d} \mathbb{C}^{3}$ of harmonic ternary forms. In this direction, we provide a necessary and sufficient stability condition in the following Proposition 3.0.3 and Theorem 3.0.4. In their proofs, we consider essentially three relevant facts:

1. There exists an isomorphism between the Lie algebras $\mathfrak{s l}(2, \mathbb{C})$ and $\mathfrak{s o}(3, \mathbb{C})$ of the groups $\mathrm{SL}(2, \mathbb{C})$ and $\mathrm{SO}(3, \mathbb{C})$.
2. All the irreducible $\mathrm{SL}(2, \mathbb{C})$-modules are of the form $S^{k} \mathbb{C}^{2}$ for some $k \geq 1$.
3. The space $H^{d} \mathbb{C}^{3} \subset S^{d} \mathbb{C}^{3}$ of complex harmonic ternary forms, introduced in Definition 2.4.3, is an irreducible $\mathrm{SO}(3, \mathbb{C})$-module of dimension $2 d+1$.

Summing up all these pieces of information, there is an $\mathrm{SL}(2, \mathbb{C})$-equivariant isomorphism between the spaces $H^{d} \mathbb{C}^{3}$ and $S^{2 d} \mathbb{C}^{2}$. Therefore, we can use the well-known semistability theory of binary forms of degree $2 d$ to understand its counterpart in $H^{d} \mathbb{C}^{3}$.

The first characterization of stable and semistable complex harmonic ternary forms with respect to the action of $\mathrm{SO}(3, \mathbb{C})$ is furnished by the next proposition.

Proposition 3.0.3. Let $h \in H^{d} \mathbb{C}^{3}$ be a harmonic ternary form and denote with X_{h} its associated curve in $\mathbb{P}_{\mathbb{C}}^{2}$. Denote with Q the quadric fixed by the group
$\mathrm{SO}(3, \mathbb{C})$. Then h is non-stable (non-semistable) with respect to $\mathrm{SO}(3, \mathbb{C})$ if and only if its associated divisor $X_{h} \cap Q$ on Q may be written in the form

$$
X_{h} \cap Q=k P+D
$$

for some $k \geq d(k \geq d+1)$, where D is a divisor of degree $2 d-k$ on Q.

Figure 3.1: From left to right, an affine picture of a non-stable and a nonsemistable harmonic plane quintic. We have $\left|X_{h} \cap Q\right|=10$. In the first case, $X_{h} \cap Q=5 P+D$, whereas in the second case $X_{h} \cap Q=6 P+D$.

Last proposition leaves us the following problem: which harmonic ternary forms $h \in H^{d} \mathbb{C}^{3}$ determine a plane curve X_{h} such that $X_{h} \cap Q$ is a divisor on Q of the form $k P+D$ for some $k \geq d$?

The main result of this chapter answers this question. In the following statement, for any integer $m \geq 0$ and any curve $X \subset \mathbb{P}_{c}^{2}$ with ideal $I(X)=(f)$, we indicate with $m X$ the divisor on $\mathbb{P}_{\mathrm{c}}^{2}$ whose ideal is generated by the polynomial f^{m}. Moreover, we denote by $C T_{P} X$ the tangent cone of X at the point $P \in X$. This notion and the related notion of multiplicity of a point are recalled in Section 3.5. When not specified, the stability and semistability of either an element of $H^{d} \mathbb{C}^{3}$ or an element of $S^{2 d} \mathbb{C}^{2}$ are considered with respect to either $\operatorname{SO}(3, \mathbb{C})$ or $\operatorname{SL}(2, \mathbb{C})$.
Theorem 3.0.4. Let $h \in H^{d} \mathbb{C}^{3}$ be a harmonic ternary form. Then

1. If d is even, h is non-stable if and only if there exists $P \in Q$ and an integer $k \geq \frac{d}{2}$ such that P is a k-ple point for X_{h} and $\frac{d}{2} T_{P} Q \subset C T_{P} X_{h}$. Moreover, h is non-semistable if and only if it is non-stable and $\varphi_{2 d}(h)=0$, where $\varphi_{2 d} \in S^{2} H^{d} \mathbb{C}^{3}$ is the $\mathrm{SO}(3, \mathbb{C})$-invariant corresponding to the $\mathrm{SL}(2, \mathbb{C})$ invariant in $S^{2} S^{2 d} \mathbb{C}^{2}$ defined in (3.5.7).
2. If d is odd, h is non-stable if and only if there exists $P \in Q$ and an integer $k \geq \frac{d+1}{2}$ such that P is a k-ple point for X_{h}. In particular $\frac{d-1}{2} T_{P} Q \subset$ $C T_{P} X_{h}$. Moreover, h is non-semistable if and only if it is non-stable and $\varphi_{2 d}(h)=0$.

In particular, if h is non-semistable, then X_{h} is reducible in the form $X_{h}=L X_{h^{\prime}}$, where the line L and the curve $X_{h^{\prime}}$ are tangent to Q in a common point, and $h^{\prime} \in H^{d-1} \mathbb{C}^{3}$ is non-stable.

As we can observe from the statement of the last theorem, the multiplicity of roots of binary forms is somehow related to the multiplicity of the corresponding harmonic curve at a certain isotropic point. When this multiplicity is large enough, the curve turns out to be non-semistable and is forced to split into a line and a non-stable harmonic curve of one degree less. For example, the non-stable plane quintic X_{h} on the left in Figure 3.1 is such that P is a triple point for X_{h} and the double line $2 T_{P} Q$ is contained in the tangent cone $C T_{P} X_{h}$. Moreover, the non-semistable quintic X_{h} on the right is the union of $T_{P} Q$ and a non-stable plane quartic. After the proof of Theorem 3.0.4, we provide concrete examples of non-stable and non-semistable harmonic ternary forms in small degrees.

3.1 Semistability and stability criteria

Roughly speaking, the necessary ingredients needed to talk about stability and semistability in this chapter are basically two: a linear algebraic group G acting on a projective variety X.

The group $\operatorname{GL}(n, \mathbb{C})$ of complex invertible matrices of order n is naturally an affine algebraic variety. In the following, a linear algebraic group is any Zariski closed subgroup of $\operatorname{GL}(n, \mathbb{C})$. In particular, all the groups mentioned in the introduction of this chapter are linear algebraic groups. Their structure of reduced algebraic variety is the one induced by $\mathrm{GL}(n, \mathbb{C})$. If G denotes a linear algebraic group, the map $G \rightarrow G$ sending an element g to its inverse g^{-1} is an isomorphism of algebraic varieties. Moreover, since the variety G is non-reduced, the open subset of smooth points is nonempty and invariant under translation. In other words, G is smooth.

Definition 3.1.1. Consider a projective algebraic variety X. We say that G acts on X if there exists a morphism $\sigma: G \times X \rightarrow X$ such that

1. for all $g \in G$, the morphism $\sigma\left(g,_{-}\right): X \rightarrow X$ sending any $x \in X$ to $g \cdot x:=\sigma(g, x) \in X$ is an automorphism of X,
2. the map sending any $g \in G$ to the automorphism $X \rightarrow X$ already defined is a group homomorphism.

Moreover, the image $G . x:=\{\sigma(g, x) \mid g \in G\}$ is called the orbit of $x \in X$ under the action of G.

Let $\psi: G \times X \rightarrow X \times X$ be the morphism sending any pair $(g, x) \in G \times X$ to $(g . x, x) \in X \times X$. We say that the action of G on X is proper if the morphism ψ is proper (see [Har, Chapter 2, §4]). If G acts on the projective varieties X and Y and $\varphi: X \rightarrow Y$ is a morphism of projective varieties, then φ is G-equivariant if the following diagram commutes:

where the horizontal arrows are the actions of G on X and Y, while the vertical arrows are equal to the product map $I d_{G} \times \varphi$.

Now we briefly recover the essential ingredients of representation theory needed for this chapter. For further details, we refer to $[\mathrm{FH}]$. For our purposes, V is a finite-dimensional complex vector space. For a given linear algebraic group G, then V is a G-module if there exists a finite-dimensional representation $\rho: G \rightarrow$ $\mathrm{GL}(V)$. A G-module V is simple if the representation ρ is irreducible, meaning that all proper G-invariant vector subspaces of V are trivial. Moreover, V is semi-simple if ρ is totally reducible, namely it is a direct sum of irreducible representations. All these notions are necessary to introduce the next important definition.

Definition 3.1.2. A linear algebraic group G is linearly reductive if all finite dimensional G-modules V are semi-simple.

Basically, all the examples of linear algebraic groups appearing in this chapter are linearly reductive. For further details we refer to [LeP, Section 6.2].

We move directly to the most important definitions used in this chapter. Let $X \subset \mathbb{P}(V)$ be a projective algebraic variety for some n-dimensional complex vector space V. Suppose that G is a linearly reductive group acting on X. We denote by $S=S(X)$ the homogeneous coordinate ring of X. Then $S \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$ for some homogeneous ideal $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. One might consider the subring $S^{G} \subset S$ of the elements that are G-invariant. It turns out that A^{G} is finitely generated, and the inclusion $S^{G} \hookrightarrow S$ yields a rational map $X=\operatorname{Proj}(S) \rightarrow \operatorname{Proj}\left(S^{G}\right)$ of projective algebraic varieties.

Definition 3.1.3. A point $x \in X$ is semistable under the action of G if there exists a homogeneous G-invariant polynomial with strictly positive degree which
does not vanish at x. Otherwise, such a point is said to be non-semistable for the action of G.

The locus of semistable points of X is indicated with $X^{s s}$. In particular, the variety $X \backslash X^{s s}$ corresponds to the locus of common zeros of the elements in S^{G} of positive degree. Therefore the restriction $X^{s s} \rightarrow \operatorname{Proj}\left(S^{G}\right)$ becomes a morphism.

For the moment, we call $C(X)$ the affine cone of the projective variety X. We recall the following result without proof.

Lemma 3.1.4. A point $x \in X$ is non-semistable under the action of G if and only if it is the image of a point $p \in C(X) \backslash\{0\}$ such that $0 \in \overline{G \cdot p}$.

The second important notion to define is the following.
Definition 3.1.5. A point $x \in X$ is said to be stable under the action of G if it is semistable and if the orbit map $G \rightarrow X^{s s}$ sending $g \in G$ to $g . x$ is proper. The locus of semistable points of X is indicated with X^{s}.

The next tool we introduce is a fundamental criterion to compute the semistable or stable points of the action of a linearly reductive algebraic group G on a projective variety X. Until the end of this paragraph, the symbol \mathbb{C}^{*} denotes a one-parameter subgroup of G. Of course, the action of a one-parameter subgroup \mathbb{C}^{*} on X is defined by restricting the action of G.

Theorem 3.1.6 (Hilbert-Mumford). Let G be a linearly reductive group acting on a projective algebraic variety X. A point $x \in X$ is semistable (stable) if and only if it is semistable (stable) for the action induced by every one parameter subgroup $\mathbb{C}^{*} \subset G$.

The above statement is essentially [LeP, Theorem 6.5.3]. We also mention a simplified proof of Theorem 3.1.6, valid only over \mathbb{C}, which uses elementary linear algebra results [Sur].

3.2 Stability criteria for binary forms

In this section we focus on the case of $V=\mathbb{C}^{2}(n=2)$ and we choose $X=$ $\mathbb{P}\left(S^{d} \mathbb{C}^{2}\right)$, with $d \geq 2$, as our projective variety. The next classical result by Hilbert determines all semistable and stable elements of X under the action of $\operatorname{SL}(2, \mathbb{C})$, using the already mentioned Hilbert-Mumford criterion stated in Theorem 3.1.6.

Theorem 3.2.1 (Hilbert). A binary form $f \in \mathbb{P}\left(S^{d} \mathbb{C}^{2}\right)$ is semistable (stable) for the action of $\mathrm{SL}(2, \mathbb{C})$ if and only if every root of f has multiplicity $\leq \frac{d}{2}\left(<\frac{d}{2}\right)$.

Remark 3.2.2. Note the difference in the previous result between the even and the odd case: in the odd case, the conditions $\leq \frac{d}{2}$ and $<\frac{d}{2}$ coincide, namely a binary form of odd degree is semistable if and only if it is stable.

Sketch of the proof. Consider a one parameter subgroup $\mathbb{C}^{*} \subset \mathrm{SL}(2, \mathbb{C})$. We can choose coordinates $\left(z_{1}, z_{2}\right)$ for \mathbb{C}^{2} such that

$$
\mathbb{C}^{*}=\left\{\left.\left(\begin{array}{cc}
t & 0 \\
0 & \frac{1}{t}
\end{array}\right) \right\rvert\, t \in \mathbb{C}^{*}\right\} .
$$

Then \mathbb{C}^{*} acts on \mathbb{C}^{2} by sending $\left(z_{1}, z_{2}\right)$ to $\left(t z_{1}, \frac{1}{t} z_{2}\right)$. The induced action $\sigma: \mathbb{C}^{*} \times$ $\mathbb{P}\left(S^{d} \mathbb{C}^{2}\right) \rightarrow \mathbb{P}\left(S^{d} \mathbb{C}^{2}\right)$ is defined by

$$
\sigma\left(g,\left(a_{0}, \ldots, a_{d}\right)\right)=\left(t^{d} a_{0}, t^{d-2} a_{1}, \ldots, t^{2-d} a_{d-1}, t^{-d} a_{d}\right)
$$

for all $g \in \mathbb{C}^{*}$, where the vector $a=\left(a_{0}, \ldots, a_{d}\right)$ identifies the binary form

$$
f=\sum_{j=0}^{d}\binom{d}{j} a_{j} z_{1}^{d-j} z_{2}^{j} \in S^{d} \mathbb{C}^{2}
$$

Then it is almost immediate to see that $0 \in \overline{\mathbb{C}^{*} . a}$ if and only if $a_{k}=\cdots=a_{2 k}=0$ for $d=2 k$ or $a_{k+1}=\cdots=a_{2 k+1}=0$ for $d=2 k+1$. Therefore, applying Theorem 3.1.6, the set of non-semistable binary forms is

$$
X \backslash X^{s s}=\left\{\left.f=z^{k+1} \sum_{j=0}^{k-1}\binom{2 k}{j} a_{j} z^{k-1-j} w^{j} \right\rvert\,\left[a_{0}, \ldots, a_{k-1}\right] \in \mathbb{P}_{\mathrm{c}}^{k-1}\right\}
$$

for $d=2 k$, whereas

$$
X \backslash X^{s s}=\left\{\left.f=z^{k+1} \sum_{j=0}^{k}\binom{2 k+1}{j} a_{j} z^{k-j} w^{j} \right\rvert\,\left[a_{0}, \ldots, a_{k}\right] \in \mathbb{P}_{\mathrm{c}}^{k}\right\}
$$

for $d=2 k+1$. In particular, for $d=2 k$ we have that the multiplicity of z is at least $k+1>k=\frac{d}{2}$, and similarly for $d=2 k+1$ the multiplicity of z is at least $k+1>k+\frac{1}{2}=\frac{d}{2}$.

Example 3.2.3. Consider for example the case $d=3$. By Theorem 3.2.1, the semistable (or stable, by Remark 3.2.2) cubic binary forms are exactly the ones having three distinct roots. To determine geometrically which are these forms, we consider the projective space $X=\mathbb{P}\left(S^{3} \mathbb{C}^{2}\right) \cong \mathbb{P}_{\mathbb{c}}^{3}$ parametrizing all the cubic binary forms. The rational normal curve $C_{3} \subset X$ parametrizes the cubic binary
forms of rank one, namely the forms $f=\left(\lambda x_{1}+\mu x_{2}\right)^{3}$. Moreover, the tangential surface of C_{3}, denoted by $T C_{3}$, is the locus of cubic binary forms having at least a double root. Hence the locus of semistable cubic binary forms is precisely $X \backslash T C_{3}$. In addition to this, we observe that $T C_{3}=V(\Delta)$, where Δ is the cubic discriminant. We recall that Δ is the only one generator for the algebra of invariants for $\mathrm{SL}(V)$ acting on X.

Another linearly reductive group which acts on $\mathbb{P}\left(S^{d} \mathbb{C}^{2}\right)$ is the special orthogonal group $\mathrm{SO}(2, \mathbb{C})$. The analogous result to Theorem 3.2.1 is the following.

Theorem 3.2.4. A binary form $f \in \mathbb{P}\left(S^{d} \mathbb{C}^{2}\right)$ is semistable (stable) for the action of $\mathrm{SO}(2, \mathbb{C})$ if and only if the isotropic roots of f have multiplicity $\leq \frac{d}{2}\left(<\frac{d}{2}\right)$.

We consider two explanatory examples of the last result.
Example 3.2.5 (Cubic binary forms). Consider the case $d=3$, hence $X=$ $\mathbb{P}\left(S^{3} \mathbb{C}^{2}\right)$. Denote with L_{1}, L_{2} the lines tangent to C_{3} in z_{1}^{3} and z_{2}^{3} respectively, where $z_{1}=x_{1}+\sqrt{-1} x_{2}$ and $z_{2}=x_{1}-\sqrt{-1} x_{2}$ are the two isotropic linear forms of \mathbb{C}^{2} (see Figure 3.2). Then L_{1} and L_{2} are the loci of cubic forms having z_{1}^{2} and z_{2}^{2} as a factor, respectively. In particular we have that $z_{1}^{2} z_{2} \in L_{1}, z_{1} z_{2}^{2} \in L_{2}$ and additionally $L_{1} \cap L_{2}=\emptyset$. Hence the locus of semistable points with respect to the action of $\mathrm{SO}(2, \mathbb{C})$ is $X^{s s}=X \backslash\left(L_{1} \cup L_{2}\right)$.

Figure 3.2: The locus of non-semistable cubics for $\mathrm{SO}(2, \mathbb{C})$.

Example 3.2.6 (Quartic binary forms). Now consider the case $d=4$. Denote with L_{1}, L_{2} the lines tangent to the rational normal quartic C_{4} at the points z_{1}^{4} and z_{2}^{4}, respectively. In addition, let π_{1} and π_{2} be the osculating planes to C_{4} at z_{1}^{4} and z_{2}^{4}, respectively (see Figure 3.3). On one hand, L_{1} and L_{2} are the loci of quartic forms having z_{1}^{3} and z_{2}^{3} as a factor, respectively. On the other
hand, π_{1} and π_{2} are the loci of quartic forms having z_{1}^{2} and z_{2}^{2} as a factor, respectively. In particular, $L_{1} \subset \pi_{1}$ and $L_{2} \subset \pi_{2}$. We remark that $z_{1}^{3} z_{2} \in \pi_{1}$, $z_{1} z_{2}^{3} \in \pi_{2}$, and $\pi_{1} \cap \pi_{2}=\left\{z_{1}^{2} z_{2}^{2}\right\}$. Then the loci of semistable and stable points of X with respect to the action of $\mathrm{SO}(2, \mathbb{C})$ are respectively $X^{s s}=X \backslash\left(L_{1} \cup L_{2}\right)$ and $X^{s}=X \backslash\left(\pi_{1} \cup \pi_{2}\right)$.

Figure 3.3: The loci of non-stable and non-semistable quartics for $\mathrm{SO}(2, \mathbb{C})$.

In general, we have the following result.
Proposition 3.2.7. Let $X=\mathbb{P}\left(S^{d} \mathbb{C}^{2}\right)$ and denote by C_{d} the rational normal curve of degree d in X. Call z_{1} and z_{2} the two isotropic linear forms of \mathbb{C}^{2}.

1. Suppose that $d=2 k$. Let L_{1} and L_{2} be the projective subspaces of X that parametrize the binary forms of degree d having z^{k+1} and w^{k+1} as a factor, respectively. Moreover, denote by π_{1} and π_{2} the projective subspaces of X that parametrize the binary forms of degree d having z^{k} and w^{k} as a factor, respectively. Then $\operatorname{dim}\left(L_{1}\right)=\operatorname{dim}\left(L_{2}\right)=k-1, \operatorname{dim}\left(\pi_{1}\right)=\operatorname{dim}\left(\pi_{2}\right)=k$ and the loci of semistable and stable points of X under the action of $\mathrm{SO}(2, \mathbb{C})$ on X are respectively

$$
X^{s s}=X \backslash\left(L_{1} \cup L_{2}\right), \quad X^{s}=X \backslash\left(\pi_{1} \cup \pi_{2}\right)
$$

2. Suppose that $d=2 k+1$. Let L_{1} and L_{2} be the projective subspaces of X that parametrize the binary forms of degree d having z^{k+1} and w^{k+1} as a factor, respectively. Then $\operatorname{dim}\left(L_{1}\right)=\operatorname{dim}\left(L_{2}\right)=k$ and the locus of semistable (equivalently, stable) points of X under the action of $\mathrm{SO}(2, \mathbb{C})$ on X is

$$
X^{s s}=X^{s}=X \backslash\left(L_{1} \cup L_{2}\right) .
$$

3.3 An orthogonal stability criterion for harmonic ternary forms

In the previous section we considered the action of the complex special linear group $\mathrm{SL}(2, \mathbb{C})$ as well as the complex special orthogonal group $\mathrm{SO}(2, \mathbb{C})$ on the projective space $\mathbb{P}\left(S^{d} \mathbb{C}^{2}\right)$ of (classes of) complex binary forms of degree d.

The aim of this section is to prove Proposition 3.0.3. First, we need to explain the three facts outlined in the preamble, before the statement of Proposition 3.0.3.

The Lie algebra $\mathfrak{s l}(2, \mathbb{C})$ of $\mathrm{SL}(2, \mathbb{C})$ corresponds to the space of 2×2 complex matrices with trace zero. It has dimension three with the basis

$$
H=\left(\begin{array}{cc}
1 & 0 \tag{3.3.1}\\
0 & -1
\end{array}\right), X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The basis elements have the following relations with respect to the Lie bracket:

$$
[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H
$$

On the other hand, the Lie algebra $\mathfrak{s o}(3, \mathbb{C})$ of $\mathrm{SO}(3, \mathbb{C})$ is the space of 3×3 complex matrices A satisfying $A^{T}=-A$. It is three dimensional and a basis of $\mathfrak{s o}(3, \mathbb{C})$ is given by

$$
F_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), F_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad F_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The linear map $\phi: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{s o}(3, \mathbb{C})$ such that

$$
\begin{equation*}
\phi(H)=-2 \sqrt{-1} F_{1}, \quad \phi(X)=F_{2}-\sqrt{-1} F_{3}, \quad \phi(Y)=F_{2}+\sqrt{-1} F_{3} \tag{3.3.2}
\end{equation*}
$$

is a Lie algebra isomorphism. At the level of Lie groups, we have the following result.

Lemma 3.3.1. [Hal, Lemma 4.30] There exists a Lie group homomorphism

$$
\Phi: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}(3, \mathbb{C})
$$

such that

1. Φ is surjective,
2. $\operatorname{ker}(\Phi)=\{I d,-I d\}$, and
3. the associated Lie algebra homomorphism is the map $\phi: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{s o}(3, \mathbb{C})$ defined in (3.3.2).

Now consider the space $S^{k} \mathbb{C}^{2}$ of (classes of) complex binary forms of degree k. It is a $(2 k+1)$-dimensional $\operatorname{SL}(2, \mathbb{C})$-module via the restriction to $\operatorname{SL}(2, \mathbb{C})$ of the representation ρ_{k} defined in (3.0.1), which we call here Π_{k}. The associated Lie algebra representation $\pi_{k}: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{g l}\left(S^{k} \mathbb{C}^{2}\right)$ is such that for all $g \in \mathfrak{s l}(2, \mathbb{C})$

$$
\begin{equation*}
\pi_{k}(A)=\left.\frac{d}{d t} \Pi_{k}\left(e^{t A}\right)\right|_{t=0} \tag{3.3.3}
\end{equation*}
$$

Applying the above identity to the vector $z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ we obtain that

$$
\pi_{k}(A) f(z)=\left.\frac{d}{d t} f\left(e^{-t A} z\right)\right|_{t=0}
$$

Let $z(t)$ be a curve in \mathbb{C}^{2} defined as $z(t)=e^{-t A} z$. In particular, $z(0)=z$. We can write $z(t)=\left(z_{1}(t), z_{2}(t)\right)$ and by the chain rule

$$
\pi_{k}(A) f=\left.\frac{\partial f}{\partial z_{1}} \frac{d z_{1}}{d t}\right|_{t=0}+\left.\frac{\partial f}{\partial z_{2}} \frac{d z_{2}}{d t}\right|_{t=0} .
$$

However $\left.\frac{d z}{d t}\right|_{t=0}=-A z$, so we obtain the formula

$$
\begin{equation*}
\pi_{k}(A) f=-\left(A_{11} z_{1}+A_{12} z_{2}\right) \frac{\partial f}{\partial z_{1}}-\left(A_{21} z_{1}+A_{22} z_{2}\right) \frac{\partial f}{\partial z_{2}} . \tag{3.3.4}
\end{equation*}
$$

As one might foresee from the first lines of this section, the representations π_{k} are very important for the whole development of this chapter. Indeed, they are "good" representations of $\mathfrak{s l}(2, \mathbb{C})$ (see [Hal, Theorem 4.9]).

Theorem 3.3.2. For each integer $k \geq 0$, the representation π_{k} of $\mathfrak{s l}(2, \mathbb{C})$ is irreducible. Moreover, if π is an irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$ with dimension $k+1$, then π is equivalent to the representation π_{k} described before.

At this point, we might carry all the information provided so far to the Lie algebra $\mathfrak{s o}(3, \mathbb{C})$, via the isomorphism ϕ defined in (3.3.2).

The space $S^{d} \mathbb{C}^{3}$ of (classes of) complex ternary forms is an $\mathrm{SO}(3, \mathbb{C})$-module via the restriction to $\mathrm{SO}(3, \mathbb{C})$ of the representation ρ_{d} defined in (3.0.1), which we keep calling ρ_{d}.

Since $\mathfrak{s l}(2, \mathbb{C})$ and $\mathfrak{s o}(3, \mathbb{C})$ are isomorphic Lie algebras, they have essentially the same representations. More specifically, if π is a representation of $\mathfrak{s l}(2, \mathbb{C})$, then $\pi \circ \phi^{-1}$ is a representation for $\mathfrak{s o}(3, \mathbb{C})$, and every representation of $\mathfrak{s o}(3, \mathbb{C})$ is of this form. In particular, the irreducible representations of $\mathfrak{s o}(3, \mathbb{C})$ are precisely of the form $\sigma_{k}:=\pi_{k} \circ \phi^{-1}$. This fact holds true at the level of Lie groups as well, at least for even k.

Proposition 3.3.3. [Hal, Proposition 4.29] Let $\sigma_{k}=\pi_{k} \circ \phi^{-1}$ be the irreducible representation of $\mathfrak{s o}(3, \mathbb{C})$ for some $k \geq 1$. If k is even, then there is a represen-
 then there is no such representation of $\mathrm{SO}(3, \mathbb{C})$.

The third ingredient is the space of harmonic ternary forms $H^{d} \mathbb{C}^{3} \subset S^{d} \mathbb{C}^{3}$, introduced in Definition 2.4.3 as well as in the preamble of this chapter. Consider the representation $\left(H^{d} \mathbb{C}^{3}, \rho_{d}\right)$ of $\operatorname{SO}(3, \mathbb{C})$ (see for example [Ste, Lemma 4.1, Section 4.4]).
Theorem 3.3.4. For every $d \geq 1$, the representation $\left(H^{d} \mathbb{C}^{3}, \rho_{d}\right)$ of $\mathrm{SO}(3, \mathbb{C})$ is irreducible. Therefore, $H^{d} \mathbb{C}^{3}$ is a simple $\mathrm{SO}(3, \mathbb{C})$-module. In addition, every simple $\mathrm{SO}(3, \mathbb{C})$-module is equivalent to $H^{d} \mathbb{C}^{3}$ for some $d \geq 1$.

Summing up all the properties given in this section, by Schur's Lemma we conclude that

Theorem 3.3.5. There exists an $\mathrm{SL}(2, \mathbb{C})$-equivariant isomorphism

$$
\varphi: H^{d} \mathbb{C}^{3} \longrightarrow S^{2 d} \mathbb{C}^{2}
$$

This result implies, thanks to the results outlined in the previous lines of this section, that for each $d \geq 1$ we can read $H^{d} \mathbb{C}^{3}$ as an irreducible $\mathrm{SL}(2, \mathbb{C})$ module of dimension $2 d+1$. Therefore, we can transfer all the $\mathrm{SL}(2, \mathbb{C})$-stability theory of $S^{2 d} \mathbb{C}^{2}$ to describe all stable and semistable elements of $H^{d} \mathbb{C}^{3}$ with respect to the group $\operatorname{SO}(3, \mathbb{C})$.

Proof of Proposition 3.0.3. Let h be a complex harmonic ternary form. Since X_{h} is a curve of degree d in $\mathbb{P}_{\mathrm{c}}^{2}$, it intersects the isotropic quadric Q in $2 d$ points, counted with multiplicity. In particular, $X_{h} \cap Q$ is a divisor of degree $2 d$ in Q.

Observe that, thanks to Theorem 3.0.1, if h_{1} and h_{2} are not proportional forms in $H^{d} \mathbb{C}^{3}$, they give different divisors on Q. This is not true if f_{1} and f_{2} are not proportional forms in $S^{d} \mathbb{C}^{3}$: indeed, given a harmonic form $h \in H^{d} \mathbb{C}^{3}$ and two not proportional forms g_{1} and g_{2} in $S^{d-2} \mathbb{C}^{3}$, the forms $f_{1}=h_{1}+q g_{1}$ and $f_{2}=h_{2}+q g_{2}$ are not proportional but yield the same divisor on Q, since

$$
X_{f_{1}} \cap Q=X_{h} \cap Q=X_{f_{2}} \cap Q
$$

The divisor $X_{h} \cap Q$ corresponds to a divisor on the projective line $\mathbb{P}_{\mathrm{c}}^{1}$, namely to the equivalence class of a binary form $f \in S^{2 d} \mathbb{C}^{2}$. The statement follows by considering the stability and semistability criterion of Theorem 3.2.1.

We make a couple of comments about Proposition 3.0.3. The case $d=1$ is trivial: indeed, every line in $\mathbb{P}_{\mathbb{C}}^{1}$ is harmonic and is non-stable, while all lines tangent to Q are non-semistable.

The first nontrivial case is $d=2$:

1. By Proposition 3.0.3, a harmonic ternary form $h \in S^{2} \mathbb{C}^{3}$ is non-stable if $X_{h} \cap Q=2 P+D$, with $|D|=2$. How do we achieve such a divisor? If X_{h} is a smooth conic, then necessarily X_{h} is tangent to Q at some point. Now consider two linear forms a and b vanishing at the point $P=[p] \in Q$ and their corresponding lines L_{a} and L_{b}. The tangent line $T_{P} Q$ is the locus of points $P^{\prime}=\left[p^{\prime}\right]$ such that $q\left(p, p^{\prime}\right)=0$. The singular conic $C_{a b}=L_{a} \cup L_{b}$ is harmonic if and only if $\Delta(a b)=0$. By the relation

$$
\Delta(a b)=\Delta a+2 q(\nabla a, \nabla b)+\Delta b
$$

this is equivalent to the requirement $q(\nabla a, \nabla b)=0$. This condition, together with the condition $P \in L_{a} \cap L_{b}$, yields either $L_{a}=T_{P} Q$ or $L_{b}=T_{P} Q$. This can be verified easily by looking at the dual space $\mathbb{P}_{\mathrm{c}}^{2}$ (see Figure 3.4): on one hand, the lines L_{a} and L_{b} correspond to points in \mathbb{P}_{c}^{2}, each one of them belongs to the polar line (with respect to Q^{\vee}) of the other. On the other hand, the line P contains the points L_{a} and L_{b}, and P is tangent to Q^{\vee} at the point $T_{P} Q$. This forces either L_{a} or L_{b} to coincide with $T_{P} Q$.

Figure 3.4: The non-stable singular harmonic plane conic $C_{a b}=L_{a} \cup L_{b}$ in $\left(\mathbb{P}_{c}^{2}\right)^{\vee}$.
2. Finally, a harmonic ternary form $h \in H^{2} \mathbb{C}^{3}$ is non-semistable if either $X_{h} \cap Q=3 P+P^{\prime}$ for some points $P \neq P^{\prime}$ or $X_{h} \cap Q=4 P$. The first case is achieved by the conic $L \cup T_{P} Q$, where L is a line passing through $P \in Q$ distinct from the tangent line $T_{P} Q$. The second case is achieved by the double line $2 T_{P} Q$ for some $P \in Q$.

3.4 A dictionary between harmonic ternary forms and binary forms

As one might foresee, the geometrical description of Proposition 3.0.3 is difficult in general. To give a more detailed characterization of stable and semistable
elements of $H^{d} \mathbb{C}^{3}$, we need to introduce suitable bases of $H^{d} \mathbb{C}^{3}$ and $S^{2 d} \mathbb{C}^{2}$ and give a coordinate-based description of the $\mathrm{SL}(2, \mathbb{C})$-equivariant isomorphism φ of Theorem 3.3.5.

Consider the basis element $H \in \mathfrak{s l}(2, \mathbb{C})$ introduced in (3.3.1) and apply to it the representation π_{k} via the relation (3.3.4): we get

$$
\pi_{k}(H)=-z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}
$$

Applying $\pi_{k}(H)$ to the monomial $z_{1}^{j} z_{2}^{k-j} \in S^{k} \mathbb{C}^{2}$ we get the identity

$$
\pi_{k}(H)\left(z_{1}^{j} z_{2}^{k-j}\right)=(k-2 j) z_{1}^{j} z_{2}^{k-j}
$$

This means that $z_{1}^{j} z_{2}^{k-j}$ is an eigenvector of $\pi_{k}(H)$ with corresponding eigenvalue $k-2 j$, for all $0 \leq j \leq k$. Therefore, the linear operator $\pi_{k}(H)$ is diagonalizable.

Applying again formula (3.3.4) to the other basis elements X and Y of $\mathfrak{s l}(2, \mathbb{C})$, we get the identities

$$
\pi_{k}(X)=-z_{2} \frac{\partial}{\partial z_{1}}, \quad \pi_{k}(Y)=-z_{1} \frac{\partial}{\partial z_{2}}
$$

Applying $\pi_{k}(X)$ and $\pi_{k}(Y)$ to $z_{1}^{j} z_{2}^{k-j} \in S^{k} \mathbb{C}^{2}$ we obtain that

$$
\pi_{k}(X)\left(z_{1}^{j} z_{2}^{k-j}\right)=-j z_{1}^{j-1} z_{2}^{k-j+1}, \quad \pi_{k}(Y)\left(z_{1}^{j} z_{2}^{k-j}\right)=(j-k) z_{1}^{j+1} z_{2}^{k-j-1}
$$

Hence the operators $\pi_{k}(X)$ and $\pi_{k}(Y)$ somehow move from one eigenvector of $\pi_{k}(H)$ to the previous or the next one. This is why they are also called lowering and rising operators.

Now assume that $k=2 d$ for some integer $d \geq 1$. Which are the linear operators in GL $\left(H^{d} \mathbb{C}^{3}\right)$ corresponding respectively to $\pi_{2 d}(H), \pi_{2 d}(X)$ and $\pi_{2 d}(Y)$? By Proposition 3.3.3, every ($2 d+1$)-dimensional irreducible representation of $\mathfrak{s o}(3, \mathbb{C})$ is of the form $\sigma_{2 d}=\pi_{2 d} \circ \phi^{-1}$, where ϕ is the isomorphism between $\mathfrak{s l}(2, \mathbb{C})$ and $\mathfrak{s o}(3, \mathbb{C})$. Then looking at the relations in (3.3.2) we get

$$
\begin{aligned}
& \pi_{2 d}(H)=\sigma_{2 d}(\phi(H))=2 \sqrt{-1}\left(-x_{3} \frac{\partial}{\partial x_{2}}+x_{2} \frac{\partial}{\partial x_{3}}\right) \\
& \pi_{2 d}(X)=\sigma_{2 d}(\phi(X))=-\left(\sqrt{-1} x_{2}+x_{3}\right) \frac{\partial}{\partial x_{1}}+\sqrt{-1} x_{1} \frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{3}} \\
& \pi_{2 d}(Y)=\sigma_{2 d}(\phi(Y))=\left(\sqrt{-1} x_{2}-x_{3}\right) \frac{\partial}{\partial x_{1}}-\sqrt{-1} x_{1} \frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{3}}
\end{aligned}
$$

Therefore, we can construct a basis of eigenvectors for $H^{d} \mathbb{C}^{3}$ as for $S^{2 d} \mathbb{C}^{2}$, by finding an eigenvector of $\pi_{2 d}(H)$ and then by lowering or rising it using the operators $\pi_{2 d}(Y)$ and $\pi_{2 d}(X)$. In particular, we observe that applying the operator $\pi_{2 d}(H)$ to the form $\left(x_{2}-\sqrt{-1} x_{3}\right)^{d} \in H^{d} \mathbb{C}^{3}$ we get

$$
\pi_{2 d}(H)\left[\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}\right]=2 d\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}
$$

that is, $\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}$ is an eigenvector of $\pi_{2 d}(H)$ with eigenvalue $2 d$. Moreover,

$$
\pi_{2 d}(X)\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}=0
$$

This means that the other eigenvectors of $\pi_{2 d}(H)$ are obtained applying repeatedly to $\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}$ the lowering operator $\pi_{2 d}(Y)$ until we obtain, at the $(2 d+1)$-th iteration, the zero vector:

$$
\begin{align*}
\pi_{2 d}(Y)\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}= & -2 \sqrt{-1} d x_{1}\left(x_{2}-\sqrt{-1} x_{3}\right)^{d-1} \\
\pi_{2 d}(Y)^{2}\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}= & 2 d\left(x_{2}+\sqrt{-1} x_{3}\right)\left(x_{2}-\sqrt{-1} x_{3}\right)^{d-1} \\
& -4 d(d-1) x_{1}^{2}\left(x_{2}-\sqrt{-1} x_{3}\right)^{d-2} \tag{3.4.1}\\
\pi_{2 d}(Y)^{3}\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}= & \cdots
\end{align*}
$$

In this way, we obtained a concrete "dictionary" between the spaces $H^{d} \mathbb{C}^{3}$ and $S^{2 d} \mathbb{C}^{2}$. The following proposition gives a concrete expression for the eigenvectors of $\pi_{2 d}(H)$.
Proposition 3.4.1. Define $v_{j}:=\pi_{2 d}(Y)^{j}\left(x_{2}-\sqrt{-1} x_{3}\right)^{d}$ for all $0 \leq j \leq 2 d$. Then

$$
\begin{equation*}
v_{2 k}=\sum_{s=0}^{k} \alpha_{k, s} \mathcal{D}_{d, k+s} A^{d-k-s} B^{k-s} C^{2 s} \tag{3.4.2}
\end{equation*}
$$

for all $1 \leq k \leq d$, whereas

$$
\begin{equation*}
v_{2 k+1}=\sum_{s=0}^{k-1}\left[\alpha_{k, s}+2(s+1) \alpha_{k, s+1}\right] \mathcal{D}_{d, k+1+s} A^{d-k-1-s} B^{k-s} C^{2 s+1} \tag{3.4.3}
\end{equation*}
$$

for all $1 \leq k \leq d-1$, where

$$
\begin{align*}
& A=\left(x_{2}-\sqrt{-1} x_{3}\right), \quad B=2\left(x_{2}+\sqrt{-1} x_{3}\right), \quad C=-2 \sqrt{-1} x_{1} \\
& \mathcal{D}_{m, n}= \begin{cases}\frac{m!}{(m-n)!} & n \leq m \\
0 & n>m\end{cases} \tag{3.4.4}
\end{align*}
$$

and the coefficients $\alpha_{k, s}$ have the following recursive definition:

$$
\alpha_{k, s}=\left\{\begin{array}{l}
0 \quad \text { for } k<0 \text { and } s>k \\
1 \quad \text { for } k=s=0 \\
\alpha_{k-1, s-1}+(4 s+1) \alpha_{k-1, s}+2(s+1)(2 s+1) \alpha_{k-1, s+1} \quad \text { otherwise } .
\end{array}\right.
$$

Proof. The proof is by induction on k. Consider the three polynomials A, B and C defined in (3.4.4). From the definition of $\pi_{2 d}(Y)$ in (3.4.1) we get that

$$
v_{0}=A^{d}, \quad v_{1}=\pi_{2 d}(Y)\left(A^{d}\right)=d A^{d-1} C
$$

hence the formulas (3.4.2) and (3.4.3) are true for $k=0$.
Now consider the polynomial $A^{p} B^{q} C^{r}$ for $p, r \geq 1$ and $q \geq 0$ and apply to this polynomial the operator $\pi_{2 d}(Y)$:

$$
\begin{aligned}
\left(x_{2}+\sqrt{-1} x_{3}\right) \frac{\partial}{\partial x_{1}}\left(A^{p} B^{q} C^{r}\right) & =-\sqrt{-1} r A^{p} B^{q+1} C^{r-1} \\
-x_{1}\left(\frac{\partial}{\partial x_{2}}+\sqrt{-1} \frac{\partial}{\partial x_{3}}\right)\left(A^{p} B^{q} C^{r}\right) & =-\sqrt{-1} p A^{p-1} B^{q} C^{r+1} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\pi_{2 d}(Y)\left(A^{p} B^{q} C^{r}\right)=r A^{p} B^{q+1} C^{r-1}+p A^{p-1} B^{q} C^{r+1} \quad \forall p, r \geq 1, q \geq 0 \tag{3.4.5}
\end{equation*}
$$

Assume that the relation (3.4.2) for $v_{2 k}$ is true. From relation (3.4.5) we observe that the summand of index s in the expression for $v_{2 k+1}$ depends on the summands indexed by s and $s+1$ in the expression for $v_{2 k}$. So the idea is to apply the operator $\pi_{2 d}(Y)$ to these two summands, using relation (3.4.5). We get that

$$
\begin{aligned}
& \pi_{2 d}(Y)\left(\alpha_{k, s} \mathcal{D}_{d, k+s} A^{d-k-s} B^{k-s} C^{2 s}\right. \\
&\left.+\alpha_{k, s+1} \mathcal{D}_{d, k+s+1} A^{d-k-(s+1)} B^{k-(s+1)} C^{2(s+1)}\right)= \\
&= 2 s \alpha_{k, s} \mathcal{D}_{d, k+s} A^{d-k-s} B^{k-s+1} C^{2 s-1} \\
&+(d-k-s) \alpha_{k, s} \mathcal{D}_{d, k+s} A^{d-k-1-s} B^{k-s} C^{2 s+1} \\
&+2(s+1) \alpha_{k, s+1} \mathcal{D}_{d, k+1+s} A^{d-k-1-s} B^{k-s} C^{2 s+1} \\
&+(d-k-s-1) \alpha_{k, s+1} \mathcal{D}_{d, k+1+s} A^{d-k-s-2} B^{k-s-1} C^{2 s+3} \\
&= \alpha_{k, s} \mathcal{D}_{d, k+1+(s-1)} 2[(s-1)+1] A^{d-k-1-(s-1)} B^{k-(s-1)} C^{2(s-1)+1} \\
&+\left[\alpha_{k, s}+2(s+1) \alpha_{k, s+1} \mathcal{D}_{d, k+s+1} A^{d-k-1-s} B^{k-s} C^{2 s+1}\right. \\
&+\alpha_{k, s+1} \mathcal{D}_{d, k+1+(s+1)} A^{d-k-1-(s+1)} B^{k-(s+1)} C^{2(s+1)+1}
\end{aligned}
$$

In particular the second summand of the last polynomial is precisely the summand of index s in the expression for $v_{2 k+1}$. This argument can be repeated for every summand of $v_{2 k+1}$, proving that formula (3.4.3) is true.

Now we prove that the formula (3.4.2) is true as well. Assume again that (3.4.2) is true at the step k. To compute the polynomial $v_{2(k+1)}$, observe that the summand of index s in the expression for $v_{2(k+1)}$ depends on the summands indexed by $s-1, s$ and $s+1$ in the expression for $v_{2 k}$. Hence we apply the operator $\pi_{2 d}(Y)^{2}$ to these three summands, using relation (3.4.5). We get that
for $s-1$:

$$
\begin{aligned}
& \pi_{2 d}(Y)^{2}\left(\alpha_{k, s-1} \mathcal{D}_{d, k+s-1} A^{d-k-(s-1)} B^{k-(s-1)} C^{2(s-1)}\right)= \\
&= \pi_{2 d}(Y)\left[2(s-1) \alpha_{k, s-1} \mathcal{D}_{d, k+s-1} A^{d-k-(s-1)} B^{k-s+2} C^{2 s-3}\right] \\
&+\pi_{2 d}(Y)\left[\alpha_{k, s-1} \mathcal{D}_{d, k+s} A^{d-k-s} B^{k-(s-1)} C^{2 s-1}\right] \\
&= 2(s-1)(2 s-3) \alpha_{k, s-1} \mathcal{D}_{d, k+(s-1)} A^{d-k-(s-1)} B^{k-s+3} C^{2 s-4} \\
&+2(s-1)(d-k-s+1) \alpha_{k, s-1} \mathcal{D}_{d, k+(s-1)} A^{d-k-s} B^{k-s+2} C^{2(s-1)} \\
&+(2 s-1) \alpha_{k, s-1} \mathcal{D}_{d, k+s} A^{d-k-s} B^{k-s+2} C^{2(s-1)} \\
&+(d-k-s) \alpha_{k, s-1} \mathcal{D}_{d, k+s} A^{d-k-1-s} B^{k-(s-1)} C^{2 s} \\
&= C_{s-1}+\text { other terms }
\end{aligned}
$$

for s :

$$
\begin{aligned}
& \pi_{2 d}(Y)^{2}\left(\alpha_{k, s} \mathcal{D}_{d, k+s} A^{d-k-s} B^{k-s} C^{2 s}\right)= \\
&= \pi_{2 d}(Y)\left(2 s \alpha_{k, s} \mathcal{D}_{d, k+s} A^{d-k-s} B^{k-s+1} C^{2 s-1}\right) \\
&+\pi_{2 d}(Y)\left(\alpha_{k, s} \mathcal{D}_{d, k+s+1} A^{d-k-1-s} B^{k-s} C^{2 s+1}\right) \\
&= 2 s(2 s-1) \alpha_{k, s} \mathcal{D}_{d, k+s} A^{d-k-s} B^{k-s+2} C^{2 s-2} \\
&+2 s(d-k-s) \alpha_{k, s} \mathcal{D}_{d, k+s} A^{d-k-s-1} B^{k-s+1} C^{2 s} \\
&+(2 s+1) \alpha_{k, s} \mathcal{D}_{d, k+s+1} A^{d-k-1-s} B^{k-s+1} C^{2 s} \\
&+(d-k-1-s) \alpha_{k, s} \mathcal{D}_{d, k+s+1} A^{d-k-2-s} B^{k-s} C^{2 s+2} \\
&= C_{s}+\text { other terms }
\end{aligned}
$$

for $s+1$:

$$
\begin{aligned}
& \pi_{2 d}(Y)^{2}\left(\alpha_{k, s+1} \mathcal{D}_{d, k+s+1} A^{d-k-(s+1)} B^{k-(s+1)} C^{2(s+1)}\right)= \\
&= \pi_{2 d}(Y)\left[2(s+1) \alpha_{k, s+1} \mathcal{D}_{d, k+s+1} A^{d-k-(s+1)} B^{k-s} C^{2 s+1}\right] \\
&+\pi_{2 d}(Y)\left[\alpha_{k, s+1} \mathcal{D}_{d, k+s+2} A^{d-k-s-2} B^{k-(s+1)} C^{2 s+3}\right] \\
&= 2(s+1)(2 s+1) \alpha_{k, s+1} \mathcal{D}_{d, k+s+1} A^{d-k-(s+1)} B^{k-s+1} C^{2 s} \\
&+2(s+1)(d-k-s-1) \alpha_{k, s+1} \mathcal{D}_{d, k+s+1} A^{d-k-s-2} B^{k-s} C^{2 s+2} \\
&+(2 s+3) \alpha_{k, s+1} \mathcal{D}_{d, k+s+2} A^{d-k-s-2} B^{k-s} C^{2 s+2} \\
&+(d-k-s-2) \alpha_{k, s+1} \mathcal{D}_{d, k+s+2} A^{d-k-s-3} B^{k-(s+1)} C^{2 s+4} \\
&= C_{s+1}+\text { other terms },
\end{aligned}
$$

where

$$
\begin{aligned}
C_{s-1} & =\alpha_{k, s-1} \mathcal{D}_{d, k+1+s} A^{d-(k+1)-s} B^{k+1-s} C^{2 s} \\
C_{s} & =(4 s+1) \alpha_{k, s} \mathcal{D}_{d, k+1+s} A^{d-(k+1)-s} B^{k+1-s} C^{2 s} \\
C_{s+1} & =2(s+1)(2 s+1) \alpha_{k, s+1} \mathcal{D}_{d, k+1+s} A^{d-(k+1)-s} B^{k+1-s} C^{2 s}
\end{aligned}
$$

Finally we obtain that

$$
C_{s-1}+C_{s}+C_{s+1}=\alpha_{k+1, s} \mathcal{D}_{d, k+1+s} A^{d-(k+1)-s} B^{k+1-s} C^{2 s}
$$

where

$$
\alpha_{k+1, s}=\alpha_{k, s-1}+(4 s+1) \alpha_{k, s}+2(s+1)(2 s+1) \alpha_{k, s+1} .
$$

This completes the proof.
Remark 3.4.2. We write now more explicitly which are the middle and the two last eigenvectors:

$$
\begin{aligned}
v_{d} & = \begin{cases}\sum_{s=0}^{\frac{d}{2}} \alpha_{\frac{d}{2}, s} \mathcal{D}_{d, \frac{d}{2}+s}(A B)^{\frac{d}{2}-s} C^{2 s} & \text { for even } d \\
\sum_{s=0}^{\frac{d-3}{2}}\left[\alpha_{\frac{d-1}{2}, s}+2(s+1) \alpha_{\frac{d-1}{2}, s+1}\right] \mathcal{D}_{d, \frac{d+1}{2}+s}(A B)^{\frac{d-1}{2}-s} C^{2 s+1} & \text { for odd } d\end{cases} \\
v_{2 d-1} & =\left(\alpha_{d-1,0}+2 \alpha_{d-1,1}\right) d!B^{d-1} C \\
v_{2 d} & =\alpha_{d, 0} d!B^{d}
\end{aligned}
$$

In the following, we consider the bases

$$
\left\{v_{j} \mid 0 \leq j \leq 2 d\right\}, \quad\left\{\left.\binom{2 d}{j} z_{1}^{2 d-j} z_{2}^{j} \right\rvert\, j=0, \ldots, 2 d\right\}
$$

for $H^{d} \mathbb{C}^{3}$ and $S^{2 d} \mathbb{C}^{2}$, respectively. With these choices of bases, the isomorphism $\varphi: S^{2 d} \mathbb{C}^{2} \rightarrow H^{d} \mathbb{C}^{3}$ of Theorem 3.3.5 is represented by the diagonal matrix

$$
\begin{equation*}
\operatorname{diag}\left(\left.\frac{(-1)^{j}}{j!} \right\rvert\, 0 \leq j \leq 2 d\right) \tag{3.4.6}
\end{equation*}
$$

3.5 Geometrical description of the stability for harmonic ternary forms

In this section, we implement the machinery created in the previous sections. In particular, in Proposition 3.4.1 we derived explicitly a good basis $\left\{v_{j}\right\}_{j}$ of eigenvectors of the irreducible $\mathrm{SO}(3, \mathbb{C})$-module $H^{d} \mathbb{C}^{3}$. Using the equivalence
with the irreducible $\operatorname{SL}(2, \mathbb{C})$-module $S^{2 d} \mathbb{C}^{2}$ and Hilbert's Theorem 3.2.1, we are ready to describe geometrically all the stable and semistable harmonic plane cubics under the action of $\mathrm{SO}(3, \mathbb{C})$, thus proving Theorem 3.0.4.

Let $h \in H^{d} \mathbb{C}^{3}$ and consider its associated curve X_{h} in $\mathbb{P}_{\mathrm{c}}^{2}$. As anticipated by Proposition 3.0.3, the crucial part of the proof of Theorem 3.0.4 deals with the study of the intersection between X_{h} and the isotropic quadric $Q: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ in $\mathbb{P}_{\mathbb{c}}^{2}$. Below we recall some basic facts about the multiplicity of a point on a hypersurface in $\mathbb{P}_{\mathrm{c}}^{n}$. A detailed treatise on this subject may be found for example in [Mum, Chapter 5].

For every form $h \in S^{d} \mathbb{C}^{n} \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ and every multi-index $\beta=$ $\left(\beta_{1}, \ldots, \beta_{n}\right)$ with $\beta_{j} \geq 0$ for all $1 \leq j n$, we adopt the notations $|\beta|:=\beta_{1}+\cdots+\beta_{n}$, $\beta!:=\beta_{1}!\cdots \beta_{n}!, x^{\beta}:=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$ and

$$
\frac{\partial^{|\beta|} h}{\partial x^{\beta}}(P):=\frac{\partial^{|\beta|} h}{\partial x_{1}^{\beta_{1}} \cdots \partial x_{n}^{\beta_{n}}}(P) \quad \forall P \in \mathbb{P}_{\mathrm{c}}^{n} .
$$

Fix a point $P \in X_{h}$, say $P=\left[y_{1}, \ldots, y_{n}\right]$. Any line passing through P is of the form $L=P R$ for some point $R=\left[z_{1}, \ldots, z_{n}\right] \in \mathbb{P}_{\mathrm{c}}^{n}$. In particular

$$
L=\left\{[x] \in \mathbb{P}_{\mathrm{c}}^{n} \mid x_{i}=\lambda y_{i}+\mu z_{i} \forall i \in\{1, \ldots, n\} \text { for some }[\lambda, \mu] \in \mathbb{P}_{\mathrm{c}}^{1}\right\} .
$$

Consider the Taylor expansion of $\widetilde{h}(\lambda, \mu):=h\left(\lambda y_{1}+\mu z_{1}, \ldots, \lambda y_{n}+\mu z_{n}\right)$ in a neighbourhood of P, that is at $\mu=0$ (the notation used below takes into account Schwarz' Theorem):

$$
\begin{align*}
\widetilde{h}(\lambda, \mu) & =\sum_{m=0}^{d} \frac{1}{m!} \frac{\partial^{m} \widetilde{h}}{\partial \mu^{m}}(\lambda, 0) \mu^{m} \\
& =\sum_{m=0}^{d} \frac{1}{m!}\left[\sum_{|\beta|=0}^{m} \frac{m!}{\beta!} \frac{\partial^{m} h}{\partial x^{\beta}}(\lambda P) z^{\beta}\right] \mu^{m} \tag{3.5.1}\\
& =\sum_{m=0}^{d} \frac{1}{m!}\left[\sum_{|\beta|=0}^{m} \frac{m!}{\beta!} \frac{\partial^{m} h}{\partial x^{\beta}}(P) z^{\beta}\right] \lambda^{d-m} \mu^{m} .
\end{align*}
$$

From this Taylor expansion we obtain that

$$
I_{P}\left(X_{h}, L\right)=\left.m_{*} \Longleftrightarrow \mu^{m_{*}}\right|_{\tilde{h}} \quad \text { and } \mu^{m_{*}+1} \upharpoonright_{\widetilde{h}},
$$

where $I_{P}\left(X_{h}, L\right)$ is the intersection multiplicity between X_{h} and L at P. Now suppose that the coordinates z_{i} of R are general and consider the polynomial

$$
\begin{equation*}
h_{m, P}=\frac{1}{m!} \sum_{|\beta|=0}^{m} \frac{m!}{\beta!} \frac{\partial^{m} h}{\partial x^{\beta}}(P) z^{\beta}, \tag{3.5.2}
\end{equation*}
$$

namely the coefficient of $\lambda^{d-m} \mu^{m}$ in (3.5.1).
Definition 3.5.1. The multiplicity of P for X_{h} is

$$
m_{P}\left(X_{h}\right)=\min \left\{I_{P}\left(X_{h}, L\right) \mid L \text { is a line passing through } P\right\}
$$

In other words, the point P has multiplicity m for X_{h} (or is an m-ple point of X_{h}) if $h_{m, P}$ is not identically zero and every partial derivative of h of order smaller than m is zero. Moreover, the hypersurface defined by the equation $h_{m, P}=0$ is called the tangent cone of X_{h} at P and is denoted by $C T_{P} X_{h}$. The tangent cone of X_{h} at P is the union of the lines tangent to X_{h} at P. If $m_{P}\left(X_{h}\right)=1$, then X_{h} is smooth at P and $C T_{P} X_{h}$ coincides with the tangent space $T_{P} X_{h}$.

As pointed out in the end of Section 3.4, any harmonic form $h \in H^{d} \mathbb{C}^{3}$ may be written as

$$
\begin{equation*}
h=\sum_{j=0}^{2 d} \frac{(-1)^{j}}{j!} a_{j} v_{j} \tag{3.5.3}
\end{equation*}
$$

for some complex coefficients $a_{0}, \ldots, a_{2 d}$. Fix the isotropic point $P=[0,1,-\sqrt{-1}]$. From the expressions of the polynomials v_{j} in (3.4.2) and in (3.4.3), we obtain immediately that $v_{j}(P)=0$ for $j \neq 2 d$ and $v_{2 d}(P)=2^{2 d} \alpha_{d, 0} d$!. Hence, using (3.5.2) we get

$$
h_{0, P}=h(P)=\frac{2^{2 d} \alpha_{d, 0} d!}{(2 d)!} a_{2 d}
$$

In particular $P \in X_{h}$ if and only if $a_{2 d}=0$.
Our goal is to obtain a closed expression of the polynomials $h_{m, P}$: as we show in a while, they are fundamental to study the stability and semistability of harmonic ternary forms. In the next technical lemma, we start by computing all the partial derivatives of h of order m, using the formulas obtained in Proposition 3.4.1.

Lemma 3.5.2. Let h as in (3.5.3) and $P=[0,1,-\sqrt{-1}]$. Then

$$
\frac{\partial^{m} h}{\partial x^{\beta}}(P)=(-1)^{\beta_{3}} \frac{d!\beta_{1}!2^{\bar{\gamma}} \sqrt{-1} \beta_{1}+\beta_{3}}{\bar{\gamma}!} \mathcal{A}_{m, \beta_{1}} a_{\bar{\gamma}}
$$

for every multi-index $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ with $|\beta|=m$, where $\bar{\gamma}=2(d-m)+\beta_{1}$ and

$$
\mathcal{A}_{m, \beta_{1}}= \begin{cases}\alpha_{\bar{\gamma}}^{2}, \frac{\beta_{1}}{2} & \text { if } \beta_{1} \text { is even } \\ \alpha_{\frac{\bar{\gamma}-1}{2}, \frac{\beta_{1}-1}{2}}+\left(\beta_{1}+1\right) \alpha_{\frac{\bar{\gamma}-1}{2}, \frac{\beta_{1}+1}{2}} & \text { if } \beta_{1} \text { is odd } .\end{cases}
$$

Proof. From the definition of h we have that

$$
\frac{\partial^{m} h}{\partial x^{\beta}}(P)=\sum_{j=0}^{2 d} \frac{(-1)^{j}}{j!} a_{j} \frac{\partial^{m} v_{j}}{\partial x^{\beta}}(P)
$$

Suppose that β_{1} is even. Then $\frac{\partial^{m} v_{j}}{\partial x^{\beta}}(P)=0$ for every odd index j, by the formula for v_{j} in (3.4.3). Moreover, looking at the formulas in (3.4.2), we see that the only possible nonzero value of $\frac{\partial^{m} v_{j}}{\partial x^{\beta}}(P)$, with even j, comes from the summand with $j=\frac{\beta_{1}}{2}$. Hence

$$
\begin{aligned}
\frac{\partial^{m} v_{j}}{\partial x^{\beta}}(P) & =\left.\frac{\partial^{m}}{\partial x^{\beta}}\left(\alpha_{\frac{j}{2}, \frac{\beta_{1}}{2}} \mathcal{D}_{d, \frac{\beta_{1}+j}{2}} A^{d-\frac{\beta_{1}+j}{2}} B^{\frac{j-\beta_{1}}{2}} C^{\beta_{1}}\right)\right|_{P} \\
& =\left.\beta_{1}!(-2 \sqrt{-1})^{\beta_{1}} \alpha_{\frac{j}{2}, \frac{\beta_{1}}{2}} \mathcal{D}_{d, \frac{\beta_{1}+j}{2}} \frac{\partial^{m-\beta_{1}}}{\partial x_{2}^{m-\beta_{1}-\beta_{3}} \partial x_{3}^{\beta_{3}}}\left(A^{d-\frac{\beta_{1}+j}{2}} B^{\frac{j-\beta_{1}}{2}}\right)\right|_{P}
\end{aligned}
$$

From last equality and the fact that $A(P)=0$ we see that

$$
\left.\frac{\partial^{m-\beta_{1}}}{\partial x_{2}^{m-\beta_{1}-\beta_{3}} \partial x_{3}^{\beta_{3}}}\left(A^{d-\frac{\beta_{1}+j}{2}} B^{\frac{j-\beta_{1}}{2}}\right)\right|_{P}=0
$$

when the exponent of A, namely $d-\frac{\beta_{1}+j}{2}$, is not equal to $m-\beta_{1}$. In turn, this happens when $j \neq 2(d-m)+\beta_{1}=\bar{\gamma}$. Otherwise if $j=\bar{\gamma}$, then

$$
\begin{aligned}
\left.\frac{\partial^{m-\beta_{1}}}{\partial x_{2}^{m-\beta_{1}-\beta_{3}} \partial x_{3}^{\beta_{3}}}\left(A^{m-\beta_{1}} B^{d-m}\right)\right|_{P} & =\left.2^{2(d-m)} \frac{\partial^{m}}{\partial x_{2}^{m-\beta_{1}-\beta_{3}} \partial x_{3}^{\beta_{3}}}\left(A^{m-\beta_{1}}\right)\right|_{P} \\
& =\left(m-\beta_{1}\right)!(-\sqrt{-1})^{\beta_{3}} 2^{2(d-m)}
\end{aligned}
$$

Summing up, we obtain that

$$
\begin{aligned}
\frac{\partial^{m} h}{\partial x^{\beta}}(P) & =\frac{(-1)^{\bar{\gamma}}}{\bar{\gamma}!} a_{\bar{\gamma}} \frac{\partial^{m} v_{\bar{\gamma}}}{\partial x^{\beta}}(P) \\
& =\frac{(-1)^{\bar{\gamma}}}{\bar{\gamma}!} a_{\bar{\gamma}} \beta_{1}!(-2 \sqrt{-1})^{\beta_{1}} \alpha_{\frac{\bar{\gamma}}{2}, \frac{\beta_{1}}{2}} \mathcal{D}_{d, d-m+\beta_{1}}\left(m-\beta_{1}\right)!(-\sqrt{-1})^{\beta_{3}} 2^{2(d-m)} \\
& =(-1)^{\beta_{3}} \frac{d!\beta_{1}!2^{\bar{\gamma}} \sqrt{-1} \beta_{1}+\beta_{3}}{\bar{\gamma}!} \alpha_{\overline{\bar{\gamma}}, \frac{\beta_{1}}{2}} a_{\bar{\gamma}}
\end{aligned}
$$

If β_{1} is odd, a similar computation produces the following identity:

$$
\frac{\partial^{m} h}{\partial x^{\beta}}(P)=(-1)^{\beta_{3}} \frac{d!\beta_{1}!2^{\bar{\gamma}} \sqrt{-1} \beta_{1}+\beta_{3}}{\bar{\gamma}!}\left[\alpha_{\frac{\bar{\gamma}-1}{2}, \frac{\beta_{1}-1}{2}}+\left(\beta_{1}+1\right) \alpha_{\frac{\bar{\gamma}-1}{2}, \frac{\beta_{1}+1}{2}}\right] a_{\bar{\gamma}}
$$

Lemma 3.5.3. Let h and P as before. Then for every $0 \leq m \leq d$,

$$
h_{m, P}=\frac{d!}{(2 d-m)!} \sum_{\beta_{1}=0}^{m}\binom{2 d-m}{\bar{\gamma}} 2^{\bar{\gamma}} \mathcal{A}_{m, \beta_{1}} a_{\bar{\gamma}}\left(\sqrt{-1} x_{1}\right)^{\beta_{1}}\left(x_{2}-\sqrt{-1} x_{3}\right)^{m-\beta_{1}} .
$$

Proof. Applying the definition of $h_{m, P}$ and using the relation $\frac{m!}{\beta!}=\binom{m}{\beta_{1}}\binom{m-\beta_{1}}{\beta_{3}}$, we have

$$
\begin{aligned}
h_{m, P} & =\frac{1}{m!} \sum_{|\beta|=m} \frac{m!}{\beta!} \frac{\partial^{m} h}{\partial x^{\beta}}(P) x^{\beta} \\
& =\frac{1}{m!} \sum_{\beta_{1}=0}^{m}\binom{m}{\beta_{1}} x_{1}^{\beta_{1}} \sum_{\beta_{3}=0}^{m-\beta_{1}}\binom{m-\beta_{1}}{\beta_{3}} \frac{\partial^{m} h}{\partial x^{\beta}}(P) x_{2}^{\beta_{2}} x_{3}^{\beta_{3}} .
\end{aligned}
$$

By Lemma 3.5.2, the last polynomial is equal to

$$
\begin{aligned}
& =\frac{1}{m!} \sum_{\beta_{1}=0}^{m}\binom{m}{\beta_{1}} x_{1}^{\beta_{1}} \sum_{\beta_{3}=0}^{m-\beta_{1}}\binom{m-\beta_{1}}{\beta_{3}}(-1)^{\beta_{3}} \frac{d!\beta_{1}!2^{\bar{\gamma}} \sqrt{-1} \beta_{1}+\beta_{3}}{\bar{\gamma}!} \mathcal{A}_{m, \beta_{1}} a_{\bar{\gamma}} x_{2}^{\beta_{2}} x_{3}^{\beta_{3}} \\
& =\frac{d!}{m!} \sum_{\beta_{1}=0}^{m}\binom{m}{\beta_{1}} \frac{\beta_{1}!2^{\bar{\gamma}}}{\bar{\gamma}!} \mathcal{A}_{m, \beta_{1}} a_{\bar{\gamma}}\left(\sqrt{-1} x_{1}\right)^{\beta_{1}} \sum_{\beta_{3}=0}^{m-\beta_{1}}\binom{m-\beta_{1}}{\beta_{3}} x_{2}^{\beta_{2}}\left(-\sqrt{-1} x_{3}\right)^{\beta_{3}} \\
& =\frac{d!}{m!} \sum_{\beta_{1}=0}^{m}\binom{m}{\beta_{1}} \frac{\beta_{1}!2^{\bar{\gamma}}}{\bar{\gamma}!} \mathcal{A}_{m, \beta_{1}} a_{\bar{\gamma}}\left(\sqrt{-1} x_{1}\right)^{\beta_{1}}\left(x_{2}-\sqrt{-1} x_{3}\right)^{m-\beta_{1}} \\
& =d!\sum_{\beta_{1}=0}^{m} \frac{2^{\bar{\gamma}}}{\left(m-\beta_{1}\right)!\bar{\gamma}!} \mathcal{A}_{m, \beta_{1}} a_{\bar{\gamma}}\left(\sqrt{-1} x_{1}\right)^{\beta_{1}}\left(x_{2}-\sqrt{-1} x_{3}\right)^{m-\beta_{1}} \\
& =\frac{d!}{(2 d-m)!} \sum_{\beta_{1}=0}^{m}\binom{2 d-m}{\bar{\gamma}} 2^{\bar{\gamma}} \mathcal{A}_{m, \beta_{1}} a_{\bar{\gamma}}\left(\sqrt{-1} x_{1}\right)^{\beta_{1}}\left(x_{2}-\sqrt{-1} x_{3}\right)^{m-\beta_{1}} .
\end{aligned}
$$

The relevant fact from Lemma 3.5.3 is that the expression of $h_{m, P}$ involves the coefficients $a_{\bar{\gamma}}=a_{2(d-m)+\beta_{1}}$ for $\beta_{1}=0, \ldots, m$, namely the coefficients in $\left\{a_{2 d-2 m}, \ldots, a_{2 d-m}\right\}$. In particular, for $m=0$ the polynomial $h_{0, P}=H(P)$ involves only the coefficient $m_{2 d}$. For $m=1, h_{1, P}$ involves the coefficients $m_{2 d-2}$ and $m_{2 d-1}$. For $m=2, h_{2, P}$ involves the coefficients $m_{2 d-4}, m_{2 d-3}$ and $m_{2 d-2}$, and so on.

Remark 3.5.4. Imposing the conditions $a_{2(d-m+1)+\beta_{1}}=0$ for every $0 \leq \beta_{1} \leq$ $m-1$, that is, imposing $h_{m-1, P}$ to be the zero polynomial, simplifies a lot the expression for $h_{m, P}$. Indeed, the only nonzero coefficients remaining in $h_{m, P}$ are
$a_{2 d-2 m}$ and $a_{2 d-2 m+1}$. More explicitly, the expression for $h_{m, P}$ in Lemma 3.5.3 simplifies as

$$
\begin{align*}
h_{m, P}= & \frac{d!2^{2(d-m)}\left(x_{2}-\sqrt{-1} x_{3}\right)^{m-1}}{(2(d-m))!(m-1)!}\left[\frac{\mathcal{A}_{m, 0}}{m} a_{2(d-m)}\left(x_{2}-\sqrt{-1} x_{3}\right)\right. \tag{3.5.4}\\
& \left.+\frac{2 \mathcal{A}_{m, 1}}{2(d-m)+1} a_{2(d-m)+1} \sqrt{-1} x_{1}\right]
\end{align*}
$$

In other words, if we have already supposed that $h_{m^{\prime}, P}=0$ for every $m^{\prime}<m$ (namely that P is a m-ple point of X_{h}), then the condition $h_{m, P}=0$ is obtained by requiring only two more vanishing coefficients.

Carrying on this "degree by degree" computation of the Taylor expansion of h at P, we get the following corollary.

Corollary 3.5.5. Let h be as before and $P=[0,1,-\sqrt{-1}]$. Then

1. if d is even and P is a $\frac{d}{2}$-ple point of X_{h}, then

$$
h_{\frac{d}{2}, P}=\frac{2^{d+1}}{\left(\frac{d-2}{2}\right)!}\left(x_{2}-\sqrt{-1} x_{3}\right)^{\frac{d-2}{2}}\left[\frac{\mathcal{A}_{\frac{d}{2}, 0}}{d} a_{d}\left(x_{2}-\sqrt{-1} x_{3}\right)+\frac{\mathcal{A}_{\frac{d}{2}, 1}}{d+1} a_{d+1} \sqrt{-1} x_{1}\right]
$$

2. if d is odd and P is a $\frac{d+1}{2}$-ple point of X_{h}, then

$$
h_{\frac{d+1}{2}, P}=\frac{2^{d}\left(x_{2}-\sqrt{-1} x_{3}\right)^{\frac{d-1}{2}}}{(d-1)\left(\frac{d-1}{2}\right)!}\left[\frac{\mathcal{A}_{\frac{d+1}{2}, 0}}{d+1} a_{d-1}\left(x_{2}-\sqrt{-1} x_{3}\right)+\frac{\mathcal{A}_{\frac{d+1}{2}, 1}}{d} a_{d} \sqrt{-1} x_{1}\right]
$$

The previous corollary allows us to proceed in the proof of Theorem 3.0.4.
Proof of Theorem 3.0.4. Consider a harmonic ternary form $h \in H^{d} \mathbb{C}^{3}$, written as in (3.5.3). In particular, the binary form

$$
f=\sum_{j=0}^{2 d}\binom{2 d}{j} a_{j} z_{1}^{2 d-j} z_{2}^{j}
$$

is such that $\varphi(f)=h$, where φ is the equivariant isomorphism of Theorem 3.3.5 defined explicitly in (3.4.6).

Suppose that h is non-stable. This means, in turn, that f is non-stable, and by Theorem 3.2.1 a general non-stable binary form of degree $2 d$ has a root of multiplicity $m \geq d$. We can assume that $\left.z_{1}^{d}\right|_{f}$ or, equivalently, that

$$
\begin{equation*}
a_{d+1}=\cdots=a_{2 d}=0 \tag{3.5.5}
\end{equation*}
$$

Consider the point $P=[0,1,-\sqrt{-1}] \in \mathbb{P}_{\mathbb{C}}^{2}$. By Remark 3.5.4 and Corollary 3.5.5, we have that

1. if d is even, the conditions $a_{d+2}=\cdots=a_{2 d}=0$ in (3.5.5) imply that P is a $(d / 2)$-ple point of X_{h}, while the condition $a_{d+1}=0$ implies that $\frac{d}{2} T_{P} Q \subset C T_{P} X_{h}$.
2. if d is odd, the conditions (3.5.5) imply that P is a $[(d+1) / 2]$-ple point of X_{h}, and in particular $\frac{d-1}{2} T_{P} Q \subset C T_{P} X_{h}$.
Now suppose that h is non-semistable. Then the corresponding binary form f is non-semistable, and again by Theorem 3.2.1 a general non-semistable binary form of degree $2 d$ has a root of multiplicity $m \geq d+1$. We can assume that $\left.z_{1}^{d+1}\right|_{f}$ or, equivalently, that

$$
\begin{equation*}
a_{d}=\cdots=a_{2 d}=0 \tag{3.5.6}
\end{equation*}
$$

By Definition 3.1.3, every $\operatorname{SL}(2, \mathbb{C})$-invariant of f of positive degree vanishes. In particular, the quadratic $\operatorname{SL}(2, \mathbb{C})$-invariant

$$
\begin{equation*}
(f, f)_{2 d}:=(2 d!)^{2} \sum_{j=0}^{2 d}(-1)^{j}\binom{2 d}{j} a_{j} a_{2 d-j} \tag{3.5.7}
\end{equation*}
$$

vanishes. We denote the corresponding $\mathrm{SO}(3, \mathbb{C})$-invariant by $\varphi_{2 d}$. Therefore, by the conditions (3.5.6) and (3.5.7), any non-semistable harmonic ternary form h is non-stable and is such that $\varphi_{2 d}(h)=0$.

On the other hand, suppose that d is even and that there exists $P \in H \cap Q$ and an integer $m \geq d / 2$ such that P is an m-ple point for X_{h} and $\frac{d}{2} T_{P} Q \subset C T_{P} X_{h}$. Then we can assume that $P=[0,1,-\sqrt{-1}]$ and again applying Remark 3.5.4 and Corollary 3.5 .5 we obtain the conditions (3.5.5). Using the ismorphism φ in (3.4.6), we see that $\left.z_{1}^{d}\right|_{f}$, hence f is non-stable. In turn, this implies that h is non-stable. Moreover, looking at (3.5.7), in this case $\varphi_{2 d}(h)=0$ if and only if $a_{d}=0$, and this implies that $\left.z_{1}^{d+1}\right|_{f}$, namely the binary form f associated to h is non-semistable, and thus h is non-semistable as well.

Otherwise d is odd. Suppose that there exists $P \in X_{h} \cap Q$ and an integer $m \geq(d+1) / 2$ such that P is an m-ple point for X_{h}. A similar argument implies that h is non-stable, and the additional condition $\varphi_{2 d}(h)=0$ provides the nonsemistability of h.

For the last part of the statement, if we look at the expressions in (3.4.2) and (3.4.3) for the eigenvectors v_{j}, we get that any non-semistable harmonic ternary form h is reducible: in fact, we have that $a_{d}=\cdots=a_{2 d}=0$, while the polynomials v_{0}, \ldots, v_{d-1} have $z_{2}-\sqrt{-1} z_{3}$ as a common factor and $T_{P} Q: z_{2}-$ $\sqrt{-1} z_{3}=0$. In particular, $X_{h}=T_{P} Q \cup X_{h^{\prime}}$, where h^{\prime} is a harmonic ternary form of degree $d-1$.

Repeating the same argument to h^{\prime}, we can conclude that, for even d, P is a $(d / 2)$-ple point for $X_{h^{\prime}}$, whereas for odd d we have that P is a $[(d-1) / 2]$-ple point for $X_{h^{\prime}}$ and $\frac{d-1}{2} T_{P} Q \subset C T_{P} X_{h}$. Thus $X_{h^{\prime}}$ is tangent to Q at P and h^{\prime} is non-stable.

In the following, we consider two explanatory examples of Theorem 3.0.4 for $d \in\{3,4\}$.

Example 3.5.6 (Harmonic plane cubics, $d=3$). A general harmonic ternary cubic can be written as

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=\sum_{j=0}^{6} a_{j} v_{j} \tag{3.5.8}
\end{equation*}
$$

where the polynomials v_{j} are the eigenvectors obtained in (3.4.2) and in (3.4.3), with rescaled coefficients for simplicity:

$$
\begin{align*}
& v_{0}=\left(x_{2}-\sqrt{-1} x_{3}\right)^{3} \\
& v_{1}=x_{1}\left(x_{2}-\sqrt{-1} x_{3}\right)^{2} \\
& v_{2}=\left(x_{2}+\sqrt{-1} x_{3}\right)\left(x_{2}-\sqrt{-1} x_{3}\right)^{2}-4 x_{1}^{2}\left(x_{2}-\sqrt{-1} x_{3}\right) \\
& v_{3}=2 x_{1}^{3}-3 x_{1}\left(x_{2}^{2}+x_{3}^{2}\right) \tag{3.5.9}\\
& v_{4}=\left(x_{2}-\sqrt{-1} x_{3}\right)\left(x_{2}+\sqrt{-1} x_{3}\right)^{2}-4 x_{1}^{2}\left(x_{2}+\sqrt{-1} x_{3}\right) \\
& v_{5}=x_{1}\left(x_{2}+\sqrt{-1} x_{3}\right)^{2} \\
& v_{6}=\left(x_{2}+\sqrt{-1} x_{3}\right)^{3}
\end{align*}
$$

To visualize some examples, we consider the change of coordinates

$$
z_{1}=-\sqrt{-1} x_{1}, \quad z_{2}=x_{2}+\sqrt{-1} x_{3}, \quad z_{3}=x_{2}-\sqrt{-1} x_{3}
$$

In the z_{i} 's the isotropic quadric Q (the red curve in Figure 3.5) has equation $z_{1}^{2}-z_{2} z_{3}=0$. In Figure 3.5 we considered the coordinates $z_{1}=x, z_{2}=2$ and $z_{3}=y$.

Starting from the picture at the top-left corner of Figure 3.5, we consider five different harmonic plane cubics C_{1}, \ldots, C_{5} defined by the polynomials h_{1}, \ldots, h_{5}, respectively. They are written explicitly in (3.5.10). In particular, h_{1} is a general linear combination as in (3.5.8). Then h_{2} is obtained by setting $a_{6}=0$, while the other coefficients a_{j} are randomly chosen. In particular, the curve C_{2} passes through the origin $(0,0)$ corresponding to $P=[0,1,-\sqrt{-1}]$. Going further, h_{3} is obtained by setting $a_{5}=a_{6}=0$, and the other coefficients a_{j} are randomly chosen. In particular, the curve C_{3} is tangent to Q at $(0,0)$. The two last pictures of Figure 3.5 are the most interesting in relation to Theorem 3.0.4. Indeed, in the second to last picture, C_{4} is singular at $(0,0)$. In particular, $T_{P} Q$

Figure 3.5: Examples of harmonic plane cubics in the affine plane $z_{2}=2$. The last two pictures represent a non-stable and a non-semistable harmonic plane cubic.
is tangent to C_{4}. By Theorem 3.0.4, C_{4} is non-stable. Finally, in the last picture C_{5} is reducible in the form $C_{5}=L C$, where the line $L: y=0$ and the conic $C: 18 x^{2}-3 x y-2 y^{2}+9 y=0$ are tangent to Q at the origin. By Theorem 3.0.4, this means that C_{5} is non-semistable, namely it is non-stable and its norm is zero.

$$
\begin{align*}
& h_{1}=9 x^{3}+18 x^{2} y+3 x y^{2}-y^{3}-8 x^{2}+27 x y+9 y^{2}+10 x-4 y+12 \\
& h_{2}=6 x^{3}-4 x^{2} y-8 x y^{2}+5 y^{3}+8 x^{2}+18 x y-2 y^{2}-12 x+4 y \\
& h_{3}=16 x^{3}+16 x^{2} y+9 x y^{2}-y^{3}+32 x^{2}+48 x y+8 y^{2}+16 y \tag{3.5.10}\\
& h_{4}=8 x^{3}-32 x^{2} y+6 x y^{2}+y^{3}+24 x y-16 y^{2} \\
& h_{5}=y\left(18 x^{2}-3 x y-2 y^{2}+9 y\right)
\end{align*}
$$

Example 3.5.7. Let us examine the first nontrivial case in even degree, that is
$d=4$. The basis vectors $v_{j}, j=0, \ldots, 8$ for $H^{4} \mathbb{C}^{3}$ are explicitly

$$
\begin{align*}
& v_{0}=\left(x_{2}-\sqrt{-1} x_{3}\right)^{4} \\
& v_{1}=x_{1}\left(x_{2}-\sqrt{-1} x_{3}\right)^{3} \\
& v_{2}=\left(x_{2}-\sqrt{-1} x_{3}\right)^{2}\left(6 x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) \\
& v_{3}=x_{1}\left(x_{2}-\sqrt{-1} x_{3}\right)\left(4 x_{1}^{2}-3 x_{2}^{2}-3 x_{3}^{2}\right) \\
& v_{4}=8 x_{1}^{4}+3\left(x_{2}^{2}+x_{3}^{2}\right)\left(-8 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \tag{3.5.11}\\
& v_{5}=x_{1}\left(x_{2}+\sqrt{-1} x_{3}\right)\left(4 x_{1}^{2}-3 x_{2}^{2}-3 x_{3}^{2}\right) \\
& v_{6}=\left(x_{2}+\sqrt{-1} x_{3}\right)^{2}\left(6 x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) \\
& v_{7}=x_{1}\left(x_{2}+\sqrt{-1} x_{3}\right)^{3} \\
& v_{8}=\left(x_{2}+\sqrt{-1} x_{3}\right)^{4} .
\end{align*}
$$

Starting from the picture at the top-left corner of Figure 3.6, we consider six different harmonic plane cubics D_{1}, \ldots, D_{5} defined by the polynomials p_{1}, \ldots, p_{6}, respectively. They are written explicitly in (3.5.12). In particular, p_{1} is a general linear combination as in (3.5.8). Then p_{2} is obtained by setting $a_{8}=0$, while the other coefficients a_{j} are randomly chosen. In particular, the curve D_{2} passes through the origin (0,0). Going further, p_{3} is obtained by setting $a_{7}=a_{8}=0$, and the other coefficients a_{j} are randomly chosen. In particular, the curve D_{3} is tangent to Q at $(0,0)$. The more coefficients a_{j} we set to zero, the more "singular" the curve D_{j} becomes at the origin. Eventually, we have the two last pictures of Figure 3.6. In the second to last picture, D_{5} is singular at the origin and $2 T_{P} Q \subset C T_{P} D_{5}$. By Theorem 3.0.4, D_{5} is non-stable. Finally, in the last picture D_{6} is reducible in the form $D_{6}=L D$, where the line $L: y=0$ and the cubic $D: 20 x^{3}+24 x^{2} y-3 x y^{2}+2 y^{3}+30 x y+8 y^{2}=0$ are tangent to Q at the origin, and D is non-stable. By Theorem 3.0.4, this means that D_{6} is non-semistable.

$$
\begin{align*}
p_{1}= & 8 x^{4}-12 x^{3} y-54 x^{2} y^{2}-2 x y^{3}+5 y^{4}-32 x^{3}+48 x^{2} y-18 x y^{2} \\
& -18 y^{3}+192 x^{2}-48 x y+12 y^{2}+40 x+64 y+96 \\
p_{2}= & 40 x^{4}-24 x^{3} y+5 x y^{3}+8 y^{4}-64 x^{3}+240 x^{2} y \\
& -36 x y^{2}+24 x^{2}-96 x y+60 y^{2}-80 x+8 y \\
p_{3}= & 48 x^{4}+40 x^{3} y+36 x^{2} y^{2}+9 x y^{3}+8 y^{4}+288 x^{2} y \\
& +60 x y^{2}+12 y^{3}-216 x^{2}+72 y^{2}-72 y \tag{3.5.12}\\
p_{4}= & 8 x^{4}-6 x^{3} y-12 x^{2} y^{2}+3 x y^{3}-4 y^{4}-20 x^{3} \\
& +48 x^{2} y-9 x y^{2}-4 y^{3}-30 x y+12 y^{2} \\
p_{5}= & 72 x^{4}+48 x^{2} y^{2}-9 x y^{3}-6 y^{4}+432 x^{2} y+16 y^{3}+108 y^{2} \\
p_{6}= & y\left(20 x^{3}+24 x^{2} y-3 x y^{2}+2 y^{3}+30 x y+8 y^{2}\right)
\end{align*}
$$

Figure 3.6: Examples of harmonic plane quartics in the affine plane $z_{2}=2$. The last two pictures represent a non-stable and a non-semistable harmonic plane quartic.

An immediate consequence of Theorem 3.0.4 finds an application in the theory of E-characteristic polynomials outlined in Chapter 2.

Corollary 3.5.8. Let $h \in H^{d} \mathbb{C}^{3}$ be a complex harmonic ternary form of degree d written as

$$
h=\sum_{j=0}^{2 d} b_{j} v_{j},
$$

where the polynomials v_{j} are written in (3.4.2) and in (3.4.3). Then

1. if $b_{2 d-1}=b_{2 d}=0$, then h admits an isotropic eigenvector, by Remark 2.3.11,
2. if additionally $b_{2 d-2}=0$, then h is irregular and therefore its E-characteristic polynomial $\psi_{h}(\lambda)$ is identically zero, by Proposition 2.2.8.

Example 3.5.9 (A real harmonic ternary cubic with non-real E-eigenvalues). Consider the space $H^{d} \mathbb{R}^{3}$ of real harmonic ternary cubics. In particular, the
following linear combination

$$
h=b_{1}\left(v_{0}+v_{6}\right)+b_{2}\left(v_{1}+v_{5}\right)+b_{3}\left(v_{2}+v_{4}\right)+b_{4} v_{3}, \quad b_{j} \in \mathbb{R},
$$

where the polynomials v_{j} are written in (3.5.9), is a polynomial in $H^{d} \mathbb{R}^{3}$, since each polynomial v_{j} is the complex-conjugate of v_{6-j}.

Choosing random values for the coefficients b_{j}, and computing the E-characteristic polynomial of h, one might quickly check numerically that there exists real harmonic ternary cubics admitting non-real E-eigenvalues. Here is an example with $b_{1}=99, b_{2}=44, b_{3}=86$ and $b_{4}=-30$:

$$
h=-60 x_{1}^{3}+344 x_{1}^{2} x_{2}+134 x_{1} x_{2}^{2}+13 x_{2}^{3}+46 x_{1} x_{3}^{2}-383 x_{2} x_{3}^{2}
$$

The E-characteristic polynomial $\psi_{h}(\lambda)$ has the expected degree $\operatorname{deg}\left(\psi_{h}(\lambda)\right)=14$, namely degree seven in λ^{2}. Its roots are the following:

$$
\left(\begin{array}{c}
2448.93 \\
-2448.93 \\
270.306 \\
-270.306 \\
14.0615 \sqrt{-1} \\
-14.0615 \sqrt{-1} \\
20.0813 \sqrt{-1} \\
-20.0813 \sqrt{-1} \\
102.249 \sqrt{-1} \\
-102.249 \sqrt{-1} \\
-291.514+135.21 \sqrt{-1} \\
-291.514-135.21 \sqrt{-1} \\
291.514+135.21 \sqrt{-1} \\
291.514-135.21 \sqrt{-1}
\end{array}\right)
$$

Chapter 4

The ED polynomial of an algebraic variety

In Chapter 1 we introduced the $E D$ degree of an algebraic variety X in a complex vector space $V=V^{\mathbb{R}} \otimes \mathbb{C}$. This invariant has been introduced for answering the following question.

What is the number of critical points on X of the squared distance function

$$
\delta_{u}: X \rightarrow \mathbb{C} \text { for a general point } u \in V \text { ? }
$$

In problems like finding the best rank-one approximation of a symmetric tensor mentioned in Chapter 2, it is also important the value of the distance, and if the value $\delta_{u}(x)$ for a critical point $x \in X$ satisfies some algebraic relation depending on the coordinates of u. How can we relate the results in Chapter 2 to this slightly different approach? A partial answer was given in the Introduction for rectangular matrices as well as higher format tensors, but it may be replayed for symmetric tensors.

For a given real symmetric tensor $f \in S^{d} V^{\mathbb{R}}$, we assume that (λ, x) is a Zeigenpair for f. From Chapter 2, we learned that the symmetric tensor λx^{d} is critical for $\delta_{F, f}$ when restricted to the affine cone $X_{(d)}$ of the image of the d th Veronese embedding of $\mathbb{P}(V)$. The squared E-eigenvalue λ^{2} is a root of the E-characteristic polynomial $\psi_{f}(\lambda)$, for odd d, or of the product $\psi_{f}(\lambda) \psi_{f}(-\lambda)$, for even d. In addition, the value $q_{F}\left(f-\lambda x^{d}\right)$ is critical for $\delta_{F, f}$ on $X_{(d)}$. An immediate consequence of Theorem 1.3.3 is the identity

$$
\begin{equation*}
q_{F}\left(f-\lambda x^{d}\right)+q_{F}\left(\lambda x^{d}\right)=q_{F}(f) \tag{4.0.1}
\end{equation*}
$$

where $q_{F}\left(\lambda x^{d}\right)=\lambda^{2}$. Summing up these facts and taking into account that $f-\lambda x^{d}$ belongs to the dual affine cone $X_{(d)}^{\vee}$ of $X_{(d)}$, the conclusion is that
$\psi_{f}(\lambda)=0$ or $\psi_{f}(\lambda) \psi_{f}(-\lambda)=0$ may be interpreted as the equation of the λ offset of $X_{(d)}^{\vee}$, namely the affine hypersurface of symmetric tensors in $S^{d} V$ having distance λ form $X_{(d)}^{\vee}$.

And what about the λ-offset of $X_{(d)}$? By simply looking at the identity (4.0.1) and remembering Theorem 1.3.3, the equation of the ε-offset of $X_{(d)}$ is obtained setting to zero the E-characteristic polynomial $\psi_{f}(\lambda)$ (or the product $\left.\psi_{f}(\lambda) \psi_{f}(-\lambda)\right)$ evaluated at $\lambda^{2}=q_{F}(f)-\varepsilon^{2}$. Actually, this "Pyhtagorean duality" is stated more generally in Theorem 4.2.8.

In this chapter, we deal exactly with these " ε-offset hypersurfaces" of algebraic varieties $X \subset V$. This topic is indeed classical. For example, Salmon studied in [Sal, §373, ex. 3] the offsets of affine conics and called them parallel curves. He considered the distance parameter ε as a variable and observed that the parallel curve of a parabola drops degree with respect to a general conic.

Salmon's computation uses invariant theory of pencils of conics. Here we give an analogous example in \mathbb{R}^{3} to highlight the contents of this chapter. Let $C \subset \mathbb{P}_{\mathbb{R}}^{2}$ be the projective conic of equation $4 x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=0$, which we regard as an affine cone in \mathbb{R}^{3}. Let $u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}$ be a data point. Denote by M_{C} the 4×4 symmetric matrix of C and by M_{S} the matrix of the sphere

$$
S=S(u, \varepsilon):\left(x_{1}-u_{1}\right)^{2}+\left(x_{2}-u_{2}\right)^{2}+\left(x_{3}-u_{3}\right)^{2}-\varepsilon^{2}=0 .
$$

The point $\left(x_{1}, x_{2}, x_{3}\right) \in C$ is critical for δ_{u} if and only if S is tangent to C. By a well-known result of Cayley, $C \cap S$ is not smooth if and only if the determinant of the matrix $M_{C}+\mu M_{S}$ has at least two coincident roots. Therefore, the nontrivial factor of $\Delta_{\mu}\left[\operatorname{det}\left(M_{C}+\mu M_{S}\right)\right]$, where the operator Δ_{μ} computes the discriminant with respect to the variable μ, provides the equation of the ε-offset of C.

In this thesis, the alredy obtained polynomial is called the ED polynomial of C at u. We write this polynomial as EDpoly $_{C, u}\left(\varepsilon^{2}\right)$, highlighting that the variable ε appears squared. This notation was introduced in the joint work with Ottaviani [OS], which is the core of this chapter. In our example, the expression for EDpoly ${ }_{C, u}\left(\varepsilon^{2}\right)$ is

$$
\begin{aligned}
& \text { EDpoly }_{C, u}\left(\varepsilon^{2}\right)=900 \varepsilon^{8}-60\left(64 u_{1}^{2}+5 u_{2}^{2}+21 u_{3}^{2}\right) \varepsilon^{6} \\
&+\left(6016 u_{1}^{4}+2960 u_{1}^{2} u_{2}^{2}-275 u_{2}^{4}+3312 u_{1}^{2} u_{3}^{2}-810 u_{2}^{2} u_{3}^{2}+621 u_{3}^{4}\right) \varepsilon^{4} \\
& \quad-2\left(2048 u_{1}^{6}+2208 u_{1}^{4} u_{2}^{2}+540 u_{1}^{2} u_{2}^{4}-25 u_{2}^{6}+1184 u_{1}^{4} u_{3}^{2}-224 u_{1}^{2} u_{2}^{2} u_{3}^{2}\right. \\
& \quad\left.+185 u_{2}^{4} u_{3}^{2}+324 u_{1}^{2} u_{3}^{4}-207 u_{2}^{2} u_{3}^{4}+63 u_{3}^{6}\right) \varepsilon^{2} \\
& \quad+\left(4 u_{1}^{2}+u_{2}^{2}-u_{3}^{2}\right)^{2}\left(64 u_{1}^{4}+80 u_{1}^{2} u_{2}^{2}+25 u_{2}^{4}+48 u_{1}^{2} u_{3}^{2}-30 u_{2}^{2} u_{3}^{2}+9 u_{3}^{4}\right) .
\end{aligned}
$$

More in general, the ED polynomial of an algebraic variety X is computed via elimination of variables from the ideal of the so-called offset correspondence of X,
for this example see also Example 4.1.4. All the details are explained in Section 4.1, while its first properties are listed in Section 4.2. Note that EDpoly ${ }_{C, u}\left(\varepsilon^{2}\right)$ has degree four in ε^{2}. This agrees with the fact that C, wiewed in the complex space \mathbb{C}^{3}, is transversal to the isotropic quadric $Q: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$, implying EDdegree $(C)=4$ by Proposition 1.8.2. More in general, Horobet and Weinstein showed that, if X is a variety in V, then the ε^{2}-degree of EDpoly $X_{X, u}\left(\varepsilon^{2}\right)$ equals EDdegree (X) (see Theorem 4.2.2). Hence, they linked the subject about offset hypersurfaces to ED degree. The ε-offsets of an algebraic variety have several engineering applications, starting from geometric modeling techniques. They also establish an interesting link between Algebraic Geometry and Architectural Geometry: for instance, rational curves and surfaces with rational offsets possess various applications in Computer-Aided Manufacturing (see [PAHK, Chapter 10]). Farouki and Neff studied algebraic properties of the ε-offset in the setting of plane curves.

In Section 4.3, we analyze the highest coefficient of the ED polynomial of an algebraic variety X. Coming back to the ED polynomial of C, note that its highest coefficient does not depend on the data point u. In particular, the algebraic function $\delta_{u}: C \rightarrow \mathbb{C}$ is integral, meaning geometrically that no branch goes to infinity. This fact holds whenever the algebraic variety X is transversal to Q, as stated in Proposition 4.3.4. Note that in this chapter the transversality assumptions are considered with respect to Definition 4.3.3, which uses the notion of Whitney stratification of a variety.

Finally, in Section 4.4 we consider the lowest coefficient EDpoly $X_{X, u}(0)$, which somehow describes the variety of data points having distance zero to the variety X. In our example, observe that $\mathrm{EDpoly}_{C, u}(0)$ is the product of the square of the equation of C times a quartic polynomial. Indeed, this polynomial is the equation of $\left(C^{\vee} \cap Q\right)^{\vee}$, and its projective real locus is empty. In general, the interpretation is that, when restricting to $V^{\mathbb{R}}$, the points having distance zero from the real locus of X are essentially the points of $X^{\mathbb{R}}$. Anyway, the complex points $u \in V$ such that $q(u-x)=0$ for some critical point $x \in X$ for δ_{u} fill an entire hypersurface in V. When X is not a hypersurface, then $\left(X^{\vee} \cap Q\right)^{\vee}$ is, and its equation is exactly EDpoly $_{X, u}(0)=0$. All these facts lead in general to Theorem 4.4.12, which can be applied for projective varieties. The core of the proof of this result applies the identity in Theorem 4.4.10, which in turn needs Aluffi's formula (1.8.4) for the ED degree as well as Piene's formulas (1.8.6) and (1.8.7) for the polar varieties of a singular projective variety.

4.1 Definition of the ED polynomial

The notation used in this chapter agrees with Section 1.1. In Section 1.2 we recalled the definition of the ED degree of an affine algebraic variety X in a
complex vector space. This important definition uses the ED correspondence $\mathcal{E}(X)$ of X, introduced in Definition 1.2.1.

A nice geometrical description of the ε-offset hypersurface of X is furnished by Horobet and Weinstein in [HW]. For a complex number ε, we define the ε-hyperball centered at $u \in V$ as

$$
\begin{equation*}
\mathcal{V}\left(\delta_{u}-\varepsilon^{2}\right):=\left\{y \in V \mid \delta_{u}(y)=\varepsilon^{2}\right\} . \tag{4.1.1}
\end{equation*}
$$

Note that ε-hyperball centered at $u \in V$ is the usual sphere in \mathbb{C}^{n} only when δ_{u} is defined via the standard Euclidean quadratic form $q^{\mathbb{R}}$ on \mathbb{R}^{n}. Taking into account our assumptions on $q^{\mathbb{R}}$, in general it is a smooth affine quadric hypersurface in V. For example, in the complex vector space $S^{d} V$ of degree d symmetric tensors $f=\left(f_{\alpha}\right)_{|\alpha|=d}$ equipped with the Frobenius quadratic form q_{F}, the ε-hyperball centered at f is not a sphere (see relation (2.1.3)).

Suppose that $x \in X_{\mathrm{sm}}$ is a critical point of δ_{u}. Then trivially $x \in \mathcal{V}\left(\delta_{u}-\delta_{u}(x)\right)$ and the $\pm \sqrt{\delta_{u}(x)}$-hyperball centered at u intersects X non-transversally. This leads to the following definition.
Definition 4.1.1. [HW, Definition 2.1] The ε-offset hypersurface of X is defined to be the union of the centers of ε-hyperballs that intersect the variety X nontransversally at some point $x \in X$. Equivalently the ε-offset hypersurface is the envelope of a family of ε-hyperballs centered on the variety. For a fixed ε we denote the ε-offset hypersurface by $\mathcal{O}_{\varepsilon}(X)$.

The geometrical description given above suggests also the following definition.
Definition 4.1.2. For a fixed $\varepsilon \in \mathbb{C}$, the ε-offset correspondence of X is

$$
\mathcal{O}_{\varepsilon} \mathcal{E}(X):=\mathcal{E}(X) \cap \mathcal{V}\left(\delta_{(\cdot)}-\varepsilon^{2}\right)
$$

where the ED correspondence $\mathcal{E}(X)$ was introduced in Definition 1.2.1 and the hypersurface $\mathcal{V}\left(\delta_{(\cdot)}-\varepsilon^{2}\right) \subset V \times V$ consists of all pairs (x, u) such that $\delta_{u}(x)=\varepsilon^{2}$.

Analogously to (1.2.2), we might consider the diagram

Then the ε-offset hypersurface of X is

$$
\mathcal{O}_{\varepsilon}(X)=\overline{\widetilde{\pi}_{2}\left(\mathcal{O}_{\varepsilon} \mathcal{E}(X)\right)} \subset V
$$

We recall that the ED correspondence $\mathcal{E}(X)$ is an affine variety in $V \times V$ of dimension n. Since the general pair $(x, u) \in \mathcal{E}(X)$ is such that $\delta_{u}(x) \neq \varepsilon^{2}$, we

Figure 4.1: A critical point $x \in X$ for the distance function δ_{u} on the "three leaved clover" $X:\left(x_{1}^{2}+x_{2}^{2}\right)^{3}+3 x_{1}^{2} x_{2}-x_{2}^{3}=0$ and the $\sqrt{\delta_{u}(x)}$-hyperball centered at u.
have that $\mathcal{O}_{\varepsilon} \mathcal{E}(X)$ has dimension $n-1$ in $V \times V$. Moreover, the second projection $\widetilde{\pi}_{2}$ is finite-to-one, hence the dimension of $\widetilde{\pi}_{2}\left(\mathcal{O}_{\varepsilon} \mathcal{E}(X)\right)$ is $n-1$ as well. This fact essentially motivates the name ε-offset hypersurface of X.

How do we get the equation of $\mathcal{O}_{\varepsilon}(X)$? The ideal of $\mathcal{E}(X)$ is the critical ideal $I_{\text {crit }}(X)$ introduced in (1.2.1). Therefore, the ideal of $\mathcal{O}_{\varepsilon} \mathcal{E}(X)$ is

$$
I\left(\mathcal{O}_{\varepsilon} \mathcal{E}(X)\right)=I_{\text {crit }}(X)+\left(\delta_{u}-\varepsilon^{2}\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{n}\right]
$$

Finally, the projection onto the second factor π_{2} corresponds algebraically to elimination of the variables of $x \in X$. Hence the ideal of $\mathcal{O}_{\varepsilon}(X)$ is

$$
I\left(\mathcal{O}_{\varepsilon}(X)\right)=I\left(\mathcal{O}_{\varepsilon} \mathcal{E}(X)\right) \cap \mathbb{C}\left[u_{1}, \ldots, u_{n}\right]
$$

Actually, in this chapter we suppose that ε is a variable as well as the coordinates of u. Therefore, we assume that $I\left(\mathcal{O}_{\varepsilon}(X)\right)$ lives in the larger ring $\mathbb{C}\left[u_{1}, \ldots, u_{n}, \varepsilon\right]$. The unique generator of this ideal is the main object of this chapter.

Definition 4.1.3. Up to a scalar factor, we denote the generator of $I\left(\mathcal{O}_{\varepsilon}(X)\right)$ by EDpoly $_{X, u}\left(\varepsilon^{2}\right)$ and we call it the Euclidean Distance polynomial (ED polynomial) of X at u.

Note that, if the variety X is the complex zero locus of a real variety $X^{\mathbb{R}}$, then the elimination procedure that produces the ideal $I\left(\mathcal{O}_{\varepsilon}(X)\right)$ gives EDpoly ${ }_{X, u}\left(\varepsilon^{2}\right)$ with real coefficients.

Example 4.1.4. According to Definition 4.1.3, the following M2 code computes the ED polynomial of the affine cone $C \subset \mathbb{R}^{3}$ discussed in the preamble of this chapter, with respect to $u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}$. It may be adapted to any affine variety in a complex vector space V.

```
R = QQ[x_1,x_2, x_3,u_1,u_2,u_3,e];
IX = ideal(4*x_1^2+x_2^2-x_3^2);
ISingX = IX+minors(codim IX,compress transpose jacobian IX);
jacX = matrix{{u_1-x_1,u_2-x_2,u_3-x_3}}||
(compress transpose jacobian IX);
IcritX = saturate(IX+minors((codim IX)+1, jacX), ISingX);
IoffsetX = IcritX+ideal(sum(3,j-> (u_(j+1)-x_(j+1))^2)-e^2);
EDpolyX = (eliminate({x_1,x_2,x_3},IoffsetX))_0
```

In Definition 1.2.12, we introduced the ED discriminant Σ_{X} as the branch locus of the second projection in (1.2.2). Analogously, here we consider the second projection $\widetilde{\pi}_{2}$ in (4.1.2). For a general $\varepsilon \in \mathbb{C}$, the branch locus $B_{\varepsilon}(X, X)$ of $\widetilde{\pi}_{2}$ is generically a hypersurface inside $\mathcal{O}_{\varepsilon}(X)$, by the Nagata-Zariski Purity Theorem [Zar, Nag]. Since $\mathcal{O}_{\varepsilon}(X)$ is in turn a hypersurface in V, then $B_{\varepsilon}(X, X)$ is a codimension two variety in V. More precisely, the variety $B_{\varepsilon}(X, X)$ is populated by all data points $u \in \mathcal{O}_{\varepsilon}(X)$ such that either $\left\{\left(x_{1}, u\right),\left(x_{2}, u\right)\right\} \subset \mathcal{O}_{\varepsilon} \mathcal{E}(X)$ for some smooth critical points $x_{1} \neq x_{2}$ of δ_{u} on X, or $(x, u) \in \mathcal{O}_{\varepsilon} \mathcal{E}(X)$ with multiplicity two for some smooth critical point x of δ_{u} on X.

Definition 4.1.5. The bisector hypersurface of X is the closure of the union of all branch loci of $\widetilde{\pi}_{2}$:

$$
B(X, X):=\overline{\bigcup_{\varepsilon \in \mathbb{C}} B_{\varepsilon}(X, X)}
$$

For instance, in Example 2.4.2 we computed the bisector hypersurface of the rational normal curve $X_{(3)}$. Moreover, the red curve in Figure 4.2 corresponds to the bisector curve of $X: x_{1}^{3}-x_{2}=0$. Finally, we determine in (5.4.13) the equation of the bisector hypersurface of $X_{3} \cong \operatorname{Seg}_{3}\left(\mathbb{P}_{\mathrm{C}}^{1} \times \mathbb{P}_{\mathrm{C}}^{1} \times \mathbb{P}_{\mathrm{C}}^{1}\right)$.

4.2 First properties of the ED polynomial

The following proposition states that the distance function is a root of the ED polynomial. It is a consequence of Lemma 1.2.2 and Definition 4.1.3.

Proposition 4.2.1. For general $u \in V$, the roots of $\mathrm{EDpoly}_{X, u}\left(\varepsilon^{2}\right)$ are precisely of the form $\varepsilon^{2}=\delta_{u}(x)$, where x is a critical point of the squared distance function δ_{u} on X_{sm}. In particular the distance ε from the real locus $X^{\mathbb{R}}$ to a data point $u \in V^{\mathbb{R}}$ is a root of $\operatorname{EDpoly}_{X, u}\left(\varepsilon^{2}\right)$. Moreover $\operatorname{EDpoly}_{X, u}(0)=0$ for all $u \in X^{\mathbb{R}}$.

Introducing the ED polynomial EDpoly $X_{X, u}\left(\varepsilon^{2}\right)$, we stressed that ε is seen as a variable as well as the coordinates of the data point u. Hence, a natural question is to compute the ε^{2}-degree of EDpoly ${ }_{X, u}\left(\varepsilon^{2}\right)$.
Theorem 4.2.2. [HW, Theorem 2.9] For a general $u \in V$, the ε^{2}-degree of EDpoly $_{X, u}\left(\varepsilon^{2}\right)$ coincides with the $E D$ degree of X.
Proof. Observe that a fixed general point $u \in V$ is an element of the ε-offset hypersurface $\mathcal{O}_{\varepsilon}(X)$ for precisely two times ED degree many distinct ε. This is because u has $N=\operatorname{EDdegree}(X)$ many critical points to X, say x_{1}, \ldots, x_{N} and then the corresponding offset hypersurfaces that include u are the ones where

$$
\varepsilon \in\left\{ \pm \sqrt{\delta_{u}\left(x_{1}\right)}, \ldots, \pm \sqrt{\delta_{u}\left(x_{N}\right)}\right\}
$$

This is equivalent to $\operatorname{EDpoly}_{X, u}\left(\varepsilon^{2}\right)$ having exactly two times N many roots, and the roots are precisely $\pm \sqrt{\delta_{u}\left(x_{i}\right)}$ for $i \in[N]$ by Proposition 4.2.1.

The ED polynomial behaves well under the union of varieties, as shown by the following proposition.
Proposition 4.2.3. Assume $X=X_{1} \cup \cdots \cup X_{r}$ for some integer $r \geq 0$, where $X_{i} \subset V$ is a reduced variety for every $i \in\{1, \ldots, r\}$ and $X_{i} \neq X_{j}$ for every $i \neq j$. Then

$$
\operatorname{EDpoly}_{X, u}\left(\varepsilon^{2}\right)=\prod_{i=1}^{r} \operatorname{EDpoly}_{X_{i}, u}\left(\varepsilon^{2}\right)
$$

Proof. For general $u \in V$, the variety of the critical ideal $I_{\text {crit }}(X)$ in V with respect to X is the union of the varieties $I_{\text {crit }}\left(X_{i}\right)$. The conclusion follows by Lemma 4.2.1.

As we pointed out in Section 1.2, for an affine variety $X \subset V$, the number of complex-valued critical points of δ_{u} remains constant as the data point u varies in V, and this number is equal to EDdegree (X). On the other hand, the number of real-valued critical points of δ_{u} is constant on the connected components of the complement of the ED discriminant Σ_{X} (see Definition 1.2.12). In particular, if u is close to Σ_{X}, then two distinct real (or complex conjugate) roots of EDpoly $_{X, u}\left(\varepsilon^{2}\right)$ tend to coincide. This fact implies the following natural result, which appears essentially in [HW, Proposition 2.13], where the discriminant of the ED polynomial was called offset discriminant.

Proposition 4.2.4. Given an affine variety $X \subset V$, let f and g be the equations of the $E D$ discriminant Σ_{X} and of the bisector hypersurface $B(X, X)$, respectively. Define

$$
\Delta_{X}(u):=\Delta_{\varepsilon^{2}} \operatorname{EDpoly}_{X, u}\left(\varepsilon^{2}\right)
$$

to be the discriminant of the ED polynomial of X at u. Then $f(u) g(u)$ divides $\Delta_{X}(u)$. In particular, if X is symmetric to a finite number s of affine hyperplanes L_{1}, \ldots, L_{s} of equations l_{1}, \ldots, l_{s}, then

$$
L_{1} \cup \cdots \cup L_{s} \subset B(X, X)
$$

namely the product $l_{1}(u) \cdots l_{s}(u)$ divides $g(u)$.
Proof. By definitions 1.2.12 and 4.1.5 of ED discriminant and bisector hypersurface, any point $u \in \Sigma_{X} \cup B(X, X)$ satisfies $\Delta_{X}(u)=0$, since two roots in ε^{2} coincide, by Proposition 4.2.1. Let $u \in L_{i}$ and let $x \in X_{\mathrm{sm}} \backslash L_{i}$ be a critical point of the distance function δ_{u} (there exists at least one). Call y the reflection of x with respect to L_{i}. In particular, $y \in X$ as well and y is again a critical point of δ_{u}. Since $\delta_{u}(x)=\delta_{u}(y)$, we have that $u \in B(X, X)$, hence it is a zero of $\Delta_{X}(u)$.

Remark 4.2.5. If $X \subset V$ is symmetric to an infinite number of affine hyperplanes of V, then there exist $p \in V$ and $r \in \mathbb{C}$ such that the hyperplanes of symmetry of X are exactly the ones containing p and X is the sphere centered in p of radius r. In this special case, $\Delta_{X}(u)$ coincides with the equation of Σ_{X}, which in turn is the sphere centered in p of radius zero.

Example 4.2.6. We provide a couple of examples related to Proposition 4.2.4. First, Salmon remarks in [Sal, $\S 372$ ex. 3] that when X is an ellipse with symmetry axes L_{1}, L_{2}, with the notation of Proposition 4.2.4, then

$$
\Delta_{X}(u)=\left(l_{1} l_{2}\right)^{2} f^{3}
$$

of total degree 22. On one hand, the union $L_{1} \cup L_{2}$ forms the bisector curve $B(X, X)$. On the other hand, the curve cut out by f is a sextic Lamé curve and corresponds to the evolute of the ellipse depicted in Figure 3.

A concrete example of an affine curve without symmetry axes is furnished in Figure 4.2, where $X: x_{1}^{3}-x_{2}=0$ and

$$
\Delta_{X}(u)=h^{2} f^{3}
$$

Again, the curve cut out by f is the evolute

$$
\Sigma_{X}: 8748 x_{1} x_{2}^{5}+9375 x_{1}^{4}+20250 x_{1}^{2} x_{2}^{2}-729 x_{2}^{4}-4800 x_{1} x_{2}+256=0
$$

whereas the curve cut out by h is the bisector curve

$$
\begin{aligned}
B(X, X): & 216 x_{1}^{3} x_{2}^{5}+3125 x_{1}^{6}+1125 x_{1}^{4} x_{2}^{2}+27 x_{1}^{2} x_{2}^{4}+27 x_{2}^{6} \\
& +400 x_{1}^{3} x_{2}+144 x_{1} x_{2}^{3}-48 x_{1}^{2}-16 x_{2}^{2}=0 .
\end{aligned}
$$

Figure 4.2: The two components Σ_{X} and $B(X, X)$ of the zero locus of $\Delta_{\varepsilon^{2}}$ EDpoly $_{X, u}\left(\varepsilon^{2}\right)$.

Note that in these computations as well as in Example 2.4.2 and in (5.4.12), the equations of $B(X, X)$ and Σ_{X} appear in the expression of $\Delta_{X}(u)$ with exponents two and three, respectively. It should be interesting to compute in general the exponents occurring in the factorization of $\Delta(u)$.

The principal results of this chapter regard affine cones X with the origin as the vertex. In this case $I(X)$ is homogeneous and moreover, all coefficients of EDpoly $_{X, u}\left(\varepsilon^{2}\right)$ are homogeneous in the variables of u.

Definition 4.2.7. Let $Z \subset \mathbb{P}(V)$ be a projective variety. The $E D$ polynomial of Z is by definition the ED polynomial of its affine cone of Z in V.

As we underlined in Section 1.3, for affine cones there is a notion of duality. By Theorem 1.3.3, the ED degrees of an affine cone X and of its dual affine cone X^{\vee}, both interpreted as varieties in V, coincide. This nice geometric property
has a natural algebraic counterpart in the study of the ED polynomial of X, stated in the following proposition.

Theorem 4.2.8. Let $X \subset V$ be an affine cone and X^{\vee} its dual in V. Then

$$
\operatorname{EDpoly}_{X, u}\left(\varepsilon^{2}\right)=\operatorname{EDpoly}_{X^{\vee}, u}\left(q(u)-\varepsilon^{2}\right)
$$

Proof. Fix a data point $u \in V$ and let x be a critical point of δ_{u} on X. Then, by Proposition 4.2.1, $\varepsilon_{1}^{2}=q(u-x)$ is a root of EDpoly $X_{X, u}\left(\varepsilon^{2}\right)$. Applying Theorem 1.3.3, $u-x$ is a critical point of δ_{u} on X^{\vee}. Hence again by Proposition 4.2.1, $\varepsilon_{2}^{2}=q(x)$ is a root of EDpoly X^{\vee}, u. Moreover, by the Pythagorean Theorem we have the equality $q(u)=\varepsilon_{1}^{2}+\varepsilon_{2}^{2}$, thus giving the desired result.

When X is a hypersurface transversal to Q (to be defined in Definition 4.3.3), after Theorem 4.4.12, the last result allows to write explicitly the equation of X^{\vee} from EDpoly ${ }_{X, u}\left(\varepsilon^{2}\right)$.

An immediate consequence of Theorems 1.3.3 and 4.2.8 is the equality between the discriminants of the ED polynomials of an affine cone X and its associated dual affine cone X^{\vee}.

Corollary 4.2.9. Let $X \subset V$ be an affine cone and X^{\vee} its dual in V. Then

$$
\Delta_{X}(u)=\Delta_{X^{\vee}}(u)
$$

where $\Delta_{X}(u)$ was defined in Proposition 4.2.4. In particular, the ED discriminants Σ_{X} and $\Sigma_{X \vee}$ coincide, as well as the bisector hypersurfaces $B(X, X)$ and $B\left(X^{\vee}, X^{\vee}\right)$.

A special case occurs by adding a hyperplane "at infinity" at the affine space V, which in Section 1.1 was denoted by H_{∞}. In particular, $V \cup H_{\infty} \cong \mathbb{P}(\mathbb{C} \oplus V) \cong \mathbb{P}_{\mathbb{c}}^{n}$, with coordinates $x_{0}, x_{1}, \ldots, x_{n}$, and $H_{\infty}: x_{0}=0$.

We know from [DHOST, Section 6] that in general the ED degree of an affine variety $X \subset V$ is not preserved under the operation of projective closure. Here we stress that the ED degree of X is computed with respect to the quadratic form q, whereas the quadratic form $\bar{q}(x):=x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2}$ is the one used to compute the ED degree of the projective closure \bar{X} in $V \cup H_{\infty}$. Note that there are infinitely many possible choices of quadratic forms on \mathbb{P}_{c}^{n} that restrict to q on V. This is one of the reasons why EDdegree (X) and EDdegree (\bar{X}) are not related in general. Actually, this fact is even clearer when comparing the ED polynomial of X with respect to the ED polynomial of \bar{X}, as shown in the following example (see also Example 4.3.6).

Figure 4.3: The example of the hyperbola X.

Example 4.2.10. Consider the hyperbola $X: 4 x_{1}^{2}-9 x_{2}^{2}-1=0$ in Figure 4.3.
Given a data point $u=\left(u_{1}, u_{2}\right) \in \mathbb{C}^{2}$, one can verify that
EDpoly $_{X, u}(0)=\left(4 u_{1}^{2}-9 u_{2}^{2}-1\right)^{2}\left(1296 u_{1}^{4}+2592 u_{1}^{2} u_{2}^{2}+1296 u_{2}^{4}-936 u_{1}^{2}+936 u_{2}^{2}+169\right)$.
The second factor of the above polynomial is the product of the four pairwise conjugate lines tangent to X and meeting $Q_{\infty}=\{[0,1, \sqrt{-1}],[0,1,-\sqrt{-1}]\}$ at infinity. This fact is clarified after Proposition 4.4.2. On the other hand, we consider the projective closure $\bar{X}: 4 x_{1}^{2}-9 x_{2}^{2}-x_{0}^{2}=0$ of X and we compute its ED polynomial with respect to the point $\bar{u}=\left[1, u_{1}, u_{2}\right]$. Now we obtain that

EDpoly $_{\bar{X}, \bar{u}}(0)=\left(4 u_{1}^{2}-9 u_{2}^{2}-1\right)^{2}\left(1024 u_{1}^{4}+2880 u_{1}^{2} u_{2}^{2}+2025 u_{2}^{4}-832 u_{1}^{2}+1170 u_{2}^{2}+169\right)$.
Note that the second factor of EDpoly $\bar{X}_{\bar{X}}(0)$ corresponds to the dual variety of $\bar{X}^{\vee} \cap \bar{Q}$ which is the union of four pairwise conjugate lines different from its corresponding ones in EDpoly ${ }_{X, u}(0)$ (see Corollary 4.4.6).

In order to display all these lines, we consider the change of coordinates of equations $z_{1}=-\sqrt{-1} x_{1}, z_{2}=x_{2}+\sqrt{-1} x_{3}, z_{3}=x_{2}-\sqrt{-1} x_{3}$. Then the image of X is the ellipse of equation $13 z_{1}^{2}-10 z_{1} z_{2}+13 z_{2}^{2}-4=0$. On one hand, the points A, B, C, D in Figure 4.3 generate the four lines corresponding to the second factor of EDpoly $X_{X, u}(0)$. Note that in the new coordinates the lines meeting the points $[0,1, \sqrt{-1}]$ and $[0,1,-\sqrt{-1}]$ at infinity are the horizontal and vertical lines respectively. On the other hand, the union of the four lines generated by E, F, G, H correspond to the second factor of $\operatorname{EDpoly}_{\bar{X}, \bar{u}}(0)$.

A positive result is that, under some reasonable transversality assumptions, EDdegree (X) and EDdegree (\bar{X}) can be related. In particular, in [DHOST,

Lemma 6.7] it is shown a bijection between the critical points of the distance function from the origin $(0, \ldots, 0)$ on X and the critical points of the distance function from $u_{0}:=(1,0, \ldots, 0)$ on \bar{X}. This property has a natural interpretation in terms of ED polynomial, as the following result suggests.
Proposition 4.2.11. Assume that $\operatorname{EDdegree}(X)=\operatorname{EDdegree}(\bar{X})=r$ and that there are r critical points of δ_{0} on X which satisfy $q(x) \neq-1$. Then, up to scalars,

$$
\operatorname{EDpoly}_{X, 0}\left(\varepsilon^{2}\right)=\left(1+\varepsilon^{2}\right)^{r} \cdot \operatorname{EDpoly}_{\bar{X}, u_{0}}\left(\frac{\varepsilon^{2}}{1+\varepsilon^{2}}\right)
$$

Proof. By [DHOST, Lemma 6.7], the map

$$
x \mapsto\left(\frac{1}{1+q(x)}, \frac{1}{1+q(x)} x\right)
$$

is a bijection between the critical points of δ_{0} on X and the critical points of $\delta_{u_{0}}$ on $\bar{X} \backslash X_{\infty}$. Define $r=$ EDdegree(X) and let x_{1}, \ldots, x_{r} be the critical points of δ_{0} on X. By Proposition 4.2.1, the roots of EDpoly $X_{X, 0}\left(\varepsilon^{2}\right)$ are $\varepsilon_{i}^{2}=q\left(x_{i}-0\right)=q\left(x_{i}\right)$, $i \in\{1, \ldots, r\}$. Let $\tilde{x}_{i} \in \bar{X}$ be the critical point of $\delta_{u_{0}}$ corresponding to x_{i} for all $i \in\{1, \ldots, r\}$. Hence $\tilde{\varepsilon}_{i}^{2}=\bar{q}\left(\tilde{x}_{i}-u_{0}\right)$ is a root of $\operatorname{EDpoly}_{\bar{X}, u_{0}}\left(\tilde{\varepsilon}^{2}\right)$ for every i. Then by hypothesis we have
$\operatorname{EDpoly}_{X, 0}\left(\varepsilon^{2}\right)=c \cdot\left(\varepsilon^{2}-\varepsilon_{1}^{2}\right) \cdots\left(\varepsilon^{2}-\varepsilon_{r}^{2}\right), \quad \operatorname{EDpoly}_{\bar{X}, u_{0}}\left(\tilde{\varepsilon}^{2}\right)=\tilde{c} \cdot\left(\tilde{\varepsilon}^{2}-\tilde{\varepsilon}_{1}^{2}\right) \cdots\left(\tilde{\varepsilon}^{2}-\tilde{\varepsilon}_{r}^{2}\right)$
for some scalars c and \tilde{c}. Moreover, the following equalities hold true:

$$
\tilde{\varepsilon}_{i}^{2}=\bar{q}\left(\tilde{x}_{i}-u_{0}\right)=\bar{q}\left(\frac{1}{1+q\left(x_{i}\right)}-1, \frac{1}{1+q\left(x_{i}\right)} x_{i}\right)=\frac{\varepsilon_{i}^{2}}{1+\varepsilon_{i}^{2}}, \quad i \in\{1, \ldots, r\}
$$

From this it follows that

$$
\begin{aligned}
& \prod_{i=1}^{r}\left(\tilde{\varepsilon}^{2}-\tilde{\varepsilon}_{i}^{2}\right)=\prod_{i=1}^{r}\left(\frac{\varepsilon^{2}}{1+\varepsilon^{2}}-\frac{\varepsilon_{i}^{2}}{1+\varepsilon_{i}^{2}}\right)= \\
& =\prod_{i=1}^{r} \frac{\varepsilon^{2}-\varepsilon_{i}^{2}}{\left(1+\varepsilon^{2}\right)\left(1+\varepsilon_{i}^{2}\right)}=\frac{c^{\prime}}{\left(1+\varepsilon^{2}\right)^{r}} \prod_{i=1}^{r}\left(\varepsilon^{2}-\varepsilon_{i}^{2}\right)
\end{aligned}
$$

where $c^{\prime}=\prod_{i=1}^{r}\left(1+\varepsilon_{i}^{2}\right)$. From the last chain of equalities, we obtain the desired identity.

Another reasonable property of the ED polynomial is its behavior under the isometry group Isom (V), where an isometry is the composition of a translation and an element of the orthogonal group $O(V)$ introduced at the end of Section
2.1. Fix $g \in \operatorname{Isom}(V)$ and consider the transformed variety $g X:=\{g x \mid x \in X\}$ of X. Then the identity

$$
\operatorname{EDdegree}(g X)=\operatorname{EDdegree}(X)
$$

holds true. For any data point $u \in V$ and any critical point x for δ_{u} we have that $g \cdot x \in g X$ is a critical point for $\delta_{g \cdot u}$. Moreover, we have the identity $q(g \cdot u-g \cdot x)=q(u-x)$. The immediate consequence in terms of ED polynomial is that

$$
\text { EDpoly }_{g X, u}\left(\varepsilon^{2}\right)=\text { EDpoly }_{X, g^{-1} u}\left(\varepsilon^{2}\right)
$$

In the projective setting, we can reduce to the subgroup of isometries that fix the origin, which is precisely $O(V)$.

Proposition 4.2.12.

1. Let $X \subset V$ be an affine variety. Let $G \subset \operatorname{Isom}(V)$ be a group that leaves X invariant. Then the coefficients of EDpoly $X_{X, u}$ are G-invariant.
2. Let $X \subset \mathbb{P}(V)$ be a projective variety. Let $G \subset O(V)$ be a group that leaves X invariant. Then the coefficients of EDpoly $X_{, u}$ are G-invariant.

Proof. The proof is the same in both cases. Let $g \in G$. Since $q(u-x)=$ $q(g \cdot u-g \cdot x)$, the critical values of δ_{u} coincide with the critical values of $\delta_{g \cdot u}$.

Now consider the uniform scaling in V with scale factor $c \in C$. Calling $c X$ the scaling of X, for any data point $u \in V$ and any critical point x for δ_{u} we have that $c x \in c X$ is a critical point for $\delta_{c u}$. Moreover, $q(c u-c x)=c^{2} q(u-x)$ and this implies that

$$
\text { EDpoly }_{c X, u}\left(c^{2} \varepsilon^{2}\right)=\text { EDpoly }_{X, c^{-1} u}\left(\varepsilon^{2}\right)
$$

Remark 4.2.13. There are many meaningful examples with such a G-action. If X is the affine cone of rank-one symmetric tensors in $S^{d} V$ introduced in Definition 2.1.3, the group $G=O(V)$ works. If $X=X_{\mu}$ is the affine cone of decomposable partially symmetric tensors in $S^{\mu} V=S^{\mu_{1}} V_{1} \otimes \cdots \otimes S^{\mu_{s}} V_{r}$ introduced in Chapter 5 , the group $G=O\left(V_{1}\right) \times \ldots \times O\left(V_{s}\right)$ works. In these examples, X and the isotropic quadric Q are not transversal. It should be interesting to study the intersection between X and Q when a positive dimensional group $G \subset O(V)$ acts on X.

All the mentioned properties of the ED polynomial are general. Now we start considering specific types of varieties. The simplest varieties to consider are affine subspaces of V.

Proposition 4.2.14 (The ED polynomial of an affine subspace). Let $L \subset V^{\mathbb{R}}$ be an affine subspace and let $\pi_{L^{\perp}}$ be the orthogonal projection onto L^{\perp}. Then for any data point $u \in V$ the $E D$ polynomial of L is

$$
\operatorname{EDpoly}_{L, u}\left(\varepsilon^{2}\right)=\varepsilon^{2}-q\left(\pi_{L^{\perp}}(u)\right)
$$

Proof. By Proposition 1.2.7 and Remark 1.2.9, the only critical point of δ_{u} from L is $\pi_{L}(u)$, hence EDdegree $(L)=1$. The statement follows by the identity $\pi_{L^{\perp}}(u)=u-\pi_{L}(u)$, see also [DHOST, Example 2.2].

Remark 4.2.15. Proposition 4.2 .14 extends to complex subspaces L such that L_{∞} is transversal to Q_{∞}.

The case of linear subspaces (that is, affine subspaces containing the origin) is simpler and it is contained in next Corollary. This is generalized to any variety in Theorem 4.4.12.

Corollary 4.2.16 (The ED polynomial of a linear subspace). Let $L \subset V$ be a linear subspace transversal to Q (this is always the case if L is the complexification of a real subspace).

1. If $\operatorname{codim}(L) \geq 2$, then the dual projective variety of $L^{\perp} \cap Q$ is the quadric hypersurface cut out by a polynomial g and

$$
\operatorname{EDpoly}_{L, u}\left(t^{2}\right)=t^{2}-g(u)
$$

2. If L is the hyperplane cut out by a polynomial f, then

$$
\text { EDpoly }_{L, u}\left(t^{2}\right)=t^{2}-f^{2}(u)
$$

Proof. In the following, we interpret L, L^{\perp} and Q as projective varieties of $\mathbb{P}(V)$. It is straightforward to check that the dual variety of $L^{\perp} \cap Q$ is the join between L and $L^{\perp} \cap Q$ (see Definition 4.4.1), which is a quadric cone with vertex L, having equation $q\left(\pi_{L^{\perp}}(u)\right)$. If L is a hyperplane then $L^{\perp} \cap Q=\emptyset$ and the quadric cone has rank one.

Example 4.2.17. For example, if $L \subset \mathbb{C}^{2}$ is a point, then the quadric Z_{L} cut out by $q\left(\pi_{L^{\perp}}(u)\right)$ is the circumference centered in L of radius zero, namely the union of the lines joining L and the points of Q_{∞} (the dashed lines in Figure 4.4), where in this case $Q_{\infty}=I \cup J, I=[1, \sqrt{-1}, 0], J=[1,-\sqrt{-1}, 0]$.

More in general, the quadric Z_{L} has a nontrivial description. We refer to Section 4.4 for a complete study of the lowest term of the ED polynomial of an affine variety. Anyway, when restricting to the real points of V, the quadric Z_{L} restricts to L.

Figure 4.4: The dashed lines above form the quadric Z_{L} when $L \subset \mathbb{C}^{2}$ is a point.

Example 4.2.18 (The ED polynomial of an affine conic). Let $u=\left(u_{1}, u_{2}\right) \in \mathbb{C}^{2}$ be a data point. A general affine conic $C \subset \mathbb{C}^{2}$ has equation

$$
C: a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}+d x_{1}+e x_{2}+f=0
$$

The ED polynomial of C at u may be written in the form

$$
\text { EDpoly }_{C, u}\left(\varepsilon^{2}\right)=c_{4} \varepsilon^{8}+c_{3} \varepsilon^{6}+c_{2} \varepsilon^{4}+c_{1} \varepsilon^{2}+c_{0}
$$

Note that this polynomial contains only even powers of ε and has degree four in ε^{2}, according to the fact that the general plane conic C is such that $\operatorname{EDdegree}(\mathrm{C})=4$, by Proposition 1.8.2. In particular, we display the two extreme coefficients of EDpoly $_{C, u}$:

$$
\begin{aligned}
& c_{4}=\left(b^{2}-4 a c\right)^{2}\left[(a-c)^{2}+b^{2}\right], \\
& c_{0}=\left(a u_{1}^{2}+b u_{1} u_{2}+c u_{2}^{2}+d u_{1}+e u_{2}+f\right)^{2} g\left(u_{1}, u_{2}\right) .
\end{aligned}
$$

Note that the first factor of c_{0} is the square of the equation of C. Let us concentrate on the factor $g\left(u_{1}, u_{2}\right)$. As explained in more generality in Proposition 4.4.2, the locus of zeros of g is the union of the four lines tangent to C and passing through the points of $Q_{\infty}=\{[0,1, \sqrt{-1}],[0,1,-\sqrt{-1}]\}$. We denote these lines by $L_{1}^{+}, L_{2}^{+}, L_{1}^{-}, L_{2}^{-}$, where

$$
L_{1}^{+} \cap L_{2}^{+}=[0,1, \sqrt{-1}], \quad L_{1}^{-} \cap L_{2}^{-}=[0,1,-\sqrt{-1}] .
$$

The foci of the conic C are by definition the four pairwise intersections $L_{1}^{+} \cap L_{1}^{-}$, $L_{1}^{+} \cap L_{2}^{-}, L_{2}^{+} \cap L_{1}^{-}$and $L_{2}^{+} \cap L_{2}^{-}$. If C is either an ellipse or a hyperbola, then C has two real foci. Otherwise if C is either a parabola or a circumference, then C has only one real focus. In the case of a circumference, the only real focus
coincides with the center. In particular, there exist real solutions of the equation $c_{0}=0$ outside the real conic $C^{\mathbb{R}}$ (see also Remark 4.4.4).

Now consider the highest coefficients c_{4}. If both of the two factors in c_{4} do not vanish, then either C is an ellipse or an hyperbola, respectively when $b^{2}-4 a c$ is positive or negative. Moreover, $b^{2}-4 a c=0$ if and only if C is a parabola, whereas $(a-c)^{2}+b^{2}=0$ if and only if (over \mathbb{R}) C is a circumference:

1. If C is a parabola then $\operatorname{EDdegree}(\mathrm{C})=3$. Rewriting the equation of C as $\left(a x_{1}+b x_{2}\right)^{2}+c x_{1}+d x_{2}+e=0$, we get that EDpoly ${ }_{C, u}\left(\varepsilon^{2}\right)$ has degree 3 in ε^{2} and its leading coefficient is $-16(b c-a d)^{2}\left(a^{2}+b^{2}\right)^{3}$. In particular, the condition $b c-a d=0$ forces C to be the union of two distinct parallel lines.
2. If C is a circumference, then EDdegree $(\mathrm{C})=2$. Rewriting the equation of C as $\left(x_{1}-a\right)^{2}+\left(x_{2}-b\right)^{2}-r^{2}=0$, we get that $\operatorname{EDpoly}_{C, u}\left(\varepsilon^{2}\right)$ has degree 2 in ε^{2}. In particular, it factors as

$$
\text { EDpoly }_{C, u}\left(\varepsilon^{2}\right)=\left[\left(x_{1}-a\right)^{2}+\left(x_{2}-b\right)^{2}-(\varepsilon+r)^{2}\right]\left[\left(x_{1}-a\right)^{2}+\left(x_{2}-b\right)^{2}-(\varepsilon-r)^{2}\right]
$$

4.3 The highest coefficient of the ED polynomial

In this section, we study the leading term of the ED polynomial of an affine (respectively, projective) variety X. We show that with transversality assumptions the leading term is scalar, in other terms the ED polynomial may be written as a monic polynomial, see Proposition 4.3 .4 (resp. Corollary 4.3.7). In algebraic terms, this implies that the ED polynomial is an integral algebraic function.

We recall from [VdW, Section 100] that an algebraic function

$$
f(t, u)=\sum_{k=0}^{d} t^{k} p_{k}(u)
$$

is called integral if the leading coefficient $p_{d}(u)$ is constant. The branches of a integral algebraic function are well-defined everywhere. Otherwise, if $p_{d}(u)=0$, then one branch goes to infinity.

To express transversality, we need to recall the Whitney stratification of an algebraic variety. The following definitions are recalled from [Nic, Section 4.2].
Definition 4.3.1. Let $X, Y \subset V$ be two disjoint smooth quasi-projective varieties. We say that the pair (X, Y) satisfies the Whitney regularity condition (a) at $x_{0} \in X \cap \bar{Y}$ if, for any sequence $y_{n} \in Y$ such that

1. $y_{n} \rightarrow x_{0}$,
2. the sequence of tangent spaces $T_{y_{n}} Y$ converges to the subspace T,
we have $T_{x_{0}} X \subset T$. The pair (X, Y) is said to satisfy the Whitney regularity condition (a) along X, if it satisfies this condition at any $x \in X \cap \bar{Y}$.

Definition 4.3.2. Suppose X is a subset of V. A stratification of X is an increasing, finite filtration

$$
F_{-1}=\emptyset \subset F_{0} \subset F_{1} \subset \cdots \subset F_{m}=X
$$

satisfying the following properties:

1. F_{k} is closed in X for all k.
2. For every $k \in\{1, \ldots, m\}$ the set $X_{k}=F_{k} \backslash F_{k-1}$ is a smooth manifold of dimension k with finitely many connected components called the k-dimensional strata of the stratification.
3. (The frontier condition) For every $k \in\{1, \ldots, m\}$ we have $\bar{X}_{k} \backslash X_{k} \subset F_{k-1}$. The stratification is said to satisfy the Whitney condition (a) if, for every $0 \leq$ $j<k \leq m$, the pair (X_{j}, X_{k}) satisfies Whitney's regularity condition (a) along X_{j}. Note that if X is smooth then the trivial stratification $\emptyset \subset X$ satisfies the Whitney condition (a).

We recall (see [PP]) that any affine (or projective) variety admits a Whitney stratification, satisfying condition (a) and a stronger condition (b) that we do not use explicitly in this chapter.

Definition 4.3.3. We say that a variety X is transversal to a smooth variety Y (in the applications we have $Y=Q$) when there exists a Whitney stratification of X such that each stratum is transversal to Y.

If X is smooth and the schematic intersection $X \cap Y$ is smooth, then X is transversal to Y according to Definition 4.3.3.

If each stratum of a Whitney stratification of X is transversal to a smooth variety Y, then by [PP, Lemma 1.2] this stratification induces a Whitney stratification of $X \cap Y$.

Proposition 4.3.4. Let $X \subset V$ be an affine variety. If X_{∞} is transversal to Q_{∞} (according to Definition 4.3.3), then the ED polynomial of X is an integral algebraic function.

Proof. This proof uses the interpretation of duality as polarity with respect to the isotropic quadric Q_{∞}, hence for more details about the subject and the notation we refer to Section 1.1.

If the ED polynomial is not an integral algebraic function, then there is a point $u \in V$ that annihilates the leading coefficient of EDpoly ${ }_{X, u}$. We get a sequence $\left\{u_{k}\right\} \subset V$ such that $u_{k} \rightarrow u$ and a corresponding sequence $\left\{x_{k}\right\} \subset X$ of critical points for $\delta_{u_{k}}$ such that EDpoly ${ }_{X, u_{k}}\left(\varepsilon_{k}^{2}\right)=0$ when $\varepsilon_{k}^{2}=q\left(x_{k}-u_{k}\right)$ diverges. In particular we have that $\left\langle u_{k}-x_{k}\right\rangle \in\left[\left(T_{x_{k}} X\right)_{\infty}\right]^{\perp}$ for all k, where the dual is taken in the projective subspace H_{∞}. Up to subsequences, we may assume that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\langle x_{k}\right\rangle=:\langle x\rangle \in X_{\infty}, \text { for some } x \in V \text {. } \tag{4.3.1}
\end{equation*}
$$

We may assume there are two different strata X_{1} and X_{2} of \bar{X} such that $x_{k} \in X_{1}$ for all k and $\langle x\rangle \in X_{2}$. In the topology of the compact space $\bar{X}=$ $X \cup X_{\infty}$ we still have $x_{k} \rightarrow\langle x\rangle \in X_{\infty}$, more precisely in $\mathbb{P}(\mathbb{C} \oplus V)$ we have $\left[\left(1, x_{k}\right)\right] \rightarrow[(0, x)]$. We may assume (up to subsequences) that $\left\{T_{x_{k}} X_{1}\right\}$ has a limit. Hence by Whitney condition (a) we have $T_{\langle x\rangle} X_{2} \subset \lim _{k \rightarrow \infty} T_{x_{k}} X_{1}$. From this and from (4.3.1) we have immediately that

$$
\begin{equation*}
\langle x\rangle \in T_{\langle x\rangle}\left(X_{2}\right)_{\infty} \subset \lim _{k \rightarrow \infty}\left(T_{x_{k}} X_{1}\right)_{\infty} \tag{4.3.2}
\end{equation*}
$$

Since $\left\{x_{k}\right\}$ diverges we get

$$
\langle x\rangle=\lim _{k \rightarrow \infty}\left\langle u-x_{k}\right\rangle=\lim _{k \rightarrow \infty}\left\langle u_{k}-x_{k}\right\rangle .
$$

By construction, we have that $\left\langle u_{k}-x_{k}\right\rangle \in\left[\left(T_{x_{k}} X_{1}\right)_{\infty}\right]^{\perp}$ for all k. This fact and relation (4.3.1) imply that

$$
\langle x\rangle=\lim _{k \rightarrow \infty}\left\langle u_{k}-x_{k}\right\rangle \in \lim _{k \rightarrow \infty}\left[\left(T_{x_{k}} X_{1}\right)_{\infty}\right]^{\perp} \subset\left[\lim _{k \rightarrow \infty}\left(T_{x_{k}} X_{1}\right)_{\infty}\right]^{\perp}
$$

In particular $\langle x\rangle \in\left[\lim _{k \rightarrow \infty}\left(T_{x_{k}} X_{1}\right)_{\infty}\right] \cap\left[\lim _{k \rightarrow \infty}\left(T_{x_{k}} X_{1}\right)_{\infty}\right]^{\perp}$, hence $\langle x\rangle \in Q_{\infty}$.
We now show that $T_{\langle x\rangle}\left(X_{2} \cap H_{\infty}\right) \subset T_{\langle x\rangle} Q_{\infty}$, where

$$
T_{\langle x\rangle} Q_{\infty}=\left\{\langle y\rangle \in H_{\infty} \mid q(\langle x\rangle,\langle y\rangle)=0\right\} .
$$

Pick a nonzero vector $v \in V$ such that $\langle v\rangle \in T_{\langle x\rangle}\left(X_{2} \cap H_{\infty}\right)$. We claim that $q(\langle x\rangle,\langle v\rangle)=0$, where q is the quadratic form in $H_{\infty}=\mathbb{P}(V)$, which is the quadratic form defined on V.

Indeed, pick a sequence $\left\langle v_{k}\right\rangle \rightarrow\langle v\rangle$, where $\left\langle v_{k}\right\rangle \in\left(T_{x_{k}} X_{1}\right)_{\infty}$. Since $q\left(u_{k}-\right.$ $\left.x_{k}, v_{k}\right)=0$ for all k, at the limit we get $q(\langle x\rangle,\langle v\rangle)=0$. This contradicts the transversality between X_{∞} and Q_{∞}, as we wanted.

Remark 4.3.5. The transversality conditions stated in Proposition 4.3 .4 are sufficient for the integrality of the distance function, but not necessary: for example, the parabola studied in Example 4.2.18 is in general transversal to Q_{∞}, but not transversal to H_{∞}. Nevertheless, its ED polynomial is monic.

On the other hand, the cardioid studied in Example 4.3 .6 is singular at Q_{∞} (and consequently is not transversal to H_{∞}), and its ED polynomial has a leading coefficient of positive degree. It should be interesting to find general necessary conditions for the integrality of the distance function.
Example 4.3.6. Let $C \subset \mathbb{R}^{2}$ be the real affine cardioid of equation $\left(x_{1}^{2}+x_{2}^{2}-\right.$ $\left.2 x_{1}\right)^{2}-4\left(x_{1}^{2}+x_{2}^{2}\right)=0$. It has a cusp at the origin and at the isotropic points at H_{∞}. Hence, according to the formula (1.8.4), EDdegree $(\bar{C})=16-3 \times 3=7$. On the other hand, $\operatorname{EDdegree}(C)=3$: the drop is caused essentially by the nontransversality with Q_{∞}. Computing the ED polynomial of C, one may observe that its leading coefficient is $\left(x_{1}-1\right)^{2}+x_{2}^{2}$, namely one branch of the distance function diverges when the chosen data point is $u=(1,0)$. It is interesting to note that the projective embedding of $(1,0)$ is the meeting point of the three tangent cones at the three cusps of \bar{C}. Moreover, the cardioid C is the trace left by a point, initially at the origin, on the perimeter of a circle of radius 1 that is rolling around the circle centered in $(1,0)$ of the same radius. In Figure 4.5 we see that the ED discriminants Σ_{C} and $\Sigma_{\bar{C}}$ are dramatically different. While the real part of Σ_{C} is again a cardioid, the real part of $\Sigma_{\bar{C}}$ divides the plane into four connected components, one of them is shown in the detail on the right of Figure 4.5.

Corollary 4.3.7. Let $X \subset \mathbb{P}(V)$ be a projective variety. If X is transversal to Q, according to Definition 4.3.3 then for any data point $u \in V$

$$
\operatorname{EDpoly}_{X, u}\left(\varepsilon^{2}\right)=\sum_{j=0}^{d} p_{j}(u) \varepsilon^{2 j}
$$

where $d=\operatorname{EDdegree}(X)$ and $p_{j}(u)$ is a homogeneous polynomial in the coordinates of u of degree $2 d-2 j$. In particular, $p_{d}(u)=p_{d} \in \mathbb{C}, \operatorname{deg}\left(p_{0}\right)=2 d$ and the $E D$ polynomial of X is an integral algebraic function.

Proof. For affine cones, the assumption that X is transversal to Q is equivalent to X_{∞} transversal to Q_{∞}.

Another consequence of Proposition 4.3.4 and Theorem 4.2.2, valid for projective varieties, is the following.
Corollary 4.3.8. Let $X \subset \mathbb{P}(V)$ be a projective variety. If X is transversal to Q, according to Definition 4.3 .3 then the degree of the ε-offset of X is

$$
\operatorname{deg}\left(\mathcal{O}_{\varepsilon}(X)\right)=2 \operatorname{EDdegree}(X)
$$

Figure 4.5: The cardioid C with its ED discriminant Σ_{C} and the restriction to the affine plane of the ED discriminant $\Sigma_{\bar{C}}$ of its projectivization \bar{C}. A detail of $\Sigma_{\bar{C}}$ on the right.

4.4 The lowest coefficient of the ED polynomial

In the last section, we gave some geometric conditions on X that affect the shape of its ED polynomial. In particular, we have obtained some useful pieces of information about the degrees of the coefficients of EDpoly ${ }_{X, u}$ for a general data point $u \in V$. In this section, we aim to describe completely the locus of points $u \in V$ such that the lowest term of the ED polynomial of X at u vanishes. First, we recall a definition.

Definition 4.4.1. Let $X, Y \in \mathbb{P}(V)$ be two disjoint projective varieties. The union

$$
J(X, Y)=\bigcup_{x \in X, y \in Y}\langle x, y\rangle \subset \mathbb{P}(V)
$$

of the lines joining points of X to points of Y is again a projective variety (see [Har, Example 6.17]) and is called the join of X and Y. Note that $J(X, \emptyset)=X$.

Proposition 4.4.2. Consider an affine variety $X \subset V$. Given any point $p \in$ X_{sm}, we define $J_{X, p}:=J\left(p,\left[\left(T_{p} X\right)_{\infty}\right]^{\perp} \cap Q_{\infty}\right) \subset V \cup H_{\infty}=\mathbb{P}(V \oplus \mathbb{C})$. Then the zero locus $u \in V$ of $\operatorname{EDpoly}_{X, u}(0)$ is $J_{X} \cap V$, where

$$
J_{X}:=\overline{\bigcup_{p \in X_{\mathrm{sm}}} J_{X, p}} \subset V \cup H_{\infty}
$$

Proof. The variety $\left[\left(T_{p} X\right)_{\infty}\right]^{\perp} \cap Q_{\infty} \subset H_{\infty}$ parametrizes all the directions in V corresponding to isotropic vectors w such that $w \in N_{p} X$. In particular, for all $p \in X_{\mathrm{sm}}$, the variety $J_{X, p}$ is the union of the lines passing from p and generated by isotropic vectors w such that $w \in N_{p} X$.

Now pick a point $u \in J_{X} \cap V$. Then u is a limit of points u_{k}, such that there exist $p_{k} \in X_{\mathrm{sm}}$ with $u_{k} \in J_{X, p_{k}}$. Hence $u_{k}=p_{k}+w_{k}$ for some vector $w_{k} \in V$ whose direction belongs to $\left[\left(T_{p_{k}} X\right)_{\infty}\right]^{\perp} \cap Q_{\infty}$. In particular $q\left(w_{k}\right)=q\left(u_{k}-p_{k}\right)=$ 0 and $w_{k} \in N_{p_{k}} X$, that is, p_{k} is a critical point on X of the squared distance function $\delta_{u_{k}}$. In particular, u_{k} is a zero of $\operatorname{EDpoly}_{X, u}(0)$, hence u is a zero of EDpoly $_{X, u}(0)$ as we wanted.

Conversely, let $u \in V$ be a general zero of $\operatorname{EDpoly}_{X, u}(0)$. Then there exist $p \in X_{\mathrm{sm}}$ such that $u-p \in N_{p} X$ and $0=q(u-p)$. Define $w=u-p$. Then the direction corresponding to w, when nonzero, is represented by a point of $\left[\left(T_{p} X\right)_{\infty}\right]^{\perp} \cap Q_{\infty}$, namely $u \in J_{X, p} \subset J_{X} \cap V$. When $w=0$, we have $u=p \in J_{X, p}$. Conclusion follows by taking closures.

Example 4.4.3. The simplest case is when V is 2-dimensional. Let C be an affine plane curve which is transversal with the isotropic quadric at infinity. In this case, $Q_{\infty}=\{[0,1, \sqrt{-1}],[0,1,-\sqrt{-1}]\}$.

Looking at Proposition 4.4.2, for any $p \in C_{\mathrm{sm}}$, we have $J_{C, p} \neq \emptyset$ if and only if $T_{p} C=p+\langle v\rangle$ with $v \in\{(1, \sqrt{-1}),(1,-\sqrt{-1})\}$. In other words, the zero locus of EDpoly ${ }_{C, u}(0)$ is the union of C and of the tangent lines to C meeting Q_{∞}.
Remark 4.4.4. As showed in Example 4.2.18, the real foci of a real conic $C^{\mathbb{R}}$ are zeros of the lowest coefficient of the ED polynomial of C. Therefore, given a real affine variety $X^{\mathbb{R}} \subset V^{\mathbb{R}}$, the hypersurface $J_{X} \cap V$ might contain real points which do not necessarily belong to $X^{\mathbb{R}}$. The reason is that there could exist real data points u admitting (non real) critical points x for the function δ_{u} such that $q(u-x)=0$. This is essentially the price to pay for describing the distance function with algebraic tools and, above all, for allowing non real solutions to the problem. For a concrete example, let $C^{\mathbb{R}}$ be the real ellipse of equation

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}-1=0, \quad a \geq b>0
$$

The two foci of $C^{\mathbb{R}}$ are $u^{ \pm}=(\pm c, 0)$, where $c^{2}=a^{2}-b^{2}$. On one hand, the only real critical points of $\delta_{u^{+}}$and $\delta_{u^{-}}$on $C^{\mathbb{R}}$ are the points $(\pm a, 0)$. On the other hand, with straightforward computations one verifies that the non real points $z^{ \pm}=\left(\frac{a^{2}}{c}, \pm \sqrt{-1} \frac{b^{2}}{c}\right)$ are critical for $\delta_{u^{+}}$on C, as well as $w^{ \pm}=\left(-\frac{a^{2}}{c}, \pm \sqrt{-1} \frac{b^{2}}{c}\right)$ are critical for $\delta_{u^{-}}$on C. Note that, for instance $T_{z^{ \pm}} C: x_{1} \pm \sqrt{-1} x_{2}-c=0$ and coincides with the normal space $N_{z^{ \pm}} C$, with $u^{+}-z^{ \pm} \in N_{z^{ \pm}} C$. In addition, we
have that $q\left(u^{+}-z^{ \pm}\right)=q\left(u^{-}-w^{ \pm}\right)=0$, thus confirming the fact that $u^{ \pm}$are real points of $J_{C} \cap V$.

Proposition 4.4.5. Let $X \subset V$ be an irreducible cone. Then

$$
J_{X} \cap V=X \cup\left(X^{\vee} \cap Q\right)^{\vee} .
$$

Proof. For the proof of this statement, we stress the hidden assumption $X \cup X^{\vee} \not \subset$ Q, which was given in Chapter 1.

Suppose that there exists a point $p \in X_{\mathrm{sm}}$ such that $u \in J_{X, p}$. If $u=p$, then in particular $u \in X$. If $u \neq p$, then $u-p$ is a nonzero element of $X^{\vee} \cap Q$. We show that necessarily $u \in\left(X^{\vee} \cap Q\right)^{\vee}$ when $\left(X^{\vee} \cap Q\right)^{\vee}$ is nonempty.

By definition, we have that $\left(X^{\vee} \cap Q\right)^{\vee}=\bar{S}$, where

$$
S=\bigcup_{z \in\left(X^{\vee} \cap Q\right)_{\mathrm{sm}}} N_{z}\left(X^{\vee} \cap Q\right)
$$

If $X^{\vee} \cap Q$ is non-reduced, then $\left(X^{\vee} \cap Q\right)^{\vee}=\emptyset$ and by taking closures we have trivially that $J_{X} \cap V \subset X \cup\left(X^{\vee} \cap Q\right)^{\vee}$. Hence suppose that $X^{\vee} \cap Q$ is a reduced variety. On one hand, by construction p is critical for δ_{u} on X. On the other hand, since u is general, $u-p$ is critical for δ_{u} on X^{\vee} by Theorem 1.3.3.

In order to prove that $u \in\left(X^{\vee} \cap Q\right)^{\vee}$, it remains to show that $u \in N_{u-p}\left(X^{\vee} \cap\right.$ $Q)$. Indeed, pick a vector $y \in T_{u-p}\left(X^{\vee}\right)$ such that $\langle y, u-p\rangle=0$. The condition that $u-p$ is critical for δ_{u} implies that p is orthogonal to any tangent vector to X^{\vee} at $u-p$, so we have $\langle y, p\rangle=0$. Then

$$
\langle y, u\rangle=\langle y, u-p\rangle+\langle y, p\rangle=0+0=0
$$

thus proving our claim. By taking closures we get

$$
J_{X} \cap V \subset X \cup\left(X^{\vee} \cap Q\right)^{\vee}
$$

On the other hand, suppose that $u \in X \cup\left(X^{\vee} \cap Q\right)^{\vee}$. If $\left(X^{\vee} \cap Q\right)^{\vee}=\emptyset$, then $u \in X$ and clearly $u \in J_{X}$. Now assume that $\left(X^{\vee} \cap Q\right)^{\vee}$ is nonempty and that $u \in S$. Then there exists a smooth $z \in X^{\vee} \cap Q$ such that $u \in N_{z}\left(X^{\vee} \cap Q\right)$. In particular, z is critical for δ_{u} on X^{\vee}. By Theorem 1.3.3, $u-z$ is critical for δ_{u} on X. This means that z is an element of $\left[\left(T_{u-z} X\right)_{\infty}\right]^{\perp} \cap Q_{\infty}$. In particular, $u \in J_{X, u-z}$. By taking the Zariski closure, we have that $X \cup\left(X^{\vee} \cap Q\right)^{\vee} \subset J_{X} \cap V$.

Corollary 4.4.6. Let $X \subset V$ be an affine cone such that $X \cup X^{\vee} \not \subset Q$. Then the locus of zeros $u \in V$ of $\mathrm{EDpoly}_{X, u}(0)$ is

$$
X \cup\left(X^{\vee} \cap Q\right)^{\vee} .
$$

In particular, at least one between X and $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface.

Corollary 4.4.7. Let $X \subset V$ be an affine cone such that $X \cup X^{\vee} \not \subset Q$. If $X^{\vee} \cap Q$ is a non-reduced variety, then necessarily X is a hypersurface.

In the following, we show an improvement of Corollary 4.4.6 applying the theory of Chern-Mather classes. The price to pay is an additional transversality assumption.

Let $Y \subset \mathbb{P}(V)$ be an irreducible projective variety and consider its conormal variety introduced in Definition 1.3.2. As Theorem 1.5.5 states, if $\mathcal{N}\left(Y, Y^{\vee}\right)$ does not intersect the diagonal $\Delta(\mathbb{P}(V)) \subset \mathbb{P}(V) \times \mathbb{P}(V)$, then the ED degree of Y is equal to the sum of its polar classes.

A sufficient condition for $\mathcal{N}\left(Y, Y^{\vee}\right)$ not to intersect $\Delta(\mathbb{P}(V))$ is furnished in the following result.

Proposition 4.4.8. Assume that Y^{\vee} (or Y) is transversal to Q, according to definition 4.3.3. Then $\mathcal{N}\left(Y, Y^{\vee}\right)$ does not intersect $\Delta(\mathbb{P}(V))$.

Proof. By Biduality Theorem it is enough to prove the result for Y^{\vee}. Suppose that $(y, y) \in \mathcal{N}\left(Y, Y^{\vee}\right)$ for some $y \in Y$. By Definition 1.3.2 and by hypothesis, there exists a sequence of vectors $\left(y_{i}, x_{i}\right)$ and pairs $\left(Y_{1}, Y_{2}\right),\left(Y_{1}^{\prime}, Y_{2}^{\prime}\right)$ satisfying the Whitney regularity condition (a) along Y and Y^{\vee} respectively such that

1. $\left(y_{i}, x_{i}\right) \rightarrow(y, y)$,
2. $y_{i} \in Y_{1}, x_{i} \in Y_{1}^{\prime} \cap N_{y_{i}} Y_{1}$ for all i, and
3. $y \in Y_{2} \cap Y_{2}^{\prime}$.

In particular, point (2) says that $q\left(y_{i}, x_{i}\right)=0$ for all i, hence taking the limit we find $y \in Q$.

Now take a vector $v \in T_{y} Y_{2}^{\prime}$. We show that $v \in T_{y} Q$, obtaining that $T_{y} Y_{2}^{\prime} \subset$ $T_{y} Q$, and thus contradicting the transversality assumption. By the Whitney condition (a) we have that $T_{y} Y_{2}^{\prime} \subset \lim _{i \rightarrow \infty} T_{x_{i}} Y_{1}^{\prime}$. This means that there exists a sequence $\left\{v_{i}\right\}$ with $v_{i} \in T_{x_{i}} Y_{1}^{\prime}$ for all i such that $v_{i} \rightarrow v$. From point (2) we have $y_{i} \in N_{x_{i}} Y_{1}^{\prime}$ for all i, hence $q\left(y_{i}, v_{i}\right)=0$ for all i. Finally taking the limit we have $q(y, v)=0$, that is $v \in T_{y} Q$.

In the following, we assume the hypothesis of Proposition 4.4.8. Theorem 1.5.5 allows us to express the ED degree of Y in terms of Chern-Mather classes $c_{j}^{M}(Y)$ via Aluffi's formula in Theorem 1.8.4. Indeed, the polar classes $\delta_{j}(Y)$ of Y are determined by the Chern-Mather classes of Y via the formulas (1.8.6).

In particular, we aim to apply (1.8.7) in the case when $Y=X^{\vee} \cap Q$, once we know the Chern-Mather classes of $X^{\vee} \cap Q$. Since $X^{\vee} \cap Q$ is a divisor in X^{\vee} with normal bundle $\mathcal{O}(2)$, these can be computed by a result of Pragacz
and Parusinski in [PP]. We need the assumption that X^{\vee} is transversal to Q, according to Definition 4.3.3.

Denote by $c^{M}(Y)=\sum_{i} c_{i}^{M}(Y)$ the total Chern-Mather class of Y. The equation displayed in three lines just after [PP, Lemma 1.2] shows that

$$
\begin{equation*}
c^{M}\left(X^{\vee} \cap Q\right)=\frac{1}{1+2 h} \sum_{i \geq 0} 2 h \cdot c_{i}^{M}\left(X^{\vee}\right), \tag{4.4.1}
\end{equation*}
$$

hence

$$
\begin{equation*}
c_{j}^{M}\left(X^{\vee} \cap Q\right) \cdot h^{m-1-j}=2 \sum_{i=0}^{j}(-1)^{j-i} 2^{j-i} c_{i}^{M}\left(X^{\vee}\right) \cdot h^{m-i} . \tag{4.4.2}
\end{equation*}
$$

Lemma 4.4.9. The following identity holds true:

$$
2^{m+1-i}-1=(m+1-i)+\sum_{j=i}^{m}(m-j) 2^{j-i}
$$

Proof. Using the identities $(r \neq 1)$

$$
\sum_{k=s}^{m} r^{k}=\frac{r^{s}-r^{m+1}}{1-r} \quad \text { and } \quad \sum_{k=1}^{m} k r^{k-1}=\frac{1-r^{m+1}}{(1-r)^{2}}-\frac{(m+1) r^{m}}{1-r}
$$

we have that

$$
\begin{aligned}
\sum_{j=i}^{m}(m-j) 2^{j-i} & =\frac{1}{2^{i}}\left(m \sum_{j=i}^{m} 2^{j}-2 \sum_{j=i}^{m} j 2^{j-1}\right) \\
& =\frac{2^{m+1}-(m+2-i) 2^{i}}{2^{i}} \\
& =2^{m+1-i}-(m+2-i)
\end{aligned}
$$

thus getting the desired identity.
Theorem 4.4.10. Assume that X^{\vee} is transversal to Q, according to definition 4.3.3. If X is not a hypersurface, then

$$
\begin{equation*}
2 \operatorname{EDdegree}(X)=2 \operatorname{EDdegree}\left(X^{\vee}\right)=\operatorname{deg}\left(\left(X^{\vee} \cap Q\right)^{\vee}\right) \tag{4.4.3}
\end{equation*}
$$

Otherwise if X is a hypersurface, then

$$
\begin{equation*}
2 \operatorname{EDdegree}(X)=2 \operatorname{EDdegree}\left(X^{\vee}\right)=2 \operatorname{deg}(X)+\operatorname{deg}\left(\left(X^{\vee} \cap Q\right)^{\vee}\right) \tag{4.4.4}
\end{equation*}
$$

In particular, $\left(X^{\vee} \cap Q\right)^{\vee}$ has always even degree.

Proof. If X is not a hypersurface, then $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface by Corollary 4.4.6. Hence we can apply the identity (1.8.7) and we obtain that (here $m=$ $\left.\operatorname{dim}\left(X^{\vee}\right)\right)$

$$
\begin{align*}
\operatorname{deg}\left(\left(X^{\vee} \cap Q\right)^{\vee}\right)= & \sum_{j=0}^{m-1}(-1)^{j}(m-j) c_{j}^{M}\left(X^{\vee} \cap Q\right) h^{m-1-j} \\
= & \sum_{j=0}^{m}(-1)^{j}(m-j) c_{j}^{M}\left(X^{\vee} \cap Q\right) h^{m-1-j} \\
(*)= & 2 \sum_{j=0}^{m}(-1)^{j}(m-j)\left[\sum_{i=0}^{j}(-1)^{j-i} 2^{j-i} c_{i}^{M}\left(X^{\vee}\right) \cdot h^{m-i}\right] \tag{4.4.5}\\
= & 2 \sum_{i=0}^{m}(-1)^{i} c_{i}^{M}\left(X^{\vee}\right) h^{m-i}\left[\sum_{j=i}^{m}(m-j) 2^{j-i}\right] \\
= & 2 \sum_{i=0}^{m}(-1)^{i}\left(2^{m+1-i}-1\right) c_{i}^{M}\left(X^{\vee}\right) \cdot h^{m-i} \\
& -2 \sum_{i=0}^{m}(-1)^{i}(m+1-i) c_{i}^{M}\left(X^{\vee}\right) \cdot h^{m-i},
\end{align*}
$$

where in $(*)$ we used (4.4.2) and in the last equality we applied Lemma 4.4.9. In the last expression obtained, since X^{\vee} is transversal to Q, by (1.8.5) the first term coincides with 2EDdegree $\left(X^{\vee}\right)=2 \mathrm{EDdegree}(X)$, whereas by (1.8.7) the second term is equal to $2 \delta_{0}\left(X^{\vee}\right)$, which vanishes because X is not a hypersurface. Hence the identity (4.4.3) is satisfied.

Now assume that X is a hypersurface. The expression in the first line of (4.4.5) is exactly the polar class $\delta_{0}\left(X^{\vee} \cap Q\right)$. The computation (4.4.5) shows that the same expression is equal to

$$
2 \operatorname{EDdegree}(X)-2 \delta_{0}\left(X^{\vee}\right)=2 \sum_{j=1}^{n-2} \delta_{j}\left(X^{\vee}\right),
$$

by Theorem 1.5.5. If this expression vanishes we get $\delta_{j}\left(X^{\vee}\right)=0$ for $j \geq 1$, which is equivalent to $\delta_{j}(X)=0$ for $j \leq n-3$. Hence the defect $\operatorname{codim}\left(X^{\vee}\right)-1$ is $n-2$ and X^{\vee} is a point in $\mathbb{P}(V)$, namely X is a hyperplane in $\mathbb{P}(V)$. In particular, $X^{\vee} \cap Q$ is empty and therefore $\left(X^{\vee} \cap Q\right)^{\vee}=\mathbb{P}(V)$. In conclusion, the identity (4.4.4) is satisfied.

Otherwise if $\delta_{0}\left(X^{\vee} \cap Q\right) \neq 0$, since in this case $0 \neq \delta_{0}\left(X^{\vee}\right)=\operatorname{deg}(X)$, the identity (4.4.4) is satisfied as well.

One may wonder if Theorem 4.4.10 remains true without transversality assumptions. The case of symmetric tensors studied in Chapter 2, as well as the case of partially symmetric tensors in Chapter 5, answer in negative. Already the binary cubic case gives a counterexample, as shown in Example 2.4.2. Indeed, for (partially symmetric) tensors the degree of X^{\vee} is greater than the ED degree of X, the opposite of the general case.

Corollary 4.4.11. Let X^{\vee} be a positive dimensional variety which is transversal to a smooth quadric Q, according to Definition 4.3.3. Then $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface.

Proof. The computation (4.4.5) shows that

$$
\delta_{0}\left(X^{\vee} \cap Q\right)=2 \operatorname{EDdegree}(X)-2 \delta_{0}\left(X^{\vee}\right)
$$

If $\left(X^{\vee} \cap Q\right)^{\vee}$ is not a hypersurface, we get $\delta_{0}\left(X^{\vee} \cap Q\right)=0$, hence $\delta_{j}\left(X^{\vee}\right)=0$ for all $j \geq 1$, namely $\delta_{j}(X)=0$ for all $j \leq n-3$. Hence the defect $\operatorname{codim}\left(X^{\vee}\right)-1$ is $n-3$ and X^{\vee} is zero dimensional.

In the projective case, Theorem 4.4.10 leads us to a more precise description of the lowest term of the ED polynomial, with reasonable transversality assumptions. In particular, the factor corresponding to $\left(X^{\vee} \cap Q\right)^{\vee}$ is always present when X is not a hyperplane. If X is a hypersurface, an additional factor corresponding to X appears.
Theorem 4.4.12. Let $X \subset \mathbb{P}(V)$ be an irreducible variety and suppose that X and X^{\vee} are transversal to Q. Let $u \in V$ be a data point.

1. If $\operatorname{codim}(X) \geq 2$, then $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface and

$$
\operatorname{EDpoly}_{X, u}(0)=g
$$

up to a scalar factor, where g is the equation of $\left(X^{\vee} \cap Q\right)^{\vee}$. Moreover $X \subset\left(X^{\vee} \cap Q\right)^{\vee}$.
2. If X is a hypersurface, then

$$
\text { EDpoly }_{X, u}(0)=f^{2} g
$$

up to a scalar factor, where f is the equation of X and g is either the constant 1 if X is a hyperplane, or the equation of $\left(X^{\vee} \cap Q\right)^{\vee}$.
Proof. First, assume that $\operatorname{codim}(X) \geq 2$. On one hand, by Corollary 4.4.6 we have that $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface, hence EDpoly ${ }_{X, u}(0)=g^{k}$ for some positive integers k. In particular,

$$
\operatorname{deg}\left(\operatorname{EDpoly}_{X, u}(0)\right)=k \operatorname{deg}(g)
$$

On the other hand, comparing degrees by Theorem 4.4.10 we get $k=1$. The inclusion follows again from Corollary 4.4.6.

Now assume that X is a hypersurface. If X is a hyperplane, the statement follows by Corollary 4.2.16. Otherwise $\operatorname{deg}(X) \geq 2$ and therefore X^{\vee} is positive dimensional, thus implying that $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface by Corollary 4.4.11.

On one hand, by Corollary 4.4.6 we have that $\operatorname{EDpoly}_{X, u}(0)=f^{h} g^{k}$ for some positive integers h and k, hence

$$
\operatorname{deg}\left(\operatorname{EDpoly}_{X, u}(0)\right)=h \operatorname{deg}(f)+k \operatorname{deg}(g)
$$

On the other hand, by Corollary 4.3.7 and Theorem 4.4.10 we have that $h \geq 2$ and $\operatorname{deg}\left(\operatorname{EDpoly}_{X, u}(0)\right)=2 \operatorname{deg}(f)+\operatorname{deg}(g)$.

The hypotheses of Theorem 4.4.12 are reasonable and agree with the principal results in the ED degree-philosophy. Anyway, in the most important examples studied in this thesis, related to varieties of tensors with the Frobenius quadratic form, these hypotheses are not satisfied. A positive result is that we can relax the assumptions of transversality at least for computing the exact multiplicity of the equation of X in EDpoly $_{X, u}(0)$, when X is a hypersurface.
Proposition 4.4.13. Let $X \subset \mathbb{P}(V)$ be an irreducible projective hypersurface. Then the equation of X appears with multiplicity two in EDpoly $X_{X, u}(0)$.
Proof. Quadric hypersurfaces of $\mathbb{P}(V)$ that are transversal to X and X^{\vee} form a dense open subset $U \subset \mathbb{P}\left(S^{2} V\right)$. In particular, Q is the limit of a sequence $\left\{Q_{j}\right\} \subset U$. Let $\operatorname{EDpoly}_{X, u}^{(j)}\left(\varepsilon^{2}\right)$ be the ED polynomial of X at $u \in V$ with respect to te quadric Q_{j}, for all j. By Theorem 4.4.12, for all j we have

$$
\operatorname{EDpoly}_{Y, y}^{(j)}(0)=f^{2} \cdot g_{j}
$$

where g_{j} is the equation of $\left(X^{\vee} \cap Q_{j}\right)^{\vee}$. Moreover, by Corollary 4.4.6 we know that EDpoly ${ }_{X, u}(0)=f^{\alpha} \cdot g^{\beta}$ for some nonnegative integers α and β, where g is the equation of $\left(X^{\vee} \cap Q\right)^{\vee}$. In particular,
$f^{\alpha} \cdot g^{\beta} \cdot h=\operatorname{EDpoly}_{X, u}(0) \cdot h=\lim _{j \rightarrow \infty} \operatorname{EDpoly}_{X, u}^{(j)}(0)=\lim _{j \rightarrow \infty} f^{2} \cdot g_{j}=f^{2} \cdot \lim _{j \rightarrow \infty} g_{j}$,
for some homogeneous polynomial h, possibly a scalar. In particular, $\alpha \geq 2$.
We show that actually $\alpha=2$. If $\alpha \geq 3$, then f divides $\lim _{j \rightarrow \infty} g_{j}$, that is, f divides g or f divides h. It remains to show that f cannot divide g. In particular, our claim is that $\operatorname{codim}_{\mathbb{R}}\left[\left(X^{\vee} \cap Q\right)^{\vee}\right] \geq 2$.

Consider a smooth point $z \in X^{\vee} \cap Q$ and the corresponding normal space $S_{z}:=N_{z}\left(X^{\vee} \cap Q\right)$. Assume that l_{1}, \ldots, l_{r} are the linear polynomials defining S_{z}.

We denote by \bar{S}_{z} the variety defined by $\bar{l}_{1}, \ldots, \bar{l}_{r}$, where the bar means complex conjugation. If $z \in \bar{S}_{z}$, then $q(z-\bar{z}, y)=0$ for all $y \in T_{z}\left(X^{\vee} \cap Q\right)$. In particular, $q(\bar{z}, z)=q(\bar{z}, z)-q(z, z)=q(\bar{z}-z, z)=0$, contradiction. This implies that $S_{z} \neq \bar{S}_{z}$ and, in turn, that $\operatorname{codim}_{\mathbb{R}}\left(S_{z}\right) \geq 2$. The claim follows by Definition 1.3.1.

Chapter 5

The ED polynomial of a Segre-Veronese variety

In Chapter 2, we studied the E-characteristic polynomial $\psi_{f}(\lambda)$ of a symmetric tensor $f \in S^{d} V$. As pointed out in the preamble of Chapter 4 , the polynomial $\psi_{f}(\lambda)$ is useful for determining the equation of the λ-offset hypersurface of the affine cone $X_{(d)}^{\vee}$, where $X_{(d)}$ is the affine cone of the image of the d-th Veronese embedding of $\mathbb{P}(V)$ of Definition 2.1.3. Now that we have in mind the general theory on ED polynomials of Chapter 4, we derive the following conclusion.
Corollary 5.0.1 (Lim, Qi). Consider a symmetric tensor f in the space $S^{d} V$. The ED polynomial of $X_{(d)}^{\vee}$ with respect to the isotropic quadric Q_{F} is

$$
\operatorname{EDpoly}_{X_{(d)}^{\vee}, f}\left(\lambda^{2}\right)= \begin{cases}\psi_{f}(\lambda) \psi_{f}(-\lambda) & \text { if } d \text { is even } \\ \psi_{f}(\lambda) & \text { if } d \text { is odd }\end{cases}
$$

Note that in this case the variety $X_{(d)} \cap Q_{F}$ is non-reduced of multiplicity d. This non-transversality is confirmed by the fact that the identity of Theorem 4.4.10 cannot hold, since the integer $\operatorname{deg}\left(X_{(d)}^{\vee}\right)-\operatorname{EDdegree}\left(X_{(d)}^{\vee}\right)$ vanishes for $d=2$ and is positive when $d>2$ for all $n \geq 2$, as pointed out in the end of Section 2.2.14.

The case $d=2$ deals with real symmetric matrices. For any symmetric matrix $u \in S^{2} V$, we have the identity

$$
\begin{equation*}
\operatorname{EDpoly}_{X_{(d)}^{\vee}, u}\left(\lambda^{2}\right)=\psi_{u}(\lambda) \psi_{u}(-\lambda)=\operatorname{det}\left(U-\lambda I_{n}\right) \operatorname{det}\left(U+\lambda I_{n}\right) \tag{5.0.1}
\end{equation*}
$$

In particular, the lowest term of EDpoly $X_{(d)}^{\vee}, u$ is the square of $\operatorname{det}(u)$.
In the Introduction, we already considered a similar problem in the vector space $V_{1} \otimes V_{2}$ of $n_{1} \times n_{2}$ rectangular matrices $\left(n_{1} \leq n_{2}\right)$. Here $X=X_{2}$ is the

Segre product introduced in (0.0.1), and Q_{F} is the isotropic quadric defined by the Frobenius inner product defined via the relations in (0.0.4). In this setting, for any matrix $u \in V_{1} \otimes V_{2}$ we have the identity

$$
\begin{equation*}
\text { EDpoly }_{X^{\vee}, u}\left(\sigma^{2}\right)=\operatorname{det}\left(u u^{T}-\sigma^{2} I_{n_{1}}\right) \tag{5.0.2}
\end{equation*}
$$

Here, the roots σ^{2} of EDpoly ${ }_{X^{\vee}, u}\left(\sigma^{2}\right)$ are the squared singular values of u.
The two cases resumed above are instances of a much harder problem: studying the ED polynomial of X^{\vee}, where X is the affine cone of rank-one partially symmetric tensors of a prescribed format.

We outline more rigorously our problem. Given a vector of dimensions $\underline{n}=$ $\left(n_{1}, \ldots, n_{s}\right)$ and a vector of degrees $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$, our ambient vector space is the tensor product

$$
S^{\mu} V^{\mathbb{R}}:=S^{\mu_{1}} V_{1}^{\mathbb{R}} \otimes \cdots \otimes S^{\mu_{s}} V_{s}^{\mathbb{R}}
$$

where the symmetric power of a vector space was defined in 2.1.1. The vectors in $S^{\mu} V^{\mathbb{R}}$ are addressed simply as (real) partially symmetric tensors. Their format is clear from the context and it is specified only if necessary in the forthcoming examples.

Similarly to Chapter 2, we want to fix a reasonable square distance function $\delta_{\mu, u}^{\mathbb{R}}: S^{\mu} V^{\mathbb{R}} \rightarrow \mathbb{R}$ from $u \in S^{\mu} V^{\mathbb{R}}$ and restrict it to a certain "target variety" $Z_{\mathbb{R}}$, looking for the critical points of $\delta_{\mu, u}^{\mathbb{R}}$ on $Z_{\mathbb{R}}$. To this aim, we consider the complexification $S^{\mu} V:=\left(S^{\mu} V^{\mathbb{R}}\right) \otimes \mathbb{C}=S^{\mu}\left(V^{\mathbb{R}} \otimes \mathbb{C}\right)$, the complex variety $Z:=Z_{\mathbb{C}}$ and the function $\delta_{\mu, u}: S^{\mu} V \rightarrow \mathbb{C}$ restricted to Z.

Our natural choice for $Z_{\mathbb{R}}$ is the affine cone $X_{\mu}^{\mathbb{R}}$ of partially symmetric tensors in $S^{\mu} V^{\mathbb{R}}$ of rank at most one, namely the affine cone of the image of the Segre -Veronese embedding

$$
\begin{equation*}
\operatorname{Seg}_{\mu}: \prod_{j=1}^{s} \mathbb{P}\left(V_{j}^{\mathbb{R}}\right) \rightarrow \mathbb{P}\left(S^{\mu} V^{\mathbb{R}}\right), \quad \operatorname{Seg}_{\mu}\left(\left[v_{1}\right], \ldots,\left[v_{s}\right]\right):=\left[v_{1}^{\mu_{1}} \otimes \cdots \otimes v_{s}^{\mu_{s}}\right] \tag{5.0.3}
\end{equation*}
$$

For brevity, we do not indicate the dependence from \underline{n} in the notations of $X_{\mu}^{\mathbb{R}}$ and Seg_{μ}. If $\mu=(1, \ldots, 1)=: 1^{s}$, we recover the Segre variety $X_{s}^{\mathbb{R}}:=X_{1 s}^{\mathbb{R}}$ introduced in (0.0.17). If $s=1$, we have $\mu=(d)$ and we get the Veronese variety $X_{(d)}^{\mathbb{R}}$ of Definition 2.1.3.

Now consider s arbitrary inner products $q_{1}^{\mathbb{R}}, \ldots, q_{s}^{\mathbb{R}}$ on the spaces $V_{1}^{\mathbb{R}}, \ldots, V_{s}^{\mathbb{R}}$. In applications, $q_{j}^{\mathbb{R}}$ is simply the standard Euclidean inner product on $V_{j}^{\mathbb{R}}$. The Frobenius inner product on $S^{\mu} V^{\mathbb{R}}$ is defined, for partially symmetric tensors of rank one, to be

$$
q_{F, \mu}^{\mathbb{R}}\left(x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{s}^{\mu_{s}}, y_{1}^{\mu_{1}} \otimes \cdots \otimes y_{s}^{\mu_{s}}\right):=q_{1}^{\mathbb{R}}\left(x_{1}, y_{1}\right)^{\mu_{1}} \cdots q_{s}^{\mathbb{R}}\left(x_{s}, y_{s}\right)^{\mu_{s}}
$$

for all $x_{j}, y_{j} \in V_{j}^{\mathbb{R}}$ and all $j \in[s]$, and is extended to $S^{\mu} V^{\mathbb{R}}$ by linearity, similarly to (2.1.2). The squared Frobenius distance function from a fixed $u \in S^{\mu} V^{\mathbb{R}}$ is

$$
\delta_{F, \mu, u}^{\mathbb{R}}(x):=q_{F, \mu}^{\mathbb{R}}(u-x)
$$

for all $x \in S^{\mu} V^{\mathbb{R}}$. Note that $\delta_{F, \mu, u}^{\mathbb{R}}$ is the only distance function on $S^{\mu} V^{\mathbb{R}}$ compatible with the group embedding $\mathrm{SO}\left(V_{1}^{\mathbb{R}}\right) \times \cdots \times \mathrm{SO}\left(V_{s}^{\mathbb{R}}\right) \subset \mathrm{SO}\left(S^{\mu} V^{\mathbb{R}}\right)$.
Definition 5.0.2. A critical (partially symmetric) tensor for $u \in S^{\mu} V$ is defined to be any critical point $x \in X_{\mu}$ for the function $\delta_{F, \mu, u}$.

The isotropic quadic in $S^{\mu} V$ is $Q_{F, \mu}:=\mathcal{V}\left(q_{F, \mu}\right)$. A partially symmetric tensor $u \in S^{\mu} V$ is isotropic if $u \in Q_{F, \mu}$.
Theorem 5.0.3 (Lim, Qi). Given a partially symmetric tensor $u \in S^{\mu} V$, the non-isotropic critical tensors for u correspond to tensors $\sigma x=\sigma\left(x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right) \in$ $S^{\mu} V$ such that $q_{j}\left(x_{j}\right)=1$ for all $j \in[s]$ and

$$
\begin{equation*}
q_{F, \mu}\left(u, x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{j}^{\mu_{j}-1} \cdot{ }_{-} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right)=\sigma q_{j}\left(x_{j},{ }_{-}\right), \quad 1 \leq j \leq s \tag{5.0.4}
\end{equation*}
$$

for some $\sigma \in \mathbb{C}$, called (partially simmetric) singular value of u. The corresponding s-ple $\left(x_{1}, \ldots, x_{s}\right)$ is called (partially symmetric) singular vector s-ple for u. Moreover, we call (partially symmetric) singular tensor for u any partially symmetric tensor written as $\sigma\left(x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right)$, where $\left(x_{1}, \ldots, x_{s}\right)$ and σ are a singular s-ple and a singular value for u, respectively.

When $s=1$, the system (5.0.4), together with the normalization assumptions, corresponds to the E-eigenpair system in (2.1.4).

Summing up, in this chapter we compute the ED polynomial of the dual affine cone $X_{\mu}^{\vee} \subset S^{\mu} V$, with respect to the isotropic quadric $Q_{F, \mu}$. As pointed out in Section 5.1, the roots of the ED polynomial of X_{μ}^{\vee} at $u \in S^{\mu} V$ are the squared singular values of u. Secondly, we report in Theorem 5.1.1 the Friedland-Ottaviani formula for the ED degree of X_{μ} with respect to $Q_{F, \mu}$, which corresponds, via Theorem 4.2.2, to the ε^{2}-degree of EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$. An independent formulation of Theorem 4.2.2 was given by Aluffi and Harris in [AH]. We underline that their computation does not apply the Catanese-Trifogli formula of Theorem 1.8.1, since X_{μ} is not transversal to $Q_{F, \mu}$. Indeed, we show that the ED polynomial has a nontrivial highest coefficient.

Definition 5.0.4. For all $J \subset[s]:=\{1, \ldots, s\}$, we define

$$
\begin{equation*}
X_{\mu, J}:=\operatorname{Seg}_{\mu}\left(Y_{1} \times \cdots \times Y_{s}\right) \subset \mathbb{P}\left(S^{\mu} V\right) \tag{5.0.5}
\end{equation*}
$$

where $Y_{j}:=Q_{j}:=\mathcal{V}\left(q_{j}\right)$ if $j \in J$ and $Y_{j}:=\mathbb{P}(V)$ otherwise. Moreover, we define $f_{\mu, J}$ to be the equation of the dual variety of $X_{\mu, J}$, when it is a hypersurface,
otherwise $f_{\mu, J}:=1$. When $\mu=1^{s}$, we use the notation $f_{s, J}:=f_{1^{s}, J}$. Generally, $f_{\mu}:=f_{\mu, \emptyset}$ is the equation of the dual variety of $X_{\mu}=X_{\mu, \emptyset}$ when it is a hypersurface, usually called μ-discriminant of a partially symmetric tensor. For $\mu=1^{s}$ the μ-discriminant is known as the hyperdeterminant of a tensor in $V_{1} \otimes \cdots \otimes V_{s}$, whereas for $s=1$ and $\mu=(d)$ the μ-discriminant is addressed simply as the discriminant of a symmetric tensor.

Section 5.2 keeps dealing with partially symmetric tensors of any format. First, we use Corollary 4.4.6 to determine the vanishing locus of EDpoly $X_{\mu}^{\vee}, u(0)$. Moreover, in Proposition 5.2.6 we describe the set of partially symmetric tensors that fail to have the maximum number of singular values, that is the vanishing locus of the highest coefficient of EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$.

Afterwards, the results stated in Section 5.3 are related to the current research and encourage further investigations on this topic. Our main goal would be to generalize Theorem 2.0.2 in the context of partially symmetric tensors of any format. A first answer was given in [Sod] in the special case of partially symmetric binary tensors. Actually, the argument used in [Sod] may be generalized to partially symmetric tensors with hypercube format, that is when $n_{1}=\cdots=n_{s}=n$ and $V_{1}=\cdots=V_{s}$. Applying the results on the lowest coefficient of ED polynomials in Chapter 4 and the inspiring work by Oeding [Oed] on symmetrizations of the discriminant of a partially symmetric tensor, we determine an explicit expression, involving powers of the polynomials $f_{\mu, J}$, for the highest coefficient of the ED polynomial of the dual variety of X_{μ}. This leads to the following closed formula for the product of the singular values of a general partially symmetric tensor $t \in S^{\mu} V$, which generalizes Theorem 2.0.2 in the context of symmetric tensors.

Theorem 5.0.5. 1. Assume that the linear system \mathcal{S}_{d} introduced in Remark 5.3.19 has maximal rank. Let $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ be a partition of an integer $d \geq 1$. If the partially symmetric tensor $u \in S^{\mu} V$ admits the maximum number $N=\operatorname{EDdegree}\left(X_{\mu}\right)$ of singular values, counted with multiplicity (hypothesis verified for a general u), their squared product is

$$
\begin{equation*}
\left(\sigma_{1} \cdots \sigma_{N}\right)^{2}=\prod_{J \subset[s]} f_{\mu, J}(u)^{2-\sum_{k \in J} \mu_{k}} \tag{5.0.6}
\end{equation*}
$$

2. (Theorem 2.0.2) In the symmetric case $\mu=(d)$, the product formula (5.0.6) is true for any $n \geq 2$:

$$
\left(\sigma_{1} \cdots \sigma_{N}\right)^{2}=\frac{f_{(d)}(u)^{2}}{f_{(d),\{1\}}(u)^{d-2}}
$$

3. (Proposition 5.3.18) When $d \in\{2,3,4\}$, the system \mathcal{S}_{d} has maximal rank and the product formula (5.0.6) is true for all $\mu \vdash d$ and all $n \geq 2$.
4. (Proposition 5.4.4) In the binary case $n=2$, the system \mathcal{S}_{d} has maximal rank $d-1$ and the product formula (5.0.6) is true for any $d \geq 1$.

We stress that, for $n \geq 3$ and $\mu \neq(d)$, the previous theorem has been proved so far for small values of n and d. Indeed, we need to show that the linear system $\mathcal{S}_{d}=\mathcal{S}_{d}(n)$, defined in Remark 5.3.19, has the maximal possible rank. So far, this has been checked for all positive integers n and d less than 100 , using the software Macaulay2. For arbitrary large n and d, this check depends on nontrivial binomial inequalities.

The right-hand side of (5.0.6) should be interpreted as the ratio between the lowest and the highest coefficient of the ED polynomial of X_{μ}^{\vee} at $u \in S^{\mu} V$. Depending on the sign of their exponent, the polynomials $f_{\mu, J}$ appear in the numerator or the denominator of this ratio, otherwise, they do not appear at all if their exponent is zero. The nonsymmetric case $\mu=1^{d}$ was stated in Theorem 0.0.8.

The binary case ($n=2$) considered in Section 5.4 reveals many interesting aspects. In Proposition 5.4.6 we show that for tensors of binary format, the polynomial $f_{\mu, J}$ admits a sum of squares (SOS) decomposition for every nonempty subset $J \subset[s]$. In particular, $f_{\mu, J}(u)>0$ for any nonzero real partially symmetric binary tensor u. This fact confirms the following known result.

Proposition 5.0.6. [Lim, Proposition 2] If the dual variety of X_{μ} is a hypersurface, then 0 is a singular value of $u \in S^{\mu} V^{\mathbb{R}}$ if and only if $f_{\mu}(u)=0$.

Finally, we pick a general $2 \times 2 \times 2$ tensor u and we compute simbolically all the coefficients of EDpoly $X_{3}^{\vee}, u\left(\varepsilon^{2}\right)$, and the equation of the ED discriminant $\Sigma_{X_{3}^{\vee}}$, in terms of $\mathrm{SO}(V)^{3}$-invariants. This is useful for studying more in detail the $6=3$! singular values of u, even when u is partially symmetric. Note that in this case the formula in (5.0.6) or in (0.0.31) simplifies as

$$
\begin{gathered}
\left(\sigma_{1} \cdots \sigma_{6}\right)^{2}=\frac{g_{0}^{2} g_{1}}{g_{3}} \\
g_{0}=f_{3}, \quad g_{1}=f_{3,\{1\}} f_{3,\{2\}} f_{3,\{3\}}, \quad g_{2}=1, \quad g_{3}=f_{3,\{1,2,3\}}
\end{gathered}
$$

5.1 The distance from a Segre-Veronese variety

We follow and generalize the notation adopted for symmetric tensors in (2.1.1). For each space V_{j}, we set an orthonormal system of coordinates $\left\{x_{j, 1}, \ldots, x_{j, n_{j}}\right\}$. Every partially symmetric tensor $u \in S^{\mu} V$ may be written as an s-homogeneous
polynomial of s-degree μ, namely as a polynomial which is homogeneous of degree μ_{j} in the variables of V_{j} for all $j \in[s]$:

$$
u=\sum_{\substack{\left|\alpha_{j}\right|=\mu_{j} \\ j \in[s]}}\left[\prod_{j=1}^{s}\binom{\mu_{j}}{\alpha_{j}} x_{j}^{\alpha_{j}}\right] u_{\alpha_{1} \cdots \alpha_{s}}
$$

where $\alpha_{j}=\left(\alpha_{j, 1}, \ldots, \alpha_{j, n_{j}}\right) \in \mathbb{Z}_{\geq 0}^{n_{j}},\left|\alpha_{j}\right|:=\sum_{k=1}^{n_{j}} \alpha_{j, k}, x_{j}^{\alpha_{j}}:=x_{j, 1}^{\alpha_{j, 1}} \cdots x_{j, n_{j}}^{\alpha_{j, n_{j}}}$ and $\binom{\mu_{j}}{\alpha_{j}}:=\frac{\mu_{j}!}{\alpha_{j, 1}!\cdots \alpha_{j, n_{j}}!}$ is the multinomial coefficient, for all $j \in[s]$. In particular, we suppose that $\left(u_{\alpha_{1} \cdots \alpha_{s}}\right)$ is as a system of coordinates for $S^{\mu} V$.

Then, the squared Frobenius norm of $u=\left(u_{\alpha_{1} \cdots \alpha_{s}}\right) \in S^{\mu} V$ is

$$
\begin{equation*}
q_{F, \mu}(u)=\sum_{\substack{\left|\alpha_{j}\right|=\mu_{j} \\ j \in[s]}}\left[\prod_{j=1}^{s}\binom{\mu_{j}}{\alpha_{j}}\right] u_{\alpha_{1} \cdots \alpha_{s}}^{2} . \tag{5.1.1}
\end{equation*}
$$

Note that the preceding identity gives also the equation of the isotropic quadric $Q_{F, \mu}$ as a smooth quadric hypersurface in $S^{\mu} V$.

In this section, we show two equivalent approaches for computing the ED polynomial of the dual variety of a Segre-Veronese variety X_{μ} at a given tensor $u \in S^{\mu} V$. The first way follows the original setting about the ED polynomial of an algebraic variety explained in Chapter 4, and uses the Pythagorean Theorem. The second one applies directly Theorem 5.0.3.

We recall that the polynomial EDpoly $X_{\mu}, u\left(\varepsilon^{2}\right)$ was defined in general in 4.1.3. For any fixed $\varepsilon \in \mathbb{C}$, the variety defined in $S^{\mu} V^{\mathbb{R}}$ by the vanishing of EDpoly $_{X_{\mu}, u}\left(\varepsilon^{2}\right)$ coincides with the ε-offset hypersurface of $X_{\mu}^{\mathbb{R}}$. Here we suppose that $u \in S^{\mu} V$ is fixed and that $\varepsilon \in \mathbb{C}$ is a variable, hence we view EDpoly $X_{X_{\mu}, t}\left(\varepsilon^{2}\right)$ as a univariate polynomial.

The first property of EDpoly $X_{X_{\mu}, t}\left(\varepsilon^{2}\right)$ that we mention deals with its ε^{2}-degree. In Theorem 0.0.6 we recalled Friedland-Ottaviani formula for the ED degree of X_{μ} in the nonsymmetric case $\mu=1^{s}$, where $X_{s}=X_{1^{s}}$. Below we furnish their formula in its full generality.
Theorem 5.1.1 (Friedland, Ottaviani). The ED degree of $X_{\mu} \subset S^{\mu} V$ equals the coefficient of the monomial $h_{1}^{n_{1}-1} \cdots h_{s}^{n_{s}-1}$ in the polynomial

$$
\prod_{i=1}^{s} \frac{\hat{h}_{i}^{n_{i}}-h_{i}^{n_{i}}}{\hat{h}_{i}-h_{i}}, \quad \hat{h}_{i}:=\left(\sum_{j=1}^{s} \mu_{j} h_{j}\right)-h_{i} .
$$

Sketch of the proof. For simplicity, we give an idea of the proof in the nonsymmetric case $\mu=1^{s}$. We denote for brevity by Π the product $\mathbb{P}\left(V_{1}\right) \times \cdots \times \mathbb{P}\left(V_{s}\right)$. In particular, $X_{s}=\operatorname{Seg}_{s}(\Pi)$. For every $j \in[s]$, we call π_{j} the projection of Π onto the j-th factor. Moreover, for all $j \in[s]$ we define the quotient bundle on $\mathbb{P}\left(V_{j}\right)$ as

$$
\mathcal{Q}_{j}:=\frac{\mathcal{O}_{j}^{\oplus n_{j}}}{\mathcal{O}_{j}(-1)}=\frac{\mathcal{O}_{\mathbb{P}\left(V_{j}\right)}^{\oplus n_{j}}}{\mathcal{O}_{\mathbb{P}\left(V_{j}\right)}(-1)}
$$

Now consider the pullbacks

$$
\pi_{j}^{*} \mathcal{O}_{j}^{\oplus n_{j}}, \quad \pi_{j}^{*} \mathcal{O}_{j}(-1), \quad \pi_{j}^{*} \mathcal{O}_{j}(1), \quad \pi_{j}^{*} \mathcal{Q}_{j}
$$

which represent vector bundles on Π. In particular, we have the short exact sequence

$$
0 \rightarrow \pi_{j}^{*} \mathcal{O}_{j}(-1) \rightarrow \pi_{j}^{*} \mathcal{O}_{j}^{\oplus n_{j}} \rightarrow \pi_{j}^{*} \mathcal{Q}_{j} \rightarrow 0
$$

If we tensorize the above sequence with respect to the vector bundle $\bigotimes_{i \neq j} \pi_{i}^{*} \mathcal{O}_{i}(1)$, we get another short exact sequence as

$$
\begin{equation*}
0 \rightarrow\left(\bigotimes_{i \neq j} \pi_{i}^{*} \mathcal{O}_{i}(1)\right) \otimes \pi_{j}^{*} \mathcal{O}_{j}(-1) \rightarrow\left(\bigotimes_{i \neq j} \pi_{i}^{*} \mathcal{O}_{i}(1)\right) \otimes \pi_{j}^{*} \mathcal{O}_{j}^{\oplus n_{j}} \rightarrow R_{j} \rightarrow 0 \tag{5.1.2}
\end{equation*}
$$

where we defined the vector bundle on X_{μ}

$$
R_{j}:=\left(\bigotimes_{i \neq j} \pi_{i}^{*} \mathcal{O}_{i}(1)\right) \otimes \pi_{j}^{*} \mathcal{Q}_{j}
$$

Finally, we define

$$
R:=\bigoplus_{j=1}^{s} R_{j}
$$

As explained in [FO], the vector bundle R on X_{μ} is the right one for studying the number of critical points of the squared distance function $\delta_{F, \mu, u}$ on X_{μ}. For every $i \in[s]$ we consider the hyperplane class $h_{i}:=c_{1}\left(\pi_{i}^{*} \mathcal{O}_{i}(1)\right)$. In particular,

$$
c(R)=\prod_{j=1}^{s} c\left(R_{j}\right) \in A^{*}\left(X_{\mu}\right) \cong \frac{\mathbb{Z}\left[h_{1}, \ldots, h_{s}\right]}{\left(h_{1}^{n_{1}}, \ldots, h_{s}^{n_{s}}\right)}
$$

Since $\operatorname{rk}(R)=\operatorname{dim}\left(X_{\mu}\right)$, it follows that the top Chern class of R is of the form

$$
c_{\mathrm{top}}(R)=c \prod_{i=1}^{s} h_{i}^{n_{i}-1}
$$

for some positive integer c, which turns out to be equal to $\operatorname{EDdegree}(X)$. In order to determine c, we consider the above sequence (5.1.2) and by the Whitney sum property (see Section 1.7) we have that

$$
\begin{aligned}
c\left(R_{j}\right) & =\frac{c\left[\left(\otimes_{i \neq j} \pi_{i}^{*} \mathcal{O}_{i}(1)\right) \otimes \pi_{j}^{*} \mathcal{O}_{j}^{\oplus n_{j}}\right]}{c\left[\left(\bigotimes_{i \neq j} \pi_{i}^{*} \mathcal{O}_{i}(1)\right) \otimes \pi_{j}^{*} \mathcal{O}_{j}(-1)\right]} \\
& =\frac{\left(1+\sum_{i \neq j} h_{i}\right)^{n_{j}}}{1-h_{j}+\sum_{i \neq j} h_{i}} \\
& =\left[\sum_{k=0}^{n_{j}}\binom{n_{j}}{k} \hat{h}_{j}^{k}\right]\left[\sum_{k \geq 0}\left(h_{j}-\hat{h}_{j}\right)^{k}\right],
\end{aligned}
$$

where we defined $\hat{h}_{j}:=\sum_{i \neq j} h_{i}$. Expanding the last expression and multiplying over j, we thus obtain the desired coefficient c in $c_{\text {top }}(R)$.

Corollary 5.1.2. Assume that $n_{1}=\cdots=n_{s}=2$ and consider the vector $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$. Then

$$
\operatorname{EDdegree}\left(X_{\mu}\right)=s!\mu_{1} \cdots \mu_{s}
$$

Proof. According to Theorem 5.1.1, the ED degree of X_{μ} equals the coefficient of the monomial $h_{1} \cdots h_{s}$ in the polynomial

$$
\prod_{i=1}^{s}\left(\hat{h}_{i}+h_{i}\right)=\prod_{i=1}^{s}\left[\left(\sum_{j=1}^{s} \mu_{j} h_{j}\right)-h_{i}+h_{i}\right]=\left(\mu_{1} h_{1}+\cdots+\mu_{s} h_{s}\right)^{s}
$$

and the coefficient of $h_{1} \cdots h_{s}$ in the last expression is precisely $s!\mu_{1} \cdots \mu_{s}$.
The following is an immediate consequence of Proposition 4.2.1 and describes which are the roots of the ED polynomial of X_{μ}.
Proposition 5.1.3. For a general $u \in S^{\mu} V$, the roots of $\mathrm{EDpoly}_{X_{\mu}, u}\left(\varepsilon^{2}\right)$ are precisely of the form $\varepsilon^{2}=q_{F, \mu}(u-z)$, where z is a critical tensor of rank one for u on X_{μ}. In particular, the distance ε from $X_{\mu}^{\mathbb{R}}$ to $u \in S^{\mu} V^{\mathbb{R}}$ is a root of EDpoly $X_{\mu, u}\left(\varepsilon^{2}\right)$. Moreover $u \in S^{\mu} V^{\mathbb{R}}$ satisfies EDpoly $_{X_{\mu}, u}(0)=0$ if and only if $u \in X_{\mu}^{\mathrm{R}}$.

Anyway, this is not the end of our construction. Indeed, as anticipated in the introduction, we consider the ED polynomial of the dual variety of X_{μ}, rather than the ED polynomial of the variety X_{μ} itself. The passage between the ED
polynomial of X_{μ} and the ED polynomial of X_{μ}^{\vee} is just a variable reflection, by Theorem 4.2.8. Hence, for any $u \in S^{\mu} V$,

$$
\begin{equation*}
\operatorname{EDpoly}_{X_{\mu}, u}\left(\varepsilon^{2}\right)=\operatorname{EDpoly}_{X_{\mu}^{\vee}, u}\left(q_{F, \mu}(u)-\varepsilon^{2}\right) \tag{5.1.3}
\end{equation*}
$$

The next result clarifies the reason why we concentrate on ED polynomials of dual varieties of Segre-Veronese varieties.

Proposition 5.1.4. For any partially symmetric tensor $u \in S^{\mu} V$ and any singular tensor $\sigma x \in S^{\mu} V$ for u, we have EDpoly $X_{\mu}^{\vee}, u\left(\sigma^{2}\right)=0$.

Proof. By Proposition 5.1.3, the roots of EDpoly ${ }_{X_{\mu}, u}\left(\varepsilon^{2}\right)$ are of the form $\varepsilon^{2}=$ $q_{F, \mu}(u-z)$, where z is a critical binary tensor of rank one for u on X_{μ}. Moreover, by Theorem 5.0.3 the non-isotropic critical tensors of rank one for u correspond to the singular tensors for u. Then, consider a singular tensor σx for u. The root $q_{F, \mu}(u-\sigma x)$ of $\mathrm{EDpoly}_{X_{\mu}, u}\left(\varepsilon^{2}\right)$ corresponds, via Theorem 4.2.8, with the root

$$
q_{F, \mu}(u)-q_{F, \mu}(u-\sigma x)=2 q_{F, \mu}(u, \sigma x)-q_{F, \mu}(\sigma x)=2 \sigma q_{F, \mu}(u, x)-\sigma^{2}=\sigma^{2},
$$

of EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$ (see Figure 5.1), where we used the fact that $\sigma=q_{F, \mu}(u, x)$ for any singular tensor σx for u, which is a direct consequence of equation (5.0.4).

Figure 5.1: Singular tensors $\sigma x \in X_{\mu}$ and critical points $u-\sigma x \in X_{\mu}^{\vee}$ for the distance function $\delta_{F, \mu, u}$ on X_{μ}^{\vee} are in correspondence via the Pythagorean Theorem.

Remark 5.1.5. The converse of Proposition 5.1.4 is true only for general tensors. Indeed, there exist tensors $u \in S^{\mu} V$ such that some of the roots of $E^{\text {EDpoly }}{ }_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$ do not correspond to singular values of u. In the symmetric case $(s=1, \mu=(d)$), this phenomenon is studied in detail for example in [Qi07, Theorem 4] and in [LQZ].

Remark 5.1.6. On one hand, one may verify from (5.1.3) that

$$
\begin{align*}
\operatorname{EDpoly}_{X_{\mu}, u}\left(\varepsilon^{2}\right) & =\text { EDpoly }_{X_{\mu}^{\vee}, u}\left(q_{F, \mu}(u)-\varepsilon^{2}\right) \\
& =\sum_{k=0}^{N}(-1)^{k}\left[\sum_{j=k}^{N}\binom{j}{k} q_{F, \mu}(u)^{j-k} a_{j}(u)\right] \varepsilon^{2 k} . \tag{5.1.4}
\end{align*}
$$

Hence the highest terms of EDpoly $X_{\mu}, u\left(\varepsilon^{2}\right)$ and $\operatorname{EDpoly}_{X_{\mu}^{\vee}, u}\left(q_{F, \mu}(u)-\varepsilon^{2}\right)$ are equal to $a_{N}(u)$ up to sign, where $N=\operatorname{EDdegree}\left(X_{\mu}\right)$. On the other hand, the corresponding lowest terms are not proportional.

Summing up, a first way to compute the ED polynomial of X_{μ}^{\vee} at $u \in S^{\mu} V$ is by applying Definition 4.1.3 together with the identity (5.1.3). The following Macaulay2 code computes the ED polynomial of X_{μ}^{\vee} in the case $s=1, n_{1}=2$, $\mu=(d)$, namely when X_{μ} is the rational normal curve of degree $d \geq 2$.

```
R = QQ[z_0..z_d, c_0..c_d, e];
RatNormCurve = minors(2, matrix{toList(z_0..z_(d-1)), toList(z_1..z_d)});
Jac = compress transpose jacobian RatNormCurve;
M = matrix{apply(d+1, j-> binomial(d, j)*(z_j-c_j))};
It = saturate(RatNormCurve + minors(d, M||Jac), ideal(toList(z_0..z_d)));
Hyperball = ideal(sum(d+1, j-> binomial (d,j)*z_j^2)-e^2);
EDpoly = (eliminate(toList(z_0..z_d), It+Hyperball))_0;
```

The output EDpoly is the ED polynomial of the dual variety of RatNormCurve because we are taking into account (5.1.3) in the definition of Hyperball. Indeed, the usual relation $q_{F, \mu}(u-z)-\varepsilon^{2}$ is replaced by $q_{F, \mu}(z)-\varepsilon^{2}$ (see the definition in (4.1.1)). Moreover, we stress that the metric $q_{F, \mu}$ used in $S^{d} V$ is the one defined in equation (5.1.1). With this choice, the ED polynomial EDpoly of $X_{(d)}^{\vee}$ has degree $d=\operatorname{EDdegree}\left(X_{(d)}\right)$ in $\mathrm{e}^{\wedge} 2$.

Unfortunately, with this approach, the symbolic computation of the ED polynomial is very hard also in the symmetric case $\mu=(d)$ for small values of d. The main reason lies in the computation of the critical ideal $I_{\text {crit }}\left(X_{\mu}\right)$. Actually, Theorem 5.0.3 and Proposition 5.1.4 provide a slightly more effective way for computing EDpoly ${ }_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$, described in the following corollary.

Corollary 5.1.7. Given a general partially symmetric tensor $u=\left(u_{\alpha_{1} \cdots \alpha_{s}}\right) \in$ $S^{\mu} V$, define $J \subset \mathbb{C}\left[\left\{x_{j, 1}, x_{j, n_{j}}\right\},\left\{u_{\alpha_{1} \cdots \alpha_{s}}\right\}, \varepsilon\right]$ to be the ideal generated by all the relations in equation (5.0.4), when restricted to $S^{\mu} V$. Then

$$
\left(J+\left\langle q_{j}\left(x_{j}\right)-1 \mid 1 \leq j \leq s\right\rangle\right) \cap \mathbb{C}\left[u_{\alpha_{1} \cdots \alpha_{s}}, \varepsilon\right]=\left(\operatorname{EDpoly}_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)\right)
$$

Below we give a second and more efficient Macaulay2 code for computing the ED polynomial of X_{μ}^{\vee} in the case $s=1, n_{1}=2, \mu=(d)$, with the alternative approach stated in Corollary 5.1.7 (note the similarity with the code in Example 2.4.2 for $d=3$):

```
R = QQ[x_0, x_1, a_0..a_d, e];
u = sum(d+1, j-> binomial(d,j)*a_j*x_0^(d-j)*x_1^j);
I = ideal(first entries((1/d)*diff(matrix{{x_0, x_1}}, u)-
e*matrix{{x_0, x_1}}));
EDpoly = (eliminate({x_0, x_1},I + ideal(x_0^2+x_1^2-1)))_0;
```

Note that in this case equations (5.0.4) simplify as in (2.1.4), which in turn correspond to the system (2.1.5), where we interpret t as a binary form of degree d. For more details about the output of the above code we refer to Section 5.4. The case of the ED polynomial of the dual of the rational normal curve of degree d is studied in Chapter 2 in the context of Veronese varieties.

5.2 On the zero loci of the extreme coefficients

In this and the following sections, we focus on the lowest and highest coefficients of the ED polynomial of X_{μ}^{\vee} at a given partially symmetric tensor $u \in S^{\mu} V$.

A crucial role is played by the varieties $X_{\mu, J}$, which were introduced in Definition 5.0.4. First, we investigate the dimension of their respective dual affine cones.

Lemma 5.2.1. The variety $X_{\mu, J}^{\vee}$ is a hypersurface in $\mathbb{P}\left(S^{\mu} V\right)$ if and only if

$$
\begin{equation*}
2\left(n_{j}-1\right) \leq \operatorname{dim}\left(X_{\mu, J}\right)=n_{1}+\cdots+n_{s}-s-|J| \tag{5.2.1}
\end{equation*}
$$

for all indices $j \notin J$ such that $\mu_{j}=1$.
Proof. Considering a slight modification of [GKZ, Chapter 1, Corollary 5.10], the dual affine cone $X_{\mu, J}^{\vee}$ is a hypersurface if and only if the following system of inequalities is satisfied:

$$
\begin{align*}
\operatorname{dim}\left(\widetilde{Q}_{j}\right)+\operatorname{codim}\left(\widetilde{Q}_{j}^{\vee}\right)-1 \leq \operatorname{dim}\left(X_{\mu, J}\right) & \forall j \in J \\
\operatorname{dim}\left(X_{\left(\mu_{j}\right)}\right)+\operatorname{codim}\left(X_{\left(\mu_{j}\right)}^{\vee}\right)-1 \leq \operatorname{dim}\left(X_{\mu, J}\right) & \forall j \notin J, \tag{5.2.2}
\end{align*}
$$

On one hand, the first set of inequalities is related to the variety \widetilde{Q}_{j}, which is the μ_{j}-th Veronese embedding into $\mathbb{P}\left(S^{\mu_{j}} V_{j}\right)$ of the isotropic quadric $Q_{j} \subset \mathbb{P}\left(V_{j}\right)$. On the other hand, the second set of inequalities is related to the variety $X_{\left(\mu_{j}\right)}$, namely the μ_{j}-th Veronese embedding of $\mathbb{P}\left(V_{j}\right)$ into $\mathbb{P}\left(S^{\mu_{j}} V_{j}\right)$.

Through the computations made in Lemma 2.3.3 and Corollary 2.3.7, we verified that \widetilde{Q}_{j}^{\vee} is a hypersurface for all $\mu_{j} \geq 1$. Hence for all $j \in J$ the corresponding inequality in (5.2.2) becomes

$$
n_{j}-2 \leq \operatorname{dim}\left(X_{\mu, J}\right)=n_{1}+\cdots+n_{s}-s-|J|
$$

which is trivially satisfied.
Now consider the second set of inequalities in (5.2.2). Note that $\operatorname{dim}\left(X_{\left(\mu_{j}\right)}\right)=$ $\operatorname{dim}\left(\mathbb{P}\left(V_{j}\right)\right)=n_{j}-1$ for all j. If $\mu_{j}>1$, then $X_{\left(\mu_{j}\right)}^{\vee}$ is a hypersurface in $\mathbb{P}\left(S^{\mu_{j}} V_{j}\right)$, hence the corresponding inequality in (5.2.2) becomes $n_{j}-1 \leq \operatorname{dim}\left(X_{\mu, J}\right)$, which is trivially satisfied. Otherwise $\mu_{j}=1$ and $X_{\left(\mu_{j}\right)}^{\vee}=\mathbb{P}\left(V_{j}\right)^{\vee}=\emptyset$. Therefore, we have that $\operatorname{codim}\left(\mathbb{P}\left(V_{j}\right)^{\vee}\right)=n_{j}$ and the corresponding inequality in (5.2.2) coincides with (5.2.1).

Lemma 5.2.2. Assume $n_{1}=\cdots=n_{s}=n, V_{j}=V$ and $Q_{j}=Q$ for all j. Consider a subset $J \subset[s]$. Then $X_{\mu, J}^{\vee}$ is a hypersurface unless

1. $n=2,|J|=s-1$ and $\mu_{j}=1$ for all $j \notin J$,
2. $n \geq 3,(s,|J|) \in\{(1,0),(2,1)\}$ and $\mu_{j}=1$ for all $j \notin J$.

Proof. Without loss of generality, we may assume $J=[l] \subset[s]$ with $0 \leq l \leq s$. If $l=s$, then $J=[s]$ and the inequalities in (5.2.1) are vacuously satisfied, hence $X_{\mu, J}^{\vee}$ is a hypersurface. So in the following we assume $l<s$.

By Lemma 5.2.1, we need to verify that $l \leq(s-2)(n-1)$ for all $j \notin J$ such that $\mu_{j}=1$. In particular, note that the preceding inequality is independent of j, hence in the following, we assume that $\mu_{j}=1$ for some $j \notin J$.

If $n=2$, we are left with the inequality $l \leq s-2$. In particular, in this case $X_{\mu, J}^{\vee}$ is not a hypersurface if and only if $l=s-1$. Note that this is the case $X_{\mu,[s-1]}=\operatorname{Seg}_{\mu}\left(Q^{\times(s-1)} \times \mathbb{P}(V)\right)$ with $\mu=\left(\mu_{1}, \ldots, \mu_{s-1}, 1\right)$.

Now suppose that $n \geq 3$. If $s=1$, then by our assumptions $J=\emptyset$ and the inequality $l \leq(s-2)(n-1)$ becomes $n \leq 1$, which is not satisfied. Indeed, this is the trivial case $X_{1, \emptyset}=\mathbb{P}(V)$, and $\mathbb{P}(V)^{\vee}=\emptyset$. If $s=2$, then the inequality $l \leq(s-2)(n-1)$ is not satisfied for $(s, l)=(2,1)$. Finally if $s \geq 3$, the inequality $l \leq(s-2)(n-1)$ is satisfied for all $n \geq 3$.

The vanishing locus of the lowest coefficient $a_{0}(u)=$ EDpoly $_{X_{\mu}^{\vee}, u}(0)$ is completely described in the following result, which descends immediately from Corollary 4.4.6 and Proposition 4.4.13.

Corollary 5.2.3. The set of tensors $u \in S^{\mu} V$ which admit a partially symmetric critical tensor of rank one z such that $q_{F, \mu}(u-z)=0$ is

$$
\begin{equation*}
\mathcal{V}\left(a_{0}\right)=X_{\mu}^{\vee} \cup\left(X_{\mu} \cap Q_{F, \mu}\right)^{\vee} . \tag{5.2.3}
\end{equation*}
$$

Moreover, if X_{μ}^{\vee} is a hypersurface, its equation f_{μ} has multiplicity two in a_{0}.

Observe that an immediate consequence of Lemma 5.2.2 is that $X_{\mu}^{\vee}=X_{\mu, \emptyset}^{\vee}$ is always a hypersurface except for the trivial case $s=1, \mu_{1}=1$.

Now we take a closer look at the other component $\left(X_{\mu} \cap Q_{F, \mu}\right)^{\vee}$ in (5.2.3). By definition, the affine cone of the variety $X_{\mu} \cap Q_{F, \mu}$, which we keep calling $X_{\mu} \cap Q_{F, \mu}$, is isomorphic to

$$
\left\{\left(x_{1}, \ldots, x_{s}\right) \in V_{1} \times \cdots \times V_{s} \mid q_{F, \mu}\left(x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right)=0\right\} .
$$

Define

$$
Y_{\mu, j}:=\left\{\left(x_{1}, \ldots, x_{s}\right) \in V_{1} \times \cdots \times V_{s} \mid q_{j}\left(x_{j}\right)=0\right\} \quad \forall j \in[s] .
$$

Then clearly $X_{\mu} \cap Q_{F, \mu} \cong Y_{\mu, 1} \cup \cdots \cup Y_{\mu, s}$.
Lemma 5.2.4. For all $j \in[s]$, we have $\left(Y_{\mu, j}\right)_{\text {red }} \cong X_{\mu,\{j\}}$, where $\left(Y_{\mu, j}\right)_{\text {red }}$ denotes the reduced locus of $Y_{\mu, j}$. Moreover if $\mu_{j}>1$, then $Y_{\mu, j}^{\vee}=\emptyset$.
Proof. It follows immediately by the definition of $Y_{\mu, j}$ that its reduced locus is isomorphic to $X_{\mu,\{j\}}$. Consider any $j \in[s]$ and $x=x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{s}^{\mu_{s}} \in Y_{\mu, j}$. On one hand, $x \in Q_{F, \mu}$ and the tangent space $T_{x} Q_{F, \mu}$ is the hyperplane filled by all tensors u such that $q_{F, \mu}(x, u)=0$. On the other hand, $x \in X_{\mu}$ and the tangent space of X_{μ} at x is

$$
T_{x} X_{\mu}=\left\langle x, v_{1} x_{1}^{\mu_{1}-1} \otimes \cdots \otimes x_{s}^{\mu_{s}}, \ldots, x_{1}^{\mu_{1}} \otimes \cdots \otimes v_{s} x_{s}^{\mu_{s}-1} \mid v_{k} \in V_{k} \forall k \in[s]\right\rangle
$$

For any $k \in[s]$ we pick a nonzero vector $v_{k} \in V_{k}$ and we consider the partially symmetric tensor

$$
x_{1}^{\mu_{1}} \otimes \cdots \otimes v_{k} x_{k}^{\mu_{k}-1} \otimes \cdots \otimes x_{s}^{\mu_{s}} \in T_{x} X_{\mu}
$$

Then we get the relation

$$
\begin{gathered}
q_{F, \mu}\left(x, x_{1}^{\mu_{1}} \otimes \cdots \otimes v_{k} x_{k}^{\mu_{k}-1} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right)= \\
=q_{1}\left(x_{1}\right)^{\mu_{1}} \cdots q_{k}\left(v_{k}, x_{k}\right) \cdot q_{k}\left(x_{k}\right)^{\mu_{k}-1} \cdots q_{s}\left(x_{s}\right)^{\mu_{s}}
\end{gathered}
$$

for all $k \in[s]$. In particular, $q_{F, \mu}\left(x, x_{1}^{\mu_{1}} \otimes \cdots \otimes v_{k} x_{k}^{\mu_{k}-1} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right)=0$ for all $k \neq j$. Now assume $k=j$. If $\mu_{j}=1$, then for a general v_{j} we get $q\left(x_{j}, v_{j}\right) \neq 0$ and in turn

$$
q_{F, \mu}\left(x, x_{1}^{\mu_{1}} \otimes \cdots \otimes v_{j} x_{j}^{\mu_{j}-1} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right) \neq 0
$$

This implies that the general point $x \in Y_{\mu, j}$ is smooth if $\mu_{j}=1$. Otherwise if $\mu_{1}>1$, then

$$
q_{F, \mu}\left(x, x_{1}^{\mu_{1}} \otimes \cdots \otimes v_{j} x_{j}^{\mu_{j}-1} \otimes \cdots x_{s}^{\mu_{s}}\right)=0
$$

This means that $T_{x} X_{\mu} \subset T_{x} Q_{F, \mu}$, and every point $x \in Y_{\mu, j}$ is not smooth. Therefore, by the definition of dual variety we have that $Y_{\mu, j}^{\vee}=\emptyset$ if $\mu_{j}>1$.

An immediate consequence of Lemma 5.2.4 is the identity

$$
\begin{equation*}
\left(X_{\mu} \cap Q_{F, \mu}\right)^{\vee}=\bigcup_{j \in[s]: \mu_{j}=1} X_{\mu,\{j\}}^{\vee} \tag{5.2.4}
\end{equation*}
$$

Remark 5.2.5. Consider the identity (5.2.4) in the case $\mu=1^{s}$. In particular, we have that (calling $Q_{F, s}:=Q_{F, 1^{s}}$)

$$
\left(X_{s} \cap Q_{F, s}\right)^{\vee}=\bigcup_{j=1}^{s} X_{s,\{j\}}^{\vee}
$$

where

$$
X_{s,\{j\}}=\mathbb{P}\left(V_{1}\right) \times \cdots \times \mathbb{P}\left(V_{j-1}\right) \times Q_{j} \times \mathbb{P}\left(V_{j+1}\right) \times \cdots \times \mathbb{P}\left(V_{s}\right)
$$

for all $j \in[s]$. By Lemma 5.2.1, the dual affine cone $X_{s,\{j\}}^{\vee}$ is a hypersurface if and only if

$$
2\left(n_{k}-1\right) \leq n_{1}+\cdots+n_{s}-s-1 \quad \forall k \in[s], k \neq j
$$

On the contrary, $X_{s,\{j\}}^{\vee}$ is not a hypersurface if and only if there exists $k \in[s]$, $k \neq j$ such that

$$
2\left(n_{k}-1\right) \geq n_{1}+\cdots+n_{s}-s
$$

Without loss of generality, assume that $n_{1} \geq \cdots \geq n_{s}$. Suppose that $\left(X_{s} \cap Q_{F, s}\right)^{\vee}$ is not a hypersurface. In particular, $X_{s,\{1\}}^{\vee}$ and $X_{s,\{2\}}^{\vee}$ are not hypersurfaces. These facts give the inequalities

$$
n_{2} \geq n_{1}+\sum_{j=3}^{s}\left(n_{j}-1\right), \quad n_{1} \geq n_{2}+\sum_{j=3}^{s}\left(n_{j}-1\right)
$$

namely

$$
n_{1} \geq n_{2}+\sum_{j=3}^{s}\left(n_{j}-1\right) \geq n_{1}+2 \sum_{j=3}^{s}\left(n_{j}-1\right)
$$

Therefore $\sum_{j=3}^{s}\left(n_{j}-1\right)=0$, namely $n_{3}=\cdots=n_{s}=1$ and $n_{1}=n_{2}$.
The conclusion of this remark is the following: if $\left(X_{s} \cap Q_{F, s}\right)^{\vee}$ is not a hypersurface, then $s=2$ and $n_{1}=n_{2}$, so we are in the square matrix case. Nevertheless, here X_{2}^{\vee} is the hypersurface defined by the determinant. In particular, the polynomial EDpoly $X_{X_{s}^{\vee}, u}(0)$ admits an extra coefficient (different from f_{s}^{2}) unless we are in the matrix case. This marks another big difference between the matrix case and all the other possible tensor formats.

In the second part of this section, we are interested in giving a complete description of the vanishing locus of the highest coefficient $a_{N}(u)$ of EDpoly $X_{X_{\mu}^{\vee}, u}(\sigma)$. In the following proof, we use the notations introduced in Section 1.1.

Proposition 5.2.6. The following inclusion holds true:

$$
\mathcal{V}\left(a_{N}\right) \subset \bigcup_{j: \mu_{j}>1} X_{\mu,\{j\}}^{\vee} \cup \bigcup_{|J|>1} X_{\mu, J}^{\vee}
$$

Proof. For any nonzero partially symmetric binary tensor $u \in S^{\mu} V$, we indicate by $\langle u\rangle \in H_{\infty}$ the line spanned by u. Now assume that $a_{N}(u)=0$. From this fact, from Corollary 4.3 .7 and (5.1.4), there exists a sequence $\left\{u_{k}\right\} \subset S^{\mu} V$ such that $u_{k} \rightarrow u$ and two corresponding sequences $\left\{f_{k}\right\} \subset X_{\mu}^{\vee}$ and $\left\{u_{k}-\right.$ $\left.f_{k}\right\} \subset X_{\mu}$ of critical points for $\delta_{F, \mu, u_{k}}$ on X_{μ}^{\vee} and X_{μ}, respectively, such that EDpoly $_{X_{\mu}^{\vee}, u_{k}}\left(\varepsilon_{k}^{2}\right)=0$ and EDpoly $X_{\mu}, u_{k}\left(\eta_{k}^{2}\right)=0$ when $\varepsilon_{k}^{2}=q_{F, \mu}\left(f_{k}-u_{k}\right)$ and $\eta_{k}^{2}=q_{F, \mu}\left(f_{k}\right)$ diverge simultaneously (see Figure 5.2). In particular, we have that $\left\langle u_{k}-f_{k}\right\rangle \in\left[\left(T_{f_{k}} X_{\mu}^{\vee}\right)_{\infty}\right]^{\perp}=\left(N_{f_{k}} X_{\mu}^{\vee}\right)_{\infty}, \quad\left\langle f_{k}\right\rangle \in\left[\left(T_{t_{k}-f_{k}} X_{\mu}\right)_{\infty}\right]^{\perp}=\left(N_{u_{k}-f_{k}} X_{\mu}\right)_{\infty}$ for all k, where the external duals are taken in the projective subspace H_{∞}. Up

Figure 5.2: The sequences $\left\{f_{k}\right\} \subset X_{\mu}^{\vee}$ and $\left\{u_{k}-f_{k}\right\} \subset X_{\mu}$.
to subsequences, we may assume that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\langle f_{k}\right\rangle=:\langle f\rangle \in\left(X_{\mu}\right)_{\infty}^{\vee}, \text { for some } f \in S^{\mu} V \tag{5.2.5}
\end{equation*}
$$

In the topology of the compact space $\overline{X_{\mu}}=X_{\mu} \cup\left(X_{\mu}\right)_{\infty}$ we still have $f_{k} \rightarrow\langle f\rangle \in$ $\left(X_{\mu}\right)_{\infty}^{\vee}$, more precisely in $\mathbb{P}(\mathbb{C} \oplus V)$ we have $\left[\left(1, f_{k}\right)\right] \rightarrow[(0, f)]$. Consequently, we have that

$$
\lim _{k \rightarrow \infty}\left\langle u_{k}-f_{k}\right\rangle=\langle u-f\rangle \in\left(X_{\mu}\right)_{\infty}
$$

Repeating the argument of Proposition 4.3.4, one verifies that
(i) $q_{F, \mu}(\langle u-f\rangle)=0$, namely $\langle u-f\rangle \in\left(Q_{F, \mu}\right)_{\infty}$, where in this case $q_{F, \mu}$ is the quadratic form defined in H_{∞}.
(ii) $T_{\langle u-f\rangle}\left(X_{\mu}\right)_{\infty} \subset T_{\langle u-f\rangle}\left(Q_{F, \mu}\right)_{\infty}$.

Remembering that $u-f$ is a decomposable tensor, then $\langle u-f\rangle=\left[x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right]$ for some vectors $x_{i} \in V_{i}$. By (i), necessarily $q_{j}\left(x_{j}\right)=0$ for some j, say $j=1$. Now there are two possible cases to study.

If $\mu_{1}=1$, then we may suppose that $q_{1}\left(x_{1}\right)=0$. The inclusion in (ii) implies that for any $\langle v\rangle \in T_{\langle u-f\rangle}\left(X_{\mu}\right)_{\infty}$, we have $q_{F, \mu}(\langle v\langle,\langle u-f\rangle)=0$, where in this case $q_{F, \mu}(\cdot, \cdot)$ is the bilinear form on $S^{\mu} V$ restricted to H_{∞}. More explicitly, we may write

$$
v=\sum_{i=1}^{s} x_{1} \otimes \cdots \otimes x_{i-1}^{\mu_{i-1}} \otimes \xi_{i} \cdot x_{i}^{\mu_{i}-1} \otimes x_{i+1}^{\mu_{i+1}} \otimes \cdots \otimes x_{s}^{\mu_{s}}
$$

for some $\xi_{i} \in V_{i}$ for all $i \in[s]$. Then

$$
\begin{aligned}
0 & =q_{F, \mu}(\langle v\rangle,\langle u-f\rangle) \\
& =\sum_{i=1}^{s} q_{F, \mu}\left(\left[x_{1} \otimes \cdots \otimes x_{i-1}^{\mu_{i-1}} \otimes \xi_{i} \cdot x_{i}^{\mu_{i}-1} \otimes x_{i+1}^{\mu_{i+1}} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right],\left[x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right]\right) \\
& =\sum_{i=1}^{s} q_{1}\left(x_{1}\right) \cdots q_{i-1}\left(x_{i-1}\right)^{\mu_{i-1}} \cdot q_{i}\left(\xi_{i}, x_{i}\right) \cdot q_{i}\left(x_{i}\right)^{\mu_{i}-1} \cdot q_{i+1}\left(x_{i+1}\right)^{\mu_{i+1}} \cdots q_{s}\left(x_{s}\right)^{\mu_{s}} .
\end{aligned}
$$

By our assumption $q_{1}\left(x_{1}\right)=0$. Then necessarily we get the identity

$$
q_{1}\left(\xi_{1}, x_{1}\right) \cdot q_{2}\left(x_{2}\right)^{\mu_{2}} \cdots q_{s}\left(x_{s}\right)^{\mu_{s}}=0 .
$$

Taking v sufficiently general, we may suppose that $q_{1}\left(\xi_{1}, x_{1}\right) \neq 0$. Therefore there exists at least one more index $i \neq 1$ such that $q_{i}\left(x_{i}\right)=0$. In particular $u-f \in X_{\mu, J}$, where $J=\left\{j \in[s] \mid q_{j}\left(x_{j}\right)=0\right\}$.

Otherwise $\mu_{1}>1$, then $u-f \in X_{\mu,\{1\}}$, otherwise $u-f \in X_{\mu, J}$ for some $J \subset[s]$ such that $|J|>1$.

Now assume that $\mu_{1}=1$ (the proof in the case $\mu_{1}>1$ is the same). We show that necessarily $t \in X_{\mu, J}^{\vee}$. By definition, $X_{\mu, J}^{\vee}=\overline{S_{\mu, J}}$, where

$$
S_{\mu, J}=\bigcup_{x \in\left(X_{\mu, J}\right)_{\mathrm{sm}}} N_{x} X_{\mu, J}
$$

Now suppose that $y \in T_{u-f} X_{\mu, J}$. By the previous claims, $q_{F, \mu}(y, u-f)=0$. On the other hand, we have $q_{F, \mu}(y, f)=0$, since X_{μ} and X_{μ}^{\vee} are affine cones. Then

$$
q_{F, \mu}(y, u)=\widetilde{q}(y, u-f)+\widetilde{q}(y, f)=0+0=0
$$

This means that $u \in S_{\mu, J}$, hence $u \in X_{\mu, J}^{\vee}$.

Proposition 5.2.6 gives the following piece of information: if a partially symmetric tensor $u \in S^{\mu} V$ does not admit the expected number of critical points, then it must have a critical point with a precise isotropic structure.

5.3 The product of the singular values of a tensor

For all $J \subset[s]$, we recall that $f_{\mu, J}$ denotes the equation of $X_{\mu, J}^{\vee}$, when it is a hypersurface. Otherwise, we set $f_{\mu, J}:=1$. Moreover, we use the notation $f_{\mu}:=f_{\mu, \emptyset}$. For brevity, we define $\theta_{\mu, J}:=\operatorname{deg}\left(f_{\mu, J}\right)$ and $\theta_{\mu}:=\operatorname{deg}\left(f_{\mu}\right)$.

In Lemma 5.2.2 we determined the conditions for the variety $X_{\mu, J}^{\vee}$ to be a hypersurface or not. When $X_{\mu, J}^{\vee}$ is a hypersurface, its degree (that is, $\theta_{\mu, J}$) coincides with the polar class $\delta_{0}\left(X_{\mu, J}\right)$ introduced in Section 1.5. In turn, since $X_{\mu, J}$ is a smooth variety, the invariant $\delta_{0}\left(X_{\mu, J}\right)$ may be written in terms of the Chern classes of $X_{\mu, J}$ via the formulas in (1.8.1) for $i=0$. Setting $m=m(\mu, J)=$ $\operatorname{dim}\left(X_{\mu, J}\right)$ for brevity, we have

$$
\begin{equation*}
\delta_{0}\left(X_{\mu, J}\right)=\sum_{k=0}^{m}(-1)^{k}(m+1-k) c_{k}\left(X_{\mu, J}\right) \cdot h^{m-k} \tag{5.3.1}
\end{equation*}
$$

where $h=c_{1}\left(\mathcal{O}_{X_{\mu, J}}(1)\right)$ is the hyperplane class.
Our goal is to write explicitly the Chern classes $c_{k}\left(X_{\mu, J}\right)$. Let \tilde{H}_{j} be the hyperplane class of $\mathbb{P}\left(V_{j}\right)$ and denote with \tilde{h}_{j} the restriction of \tilde{H}_{j} to the variety Y_{j}. In particular, recalling that $X_{\mu, J}=\operatorname{Seg}_{\mu}\left(Y_{1} \times \cdots \times Y_{s}\right)$ (see Definition 5.0.4) we have the relations

$$
\tilde{h}_{j}^{n_{j}-\chi_{J}(j)}=0 \quad \text { for all } j \in[s],
$$

where χ_{J} is the characteristic function of the subset J. Keeping in mind all these relations, we have that

$$
\begin{aligned}
c\left(X_{\mu, J}\right) & =\prod_{j=1}^{s} c\left(Y_{j}\right)=\prod_{j=1}^{s}\left(\sum_{i=0}^{n_{j}-1} c_{i}\left(Y_{j}\right)\right)=\prod_{j=1}^{s}\left(\sum_{i=0}^{n_{j}-1} \gamma_{i}\left(Y_{j}\right) \tilde{h}_{j}^{i}\right) \\
& =\sum_{k=0}^{m}\left[\sum_{|\beta|=k}\left(\prod_{l=1}^{s} \gamma_{\beta_{l}}\left(Y_{l}\right)\right) \tilde{h}^{\beta}\right]=\sum_{k=0}^{m} \sum_{|\beta|=k} \gamma_{\beta} \tilde{h}^{\beta},
\end{aligned}
$$

where $\tilde{h}^{\beta}=\tilde{h}_{1}^{\beta_{1}} \cdots \tilde{h}_{s}^{\beta_{s}}$ and using (1.7.1) we have

$$
\gamma_{\beta_{l}}\left(Y_{l}\right)=\left\{\begin{array}{ll}
\sum_{i=0}^{\beta_{l}}\binom{n_{l}}{i}(-2)^{\beta_{l}-i} & \text { if } l \in J \\
\binom{n_{l}}{\beta_{l}} & \text { if } l \notin J .
\end{array}, \quad \gamma_{\beta}=\gamma_{\beta}\left(X_{\mu, J}\right):=\prod_{l=1}^{s} \gamma_{\beta_{l}}\left(Y_{l}\right) .\right.
$$

Therefore, the k-th Chern class of $X_{\mu, J}$ is

$$
c_{k}\left(X_{\mu, J}\right)=\sum_{|\beta|=k} \gamma_{\beta} \tilde{h}^{\beta} \quad \forall 0 \leq k \leq m
$$

Then, taking into account the Segre-Veronese embedding Seg_{μ}, we have that $h=\mu_{1} \tilde{h}_{1}+\cdots+\mu_{s} \tilde{h}_{s}$, hence the power h^{m-k} in equation (5.3.1) becomes

$$
h^{m-k}=\left(\mu_{1} \tilde{h}_{1}+\cdots+\mu_{s} \tilde{h}_{s}\right)^{m-k}=\sum_{|\omega|=m-k}\binom{m-k}{\omega} \mu^{\omega} \tilde{h}^{\omega} .
$$

Summing up, the product $c_{k}\left(X_{\mu, J}\right) \cdot h^{m-k}$ in (5.3.1) may be written as

$$
\begin{align*}
c_{k}\left(X_{\mu, J}\right) \cdot h^{m-k} & =\sum_{|\beta|=k} \gamma_{\beta} \tilde{h}^{\beta} \cdot \sum_{|\omega|=m-k}\binom{m-k}{\omega} \mu^{\omega} \tilde{h}^{\omega} \\
& =(m-k)!\left[\sum_{|\beta|=k} \eta_{\beta} \gamma_{\beta} \mu^{\underline{n}-\beta-\chi_{J}}\right] \tilde{h}^{m} \tag{5.3.2}
\end{align*}
$$

where we observed that, for every k, the product $\tilde{h}^{\beta} \cdot \tilde{h}^{\omega}$ is nonzero if and only if $\beta+\omega=\underline{n}-1^{s}-\chi_{J}$ (namely $\beta_{l}+\omega_{l}=n_{l}-1-\chi_{J}(l)$ for all $l \in[s]$) and consequently that $|\beta+\omega|=\left|\underline{n}-1^{s}-\chi_{J}\right|=m$. Moreover, we defined

$$
\eta_{\beta}:= \begin{cases}\frac{1}{\left(\underline{n}-1^{s}-\beta-\chi_{J}\right)!}=\prod_{l=1}^{s} \frac{1}{\left(n_{l}-1-\beta_{l}-\chi_{J}(l)\right)!} & \text { if } n_{l}-\beta_{l}-\chi_{J}(l) \geq 1 \forall l \in[s] \\ 0 & \text { otherwise }\end{cases}
$$

Finally we observe that, from the definition of $X_{\mu, J}$, we have $\operatorname{deg}\left(\tilde{h}^{m}\right)=2^{|J|}$. Merging together formulas (5.3.1) and (5.3.2) we get the following result
Proposition 5.3.1. If $X_{\mu, J}^{\vee}$ is a hypersurface, then its degree is

$$
\begin{equation*}
\theta_{\mu, J}=2^{|J|} \sum_{k=0}^{m}(-1)^{k}(m+1-k)!\sum_{|\beta|=k} \eta_{\beta} \gamma_{\beta} \mu^{\underline{n}-1^{s}-\beta-\chi_{J}} . \tag{5.3.3}
\end{equation*}
$$

We consider two explicit examples of the above formula, which are useful for example in Remark 5.3.19. See also Corollary 5.4.1 for a simplified version of (5.3.3) in the binary case.

Example 5.3.2. Consider the case $s=2, n_{1}=n_{2}=n$ and the vector of degrees $\mu=\left(\mu_{1}, \mu_{2}\right)$. The degree of the dual affine cone of $X_{\mu,\{1\}}=\operatorname{Seg}_{\mu}(Q \times \mathbb{P}(V))$ is

$$
\theta_{\mu,\{1\}}=2 \sum_{k=0}^{2 n-3}(-1)^{k}(2 n-2-k)!\sum_{\substack{\beta_{1} \leq n-2 \\ \beta_{2} \leq n-1 \\|\bar{\beta}|=k}} \frac{\left[\sum_{l=0}^{\beta_{1}}\binom{n}{l}(-2)^{\beta_{1}-l}\right]\binom{n}{\beta_{2}}}{\left(n-\beta_{1}-2\right)!\left(n-1-\beta_{2}\right)!} \mu_{1}^{n-\beta_{1}-2} \mu_{2}^{n-1-\beta_{2}} .
$$

Example 5.3.3. Consider the case $s=3, n_{1}=n_{2}=n_{3}=n$ and the vector of degrees $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$. Below we compute the degrees of the dual affine cones of $X_{\mu,\{1\}}=\operatorname{Seg}_{\mu}(Q \times \mathbb{P}(V) \times \mathbb{P}(V))$ and $X_{\mu,\{1,2\}}=\operatorname{Seg}_{\mu}(Q \times Q \times \mathbb{P}(V))$, respectively:

$$
\begin{aligned}
& \theta_{\mu,\{1\}}=2 \cdot \sum_{s=0}^{3 n-4}(-1)^{s}(3 n-3-s)!. \\
& \cdot \sum_{\substack{\beta_{1} \leq n-2 \\
\beta_{2}, \beta_{3} \leq n-1 \\
|\beta|=k}} \frac{\sum_{l=0}^{\beta_{1}}\binom{n}{l}(-2)^{\beta_{1}-l}}{\left(n-\beta_{1}-2\right)!}\left[\prod_{i=2}^{3} \frac{\binom{n}{\beta_{i}}}{\left(n-\beta_{i}-1\right)!}\right] \mu^{n-1^{3}-\beta-\chi_{\{1\}}}, \\
& \theta_{\mu,\{1,2\}}=4 \cdot \sum_{s=0}^{3 n-5}(-1)^{s}(3 n-4-s)!. \\
& \cdot \sum_{\substack{\beta_{1}, \beta_{2} \leq n-2 \\
\beta_{3} \leq n-1 \\
\mid \hat{\beta}=k}}\left[\prod_{i=1}^{2} \frac{\sum_{l=0}^{\beta_{i}}\binom{n}{l}(-2)^{\beta_{i}-l}}{\left(n-\beta_{i}-2\right)!}\right] \frac{\binom{n}{\beta_{3}} \mu^{\underline{n}-1^{3}-\beta-\chi_{\{1,2\}}}}{\left(n-\beta_{3}-1\right)!} .
\end{aligned}
$$

For the rest of the chapter, we assume that $n_{1}=\cdots=n_{s}=n$. Moreover, without loss of generality, we may identify all vector spaces $V_{j}=V$ as well as the quadratic forms $q_{j}=q$ and the corresponding isotropic quadrics $Q_{j}=Q$.

From now on, we consider an integer d and all degree vectors $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ such that $|\mu|=d$, namely all partitions μ of d. We use the symbol $\mu \vdash d$ to denote any partition of d. The two trivial partitions are $\mu=(1, \ldots, 1)$ (d times), denoted by $\mu=1^{d}$, and the symmetric partition $\mu=(d)$.

Proposition 5.2 .6 carries the following fact: if $a_{N}=g_{1}^{\beta_{1}} \cdots g_{r}^{\beta_{r}}$ is the irreducible factorization of the highest coefficient a_{N} of $\mathrm{EDpoly}_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$, then the g_{k} 's are either proportional to $f_{\mu,\{j\}}$ for some $1 \leq j \leq s$ such that $\mu_{j}>1$, or to $f_{\mu, J}$ for some $J \subset[s]$ such that $|J|>1$. In particular, we may write, up to scalars,

$$
\begin{equation*}
a_{N}(u)=\prod_{j: \mu_{j}>1} f_{\mu,\{j\}}(u)^{\alpha_{\mu,\{j\}}} \cdot \prod_{|J|>1} f_{\mu, J}(u)^{\alpha_{\mu, J}}, \quad \alpha_{\mu, J} \geq 0 . \tag{5.3.4}
\end{equation*}
$$

Moreover, from Lemma 5.2.3 we have that, up to scalars,

$$
\begin{equation*}
a_{0}(u)=f_{\mu}(u)^{2} \cdot \prod_{j: \mu_{j}=1} f_{\mu,\{j\}}(u)^{-\alpha_{\mu,\{j\}}}, \quad \alpha_{\mu,\{j\}} \leq 0 \quad \text { when } \quad \mu_{j}=1 \tag{5.3.5}
\end{equation*}
$$

The reason for the negative sign in the notation of the integers $\alpha_{\mu, J}$ in (5.3.5) is clarified in the proof of Theorem 5.0.5. When $\mu=1^{d}$, we observe that

EDpoly $X_{d}^{\vee}, u\left(\varepsilon^{2}\right)$ is invariant under the action of the symmetric group Σ_{d} on the entries of $u=\left(u_{i_{1} \cdots i_{d}}\right)$. More precisely, we use the notation

$$
\begin{equation*}
\alpha_{d, j}:=\alpha_{1^{d}, J} \quad \text { for all } \quad J \subset[d] . \tag{5.3.6}
\end{equation*}
$$

A nontrivial task is showing what are the exponents $\alpha_{\mu, J}$ appearing in the expressions of a_{N} and a_{0}. Actually, Corollary 5.3.13 simplifies a lot our problem, stating that $\alpha_{\mu, J} \in\left\{\alpha_{d, 1}, \ldots, \alpha_{d, d}\right\}$ for all $\mu \vdash d$ and all $J \subset[s]$. In order to determine the exponents $\alpha_{\mu, J}$, we consider the following list of linear conditions whose coefficients are the degrees $\theta_{\mu, J}$, which descend from relations (5.3.4), (5.3.5) and the identity $\operatorname{deg}\left(a_{N}\right)+2 N=\operatorname{deg}\left(a_{0}\right)$, where we already know from Corollary 5.2.3 that $\alpha_{\mu, \emptyset}=\alpha_{\mu}=-2$:

$$
\begin{equation*}
\sum_{J \subset[s]} \alpha_{\mu, J} \theta_{\mu, J}+2 N=0 \quad \text { for all } \quad \mu \vdash d \tag{5.3.7}
\end{equation*}
$$

The main idea of the proof of Corollary 5.3.13 is related to partial symmetrizations of the ED polynomial of X_{d}^{\vee}. To this aim, we recall some definitions and preliminary results.

Definition 5.3.4. Let $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ be a partition of d. A symmetrization of μ is any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of d with

$$
\begin{equation*}
\lambda_{j}=\mu_{i_{j, 1}}+\cdots+\mu_{i_{j, l_{j}}} \quad \text { for all } 1 \leq j \leq r \tag{5.3.8}
\end{equation*}
$$

where $\mu=\left(\mu_{i_{1,1}}, \ldots, \mu_{i_{1, l_{1}}}, \ldots, \mu_{i_{r, 1}}, \ldots, \mu_{i_{r, l_{r}}}\right)$ after a possible permutation. We write $\lambda \prec \mu$ to indicate that λ is a symmetrization of μ. We stress that different choices of μ_{i} appearing in different sums (5.3.8) yield different symmetrizations of μ, even if some of the μ_{i} are equal.

Given two partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ such that $\lambda \prec \mu$, we may consider the inclusion $S^{\lambda} V \subset S^{\mu} V$. Since the group GL (V) is linearly reductive (see Definition 3.1.2), $S^{\mu} V$ is a GL(V)-module and $S^{\lambda} V$ is a submodule of $S^{\mu} V$, there exists a unique $\mathrm{GL}(V)$-invariant complement to $S^{\lambda} V$ in $S^{\mu} V$, denoted by $W^{\lambda, \mu}$ (see [LeP, Lemma 6.2.2]). We have a natural projection

$$
\pi_{\lambda, \mu}: \mathbb{P}\left(S^{\mu} V\right) \longrightarrow \mathbb{P}\left(S^{\lambda} V\right)
$$

from $W^{\lambda, \mu}$, whose definition on decomposable elements is

$$
\begin{gathered}
\pi_{\lambda, \mu}\left(\left[a_{i_{1,1}}^{\mu_{i_{1,1}}} \otimes \cdots \otimes a_{i_{1, t_{1}}}^{\mu_{i_{1, t}}} \otimes \cdots \otimes a_{i_{s, 1}}^{\mu_{i_{s, 1}}} \otimes \cdots \otimes a_{i_{t, t_{s}}}^{\mu_{i_{t, t}}}\right]\right):= \\
:=\left[a_{i_{1,1}}^{\mu_{i_{1,1}}} \cdots a_{i_{1, t, t_{1}}}^{\mu_{i_{1}}} \otimes \cdots \otimes a_{i_{s, 1}}^{\mu_{i_{s, 1}}} \cdots a_{i_{t, t_{s}}}^{\mu_{i_{t, t}}}\right] .
\end{gathered}
$$

The projection $\pi_{\lambda, \mu}$ induces another projection $\mathbb{P}\left(S^{e}\left(S^{\mu} V\right)\right) \rightarrow \mathbb{P}\left(S^{e}\left(S^{\lambda} V\right)\right)$, which we keep calling $\pi_{\lambda, \mu}$. The λ-symmetrization of a degree e homogeneous polynomial $f \in S^{e}\left(S^{\mu} V\right)$ is the image $\pi_{\lambda, \mu}(f)$ under the map already defined.

The case $\mu \vdash d, \lambda=(d) \vdash d$ is studied in detail by Oeding in [Oed]. Here we write $\pi_{\mu}:=\pi_{(d), \mu}$ for brevity. We consider the projections

$$
\begin{equation*}
\operatorname{Chow}_{\mu} \mathbb{P}(V):=\pi_{\mu}\left(X_{\mu}\right) \subset \mathbb{P}\left(S^{d} V\right) \tag{5.3.9}
\end{equation*}
$$

classically known as multiple root loci of $\mathbb{P}\left(S^{d} V\right)$. They are filled by (classes of) symmetric tensors of the form $l_{1}^{\mu_{1}} \ldots l_{s}^{\mu_{s}}$ for some linear forms l_{1}, \ldots, l_{s}. When $\mu=(d)$, the corresponding multiple root locus is the Veronese variety $X_{(d)}$. Oeding derived the following striking factorization formula for the μ-discriminant f_{μ} in terms of equations of dual multiple loci.

Theorem 5.3.5. [Oed, Theorem 1.2] Let $\mu \vdash d \geq 2$, and let V be a complex vector space of dimension n with $n \geq 1$. Then

$$
X_{\mu}^{\vee} \cap \mathbb{P}\left(S^{d} V^{*}\right)=\bigcup_{\gamma \prec \mu}\left[\operatorname{Chow}_{\gamma} \mathbb{P}(V)\right]^{\vee}
$$

In particular,

$$
\pi_{\mu}\left(f_{\mu}\right)=\prod_{\gamma \prec \mu} \Phi_{\gamma, n}^{M_{\gamma, \mu}}
$$

where $\Phi_{\gamma, n}$ is the equation of $\left[\mathrm{Chow}_{\gamma} \mathbb{P}(V)\right]^{\vee}$ when it is a hypersurface in $\mathbb{P}\left(S^{d} V^{*}\right)$, and the multiplicity $M_{\gamma, \mu}$ is the number of partitions μ such that γ is a symmetrization of μ.

A more general result by Holweck and Oeding which we apply is the following.
Theorem 5.3.6. [HO, Theorem 2.2] Let $X \subset \mathbb{P}(V)$ and $Y \subset \mathbb{P}(A)$ be algebraic varieties with $V=A \oplus B$. If for each smooth point $[y] \in Y$ there is a smooth point $[x] \in X$ such that $\pi_{B}\left(T_{x} X\right) \subset T_{y} Y$ (where in the inclusion X and Y are seen as affine cones), then

$$
Y^{\vee} \subset X^{\vee} \cap \mathbb{P}\left(A^{*}\right)
$$

Moreover if X^{\vee} and Y^{\vee} are hypersurfaces defined respectively by polynomials f and g and, for every general point $[h] \in Y^{\vee}, H=\mathcal{V}(h)$, viewed as a hyperplane in $\mathbb{P}(V)$, is a point of multiplicity m of X^{\vee}, then g^{m} divides $\pi_{B}(f)$.

The following result an almost immediate consequence of Theorem 5.3.5 and is an instance of Theorem 5.3.6. It relates the λ-symmetrization of the μ discriminant (the equation of X_{μ}^{\vee}), where $\lambda \prec \mu$ are two partitions of d.

Proposition 5.3.7. Let $\lambda \prec \mu$ be two partitions of d. Then

$$
X_{\lambda}^{\vee} \subset X_{\mu}^{\vee} \cap \mathbb{P}\left(S^{\lambda} V\right)
$$

Moreover, f_{λ} is a factor of multiplicity one in $\pi_{W^{\lambda, \mu}}\left(f_{\mu}\right)$.
Proof. By Theorem 5.3.5, we have the inclusions $X_{(d)}^{\vee} \subset X_{\mu}^{\vee} \cap \mathbb{P}\left(S^{d} V\right)$ and $X_{(d)}^{\vee} \subset X_{\lambda}^{\vee} \cap \mathbb{P}\left(S^{d} V\right)$. We stress that, taking into account Definition 1.3.1, we are identifying $\mathbb{P}\left(\left(S^{\mu} V / S^{d} V\right)^{\perp}\right)$ with $S^{d} V$ and by abuse of notation write $X_{(d)}^{\vee} \subset X_{\mu}^{\vee} \cap \mathbb{P}\left(S^{d} V\right)$. Again by Theorem 5.3.5, the discriminant $f_{(d)}$ is a factor of multiplicity one in both the polynomials $\pi_{(d), \mu}\left(f_{\mu}\right)$ and $\pi_{(d), \lambda}\left(f_{\lambda}\right)$.

Remark 5.3.8. Fix a partition $\mu \vdash d$ and a vector space $S^{\mu} V$. As a completion of the remark in Definition 5.3.4, we stress that distinct symmetrizations $\lambda_{1} \neq \lambda_{2}$ of μ yield isomorphic but distinct subspaces $S^{\lambda_{1}} V \neq S^{\lambda_{2}} V$ and, in turn, distinct (but isomorphic) varieties $X_{\lambda_{1}}$ and $X_{\lambda_{2}}$, even if $\lambda_{1}=\lambda_{2}$ as partitions of d. For example, when we write $X_{(2,1)} \subset X_{(1,1,1)}$ we do take into account which components of $\mu=(1,1,1)$ we are summing to get $\lambda=(2,1)$. Nevertheless, we choose to omit this assumption in our notation. In terms of projections $\pi_{\lambda, \mu}$, different symmetrizations $\lambda_{1} \neq \lambda_{2}$ of μ yield different maps $\pi_{\lambda_{1}, \mu} \neq \pi_{\lambda_{2}, \mu}$.

The following key fact shows how the previous result shifts from dual Segre -Veronese varieties to their respective ED polynomials.

Proposition 5.3.9. Let $\lambda \prec \mu$ be two partitions of d and let $u \in S^{\lambda} V$. Then the ED polynomial of X_{λ}^{\vee} at u divides with multiplicity one the λ-symmetrization of the ED polynomial of X_{μ}^{\vee} at u.

Proof. Let $u \in S^{\lambda} V$ and let $x \in X_{\lambda} \subset X_{\mu}$ be a λ-symmetric singular tensor for u. We show that x is also a μ-symmetric singular tensor for u. According to the decomposition $S^{\mu} V=S^{\lambda} V \oplus W^{\lambda, \mu}$, the tangent space of X_{μ} at x decomposes in a good way as $T_{x} X_{\mu}=T_{x} X_{\lambda} \oplus W$ for some subspace $W \subset W^{\lambda, \mu}$. In particular, any tangent vector of X_{μ} at x may be written in a unique way as $y=y_{\lambda}+w$ for some $y_{\lambda} \in T_{x} X_{\lambda}$ and $w \in W$. Then we have

$$
q_{F, \mu}(u-x, y)=q_{F, \mu}\left(u-x, y_{\lambda}\right)+q_{F, \mu}(u-x, w)=0+0=0
$$

for all $y \in T_{x} X_{\mu}$. Thanks to Proposition 5.1.4, this fact means, at the level of ED polynomials, that there exists an integer $\beta \geq 0$ such that

$$
\operatorname{EDpoly}_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)=\left[\operatorname{EDpoly}_{X_{\lambda}^{\vee}, u}\left(\varepsilon^{2}\right)\right]^{\beta} \cdot h,
$$

and EDpoly $X_{\lambda}^{\vee}, u\left(\varepsilon^{2}\right)$ is not a factor of h. By Lemma 5.2.3, the equations of X_{μ}^{\vee} and X_{λ}^{\vee}, namely f_{μ} and f_{λ}, appear with multiplicity 2 in the lowest terms of

EDpoly $_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$ and EDpoly $X_{\lambda}^{\vee}, u\left(\varepsilon^{2}\right)$. Moreover, by Proposition 5.3.7, f_{λ} is a factor of multiplicity one in $\pi_{\lambda, \mu}\left(f_{\mu}\right)$. This implies that $\beta=1$.

Definition 5.3.10. Let $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \vdash d$. Consider a subset of indices $J \subset[s]$. We say that a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \prec \mu$ is compatible with J if for all $1 \leq j \leq r$ we may write

$$
\lambda_{j}=\mu_{i_{j, 1}}+\cdots+\mu_{i_{j, l_{j}}}
$$

and the subset of indices $I_{\lambda, j}:=\left\{i_{j, 1}, \ldots, i_{j, l_{j}}\right\}$ is either contained in J or in $[s] \backslash J$. Moreover, we define $J_{\lambda}:=\left\{j \in[r] \mid I_{\lambda, j} \subset J\right\}$.
Example 5.3.11. Let $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \vdash d$. Consider a nonempty subset $J=$ $\left\{p_{1}, \ldots, p_{n}\right\} \subset[s]$ and its complement $[s] \backslash J=\left\{q_{1}, \ldots, q_{s-n}\right\}$. Then any of the following partitions $\lambda \prec \mu$, which we use in Corollary 5.3.13 and Lemmas 5.3.15 and 5.3.17, is compatible with J :

1. $\lambda=(d)=\left(\mu_{1}+\cdots+\mu_{s}\right)$ if $J=[s]$,
2. $\lambda=\left(\lambda_{1}, \lambda_{2}\right)=\left(\mu_{p_{1}}+\cdots+\mu_{p_{n}}, \mu_{q_{1}}+\cdots+\mu_{q_{s-n}}\right)$,
3. $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left(\mu_{p_{1}}+\cdots+\mu_{p_{n-1}}, \mu_{p_{n}}, \mu_{q_{1}}+\cdots+\mu_{q_{s-n}}\right)$,
4. $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left(\mu_{p_{1}}+\cdots+\mu_{p_{n}}, \mu_{q_{1}}+\cdots+\mu_{q_{s-n-1}}, \mu_{q_{s-n}}\right)$.

Definition 5.3.10 is useful for introducing the following variation of Proposition 5.3.7.

Proposition 5.3.12. Let $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ be a partition of d. Consider a subset of indices $J \subset[s]$ and a partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right) \prec \mu$ compatible with J. If $X_{\mu, J}^{\vee}$ is a hypersurface, then $X_{\lambda, J_{\lambda}}^{\vee}$ is a hypersurface too, and

$$
\begin{equation*}
X_{\lambda, J_{\lambda}}^{\vee} \subset X_{\mu, J}^{\vee} \cap \mathbb{P}\left(S^{\lambda} V\right) \tag{5.3.10}
\end{equation*}
$$

Moreover, $f_{\lambda, J_{\lambda}}$ is a factor of multiplicity one in $\pi_{\lambda, \mu}\left(f_{\mu, J}\right)$.
Proof. In the first part, we derive the inclusion (5.3.10) by applying Theorem 5.3.6. Since the partition λ is compatible with J, we conclude immediately from Definition 5.3.10 that $X_{\lambda, J_{\lambda}} \subset X_{\mu, J} \cap \mathbb{P}\left(S^{\lambda} V\right)$. Observe that $X_{\mu, J}$ and $X_{\lambda, J_{\lambda}}$ are smooth varieties. Pick any point $y=y_{1}^{\lambda_{1}} \otimes \cdots \otimes y_{r}^{\lambda_{r}} \in X_{\lambda, J_{\lambda}}$. First of all, we have $\pi_{\lambda, \mu}^{-1}(y)=\{x\}$, where $x=x_{1}^{\mu_{1}} \otimes \cdots \otimes x_{s}^{\mu_{s}} \in X_{\mu, J}$ is such that $x_{i}=y_{j}$ for all $i \in I_{\lambda, j}$ and for all $j \in[s]$. Secondly, we show that the projection $\pi_{\lambda, \mu}\left(T_{x} X_{\mu, J}\right)$ of the tangent space of $X_{\mu, J}$ at x is contained in $T_{y} X_{\lambda, J_{\lambda}}$. By definition,
$T_{x} X_{\mu, J}=\left\langle x, x_{1}^{\mu_{1}} \otimes \cdots v_{i} x_{i}^{\mu_{i}-1} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right| v_{i} \in T_{x_{i}} Q$ if $i \in J, v_{i} \in V$ if $\left.i \notin J\right\rangle$.

If $i \in J$, then $x_{1}^{\mu_{1}} \otimes \cdots v_{i} x_{i}^{\mu_{i}-1} \otimes \cdots \otimes x_{s}^{\mu_{s}}=x$ and we already showed that $\pi_{\lambda, \mu}(x)=y \in T_{y} X_{\lambda, J_{\lambda}}$. Now assume that $j \notin J$. Then
$\pi_{\lambda, \mu}\left(x_{1}^{\mu_{1}} \otimes \cdots v_{i} x_{i}^{\mu_{i}-1} \otimes \cdots \otimes x_{s}^{\mu_{s}}\right)=y_{1}^{\lambda_{1}} \otimes \cdots \otimes v_{i} y_{j}^{\lambda_{j}-1} \otimes \cdots \otimes y_{r}^{\lambda_{r}} \in T_{y} X_{\lambda, J_{\lambda}}$,
where the index j is such that $i \in I_{\lambda, j}$. Hence $\pi_{\lambda, \mu}\left(T_{x} X_{\mu, J}\right) \subset T_{y} X_{\lambda, J_{\lambda}}$ as we wanted. Therefore the inclusion (5.3.10) follows by Theorem 5.3.6.

Now suppose by absurd that $X_{\lambda, J_{\lambda}}^{\vee}$ is not a hypersurface. Then necessarily $\left|J_{\lambda}\right|=r-1$ and $\lambda_{k}=1$ for $k \notin J_{\lambda}$, by Lemma 5.2.2. By Definition 5.3.10, we have that $|J|=s-1$ and $\mu_{j}=1$ for all $j \notin J$, that is, $X_{\mu, J}^{\vee}$ is not a hypersurface by Lemma 5.2.2, a contradiction.

Finally we assume that $X_{\mu, J}^{\vee}$ is a hypersurface and we verify that the equation $f_{\lambda, J_{\lambda}}$ of $X_{\lambda, J_{\lambda}}^{\vee}$ appears with multiplicity one in $\pi_{\lambda, \mu}\left(f_{\mu, J}\right)$. We mimick the argument used by Oeding in the second proof of [Oed, Lemma 5.1]. Let h be a general vector in $X_{\lambda, J_{\lambda}}^{\vee}$. In particular, h is a smooth point of $X_{\lambda, J_{\lambda}}^{\vee}$, so there is exactly one point $y \in X_{\lambda, J_{\lambda}}$ such that $h \in N_{y} X_{\lambda, J_{\lambda}}$. By the previous part of the proof, we know that $\pi_{\lambda, \mu}^{-1}(y)=\{x\}$ for some $x \in X_{\mu, J}$ and that $h \in N_{x} X_{\mu, J}$, where we are considering the inclusion $h \in S^{\lambda} V \subset S^{\mu} V$. If $X_{\lambda, J_{\lambda}}^{\vee}$ had multiplicity greater than one in $X_{\mu, J}^{\vee} \cap \mathbb{P}\left(S^{\lambda} V\right)$, there would be a point $\tilde{x} \in X_{\mu, J}$, distinct from x, such that $h \in N_{\tilde{x}} X_{\lambda, J_{\lambda}}$. Again the first part of the proof would imply that $\tilde{y}:=\pi_{\lambda, \mu}(\tilde{x})$ is distinct from y and that $h \in N_{\tilde{y}} X_{\lambda, J_{\lambda}}$. But then $h \in N_{y} X_{\lambda, J_{\lambda}} \cap N_{\tilde{y}} X_{\lambda, J_{\lambda}}$, and this contradicts the fact that h is smooth on $X_{\lambda, J_{\lambda}}^{\vee}$.

Propositions 5.3.9 and 5.3.12 yield the following useful corollary for the proof of Theorem 5.0.5.

Corollary 5.3.13. Let $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ be a partition of d. Then

$$
\alpha_{\mu, J}=\alpha_{d, \sum_{j \in J} \mu_{j}}
$$

for all $J \subset[s]$, where the integers $\alpha_{\mu, J}$ were defined in (5.3.4) and in (5.3.5), whereas the integers $\alpha_{d, j}$ were defined in (5.3.6).

Proof. Let $K \subset[d]$ such that $|K|=\sum_{j \in J} \mu_{j}$. By Proposition 5.3.12, $f_{\mu, J}$ is a factor of multiplicity one in $\pi_{\mu, 1^{d}}\left(f_{d, K}\right)$. Moreover, given any tensor $u \in S^{\mu} V$, by Proposition 5.3.9 the ED polynomial of X_{μ}^{\vee} at u divides the ED polynomial of X_{d}^{\vee} at u with multiplicity one. Therefore, the exponents of $f_{d, K}$ and $f_{\mu, J}$, which are respectively $\alpha_{d,|K|}=\alpha_{d, \sum_{j \in J} \mu_{j}}$ and $\alpha_{\mu, J}$, must coincide.

Thanks to Corollary (5.3.13) and the identities in (5.3.7), one might consider the linear system

$$
\begin{equation*}
\sum_{J \subset[s]} \alpha_{d, \sum_{j \in J} \mu_{j}} \theta_{\mu, J}+2 N=0 \quad \forall \mu \vdash d \tag{5.3.11}
\end{equation*}
$$

in the variables $\alpha_{d, 1}, \ldots, \alpha_{d, d}$, and show that the system (5.3.11) admits the unique solution

$$
\begin{equation*}
\left(\alpha_{d, 1}, \ldots, \alpha_{d, d}\right)=(-1,0,1, \ldots, d-2) \tag{5.3.12}
\end{equation*}
$$

Note that the system (5.3.11) has d variables and as many equations as the number of partitions $\mu \vdash d$, which is considerably larger than d in general. Actually, it turns out that many equations are linearly dependent.

After initializing the system (5.3.11) on the mathematical software Macaulay2, we verified that it admits the unique solution (5.3.12) for small values of n (say, $n<100$). Modulo this issue, we are ready to conclude the proof of Theorem 5.0.5.

Proof of Theorem 5.0.5. Let $d \geq 1$ be an integer and let $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ be a partition of d. We only need to show that the highest coefficient $a_{N}=a_{N}(u)$ and the lowest coefficient $a_{0}=a_{0}(u)$ of the ED polynomial of X_{μ}^{\vee} at $u \in S^{\mu} V$ are respectively

$$
\begin{equation*}
a_{N}=\prod_{j: \mu_{j}>1} f_{\mu,\{j\}}^{\mu_{j}-2} \cdot \prod_{|J|>1} f_{\mu, J}^{\sum_{k \in J} \mu_{k}-2}, \quad a_{0}=f_{\mu}^{2} \cdot \prod_{j: \mu_{j}=1} f_{\mu,\{j\}} \tag{5.3.13}
\end{equation*}
$$

By Corollary 5.3.13, for every nonempty subset $J \subset[s]$, the exponent of $f_{\mu, J}$ is $\alpha_{\mu, J}=\alpha_{d, \sum_{k \in J} \mu_{k}}$. Moreover, by (5.3.12), we have that

$$
\alpha_{d, \sum_{k \in J} \mu_{k}}=\sum_{k \in J} \mu_{k}-2,
$$

thus completing the proof.
In the last part of this section, we extract a system \mathcal{S}_{d} of d equations from (5.3.11). In our computations, we observed (for small values of n) that \mathcal{S}_{d} is of full rank when $n>2$, whereas is of rank $d-1$ for $n=2$. Actually, the case $n=2$ is completely described in Section 5.4, where we show in Proposition 5.4.4 that the system \mathcal{S}_{d} admits essentially the unique solution (5.3.12).

The first equation to add in \mathcal{S}_{d} corresponds to the trivial partition $\mu=(d)$, as explained in the following result.

Corollary 5.3.14. For any partition $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \vdash d$, we have the relation

$$
\begin{equation*}
\alpha_{\mu,[s]}=\alpha_{(d),\{1\}}=\alpha_{d, d}=d-2 . \tag{5.3.14}
\end{equation*}
$$

Proof. The proof is a direct application of Theorem 2.0.2. On one hand, the highest coefficient of $\operatorname{EDpoly}_{X_{(d)}^{\vee}, u}\left(\varepsilon^{2}\right)$ is

$$
a_{N}(u)=\Delta_{\widetilde{Q}}(u)^{d-2},
$$

where $\Delta_{\widetilde{Q}}(u)=f_{(d),\{1\}}(u)$ is the equation of the dual of the d-th Veronese embedding into $\mathbb{P}\left(S^{d} V\right)$ of $Q \subset V$. On the other hand, the lowest coefficient is

$$
a_{0}(u)=\Delta_{d}(u)^{2},
$$

where $\Delta_{d}(u)=f_{(d)}$ is the discriminant of the form u.
Actually, the last corollary solves the first problem of determining the exponent $\alpha_{d, d}$ of $f_{\mu,[s]}$, for any partition $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \vdash d$. The next two technical lemmas furnish a bunch of linear conditions involving the remaining exponents $\alpha_{d, j}$, to be added in the system \mathcal{S}_{d}.

Lemma 5.3.15. Let $d \geq 2$ and consider the partition $\mu=(k, d-k) \vdash d$ for all $1 \leq k \leq\lfloor d / 2\rfloor$. Then for all $1 \leq k \leq\lfloor d / 2\rfloor$ we have the relation

$$
\begin{equation*}
\theta_{\mu,\{1\}} \alpha_{d, k}+\theta_{\mu,\{2\}} \alpha_{d, d-k}+\theta_{\mu,[2]} \alpha_{d, d}=2\left(\theta_{\mu}-N\right) \tag{5.3.15}
\end{equation*}
$$

Proof. There are essentially three cases to discuss:

1. Assume $d=2$. Then $\mu=(1,1)$ and we have

$$
\operatorname{EDpoly}_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)=\operatorname{det}(\varepsilon I-u) \operatorname{det}(\varepsilon I+u)
$$

Then $a_{N}(u)=1$ and $f_{\mu}(u)=\operatorname{det}(u)$ is the determinant of the $n \times n$ matrix representing u. In particular, we get $\theta_{\mu,\{1\}}=\theta_{\mu,\{2\}}=0$ and $\alpha_{2,2}=0$, yielding the identity $2 N=2 \theta_{\mu}$, which corresponds to (5.3.15) in this very special case.
2. Now assume $d>2$ and $k=1$, hence $\mu=(1, d-1)$. From Lemma 5.2 .2 we have that $X_{\mu,\{2\}}^{\vee}$ is not a hypersurface, therefore $f_{\mu,\{2\}}=1$ and $\theta_{\mu,\{2\}}=0$. By Corollary 5.3.13 we have that $\alpha_{\mu,[2]}=\alpha_{d, d}$, whereas $\alpha_{\mu,\{1\}}=\alpha_{d, 1}$. Therefore equations (5.3.4) and (5.3.5) become respectively

$$
a_{N}(t)=f_{\mu,[2]}^{\alpha_{d, d}}, \quad a_{0}(t)=f_{\mu}^{2} \cdot f_{\mu,\{1\}}^{-\alpha_{d, 1}} .
$$

Equation (5.3.7) yields the identity

$$
\begin{equation*}
\theta_{\mu,\{1\}} \alpha_{d, 1}+\theta_{\mu,[2]} \alpha_{d, d}=2\left(\theta_{\mu}-N\right) . \tag{5.3.16}
\end{equation*}
$$

Hence we get relation (5.3.15) for $k=1$.
3. Finally we consider the case $d>2$ and $2 \leq k \leq\lfloor d / 2\rfloor$. Equations (5.3.4) and (5.3.5) become respectively

$$
a_{N}(t)=f_{\mu,[2]}^{\alpha_{\mu,[2]}} \cdot f_{\mu,\{1\}}^{\alpha_{\mu,\{1\}}} \cdot f_{\mu,\{2\}}^{\alpha_{\mu},\{2\}}, \quad a_{0}(t)=f_{\mu}^{2} .
$$

Again by Corollary 5.3 .13 we have that $\alpha_{\mu,[2]}=\alpha_{d, d}$, while $\alpha_{\mu,\{1\}}=\alpha_{d, k}$ and $\alpha_{\mu,\{2\}}=\alpha_{d, d-k}$. Then relation (5.3.15) follows by (5.3.7) after applying Theorem 5.4.2 and Corollary 5.4.1.

Corollary 5.3.16. For all $n \geq 2$ and $d \geq 1$, we have that $\alpha_{d, 1}=-1$. In particular, for all $\mu \vdash d$, the lowest coefficient of $\mathrm{EDpoly}_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$ is

$$
a_{0}(u)=f_{\mu}(u)^{2} \cdot \prod_{j: \mu_{j}=1} f_{\mu,\{j\}}(u)
$$

Therefore, the ε-offset of X_{μ}^{\vee}, with respect to the squared distance function $\delta_{F, \mu}$, is a hypersurface of degree

$$
\operatorname{deg}\left(\mathcal{O}_{\varepsilon}(X)\right)=2 \operatorname{deg}\left(f_{\mu}\right)+\sum_{j: \mu_{j}=1} \operatorname{deg}\left(f_{\mu,\{j\}}\right)
$$

Proof. We know from Corollary 5.3.14 that $\alpha_{d, d}=d-2$ for all $n \geq 2$ and all $d \geq 1$. Then equation (5.3.16) is linear in the only variable $\alpha_{d, 1}$. Similarly to Remark 2.3.6, one may check that $\alpha_{d, 1}=-1$ is the solution of the above-mentioned equation. The rest of the statement follows from identity (5.3.5).

Lemma 5.3.17. Let $d \geq 3$ and consider the partition $\mu=(k, d-k-1,1) \vdash d$ for all $1 \leq k \leq\left\lfloor\frac{d-1}{2}\right\rfloor$. Then for all $1 \leq k \leq\left\lfloor\frac{d-1}{2}\right\rfloor$ we have the relation

$$
\begin{align*}
& \theta_{\mu,\{3\}} \alpha_{d, 1}+\theta_{\mu,\{1\}} \alpha_{d, k}+\theta_{\mu,\{1,3\}} \alpha_{d, k+1}+\theta_{\mu,\{2\}} \alpha_{d, d-k-1} \tag{5.3.17}\\
& +\theta_{\mu,\{2,3\}} \alpha_{d, d-k}+\theta_{\mu,\{1,2\}} \alpha_{d, d-1}+\theta_{\mu,[3]} \alpha_{d, d}=2\left(\theta_{\mu}-N\right)
\end{align*}
$$

Proof. We discuss three cases in this proof as well:

1. We start by considering the case $d=3$, hence $\mu=(1,1,1)$. By Corollary 5.3.13 we have

$$
\alpha_{\mu,\{j\}}=\alpha_{3,1} \forall 1 \leq j \leq 3, \quad \alpha_{\mu,\{i, j\}}=\alpha_{3,2} \forall 1 \leq i \neq j \leq 3, \quad \alpha_{\mu,[3]}=\alpha_{3,3}
$$

The highest coefficient $a_{N}=a_{N}(u)$ and the lowest coefficient $a_{0}=a_{0}(u)$ of EDpoly ${ }_{X_{\mu}, u}\left(\varepsilon^{2}\right)$ become respectively

$$
\begin{aligned}
a_{N} & =f_{\mu,[3]}^{\alpha_{3,3}} \cdot\left(f_{\mu,\{1,2\}} f_{\mu,\{1,3\}} f_{\mu,\{2,3\}}\right)^{\alpha_{3,2}} \\
a_{0} & =f_{\mu}^{2} \cdot\left(f_{\mu,\{1\}} f_{\mu,\{2\}} f_{\mu,\{3\}}\right)^{-\alpha_{3,1}} .
\end{aligned}
$$

In particular, we get the identity (5.3.17) in this special case. We refer the reader to Section 5.4 for a detailed treatise on this specific example.
2. Now we suppose that $d>3$ and that $k=1$, hence $\mu=(1, d-2,1)$. By Corollary 5.3.13 we have that

$$
\begin{aligned}
& \alpha_{\mu,\{1\}}=\alpha_{\mu,\{3\}}=\alpha_{d, 1}, \quad \alpha_{\mu,\{2\}}=\alpha_{d, d-2} \\
& \alpha_{\mu,\{1,2\}}=\alpha_{\mu,\{2,3\}}=\alpha_{d, d-1}, \quad \alpha_{\mu,\{1,3\}}=\alpha_{d, 2}
\end{aligned}
$$

and $\alpha_{\mu,[3]}=\alpha_{d, d}$. The highest coefficient a_{N} and the lowest coefficient a_{0} of EDpoly ${ }_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$ become respectively

$$
\begin{aligned}
a_{N} & =f_{\mu,[3]}^{\alpha_{d, d}} \cdot\left(f_{\mu,\{1,2\}} f_{\mu,\{2,3\}}\right)^{\alpha_{d, d-1}} f_{\mu,\{1,3\}}^{\alpha_{d, 2}} \cdot f_{\mu,\{2\}}^{\alpha_{d, d-2}} \\
a_{0} & =f_{\mu}^{2} \cdot\left(f_{\mu,\{1\}} f_{\mu,\{3\}}\right)^{-\alpha_{d, 1}}
\end{aligned}
$$

Putting all these facts together, we get equation (5.3.17) in this case.
3. Finally we suppose that $d>3$ and that $2 \leq k \leq\left\lfloor\frac{d-1}{2}\right\rfloor$. By Corollary 5.3 .13 we derive the identities

$$
\begin{aligned}
& \alpha_{\mu,\{1\}}=\alpha_{d, k}, \quad \alpha_{\mu,\{2\}}=\alpha_{d, d-k-1}, \quad \alpha_{\mu,\{3\}}=\alpha_{d, 1} \\
& \alpha_{\mu,\{1,2\}}=\alpha_{d, d-1}, \quad \alpha_{\mu,\{1,3\}}=\alpha_{d, k+1}, \quad \alpha_{\mu,\{2,3\}}=\alpha_{d, d-k}
\end{aligned}
$$

and $\alpha_{\mu,[3]}=\alpha_{d, d}$. The highest coefficient a_{N} and the lowest coefficient a_{0} become respectively

$$
a_{N}=f_{\mu,[3]}^{\alpha_{d, d}} \cdot f_{\mu,\{1,3\}}^{\alpha_{d, k+1}} \cdot f_{\mu,\{2,3\}}^{\alpha_{d, d-k}} \cdot f_{\mu,\{1\}}^{\alpha_{d, k}} \cdot f_{\mu,\{2\}}^{\alpha_{d, d-k-1}}, \quad a_{0}=f_{\mu}^{2} \cdot f_{\mu,\{3\}}^{-\alpha_{d, 1}}
$$

Summing up, we obtain equation (5.3.17).
The next proposition verifies the product formula (5.0.6) for all tensors of format $n^{\times d}$ with $d \in\{2,3,4\}$, possibly with partial symmetry.
Proposition 5.3.18 (Product formula for $d \in\{3,4\}$). When $d \in\{2,3,4\}$, the product formula (5.0.6) is true for all $\mu \vdash d$ and all $n \geq 2$.

Proof. The case $d=2$ corresponds to the trivial case of $n \times n$ matrices, possibly symmetric if $\mu=(2)$. The first nontrivial case is $d=3$. In this case, the unknown exponents are $\alpha_{3,1}, \alpha_{3,2}$ and $\alpha_{3,3}$. By Corollaries 5.3.14 and 5.3.16 we have $\alpha_{3,3}=1$ and $\alpha_{3,1}=-1$, respectively. To conclude, we consider the relation (5.3.17) for $k=1$, namely

$$
-3 \theta_{3,\{1\}}+3 \theta_{3,\{1,2\}} \alpha_{3,2}+\theta_{3,[3]}=2\left[\theta_{3}-\operatorname{EDdegree}\left(X_{3}\right)\right]
$$

With an analogous check to Remark 2.3.6, one verifies that necessarily $\alpha_{3,2}=0$.
Now suppose that $d=4$. The unknown exponents are $\alpha_{4,1}, \alpha_{4,2}, \alpha_{4,3}$ and $\alpha_{4,4}$. Again Corollaries 5.3.14 and 5.3.16 yield $\alpha_{4,4}=2$ and $\alpha_{4,1}=-1$, respectively. Consider the relation (5.3.15) for $k=2$, namely

$$
\theta_{(2,2),\{1\}} \alpha_{4,2}+\theta_{(2,2),[2]}=\theta_{(2,2)}-\operatorname{EDdegree}\left(X_{(2,2)}\right)
$$

Solving for $\alpha_{4,2}$ we get that $\alpha_{4,2}=0$. Finally, we consider the relation (5.3.17) for $k=1$, which simplifies as

$$
\theta_{(1,2,1),\{1,2\}} \alpha_{4,3}+\theta_{(1,2,1),[3]}=\theta_{(1,2,1)}+\theta_{(1,2,1),\{1\}}-\operatorname{EDdegree}\left(X_{(1,2,1)}\right)
$$

Solving for $\alpha_{4,3}$, one verifies that $\alpha_{4,3}=1$.

Remark 5.3.19. Define \mathcal{S}_{d} to be the linear system formed by equations (5.3.14), (5.3.15) and (5.3.17). In particular, \mathcal{S}_{d} has $1+\left\lfloor\frac{d}{2}\right\rfloor+\left\lfloor\frac{d-1}{2}\right\rfloor=d$ equations in d unknowns $\alpha_{d, 1}, \ldots, \alpha_{d, d}$. As we observed in Proposition 5.3.18, when $d \in\{2,3,4\}$ the linear system \mathcal{S}_{d} is solved via substitution, since at every step we obtain a linear equation in only one variable. Things become more complicated for $d \geq 5$, where a more detailed study of the matrix of coefficients of \mathcal{S}_{d} is required.

In order to distinguish between all different partitions, for the moment we rename all partitions in Lemmas 5.3.15 and 5.3.17 as

$$
\mu^{(1)}(k):=(k, d-k) \vdash d, \quad \mu^{(2)}(k):=(k, d-k-1,1) \vdash d .
$$

Observe that, when $n=1$, no equation in \mathcal{S}_{d} involves the unknown $\alpha_{d, d-1}$, hence the rank of the matrix of coefficients of \mathcal{S}_{d} is at most $d-1$. The geometrical reason is that, for any partition $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \vdash d$, with $\mu_{1} \geq \cdots \geq \mu_{s}$, the only subset $J \subset[s]$ such that $\alpha_{\mu, J}=\alpha_{d, d-1}$ is $J=[s-1]$, by Corollary 5.3.13. Indeed, by Lemma 5.2.2, the corresponding dual variety $X_{\mu, J}^{\vee}$ is not a hypersurface, thus $f_{\mu, J}=1$ and the exponent $\alpha_{d, d-1}$ remains undetermined. To be consistent with the higher dimensional results, we define $\alpha_{d, d-1}:=d-3$.

After substituting in (5.3.14), (5.3.15) and (5.3.17), we see that the vector $\left(\alpha_{d, 1}, \ldots, \alpha_{d, d}\right)=(-1,0,1, \ldots, d-2)$ is a solution of \mathcal{S}_{d}.

It remains to show that the matrix of coefficients of \mathcal{S}_{d} is of maximal rank d (or $d-1$ when $n=2$). First of all, we observe that all equations coming from (5.3.15) are pairwise linearly independent. The same holds for the set of equations coming from (5.3.15). Moreover, any equation coming from either (5.3.15) or (5.3.17) is linearly independent with (5.3.14). It may happen that the k-th equation in (5.3.17) is a linear combination of the k-th and $(k+1)$-th equations in (5.3.15). This happens only if the maximal minors of the submatrix

$$
\mathcal{M}_{d, k}=\left(\begin{array}{cccc}
\theta_{\mu^{(1)}(k),\{1\}} & 0 & 0 & \theta_{\mu^{(1)}(k),\{2\}} \\
0 & \theta_{\mu^{(1)}(k+1),\{1\}} & \theta_{\mu^{(1)}(k+1),\{2\}} & 0 \\
\theta_{\mu^{(2)}(k),\{1\}} & \theta_{\mu^{(2)}(k),\{1,3\}} & \theta_{\mu^{(2)}(k),\{2\}} & \theta_{\mu^{(2)}(k),\{2,3\}}
\end{array}\right)
$$

obtained extracting the coefficients of $\alpha_{k}, \alpha_{k+1}, \alpha_{d-k-1}$ and α_{d-k} from the three mentioned equations, vanish simultaneously. We verified for small values of n that this is impossible for $1 \leq k \leq\left\lfloor\frac{d-1}{2}\right\rfloor$. In particular, this could be checked easily for $n=2$, as showed in Proposition 5.4.4. The entries of the matrix $\mathcal{M}_{d, k}$ can be computed applying the formulas in Examples 5.3.2 and 5.3.3.

5.4 The case of binary tensors

Throughout this section, we set $n=2$, hence we concentrate on tensors of binary format. In the first part of this section, we derive degree formulas and we show
in Proposition 5.4.4 that the linear system \mathcal{S}_{d} defined in Remark 5.3.19 admits a unique solution. Afterwards, we show a sum of square property related to the equations $f_{\mu, J}$ of the dual affine cones $X_{\mu, J}$. We conclude the section studying in detail the case of a $2 \times 2 \times 2$ tensor.

In Proposition 5.3.1, we compute the degree $\theta_{\mu, J}$ of $X_{\mu, J}^{\vee}$ in full generality. However, that formula simplifies a lot in the binary setting. In the following, we define $e_{j}\left(p_{1}, \ldots, p_{s}\right)=\sum_{1 \leq k_{1}<\cdots<k_{j} \leq s} p_{k_{1}} \cdots p_{k_{j}}$ to be the elementary symmetric polynomial of degree j.
Corollary 5.4.1. For any subset $J \subset[s]$, let $\mu(J) \vdash d-\sum_{j \in J} \mu_{j}$ be the partition whose summands are all the μ_{k} such that $k \in[s] \backslash J$. In particular, $\mu(\emptyset)=\mu$. Then

$$
\begin{equation*}
\theta_{\mu, J}=2^{|J|} \sum_{i=0}^{s-|J|}(-2)^{s-|J|-i}(i+1)!e_{i}(\mu(J)) \tag{5.4.1}
\end{equation*}
$$

Proof. In the notations of equation (5.3.3), we have respectively $m=s-|J|$, $\beta_{j}=0$ if $j \in J$, otherwise $0 \leq \beta_{j} \leq 1$ if $j \notin J$. Then

$$
\begin{aligned}
\theta_{\mu, J} & =2^{|J|} \sum_{k=0}^{s-|J|}(-1)^{k}(s-|J|+1-k)!\sum_{|\beta|=k} \eta_{\beta}\left[\prod_{j \notin J}\binom{2}{\beta_{j}} \mu_{j}^{1-\beta_{j}}\right] \\
& =2^{|J|} \sum_{k=0}^{s-|J|}(-1)^{k}(s-|J|+1-k)!2^{k} e_{s-|J|-k}(\mu(J)) \\
& =2^{|J|} \sum_{i=0}^{s-|J|}(-2)^{s-|J|-i}(i+1)!e_{i}(\mu(J)) .
\end{aligned}
$$

where in the last passage we used the change of indices $i=s-|J|-k$.
When $J=\emptyset$, we recover the degree of the so-called μ-discriminant of a binary tensor (see [GKZ, XIII, Theorem 2.4]).

Theorem 5.4.2. Let $d \geq 1$ and suppose that $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \vdash d$. Then

$$
\begin{equation*}
\theta_{\mu}=\sum_{i=0}^{s}(-2)^{s-i}(i+1)!e_{i}(\mu) . \tag{5.4.2}
\end{equation*}
$$

Note that in the nonsymmetric case $\mu=1^{d}$, we have $e_{i}\left(1^{d}\right)=\binom{d}{i}$ for all $0 \leq i \leq d$. Hence we recover the degree $\theta_{d}:=\theta_{1^{d}}$ of the hyperdeterminant of a d-dimensional binary tensor:

$$
\begin{equation*}
\theta_{d}=\sum_{i=0}^{d}(-2)^{d-i}\binom{d}{i}(i+1)!. \tag{5.4.3}
\end{equation*}
$$

Now we take a closer look at the relations obtained in Lemmas 5.3.15 and 5.3.17. In the binary case, we used the simplified formula in Corollary 5.4.1 to compute them more explicitly and show in Proposition 5.4.4 that the linear system \mathcal{S}_{d} defined in Remark 5.3.19 is of rank $d-1$.
Proposition 5.4.3. The equations in \mathcal{S}_{d} coming from (5.3.15) simplify to

$$
\begin{equation*}
(d-k-1) \alpha_{d, k}+(k-1) \alpha_{d, d-k}+\alpha_{d, d}=2(k(d-k)-d+1) . \tag{5.4.4}
\end{equation*}
$$

for all $1 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor$. Instead, the equations coming from (5.3.17) become respectively

$$
\begin{align*}
& (d-k-1) \alpha_{d, k}+2(d-k-2) \alpha_{d, k+1}+k \alpha_{d, d-k-1} \\
& +2(k-1) \alpha_{d, d-k}+2 \alpha_{d, d}=2(3 k(d-k-1)-2 d+3) \tag{5.4.5}
\end{align*}
$$

for all $1 \leq k \leq\left\lfloor\frac{d-1}{2}\right\rfloor$.
Proof. We perform an explicit computation for the first set of equations. The proof is similar for the other set of equations. So consider the partition $\mu=$ $(k, d-k) \vdash d$. We apply formula (5.4.1) in this special case:

$$
\begin{aligned}
\theta_{\mu} & =\sum_{i=0}^{2}(-2)^{2-i}(i+1)!e_{i}(\mu)=4-4 d+6 k(d-k), \\
\theta_{\mu,\{1\}} & =2 \sum_{i=0}^{1}(-2)^{1-i}(i+1)!e_{i}(d-k)=4(d-k-1), \\
\theta_{\mu,\{2\}} & =2 \sum_{i=0}^{1}(-2)^{1-i}(i+1)!e_{i}(k)=4(k-1), \\
\theta_{\mu,[2]} & =4
\end{aligned}
$$

Moreover, by Corollary 5.1.2 we have that $N=$ EDdegree $\left(X_{\mu}\right)=2 k(d-k)$. Substituting the preceding relations and simplifying we obtain the relations (5.4.4).

Proposition 5.4.4. The linear system \mathcal{S}_{d} defined by equations (5.3.14), (5.4.4) and (5.4.5) admits the unique solution $\left(\alpha_{d, 1}, \ldots, \alpha_{d, d}\right)=(-1,0,1, \ldots, d-2)$, provided that $\alpha_{d, d-1}:=d-3$.

Proof. After substituting in (5.3.14), (5.4.4) and (5.4.5), we see that the vector $\left(\alpha_{d, 1}, \ldots, \alpha_{d, d}\right)=(-1,0,1, \ldots, d-2)$ is a solution of \mathcal{S}_{d}.

It remains to show that the matrix of coefficients of \mathcal{S}_{d} is of maximal rank $d-1$. By Remark 5.3.19, we need to check that the maximal minors of the matrix
$\mathcal{M}_{d, k}$ do not vanish simultaneously for all $1 \leq k \leq\left\lfloor\frac{d-1}{2}\right\rfloor$. In this case, the matrix $\mathcal{M}_{d, k}$ becomes

$$
\mathcal{M}_{d, k}=\left(\begin{array}{cccc}
d-k-1 & 0 & 0 & k-1 \\
0 & d-k-2 & k & 0 \\
d-k-1 & 2(d-k-2) & k & 2(k-1)
\end{array}\right)
$$

and the maximal minors $m_{d, k}^{\left(j_{1}, j_{2}, j_{3}\right)}$ obtained picking the columns j_{1}, j_{2}, j_{3} of $\mathcal{M}_{d, k}$ are respectively

$$
\begin{array}{ll}
m_{d, k}^{(1,2,3)}=-k(d-k-2)(d-k-1), & m_{d, k}^{(1,3,4)}=(k-1)(d-k-2)(d-k-1), \\
m_{d, k}^{(1,2,4)}=k(k-1)(d-k-1), & m_{d, k}^{(2,3,4)}=-k(k-1)(d-k-2) .
\end{array}
$$

From the above identities we see that the four maximal minors of $\mathcal{M}_{d, k}$ do not vanish simultaneously for all $1 \leq k \leq\left\lfloor\frac{d-1}{2}\right\rfloor$.

An immediate consequence of Theorem 5.0.5 is that, for any partition $\mu \vdash d$, we may write an identity involving the ED degree of X_{μ} and the degrees of the varieties $X_{\mu, J}^{\vee}$, as pointed out below.

Corollary 5.4.5. Consider a partition $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \vdash d$. Let $\mu(J)$ be the partition defined in Corollary 5.4.1 for all $J \subset[s]$. Recalling that the degrees of the μ-discriminant θ_{μ} and of the hyperdeterminant θ_{j} are defined in (5.4.2) and (5.4.3), respectively, then

$$
\begin{aligned}
& \text { EDdegree }\left(X_{\mu}\right)=s!\mu_{1} \cdots \mu_{s}=\sum_{J \subset[s]} 2^{|J|-1}\left(2-\sum_{k \in J} \mu_{k}\right) \theta_{\mu(J)}, \\
& \text { EDdegree }\left(X_{d}\right)=d!=\sum_{j=0}^{d}\binom{d}{j}(2-j) 2^{j-1} \theta_{d-j} .
\end{aligned}
$$

In this section, we investigate also the non-negativity of the various factors $f_{\mu, J}$ appearing in the extreme coefficients of EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$. Actually, they are (products of) SOS polynomials. This fact is useful for the considerations about tensors of format $2 \times 2 \times 2$ made in Proposition 5.4.9.

Proposition 5.4.6. Let $J \subset[s], J \neq \emptyset$. If $J=[s]$, then $f_{\mu, J}$ is the product of d SOS polynomials. If $J \neq[s]$, then $f_{\mu, J}$ is an SOS polynomial. In particular, $f_{\mu, J}$ is a nonnegative polynomial for all $J \neq \emptyset$.

Proof. For $J=[s]$, the statement follows since $X_{\mu, J}^{\vee} \subset \mathbb{P}\left(V^{\otimes d}\right)$ is the union of d pairwise conjugate hyperplanes. Now let $\mu=1^{d}$ and $J=\{1\}$. More explicitly,

$$
\begin{align*}
X_{d,\{1\}}^{\vee} & =\left[\operatorname{Seg}_{d}\left([(1, \sqrt{-1})] \times \mathbb{P}(V)^{\times(d-1)}\right)\right]^{\vee} \\
& \cup\left[\operatorname{Seg}_{d}\left([(1,-\sqrt{-1})] \times \mathbb{P}(V)^{\times(d-1)}\right)\right]^{\vee} \subset \mathbb{P}\left(V^{\otimes d}\right) \tag{5.4.6}
\end{align*}
$$

Thus $X_{d,\{1\}}^{\vee}$ is isomorphic to two copies of $X_{d-1}^{\vee} \subset \mathbb{P}\left(V^{\otimes(d-1)}\right)$. By Lemma 5.2.2, the varieties $X_{d,\{1\}}^{\vee}$ and X_{d-1}^{\vee} are hypersurfaces when $d \geq 3$. If $\left\{a_{i_{1} \cdots i_{d}}\right\}$ and $\left\{b_{j_{2} \cdots j_{d}}\right\}$ are homogeneous coordinates for $\mathbb{P}\left(V^{\otimes d}\right)$ and $\mathbb{P}\left(V^{\otimes(d-1)}\right)$ respectively, the equations of the two components of $X_{d,\{1\}}^{\vee}$ in (5.4.6) are

$$
\begin{align*}
f_{d-1}^{+}\left(\left\{a_{j_{1} \cdots j_{d}}\right\}\right) & \left.:=f_{d-1}\left(\left\{b_{j_{2} \cdots j_{d}}\right\}\right)_{\left\{b_{j_{2} \cdots j_{d}}\right.}=a_{0 i_{2} \cdots i_{d}}+\sqrt{-1} a_{1 i_{2} \cdots i_{d}}\right\} \\
f_{d-1}^{-}\left(\left\{a_{j_{1} \cdots j_{d}}\right\}\right) & :=f_{d-1}\left(\left.\left\{b_{j_{2} \cdots j_{d}}\right\}\right|_{\left\{b_{j_{2} \cdots j_{d}}\right.}=a_{0 i_{2} \cdots i_{d}-\sqrt{-1}} a_{1 i_{2} \cdots i_{d}}\right\} \tag{5.4.7}
\end{align*}
$$

In particular, f_{d-1}^{+}and f_{d-1}^{-}are conjugate polynomials and their product is the equation $f_{d,\{1\}}$ of $X_{d,\{1\}}^{\vee}$. Therefore $f_{d,\{1\}}$ is the sum of two squared polynomials. In the same fashion, we show that $f_{d,\{1,2\}}=f_{d,\{2\}}^{+} \cdot f_{d,\{2\}}^{-}$, where the factors $f_{d,\{2\}}^{+}$and $f_{d,\{2\}}^{-}$are defined as in (5.4.7). Therefore, $f_{d,\{1,2\}}$ is again a sum of two squared polynomials. More in general, the iteration of this argument shows that, possibly after a permutation of the indices, the polynomial $f_{d, J}$ is a sum of two squared polynomials for any subset $J \subset[d]$.

Now consider a partition $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \vdash d$ and a nonempty subset $J \subset[s]$. On one hand, By Proposition 5.3.12 there exists a subset $\tilde{J} \subset[d]$ with $|\tilde{J}|=$ $\sum_{j \in J} \mu_{j}$ such that $f_{\mu, J}$ divides $\pi_{\mu, 1^{d}}\left(f_{d, \tilde{J}}\right)$ with multiplicity one. On the other hand, the first part of the proof implies that $f_{d, \tilde{J}}=h_{1}^{2}+h_{2}^{2}$ for some homogeneous polynomials h_{1} and h_{2}.

Summing up, there exist two homogeneous polynomials h_{1}^{\prime} and h_{2}^{\prime} such that $h_{1}^{\prime} \pm \sqrt{-1} h_{2}^{\prime}$ divides $\pi_{\mu, 1^{d}}\left(h_{1} \pm \sqrt{-1} h_{2}\right)$ with multiplicity one and

$$
f_{\mu, J}=h_{1}^{\prime 2}+h_{2}^{\prime 2}=\left(h_{1}^{\prime}+\sqrt{-1} h_{2}^{\prime}\right)\left(h_{1}^{\prime}-\sqrt{-1} h_{2}^{\prime}\right)
$$

Problem 5.4.7. In particular, Proposition 5.4.6 tells us that, at least in the binary case, if $\left(X_{\mu} \cap Q_{F, \mu}\right)^{\vee}$ is a hypersurface, then its equation is an SOS polynomial. We consider concrete examples in Remark 5.4.8 and in the last part of this section dealing with binary tensors of format $2 \times 2 \times 2$.

Looking at Remark 5.2.5, we observed that the variety ($\left.X_{\mu} \cap Q_{F, \mu}\right)^{\vee}$, in the case $\mu=1^{s}$ is always a hypersurface (with several irreducible components), unless $s=2$ and $n_{1}=n_{2}$. In particular, it is a hypersurface when $s=2$ and $n_{1}<n_{2}$.

This is indeed the case of non-square matrices, where the determinant is not defined, namely X_{2}^{\vee} is not a hypersurface. As pointed out in (5.0.2), the lowest coefficient of EDpoly ${ }_{X_{2}^{\vee}, u}(0)$ is equal to $\operatorname{det}\left(u u^{T}\right)$, which is in fact the equation of $X_{2,\{2\}}^{\vee}$. by Lemma 5.2.1. What is more, the polynomial $\operatorname{det}\left(u u^{T}\right)$ is an SOS polynomial by the classical Cauchy-Binet formula.

Beyond the study of varieties of rank-one tensors, we considered the variety $\left(X^{\vee} \cap Q\right)^{\vee}$ appearing in Corollary 4.4.6 in various examples (say, projective curves and surfaces) and verified (with the help of the Macaulay2 package "SOS") that, when it is a hypersurface, its equation admits an SOS decomposition. It would be interesting to solve the following problem suggested by Bernd Sturmfels: assuming that $\left(X^{\vee} \cap Q\right)^{\vee}$ is a hypersurface, is its equation a nonnegative polynomial? If so, is it an SOS polynomial?

Remark 5.4.8. Looking closely at the polynomials defined in (5.4.7), one may see that for all $d \geq 3$ and for all $j \in[d]$, the polynomial $f_{d,\{j\}}$ is written as

$$
\begin{equation*}
f_{d,\{j\}}(u)=\operatorname{Det}\left(u_{j}^{(1)}+\sqrt{-1} u_{j}^{(2)}\right) \cdot \operatorname{Det}\left(u_{j}^{(1)}-\sqrt{-1} u_{j}^{(2)}\right), \tag{5.4.8}
\end{equation*}
$$

where $u_{j}^{(1)}$ and $u_{j}^{(2)}$ are the tensors in $V^{\otimes(d-1)}$ obtained considering in u the slices $\left\{u_{i_{1} \cdots i_{d}}\right\}$ with $i_{j}=1$ and $i_{j}=2$, respectively. The cases $d=3$ and $d=4$ are depicted in Figures 2 and 5.3, respectively.

Figure 5.3: The slices $u_{j}^{(1)}$ and $u_{j}^{(2)}$ appearing in the computation of $f_{4,\{j\}}$.

As pointed out in the proof of Proposition 5.4.6, formula (5.4.8) may be generalized to any polynomial $f_{d, J} \neq 1$. For example, below we interpret the equation $f_{4,\{1,2\}}$ of $X_{4,\{1,2\}}^{\vee}$ in terms of the tensors $u_{\{1,2\}}^{(r s)} \in V \otimes V$, with $r, s \in[2]$,
obtained extracting from u the slices $\left\{u_{r s i j}\right\}$ highlighted in Figure 5.4.

$$
\begin{aligned}
f_{4,\{1,2\}}(u)=\operatorname{det}\{ & {\left[\left(u_{\{1,2\}}^{(11)}+\sqrt{-1} u_{\{1,2\}}^{(21)}\right)+\sqrt{-1}\left(u_{\{1,2\}}^{(12)}+\sqrt{-1} u_{\{1,2\}}^{(22)}\right)\right] } \\
& {\left.\left[\left(u_{\{1,2\}}^{(11)}+\sqrt{-1} u_{\{1,2\}}^{(21)}\right)-\sqrt{-1}\left(u_{\{1,2\}}^{(12)}+\sqrt{-1} u_{\{1,2\}}^{(22)}\right)\right]\right\} } \\
\cdot \operatorname{det}\{ & {\left[\left(u_{\{1,2\}}^{(11)}-\sqrt{-1} u_{\{1,2\}}^{(21)}\right)+\sqrt{-1}\left(u_{\{1,2\}}^{(12)}-\sqrt{-1} u_{\{1,2\}}^{(22)}\right)\right] } \\
& {\left.\left[\left(u_{\{1,2\}}^{(11)}-\sqrt{-1} u_{\{1,2\}}^{(21)}\right)-\sqrt{-1}\left(u_{\{1,2\}}^{(12)}-\sqrt{-1} u_{\{1,2\}}^{(22)}\right)\right]\right\} . }
\end{aligned}
$$

Figure 5.4: The slices $f_{\{1,2\}}^{(r s)}$ appearing in the expression of $f_{4,\{1,2\}}(u)$.
We conclude this chapter by studying in detail the ED polynomial of the variety X_{3}^{\vee} at a given tensor of format $2 \times 2 \times 2$.

More in general, we recall that, thanks to Proposition 4.2.12, the coefficients of EDpoly ${ }_{X^{\vee}, u}\left(\varepsilon^{2}\right)$ are $\mathrm{SO}(V)^{d}$-invariants. Indeed we are interested in computing a minimal generating set for the invariant ring $S\left(V^{\otimes d}\right)^{\mathrm{SO}(V)^{d}}$.

As in the previous sections, q is the standard Euclidean scalar product. We fix $x_{j, 1}, x_{j, 2}$ as coordinates for the j-th copy of V in $V^{\otimes d}$. Then, the associated quadratic form q is in coordinates $x_{j, 1}^{2}+x_{j, 2}^{2}$ for all $j \in[d]$.

Now consider the change of coordinates

$$
z_{j, 1}=x_{j, 1}+\sqrt{-1} x_{j, 2}, \quad z_{j, 2}=x_{j, 1}-\sqrt{-1} x_{j, 2}
$$

In these new coordinates, the expression for the quadratic form q on the j-th copy of V in $V^{\otimes d}$ becomes $z_{j, 1} z_{j, 2}$. Moreover, each binary tensor $u=\left(u_{i_{1} \cdots i_{d}}\right) \in V^{\otimes d}$
may be written as

$$
u=\sum_{\left(i_{1}, \ldots, i_{d}\right) \in\{1,2\}^{d}} u_{i_{1} \cdots i_{d}} x_{1, i_{1}} \cdots x_{d, i_{d}}=\sum_{\left(i_{1}, \ldots, i_{d}\right) \in\{1,2\}^{d}} t_{i_{1} \cdots i_{d}} z_{1, i_{1}} \cdots z_{d, i_{d}}
$$

for some coefficients $t_{i_{1} \cdots i_{d}}$ depending on the old set of coordinates $\left\{u_{i_{1} \cdots i_{d}}\right\}$ via the following relations:

$$
t_{i_{1} \cdots i_{d}}=\sum_{\left(j_{1}, \ldots, j_{d}\right) \in\{1,2\}^{d}}\left[\sqrt{-1}^{\sum_{l=1}^{d} j_{l}}(-1)^{\sum_{l=1}^{d}\left(1-i_{l}\right) j_{l}}\right] u_{j_{1} \cdots j_{d}}
$$

One may verify by direct computation that, for all $\left(i_{1}, \ldots, i_{d}\right) \in\{1,2\}^{d}$, the complex conjugate of $t_{i_{1} \cdots i_{d}}$ is $t_{k_{1} \cdots k_{d}}$, where $k_{l}=1-i_{l}$.

The new system of coordinates is more effective for computing invariants with respect to $\mathrm{SO}(V)^{d}$. Indeed, the torus $\mathrm{SO}(V)^{d} \cong\left(\mathbb{C}^{*}\right)^{d}=(\mathbb{C} \backslash\{0\})^{d}$ acts on $V^{\otimes d}$ by rescaling each coordinate $t_{i_{1} \cdots i_{d}}$ as shown below:

$$
t_{i_{1} \cdots i_{d}} \mapsto \prod_{j=1}^{d} \xi_{j}^{(-1)^{i_{j}}} t_{i_{1} \cdots i_{d}}
$$

for some $\left(\xi_{1}, \ldots, \xi_{d}\right) \in\left(\mathbb{C}^{*}\right)^{d}$.
Using [Stu, Algorithm 1.4.5], we computed a minimal generating set of invariants of $S\left(V^{\otimes d}\right)^{\mathrm{SO}(V)^{d}}$, a least for small values of d. Focusing on the case $d=3$, we get that

$$
S\left(V^{\otimes d}\right)^{\mathrm{SO}(V)^{d}} \cong \mathbb{C}\left[t_{i_{1} \cdots i_{d}}\right]^{\mathrm{SO}(V)^{d}} \cong \mathbb{C}\left[\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \varphi_{1}, \varphi_{2}\right]
$$

where the θ_{j} 's are four real invariants of degree two, whereas φ_{1} and φ_{2} are two non-real mutually conjugate invariants of degree four:

$$
\begin{gather*}
\theta_{1}=t_{1,1,1} t_{2,2,2}, \theta_{2}=t_{1,1,2} t_{2,2,1}, \theta_{3}=t_{1,2,1} t_{2,1,2}, \theta_{4}=t_{1,2,2} t_{2,1,1} \tag{5.4.9}\\
\varphi_{1}=t_{1,1,2} t_{1,2,1} t_{2,1,1} t_{2,2,2}, \varphi_{2}=t_{1,1,1} t_{1,2,2} t_{2,1,2} t_{2,2,1}
\end{gather*}
$$

In addition, the only relation among them is $\theta_{1} \theta_{2} \theta_{3} \theta_{4}-\varphi_{1} \varphi_{2}=0$. Since we are dealing with real binary tensors, the coefficients of the ED polynomial of X_{μ}^{\vee} at u are all real polynomials in the entries $\left\{u_{i_{1} \cdots i_{d}}\right\}$ of u. Indeed, they are elements of $\mathbb{R}\left[\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \varphi\right]$, where

$$
\begin{equation*}
\varphi:=\frac{\varphi_{1}+\varphi_{2}}{2} . \tag{5.4.10}
\end{equation*}
$$

In the old set of coordinates $\left\{u_{i_{1} \cdots i_{d}}\right\}$, these invariants become respectively

$$
\begin{align*}
& \theta_{1}=\left(u_{111}-u_{122}-u_{212}-u_{221}\right)^{2}+\left(u_{222}-u_{211}-u_{121}-u_{112}\right)^{2}, \\
& \theta_{2}=\left(u_{111}+u_{122}+u_{212}-u_{221}\right)^{2}+\left(u_{222}+u_{211}+u_{121}-u_{112}\right)^{2}, \\
& \theta_{3}=\left(u_{111}+u_{122}-u_{212}+u_{221}\right)^{2}+\left(u_{222}+u_{211}-u_{121}+u_{112}\right)^{2}, \\
& \theta_{4}=\left(u_{111}-u_{122}+u_{212}+u_{221}\right)^{2}+\left(u_{222}-u_{211}+u_{121}+u_{112}\right)^{2}, \\
& \varphi=u_{111}^{4}+2 u_{111}^{2} u_{112}^{2}+u_{112}^{4}+2 u_{111}^{2} u_{121}^{2}-2 u_{112}^{2} u_{121}^{2}+u_{121}^{4} \\
& \quad+8 u_{111} u_{112} u_{121} u_{122}-2 u_{111}^{2} u_{122}^{2}+2 u_{112}^{2} u_{122}^{2}+2 u_{121}^{2} u_{122}^{2}+u_{122}^{4} \\
& \quad+2 u_{111}^{2} u_{211}^{2}-2 u_{112}^{2} u_{211}^{2}-2 u_{121}^{2} u_{211}^{2}-6 u_{122}^{2} u_{211}^{2}+u_{211}^{4} \\
& \quad+8 u_{111} u_{112} u_{211} u_{212}+8 u_{121} u_{122} u_{211} u_{212}-2 u_{111}^{2} u_{212}^{2}+2 u_{112}^{2} u_{212}^{2} \tag{5.4.11}\\
& \quad-6 u_{121}^{2} u_{212}^{2}-2 u_{122}^{2} u_{212}^{2}+2 u_{211}^{2} u_{212}^{2}+u_{212}^{4}+8 u_{111} u_{121} u_{211} u_{221} \\
& \quad+8 u_{112} u_{122} u_{211} u_{221}+8 u_{112} u_{121} u_{212} u_{221}-8 u_{111} u_{122} u_{212} u_{221} \\
& -2 u_{111}^{2} u_{221}^{2}-6 u_{112}^{2} u_{221}^{2}+2 u_{121}^{2} u_{221}^{2}-2 u_{122}^{2} u_{221}^{2}+2 u_{211}^{2} u_{221}^{2} \\
& -2 u_{212}^{2} u_{221}^{2}+u_{221}^{4}-8 u_{112} u_{121} u_{211} u_{222}+8 u_{111} u_{122} u_{211} u_{222} \\
& \quad+8 u_{111} u_{121} u_{212} u_{222}+8 u_{112} u_{122} u_{212} u_{222}+8 u_{111} u_{112} u_{221} u_{222} \\
& \quad+8 u_{121} u_{122} u_{221} u_{222}+8 u_{211} u_{212} u_{221} u_{222}-6 u_{111}^{2} u_{222}^{2}-2 u_{112}^{2} u_{222}^{2} \\
& \\
& -2 u_{121}^{2} u_{222}^{2}+2 u_{122}^{2} u_{222}^{2}-2 u_{211}^{2} u_{222}^{2}+2 u_{212}^{2} u_{222}^{2}+2 u_{221}^{2} u_{222}^{2}+u_{222}^{4} .
\end{align*}
$$

The geometrical properties of the extreme coefficients of the ED polynomial of $X_{3}^{\vee} \subset \mathbb{P}\left(V^{\otimes 3}\right) \cong \mathbb{P}^{7}$ at $u \in V^{\otimes 3}$ were previously described in Example 0.0.7. We recall that $\operatorname{EDdegree}\left(X_{3}\right)=6$, hence $\operatorname{EDpoly}_{X_{3}^{\vee}, u}\left(\varepsilon^{2}\right)$ is written as

$$
\operatorname{EDpoly}_{X_{3}^{\vee}, u}\left(\varepsilon^{2}\right)=a_{6}(u) \varepsilon^{12}+a_{5}(u) \varepsilon^{10}+\cdots+a_{0}(u)
$$

We determined symbolically all the coefficients of EDpoly $X_{X_{3}^{\vee}, u}\left(\varepsilon^{2}\right)$ with respect to the generators $\theta_{1}, \ldots, \theta_{4}, \varphi$. In particular, $\operatorname{deg}\left(a_{j}\right)=2(10-j)$ for all $0 \leq$ $j \leq 6$. For example, the coefficient $a_{5}(u)$ is relevant since the ratio $a_{5}(u) / a_{6}(u)$ corresponds to the sum of the squares of the singular values of u, thanks to Proposition 5.1.4. We observed that the coefficients $a_{j}(u)$ may be written in a more concise way using the following symmetric polynomials of the four quadratic invariants $\theta_{1}, \ldots, \theta_{4}$:

$$
\begin{aligned}
& e_{1}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}, \\
& e_{2}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\theta_{1} \theta_{2}+\theta_{1} \theta_{3}+\theta_{1} \theta_{4}+\theta_{2} \theta_{3}+\theta_{2} \theta_{4}+\theta_{3} \theta_{4}, \\
& e_{3}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\theta_{1} \theta_{2} \theta_{3}+\theta_{1} \theta_{2} \theta_{4}+\theta_{1} \theta_{3} \theta_{4}+\theta_{2} \theta_{3} \theta_{4}, \\
& e_{4}\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\theta_{1} \theta_{2} \theta_{3} \theta_{4} .
\end{aligned}
$$

The coefficients $a_{j}(u)$ are displayed below:

$$
\begin{aligned}
a_{6}(u) & =e_{4}, \\
a_{5}(u) & =\left(\frac{1}{2}\right)^{3}\left(e_{3} \varphi-3 e_{1} e_{4}\right), \\
a_{4}(u) & =\left(\frac{1}{2}\right)^{8}\left[4 e_{2} \varphi^{2}-2\left(5 e_{1} e_{3}+24 e_{4}\right) \varphi+15 e_{1}^{2} e_{4}-12 e_{2} e_{4}+e_{3}^{2}\right], \\
a_{3}(u) & =\left(\frac{1}{2}\right)^{10}\left[2 e_{1} \varphi^{3}-2\left(2 e_{1} e_{2}+11 e_{3}\right) \varphi^{2}+\left(5 e_{1}^{2} e_{3}+30 e_{1} e_{4}-4 e_{2} e_{3}\right) \varphi\right. \\
& \left.-5 e_{1}^{3} e_{4}+12 e_{1} e_{2} e_{4}-e_{1} e_{3}^{2}-18 e_{3} e_{4}\right], \\
a_{2}(u) & =\left(\frac{1}{2}\right)^{16}\left[16 \varphi^{4}-8\left(3 e_{1}^{2}+20 e_{2}\right) \varphi^{3}+8\left(3 e_{1}^{2} e_{2}+18 e_{1} e_{3}-4 e_{2}^{2}+60 e_{4}\right) \varphi^{2}\right. \\
& -4\left(5 e_{1}^{3} e_{3}+18 e_{1}^{2} e_{4}-12 e_{1} e_{2} e_{3}-24 e_{2} e_{4}+44 e_{3}^{2}\right) \varphi \\
& \left.+15 e_{1}^{4} e_{4}-72 e_{1}^{2} e_{2} e_{4}+6 e_{1}^{2} e_{3}^{2}+144 e_{1} e_{3} e_{4}+48 e_{2}^{2} e_{4}-8 e_{2} e_{3}^{2}-432 e_{4}^{2}\right], \\
a_{1}(u) & =\left(\frac{1}{2}\right)^{19}\left[-160 e_{1} \varphi^{4}+4\left(3 e_{1}^{3}+4 e_{1} e_{2}+88 e_{3}\right) \varphi^{3}\right. \\
& -4\left(2 e_{1}^{3} e_{2}+3 e_{1}^{2} e_{3}-8 e_{1} e_{2}^{2}-24 e_{1} e_{4}+52 e_{2} e_{3}\right) \varphi^{2} \\
& +\left(5 e_{1}^{4} e_{3}-12 e_{1}^{3} e_{4}-24 e_{1}^{2} e_{2} e_{3}+48 e_{1} e_{2} e_{4}+80 e_{1} e_{3}^{2}+16 e_{2}^{2} e_{3}-288 e_{3} e_{4}\right) \varphi \\
& \left.-3 e_{1}^{5} e_{4}+24 e_{1}^{3} e_{2} e_{4}-2 e_{1}^{3} e_{3}^{2}-36 e_{1}^{2} e_{3} e_{4}-48 e_{1} e_{2}^{2} e_{4}+8 e_{1} e_{2} e_{3}^{2}+144 e_{2} e_{3} e_{4}-32 e_{3}^{3}\right], \\
a_{0}(u) & =\operatorname{Det}(u)^{2} g_{1}(u),
\end{aligned}
$$

where the hyperdeterminant $\operatorname{Det}(u)$ and the polynomial $g_{1}(u)$ are expressed as

$$
\begin{aligned}
g_{1}(u) & =\left(\frac{1}{2}\right)^{12}\left[-8 \varphi^{3}+4 e_{2} \varphi^{2}-2\left(e_{1} e_{3}-4 e_{4}\right) \varphi+e_{1}^{2} e_{4}-4 e_{2} e_{4}+e_{3}^{2}\right] \\
\operatorname{Det}(u) & =\left(\frac{1}{2}\right)^{6}\left(-8 \varphi-e_{1}^{2}+4 e_{2}\right) .
\end{aligned}
$$

A classical expression for the hyperdeterminant Det of a $2 \times 2 \times 2$ tensor was showed in (0.0.28).

Using the coefficients above, we computed symbolically the ε^{2}-discriminant of EDpoly $X_{X_{3}^{\vee}, u}\left(\varepsilon^{2}\right)$, denoted with $\Delta_{X_{3}^{\vee}}(u)$. We know from Corollary 4.2.9 that $\Delta_{X_{3}^{\vee}}=\Delta_{X_{3}}$. For the moment, let $f(u)$ and $b(u)$ be the equations of the ED discriminant $\Sigma_{X_{3}^{\vee}}=\Sigma_{X_{3}}$ and of the bisector hypersurface $B\left(X_{3}^{\vee}, X_{3}^{\vee}\right)=$ $B\left(X_{3}, X_{3}\right)$, respectively. We know from Proposition 4.2.4 that $f(u)$ and $b(u)$ divide EDpoly ${ }_{X_{3}^{\vee}, u}\left(\varepsilon^{2}\right)$. Then we verified that

$$
\begin{equation*}
\Delta_{X_{3}^{\vee}}=e_{4} f^{3} b^{2} \tag{5.4.12}
\end{equation*}
$$

where, taking into account relation (5.4.10),

$$
\begin{equation*}
b(u)=\left(\varphi_{1}-\varphi_{2}\right) \prod_{i<j}\left(\theta_{i}-\theta_{j}\right) \tag{5.4.13}
\end{equation*}
$$

$$
\begin{aligned}
f(u) & =8 \varphi^{9}-3\left(9 e_{1}^{2}-20 e_{2}\right) \varphi^{8}-24\left(9 e_{1} e_{3}-4 e_{2}^{2}-12 e_{4}\right) \varphi^{7} \\
& -4\left(54 e_{1}^{2} e_{4}-54 e_{1} e_{2} e_{3}+16 e_{2}^{3}-252 e_{2} e_{4}+159 e_{3}^{2}\right) \varphi^{6} \\
& +24\left(9 e_{1} e_{3} e_{4}-24 e_{2}^{2} e_{4}+7 e_{2} e_{3}^{2}+90 e_{4}^{2}\right) \varphi^{5} \\
& -6\left(81 e_{1}^{2} e_{4}^{2}-72 e_{1} e_{2} e_{3} e_{4}+45 e_{1} e_{3}^{3}-8 e_{2}^{2} e_{3}^{2}+468 e_{2} e_{4}^{2}-246 e_{3}^{2} e_{4}\right) \varphi^{4} \\
& +24\left(81 e_{1} e_{3} e_{4}^{2}+36 e_{2}^{2} e_{4}^{2}-42 e_{2} e_{3}^{2} e_{4}+7 e_{3}^{4}-324 e_{4}^{3}\right) \varphi^{3} \\
& -12\left(54 e_{1} e_{2} e_{3} e_{4}^{2}-27 e_{1} e_{3}^{3} e_{4}+e_{2} e_{3}^{4}-324 e_{2} e_{4}^{3}+135 e_{3}^{2} e_{4}^{2}\right) \varphi^{2} \\
& -72 e_{4}\left(27 e_{1} e_{3} e_{4}^{2}-9 e_{2} e_{3}^{2} e_{4}+2 e_{3}^{4}-81 e_{4}^{3}\right) \varphi \\
& +729 e_{1}^{2} e_{4}^{4}-54 e_{1} e_{3}^{3} e_{4}^{2}+e_{3}^{6}-2916 e_{2} e_{4}^{4}+972 e_{3}^{2} e_{4}^{3}
\end{aligned}
$$

In particular, the ED discriminant of X_{3} cut out by $f(u)$ is an irreducible hypersurface of degree 36 in $\mathbb{P}_{\mathbb{C}}^{7}$, whereas the polynomial $b(u)$, which defines settheoretically the bisector hypersurface $B\left(X_{3}, X_{3}\right)$ (see Definition 4.1.5), has degree 16. Note also that the exponents appearing in (5.4.12) confirm the computations made in Example 4.2.6.

In the following, we assume that $u \in V^{\otimes 3}$ is μ-symmetric for $\mu \in\{(2,1),(3)\}$. Among the six critical binary tensors for u on X_{3}, EDdegree $\left(X_{\mu}\right)$ of them are μ^{-} symmetric. Below we describe the critical binary tensors that belong to $X_{3} \backslash X_{\mu}$.

Proposition 5.4.9. (1) Let $\mu=(2,1)$ and let $u \in S^{\mu} V$ be general. Then u admits four critical binary tensors on X_{μ}. The remaining two critical binary tensors are $x \otimes y \otimes z$ and $y \otimes x \otimes z$ for some $x, y, z \in V$. If u is real, the common singular value of the two critical points on $X \backslash X_{\mu}$ is real.
(2) Let $\mu=(3)$ and let $u \in S^{\mu} V$ be general. Then u admits three critical binary tensors on X_{μ}. The remaining three critical binary tensors are $x \otimes x \otimes y$, $x \otimes y \otimes x$ and $y \otimes x \otimes x$ for some $x, y \in V$. If u is real, the common singular value of the three critical points on $X \backslash X_{\mu}$ is real.

Proof. By Proposition 5.3.9, EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$ divides EDpoly $X_{X_{3}^{\vee}, u}\left(\varepsilon^{2}\right)$ with multiplicity one when $u \in S^{\mu} V$. Let us discuss part (1). Then u admits EDdegree $\left(X_{\mu}\right)=$ 4 (see (5.1.2)) critical binary tensors corresponding to four singular vector triples $\left(x_{j}, x_{j}, y_{j}\right)$ for some $x_{j}, y_{j} \in V, j \in[4]$. Moreover, for any singular vector triple (x, y, z) for u with singular value σ and $x \neq y$, the permutation (y, x, z) is again
a singular vector triple for u, and shares the same singular value σ. Hence, there is a linear polynomial $h\left(\varepsilon^{2}\right)$ such that

$$
\text { EDpoly }_{X_{3}^{\vee}, u}\left(\varepsilon^{2}\right)=\text { EDpoly }_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right) \cdot h\left(\varepsilon^{2}\right)^{2}
$$

In conclusion, apart from the μ-symmetric singular vector tuples, there is room left only for one more nonsymmetric singular vector triple (x, y, z) and its permutation (y, x, z). Moreover, if $u \in S^{\mu} V^{\mathbb{R}}$, the root of the linear polynomial $h\left(\varepsilon^{2}\right)$ must be real.

Now let us look at part (2). Then u admits EDdegree $\left(X_{(3)}\right)=3$ (see (5.1.2)) critical binary tensors corresponding to three singular vector triples (x_{j}, x_{j}, x_{j}) for some $x_{j} \in V, j \in[3]$. With a similar argument of part (1), we observe that there is a linear polynomial $\tilde{h}\left(\varepsilon^{2}\right)$ such that

$$
\text { EDpoly }_{X_{3}^{\vee}, u}\left(\varepsilon^{2}\right)=\text { EDpoly }_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right) \cdot h^{\prime}\left(\varepsilon^{2}\right)^{3} .
$$

We recall that the polynomial EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$ was computed symbolically in Example 2.4.2. In conclusion, apart from the μ-symmetric singular vector tuples, there is room left only for one more nonsymmetric singular vector triple of the form (x, x, y) for some $x, y \in V$, together with its permutations (x, y, x) and (y, x, x). Moreover, if u has real entries, the root of $h^{\prime}\left(\varepsilon^{2}\right)$ must be real.

Remark 5.4.10. Let us examine Proposition 5.4.9(1). In this case the invariants θ_{2} and θ_{3} introduced in (5.4.11) coincide. This implies that the highest coefficient $a_{6}=\theta_{1} \theta_{2} \theta_{3} \theta_{4}$ of EDpoly $X_{3}^{\vee}, u\left(\varepsilon^{2}\right)$ splits into two factors $\theta_{1} \theta_{4}$ and $\theta_{2} \theta_{3}=\theta_{2}^{2}$, which correspond to the highest coefficients of EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$ and $h\left(\varepsilon^{2}\right)^{2}$, respectively. About the lowest coefficient a_{0}, from (0.0.29) we see that in this case the polynomials $f_{3,\{1\}}$ and $f_{3,\{3\}}$ coincide. Indeed, the lowest coefficients of EDpoly $X_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$ and $h\left(\varepsilon^{2}\right)^{2}$ are respectively $\operatorname{Det}^{2} \cdot f_{3,\{2\}}$ and $f_{3,\{1\}} \cdot f_{3,\{3\}}=f_{3,\{1\}}^{2}$. More precisely, Det $=f_{\mu}$ and $f_{3,\{2\}}=f_{\mu,\{2\}}$. We computed symbolically the ED polynomial of X_{3}^{\vee} at a μ-symmetric tensor u. In particular,

$$
h\left(\varepsilon^{2}\right)=16 \theta_{2} \varepsilon^{2}-\theta_{1} \theta_{2}-\theta_{2} \theta_{4}+2 \varphi,
$$

where φ was defined in (5.4.10). In addition, a consequence of Proposition 5.4.6 is that, up to sign multiplication, the highest and lowest coefficients of $h\left(\varepsilon^{2}\right)$ are SOS polynomials. In particular, the root of $h\left(\varepsilon^{2}\right)$ may be written as

$$
\begin{aligned}
16 \varepsilon^{2} & =\frac{\theta_{1} \theta_{2}+\theta_{2} \theta_{4}-2 \varphi}{\theta_{2}} \\
& =\frac{\left(c_{01} c_{10}-c_{11} c_{20}-c_{00} c_{11}+c_{10} c_{21}\right)^{2}+\left(c_{00} c_{21}-c_{01} c_{20}\right)^{2}}{\left(c_{00}+c_{20}\right)^{2}+\left(c_{01}+c_{21}\right)^{2}}
\end{aligned}
$$

where we are using μ-symmetric variables $\left\{c_{i j}\right\}$ defined analogously to the beginning of Section 5.1.

Now take into account Proposition 5.4.9(2). Looking at their definition in (5.4.11), in this case the invariants θ_{2}, θ_{3} and θ_{4} coincide. Indeed the highest coefficient $a_{6}=\theta_{1} \theta_{2} \theta_{3} \theta_{4}$ of EDpoly $X_{3}^{\vee}, u\left(\varepsilon^{2}\right)$ splits into two factors θ_{1} and $\theta_{2} \theta_{3} \theta_{4}=\theta_{2}^{3}$, which correspond to the highest coefficients of EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$ and $h^{\prime}\left(\varepsilon^{2}\right)^{3}$, respectively. About the lowest coefficient a_{0}, from (0.0.29) we see that in this case the polynomials $f_{3,\{1\}}, f_{3,\{2\}}$ and $f_{3,\{3\}}$ coincide. Indeed, the lowest coefficients of EDpoly $_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$ and $h^{\prime}\left(\varepsilon^{2}\right)^{3}$ are respectively Det^{2} and $f_{3,\{1\}} \cdot f_{3,\{2\}} \cdot f_{3,\{3\}}=f_{3,\{1\}}^{3}$. More precisely, Det $=f_{\mu}$. Moreover, in this case

$$
h^{\prime}\left(\varepsilon^{2}\right)=16 \theta_{2} \varepsilon^{2}-\theta_{1} \theta_{2}-\theta_{2}^{2}+2 \varphi
$$

and the root of $h^{\prime}\left(\varepsilon^{2}\right)$ may be expressed as (using the coordinates $\left\{c_{j}\right\}$ of the symmetric tensor t)

$$
16 \varepsilon^{2}=\frac{\theta_{1} \theta_{2}+\theta_{2}^{2}-2 \varphi}{\theta_{2}}=\frac{\left(c_{1}^{2}-c_{2}^{2}-c_{0} c_{2}+c_{1} c_{3}\right)^{2}+\left(c_{0} c_{3}-c_{1} c_{2}\right)^{2}}{\left(c_{0}+c_{2}\right)^{2}+\left(c_{1}+c_{3}\right)^{2}}
$$

Remark 5.4.11. More generally, one may verify that for any partition $\mu \vdash d$ and for a general symmetric tensor $u \in S^{d} V$ (not necessarily a binary tensor), the polynomial EDpoly $X_{\mu}^{\vee}, u\left(\varepsilon^{2}\right)$ is divided by EDpoly $X_{X_{(d)}^{\vee}, u}\left(\varepsilon^{2}\right)$ and by other factors. We observed that there is a precise relation between the factors of EDpoly $_{X_{\mu}^{\vee}, u}\left(\varepsilon^{2}\right)$ and the dual multiple root loci $\left[\operatorname{Chow}_{\lambda} \mathbb{P}(V)\right]^{\vee}$ (see (5.3.9)) for all $\lambda \prec \mu$, that somehow shifts the work by Oeding [Oed] from symmetrizations of μ-discriminants to symmetrizations of their respective ED polynomials. This fact encourages another line of research on the ED polynomials of varieties of tensors.

Bibliography

[AH] P. Aluffi, C. Harris, The Euclidean distance degree of smooth complex projective varieties, Algebra \& Number Theory 12.8 (2018), 2005-2032.
[Alu00] P. Aluffi, Weighted Chern-Mather classes and Milnor classes of hypersurfaces, Singularities-Sapporo 1998, Vol. 29, Adv. Stud. Pure Math. Kinokuniya, Tokyo, 2000, 1-20.
[Alu18] P. Aluffi, Projective duality and a Chern-Mather involution, Trans. Amer. Math. Soc. 370.3 (2018), 1803-1822.
[Che] S.-S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math. 47.2 (1946), 85-121.
[CLO] D. A. Cox, J. Little, D. O'Shea, Using algebraic geometry, Graduate Texts in Mathematics 185, Springer-Verlag, New York, 1998.
[CRSW] D. Cifuentes, K. Ranestad, B. Sturmfels, M. Weinstein, Voronoi Cells of Varieties, arXiv:1811.08395.
[CS] D. Cartwright, B. Sturmfels, The number of eigenvalues of a tensor, Linear Algebra Appl. 438.2 (2013), 942-952.
[CT] F. Catanese, C. Trifogli, Focal loci of algebraic varieties I, Commun. Algebra 28 (2000), 6017-6057.
[Dol] I. V. Dolgachev, Classical algebraic geometry: a modern view, Cambridge University Press, 2012.
[DEW] S. Di Rocco, D. Eklund, M. Weinstein, The bottleneck degree of algebraic varieties, arXiv:1904.04502.
[DHOST] J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, R. Thomas, The Euclidean Distance Degree of an algebraic variety, Found. Comput. Math. 16.1 (2016), 99-149.
[DLOT] D. Drusvyatskiy, H.-L. Lee, G. Ottaviani, R. Thomas, The Euclidean Distance Degree of Orthogonally Invariant Matrix Varieties, Israel J. Math. 221 (2017), 291-316.
[DOT] J. Draisma, G. Ottaviani, A. Tocino, Best rank-k approximations for tensors: generalizing Eckart-Young, Res. Math. Sci. 5.2 (2018), no. 27, 13.
[EH] D. Eisenbud, J. Harris, 3264 and All That: A Second Course in Algebraic Geometry, Cambridge University Press, 2016.
[FH] W. Fulton, J. Harris, Representation Theory: A First Course, Graduate Texts in Mathematics 129, Springer New Jork, 2013.
[FN] R.T. Farouki, C.A. Neff, Algebraic properties of plane offset curves, Computer Aided Geometric Design 7 (1990), 101-127.
[FO] S. Friedland, G. Ottaviani, The number of singular vector tuples and uniqueness of best rank one approximation of tensors, Found. Comput. Math. 14.6 (2014), 1209-1242.
[FS] J. E. Fornæss, N. Sibony, Complex dynamics in higher dimension, I, Astérisque 222 (1994), Complex analytic methods in dynamical systems (Rio de Janeiro, 1992), 201-231.
[Ful] W. Fulton, Intersection Theory, Springer Berlin Heidelberg, 1997.
[GH] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, 1978.
[GKZ] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, Boston, MA, 1994.
[Gro] A. Grothendieck, La thèorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137-154.
[GS] D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
[Har] J. Harris, Algebraic Geometry: A First Course, Graduate Texts in Mathematics 133, Springer New York, 1992.
[HT] J. Harris, L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23.1 (1984), 71-84.
[Hal] B. C. Hall, Lie groups, Lie algebras, and representations. An elementary introduction, Graduate Texts in Mathematics 222, Springer-Verlag, New Jork, 2003.
[HHLQ] S. Hu, Z. H. Huang, C. Ling, L. Qi, On determinants and eigenvalue theory of tensors, J. Symbolic Comput. 50 (2013), 508-531.
[HO] F. Holweck, L. Oeding, Hyperdeterminants from the E_{8} discriminant, arXiv:1810.05857.
[Hol] A. Holme, The geometric and numerical properties of duality in projective algebraic geometry, Manuscripta Math. 61.2 (1988), 145-162.
[HS] M. Helmer, B. Sturmfels, Nearest Points on Toric Varieties, Mathematica Scandinavica, 122 (2018), 213-238.
[Huy] D. Huybrechts, Complex Geometry: An Introduction, Universitext, Springer Berlin Heidelberg, 2005.
[HW] E. Horobeţ, M. Weinstein, Offset hypersurfaces and persistent homology of algebraic varieties, Comput. Aided Geom. Design 74 (2019), 101767, 14 pp.
[Kou] C. Koutschan, A fast approach to creative telescoping, Math. Comput. Sci. 4.2-3 (2010), 259-266.
[Koz] K. Kozhasov, On fully real eigenconfigurations of tensors, SIAM J. Appl. Algebra Geom. 2.2 (2018), 339-347.
[Lan] J. M. Landsberg, Tensors: Geometry and Applications, Graduate studies in Mathematics 128, Amer. Math. Soc., Providence, RI, 2012.
[LeP] J. Le Potier, Lectures on vector bundles, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997.
[Lim] L. H. Lim, Singular values and eigenvalues of tensors: a variational approach, Proc. IEEE Internat. Workshop on Comput. Advances in MultiSensor Adaptive Processing (CAMSAP 2005), 129-132.
[LQZ] A. M. Li, L. Qi, B. Zhang, E-characteristic polynomials of tensors, Commun. Math. Sci. 11.1 (2013), 33-53.
[Mac] M. Maccioni, The number of real eigenvectors of a real polynomial, Boll. Unione Mat. Ital. 11.2 (2018), 125-145.
[Mac74] R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. 100.2 (1974), 423-432.
[Mum] D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Classics in Mathematics, Springer Berlin Heidelberg, 1995.
[Nic] L. Nicolaescu, An Invitation to Morse Theory, Universitext, Springer New York, 2011.
[Nag] M. Nagata, Remarks on a paper of Zariski on the purity of branch-loci, Proc. Natl. Acad. Sci. USA 44.8 (1958), 796-799.
[NQWW] G. Ni, L. Qi, F. Wang, Y. Wang, The degree of the E-characteristic polynomial of an even order tensor, J. Math. Anal. Appl. 329.2 (2007), 12181229.
[Oed] L. Oeding, Hyperdeterminants of polynomials, Adv. Math. 231.3-4 (2012), 1308-1326.
[OO] L. Oeding, G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition, J. Symbolic Comput. 54 (2013), 9-35.
[OT] G. Ottaviani, A. Tocino, Best rank k approximation for binary forms, Collect. Math. 69 (2018), 163-171.
[OS] G. Ottaviani, L. Sodomaco, The distance function from a real algebraic variety, arXiv:1807.10390.
[PAHK] H. Pottmann, A. Asperl, M. Hofer, A. Kilian, Architectural Geometry, Bentley Institute Press, 2007.
[PP] A. Parusinski, P. Pragacz, Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors, J. Amer. Math. Soc., 8 (1995), 793-817.
[Pie78] R. Piene, Polar classes of singular varieties, Ann. Sci. École Norm. Sup. (4), 11.2 (1978), 247-276.
[Pie88] R. Piene, Cycles polaires et classes de Chern pour les variétés projectives singuliéres, In Introduction à la théorie des singularités, II, volume 37 of Travaux en Cours, 7-34, Hermann, Paris, 1988.
[Pie15] R. Piene, Polar varieties revisited, in Computer algebra and polynomials, Lecture Notes in Comput. Sci., 8942, Springer, Cham, 2015, 139-150.
[Pie16] R. Piene, Chern-Mather classes of toric varieties, arXiv:1604.02845.
[Qi05] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40.6 (2005), 1302-1324.
[Qi07] L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl. 325.2 (2007), pp. 1363-1377.
[QL] L. Qi, Z. Luo, Tensor analysis: Spectral theory and special tensors, SIAM, Philadelphia, PA, 2017.
[Sal] G. Salmon, A Treatise on Conic Sections, VI edition, Longmans, Green \& Co., London, 1879.
[Sch] J. Schürmann, Chern Classes and Transversality for Singular Spaces, Singularities in Geometry, Topology, Foliations and Dynamics (2017), Springer International Publishing, 207-231.
[Sod18] L. Sodomaco, The product of the eigenvalues of a symmetric tensor, Linear Algebra Appl. 554 (2018), 224-248.
[Sod] L. Sodomaco, On the product of the singular values of a binary tensor, arXiv:1906.05181.
[Sta] G. Staglianò, A package for computations with classical resultants, J. Softw. Algebra Geom. 8 (2018), 21-30.
[Ste] S. Sternberg, Group theory and physics, Cambridge University Press, Cambridge, 1994.
[Stu] B. Sturmfels, Algorithms in invariant theory, Second. Texts and Monographs in Symbolic Computation, SpringerWienNewYork, Vienna, 2008.
[Sul] S. Sullivant, Algebraic statistics, Graduate Studies in Mathematics 194, Amer. Math. Soc., Providence, RI, 2018.
[Sur] B. Sury, An elementary proof of the Hilbert-Mumford criterion, Electron. J. Linear Algebra 7 (2000), 174-177.
[Tev] E. A. Tevelev, Projectiely dual varieties of homogeneous spaces, Surveys in geometry and number theory: reports on contemporary Russian mathematics 338, London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2007, 183-225.
[VdW] B. L. van der Waerden, Modern Algebra, Volume 2, New York Ungar, 1950.
[Zar] O. Zariski, On the purity of the branch locus of algebraic functions, Proc. Natl. Acad. Sci. USA 44.8 (1958), 791-796.
[Zei90] D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32.3 (1990), 321-368.
[Zei91] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11.3 (1991), 195-204.

