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Chapter 1

Introduction

Tensors are the natural extension of matrices to higher dimensions, indeed ma-
trices are order two tensors. In practical terms this means that they can be
used to store data that relies in more than two parameters. Therefore, tensors
naturally appear in a vast field of applications: for instance they are utilised for
plant biodiversity estimation [BIR21], data analysis [Com94], computer vision
[Pan+21].

The singular value decomposition of matrices is one of the main tools in
applied mathematics, it states that for a real valued matrix A ∈ Rm ⊗ Rn there
exists orthogonal matrices U ∈ O(m) and V ∈ O(n) such that A = UΣV t, where
Σ is quasi-diagonal, that is, Σi,j = 0 if i ̸= j and Σii = σi, with σ1 ≥ · · · ≥
σmin{m,n}.

One of its main application is that it can be utilised to compute the best
given rank approximation of A. This is the subject of the famous Eckart-Young
Theorem that states that for a matrix A with SVD given by A = UΣV t, where
Σii = σi, the best approximation of A by a matrix of rank k is given by UΣkV

t,
where Σk is the quasi-diagonal matrix with the first k entries in the diagonal
equal to σi, i = 1, . . . , k and all the others equal to zero. In particular, the rank
one tensors σiui ⊗ vi are critical points of the distance function from A to the
variety of rank one matrices.

We remark that the SVD is usually considered over the real numbers, a similar
result exists over the complex numbers with U and V unitary matrices and the
hermitian transposition, called complex SVD. However, our interest is to study
the real version of SVD and its generalizations. Therefore, we are going to extend
this version to complex values, in other words, we consider U, V ∈ OC(m),OC(n)
together with the usual notion of transposition, where OC(m) means the Zariski
closure of orthogonal matrices over the field of complex numbers. To differentiate
it from the complex version we are going to call such decomposition the algebraic
SVD. The main motivation to such construction is that this allows the use of
robust techniques of algebraic geometry that were not possible over the reals,
for instance, the algebraic SVD has been studied in [Dru+17]. In particular it is
interesting to notice that not every complex valued matrix admits an algebraic
SVD decomposition, differently from the complex SVD that can be obtained to
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every matrix in Cm ⊗ Cn.
A similar decomposition as the SVD is obtained for tensors via the high order

singular value decomposition, such decomposition is obtained by considering the
SVD decomposition of the flattenings of the tensors and reconstructing a tensor
from them. However, the HOSVD does not lead to the best rank approximation
of the tensor. In 2005 [Lim05; Qi05] introduced independently the notion of
singular vector tuples of tensors, or eigentensors. Let qi be a quadratic form on
Vi that is nondegenerated over the reals, and q be the Bombieri-Weyl product
on V = V1 ⊗ · · · ⊗ Vk obtained from the qi, we utilise them to identify Vi with
V ∗
i and V with V ∗. A tensor v1 ⊗ · · · ⊗ vk, where qi(vi, vi) = 1, is an eigentensor

of a tensor T ∈ V if for each flattening

T : V1 ⊗ · · · ⊗ Vi−1 ⊗ Vi+1 ⊗ · · · ⊗ Vk → Vi

it holds that
T (v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vk) = λvi,

where λ ∈ C and v̂i denotes that such term is omitted. We associate to each
eigentensor v1 ⊗ · · · ⊗ vk a tuple, called singular vector tuple, ([v1], . . . , [vk]) ∈
×k
i=1PVi, see Definition 3.1.2. We notice that for the case of matrices we have

that the eigentensors ui ⊗ vi of a matrix A consists exactly of the pairs (ui, vi),
called singular pairs, where ui and vi are the columns of the orthogonal matrices
U and V giving the SVD of A [OP15]. Moreover, [Lim05] shows that the singular
vector tuples of a tensor T are the critical points of the distance function between
T and the Segre variety of rank one tensors, see Theorem 3.1.4, thus giving an
extended notion of the Eckart-Young Theorem to higher order tensors. Later
[DOT17] defined the critical space associated to a tensor T , such space contains
all the best rank approximations of the tensor T .

The study of singular vector tuples has received extensive attention in the past
years, for instance [FO14] have computed the ED-degree of the Segre-Veronese
variety, Theorem 3.1.10, this is an invariant of the variety that, in simple terms,
counts the number of singular vector tuples of a general tensor, see [Dra+13] for
further comprehension. Later [OP15] have introduced the critical space HT of a
tensor T , this is the space obtained by considering the tensors, not necessarily
of rank one, that satisfies (3.1.3). Following this work [DOT17] have shown that
the critical space contains all the best given rank approximations of the tensor,
moreover they demonstrated that HT is generated by the singular vector tuples of
T under the boundary format condition, see Definition 3.1.13. This also implies
that the tensor T itself lies in the span of its singular vector tuples, we will refer
to this as the membership problem.

Question 1.0.1 (Membership problem). Given T ∈
⊗k

i=1 SymdiVi, denote ZT
the set of singular vector tuples of T , does T ∈ ⟨ZT ⟩?

As mentioned before, this question is answered for general tensors in [DOT17]
where the tensor space is assumed to be of a format named boundary format. In
Chapter 5 we will work on some specific cases without the assumption of such
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format where our partial results indicate that a positive answer can be expected
in general.

Moreover, it is noteworthy that although T is a linear combination of the
singular vector tuples, in general such sum of rank one tensors is not minimal
and, at the present moment, there is not a clear connection between tensor de-
composition and singular vector tuples except for particular formats, for instance
orthogonally decomposable tensors [Bor+15; RS17].

The question that motivated the presented work on singular vector tuples
was: Are tensors determined by their singular vector tuples? This has been
addressed first in [ASS17] where a positive answer was given for polynomials in
three variables and odd degree. Later, [BGV21] extended this result to three
variables and even degree, where it was shown that the property does not holds
true anymore. In Chapter 4 we will generalise such result to any degree and any
number of variables.

Theorem 4.1.4. [Tur22, Theorem 1.1] Let V be a vector space of dimension
m+ 1. Let d ≥ 3 be an integer, and f ∈ P(SymdV ) be a general polynomial. Let

τ : P
(
SymdV

)
99K PV (edX), f 7→ Eig(f)

be the map that associates to f its eigentensors locus Eig(f). Then

τ−1(τ(f)) =

{
[f ], if d is odd;

{[f + cq
d
2 ]|c ∈ C}, if d is even.

Moreover, the image of the map τ has dimension

dim(Im(τ)) =

{(
d+m
d

)
− 1, if d is odd;(

d+m
d

)
− 2, if d is even.

Furthermore, we extend such result to partially symmetric tensors under the
boundary format condition.

Theorem 4.2.10. [Tur22, Theorem 1.2] Let V1, . . . , Vk be vector spaces of di-
mensionm1+1, . . . ,mk+1. Let d1, . . . , dk be positive integers, and T ∈ P

(
Symd1V1⊗

· · · ⊗ SymdkVk
)
be a general tensor. Let

τ : P
(
Symd1V1 ⊗ · · · ⊗ SymdkVk

)
99K (PV1 × · · · × PVk)(edX), T 7→ Eig(T ),

be the map that associates a tensor T to its singular tuples locus Eig(T ). If k ≥ 3
and suppose that ml ≤

∑
j ̸=lmj whenever dl = 1, and for k = 2 we include the

hypothesis that (d1, d2) ̸= (1, 1), then

τ−1(τ(T )) =

[T ], if di is odd for some i;

{[T + cq
d1
2
1 ⊗ · · · ⊗ q

dk
2
k ]|c ∈ C}, if dl is even for all l.



10

Moreover, the image of the map τ has dimension

dim(Im(τ)) =

{∏k
l=1

(
dl+ml

d

)
− 1, if di is odd for some i;∏k

l=1

(
dl+ml

d

)
− 2, if dl is even for all l.

It is important to remark that Theorem 4.2.10 does not cover the matrix case
(k = 2 and d1 = d2 = 1). Such case is treated separately in Example 4.0.1, where
we show that it has a completely different behavior than the higher order tensor
case, in particular the fiber has a bigger dimension.

We remark that both main results obtained in [DOT17; Tur22] must assume
that the tensor space satisfy the boundary format condition. This is connected
with the defectiveness of the dual variety of the Segre-Veronese variety [OSV21].
The same problems studied in [DOT17; Tur22] are tackled in Chapter 5 for some
formats beyond boundary format. We will show that for several different formats
the membership problem still holds true. We use this fact to demonstrate this
implies that the tensors will still be determined by their singular vector tuples.
Moreover, for small formats we explicitly describe the new relations among the
singular vector tuples. This chapter consists of a joint work with Luca Sodomaco.

Another fundamental concept of matrices is the notion of rank, it consists of
the dimension of the image of the associated linear map. A natural question is to
find a minimal rank decomposition of a matrix A ∈ Mm×n = Rm ⊗Rn, in other
words, find the smallest number r and rank one matrices A1 = a1 ⊗ b1, . . . , Ar =
ar ⊗ br, where ai ⊗ bi = aib

t
r and ai ∈ Cm, bi ∈ Cn, such that A =

∑r
i=1Ai. The

singular value decomposition of A plays a major role in this question as well, we
write A = UΣV t, with U, V orthogonal matrices and Σ quasi-diagonal, we can
obtain such decomposition via the SVD:

A = σ1u1v
t
1 + · · · + σrurv

t
r,

where ui, vi are the columns of U, V respectively, σi = Σi,i and r is the last index
such that σi = Σi,i ̸= 0. Notice that the complex SVD also gives the answer over
the complex numbers, however the algebraic SVD fails in some cases.

The same question for tensors, or also for polynomials, is considerably more
difficult. One of the first methods to compute decomposition of higher order
tensors has been developed by Sylvester in the XIX century for binary forms,
that is, homogeneous polynomials in two variables. The first modern version of
such method is presented in [CS11]. Moreover, in such work it has been studied
the behavior of the strata of the given rank varieties of binary forms of subgeneric
rank. Those varieties are defined as the Zariski closure of the set of all binary
forms of a given rank r, that is, sum of powers of r linear forms. When the rank
r is smaller than the generic rank it follows that this variety corresponds to the
r-secant variety of the Veronese variety νd(P1), see Definitions 2.1.1 and 2.1.4.
In chapter 7, in a joint work with Alejandro Gonazález Nevado, we will describe
the strata of those varieties for the case of suprageneric rank, see Theorem 7.3.4.
Furthermore, we will study the singular locus of such varieties and show that
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a behavior similar to the subgeneric rank case happens also in the suprageneric
case: the previous step in the stratification is contained in the singular locus, see
Theorem 7.3.5.

Although the celebrated algorithm of Sylvester gives an efficient answer for
binary forms, the question for higher dimensions is not fully answered. Efficient
algorithms for the decomposition of low rank symmetric tensors have been re-
cently developed [Bra+10; OO13], however a general method is still unknown.
We will discuss the algorithm developed by [OO13] in section 6.1 and exploit
the work developed in [CCO17] on the Waring locus of plane cubics to extend
this algorithm to a general plane cubic. We present an implementation of the
algorithm for general plane cubics in the language Macaulay2 in section 6.3.



Chapter 2

Preliminaries

2.1 Preliminaries on tensors

In this section we introduce the main concepts regarding tensors, as for example
the Veronese and the Segre varieties, Terracini lemma. We suggest [Lan12] as an
introductory book on this area. Let V be a complex vector space of dimension
dim(V ) = m+ 1.

2.1.1 Symmetric tensors and the Veronese variety

Definition 2.1.1. Let d ∈ Z≥1 be an integer. We define the d-Veronese embed-
ding νd by

νd :PV → PSymdV

[v] 7→ [vd]

The d-Veronese embedding is a closed map, thus its image is a variety. We call
the variety νd(PV ) the Veronese variety (d-Veronese variety).

Definition 2.1.2. Let f ∈ SymdV be a homogeneous polynomial of degree d. f
is said to be a decomposable polynomial if there exists a linear form v ∈ V such
that f = vd.

Observe that the Veronese variety, by definition, consists exactly of the de-
composable polynomials in SymdV .

Definition 2.1.3. A polynomial f ∈ SymdV has Waring rank (also named
symmetric rank) one if it is decomposable. f has rank r if r is the minimal
number such that f is a linear combination of decomposable polynomials, i.e.

rank(f) = min{r ∈ Z≥1 | f =
r∑
i=1

vdi , vi ∈ V }.

12
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Such minimal decomposition is called a Waring decomposition of f .

Consider the set Sd,r = {f ∈ SymdV | rank(f) = r} of polynomials of a given
rank r. This set is not Zariski closed, thus it is not a variety. In order to be able
to have geometrical techniques to study this rank we define the secant variety.

Definition 2.1.4. Let X ⊂ PV be a variety. The r-secant variety of X, denoted
Σr(X) is defined as

Σr(X) =
⋃

x1,...,xr∈X

{x ∈ ⟨x1, . . . , xr⟩}

Observe that if we let X = νd(PV ) we have that the general point on the
r-secant variety of the Veronese variety is a polynomial of rank r. The secant
varieties of the Veronese variety is the main tool to study the rank of a polyno-
mial.

We recall the classic Terracini lemma that gives a powerful tool to understand
the secant varieties.

Lemma 2.1.5 (Terracini). Let X ⊂ PV be a subvariety, then

⟨Tx1X, . . . ,TxrX⟩ = TxΣr(X),

where x1, . . . , xr ∈ X and x ∈ ⟨x1, . . . , xr⟩ are general.
Moreover,

dim(Σr(X)) = dim⟨Tx1X, . . . ,TxrX⟩

Observe that to compute the dimension of the secants varieties a naive ap-
proach consists of counting the number of parameters appearing in a rank r
decomposition, by doing so we have that the expected dimension of the r-secant
variety is

dim(Σr(X)) = min{r(dim(X) + 1) − 1, dim(PV )}.

In particular for the r-secant variety of the Veronese variety Σr(νd(PV )) we have
that the expected dimension is

dim(Σr(νd(PV ))) = min{r(m+ 1) − 1, dim(PSymdV )}.

Moreover, the expected minimum is obtained at r(m+ 1) − 1 if

r <

⌈(
m+d
d

)
m+ 1

⌉
.

When r = g =

⌈
(m+d

d )
m+1

⌉
it is expected that the r-secant variety of the Veronese

variety fulfils the ambient space, such number is called the generic rank of SymdV
and a general polynomial in SymdV has rank g. Moreover, for r ≥ g it is trivial
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to see that the secant variety is equal to the ambient space SymdV , thus the
secant variety techniques are powerful for the subgeneric rank.

We say that the dimension is expected to be given by this value because
the celebrated Alexander-Hirschowitz theorem shows that there exists finitely
many cases where the dimension is not the expected one through our naive
approach. Indeed, by utilising Terracini’s lemma it is easy to verify the first
defective examples.

Theorem 2.1.6 (Alexander-Hirschowitz). Let V be a complex vector space of
dimension m+ 1. Then the generic rank in PSymdV is given by

g =

⌈(
m+d
d

)
m+ 1

⌉
with the exception of the following cases:

• d = 2 where the generic rank is m+ 1;

• 2 ≤ m ≤ 4, d = 4, where the generic rank is
(
m+2
2

)
;

• (m, d) = (4, 3) where the generic rank is 8.

Moreover, the dimension of the secant variety Σr(νd(PV )) is equal to the
expected value min{r(m+ 1) − 1, dim(PSymdV )} for r ≤ g with the exception of
the following cases:

• d = 2, 2 ≤ r ≤ m;

• 2 ≤ m ≤ 4, d = 4, r =
(
m+2
2

)
− 1;

• (m, d) = (4, 3), r = 7.

We refer to [BO08] as a reference to a clear explanation of the importance
and the proof of Alexander-Hirschowitz theorem.

If we let Sd,r = {f ∈ SymdV | rank(f) = r} be the set of polynomials of rank
r, we have that Sd,r = Σr(νd(PV )) when r ≤ g. For rank r > g the variety Sd,r
cannot be related to the r-secant variety of the Veronese variety since the last
coincides with the ambient space. We study the variety Sd,r for binary forms of
suprageneric rank on section 7.

We notice that the secant variety itself describe a different notion of rank.
Since Σg(νd(PV )) = SymdV , it means that also the polynomials of rank higher
than g belong to some r-secant variety of the Veronese variety.

Definition 2.1.7. The border Waring rank, denoted rankB, of a polynomial
f ∈ SymdV is defined as the minimal number 1 ≤ r ≤ g such that

f ∈ Σr(νd(PV )).
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Equivalently, the border rank of f may be defined as the minimal number r
such that there exists a sequence of polynomials {fn} converging to f such that
rank(fn) = r.

Example 2.1.8. Consider the rank 3 polynomial f = x2y, indeed it can be
shown that its minimal decomposition is given by

f = x2y =
1

6

(
(x+ y)3 − (x− y)3 − 2y3

)
.

On the other hand, consider the sequence fn = 1
3

(
n
(
x+ y

n

)3 − nx3
)

. Clearly

fn has rank 2 for every n ≥ 1. Expanding the polynomial we obtain

fn = x2y +
1

n
xy2 +

1

3n2
y3,

thus
lim
n→∞

fn = f

and f has border rank 2.

2.1.2 Tensors and the Segre variety

We recall that a homogeneous polynomial in n+ 1 variables can be associated to
a symmetric tensor. Now we extend the notions described above to tensors. Let
V1, . . . , Vk be complex vector spaces of dimension dim(Vi) = mi + 1, i = 1, . . . , k.

Definition 2.1.9. We define the Segre embedding σ as the map

σ :PV1 × · · · × PVk → P(V1 ⊗ · · · ⊗ Vk)

([v1], . . . , [vk]) 7−→ [v1 ⊗ · · · ⊗ vk].

The Segre embedding is a closed map, therefore its image is a variety. We call
the variety σ(PV1 × · · · × PVk) the Segre variety.

If there is no risk of confusion between the variety and the map we will denote
σ(PV1 × · · · × PVk) = σ for the sake of simplicity.

Definition 2.1.10. A tensor T ∈ V1 ⊗ · · · ⊗ Vk is said to be decomposable if

T = v1 ⊗ · · · ⊗ vk,

for some vi ∈ Vi, i = 1, . . . , k.

The Segre variety is the analogous of the Veronese variety for tensors, it
consists exactly of the decomposable tensors of V1 ⊗ · · · ⊗ Vk.
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Definition 2.1.11. Let v1 ⊗ · · ·⊗ vk ∈ V1 ⊗ · · ·⊗Vk be a decomposable tensors,
then we say it has rank one. If T ∈ V1 ⊗ · · · ⊗ Vk and r is the minimal number
such that T is a linear combination of r decomposable tensors, then we say that
rank(T ) = r. More precisely

rank(T ) = min{r ∈ Z≥1 | T =
r∑
i=1

vi,1 ⊗ · · · ⊗ vi,k}.

Similar to the polynomial case, we are able to study the varieties of a given
rank r by means of the r-secant variety of the Segre variety. Observe that,
by utilising again the naive approach of counting the number of parameters
appearing in a rank r decomposition we obtain that the expected dimension of
Σr(σ) is given by

dim(Σr(σ)) = min

{
r

((
k∑
i=1

mi

)
+ 1

)
− 1,

k∏
i=1

(mi + 1) − 1

}
.

Moreover, this implies that the expected generic rank g in the tensor space
V1 ⊗ · · · ⊗ Vk is given by

g =


∏k

i=1(mi + 1)(∑k
i=1mi + 1

)


In the case of tensors there is not a counterpart of Alexander-Hirschowitz
theorem 2.1.6. At the current moment only few exceptions are known for when
the generic rank and thus the expected dimension of the r-secant variety of the
Segre variety are defective. The next result enumerates the state-of-art result on
this defectiveness.

Example 2.1.12. The known examples where a general T ∈ V1⊗ · · ·⊗Vk, with
k ≥ 3, has defective generic rank, that is, different from

g =


∏k

i=1(mi + 1)(∑k
i=1mi

)
+ 1

 ,
happens in the cases:

1. The unbalanced case, i.e., when it holds

mk ≥
k−1∏
i=1

(mi + 1) −

(
k−1∑
i=1

mi

)
+ 1.

2. k = 3, (m1,m2,m3) = (2, 2,m) with even m [Lic85].
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3. k = 3, (m1,m2,m3) = (2, 3, 3), sporadic case [AOP06].

4. k = 4, (m1,m2,m3,m4) = (1, 1, n, n) [AOP06].

Moreover, the asymptotically behavior of the case of general rank for the case
Cm+1 ⊗ · · · ⊗ Cm+1 has been studied.

Theorem 2.1.13. [AOP06] Let g(mk) be the generic rank of the tensor space⊗k
i=1Cm. Then

g(mk) ∼ (m+ 1)k

mk + 1

when m→ ∞ or k → ∞.

As mentioned previously, a polynomial f ∈ SymdV can be considered as a
symmetric tensor inside of

⊗d
i=1 V . A natural question is to compare the rank

of f as a polynomial and as a tensor.
In order to separate the notion of Waring rank and tensor rank of f , when

needed we will denote the Waring rank of f by rankW (f) and the tensor rank
simply by rank(f).

Notice that since the Waring decomposition is a particular decomposition of
a tensor, that is, it is a decomposition restricted to symmetric tensors, we have
that

rank(f) ≤ rankW (f).

Many cases and examples where such equality holds true have been found,
this led to the famous Comon’s conjecture: The Waring rank of a symmetric
tensor is equal to its tensor rank. Such conjecture has been thought to be true
for several years.

However, recently the first example of when such equality does not hold
has been found [Shi18] for a symmetric tensor f of order 800 × 800 × 800 and
rank(f) ≤ 903, but that cannot be written as a sum of at most 903 decomposable
symmetric tensors.

2.1.3 Partially symmetric tensors and the Segre-Veronese

variety

The last tensor format that we are going to be interested throughout the text is
the so called partially symmetric tensors.

Definition 2.1.14. We say that a tensor T ∈
⊗k

i=1 SymdiVi is a partially sym-
metric tensor. We define the Segre-Veronese embedding νd1...dk as the map

νd1...dk :PV1 × · · · × PVk → P

(
k⊗
i=1

SymdiVi

)
([v1], . . . , [vk]) 7−→ [vd11 ⊗ · · · ⊗ vdkk ].
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Definition 2.1.15. A partially symmetric tensor T ∈
⊗k

i=1 SymdiVi is decom-
posable if

T = vd11 ⊗ · · · ⊗ vdkk ,

for some vi ∈ Vi.

Notice that the Segre-Veronese variety consists exactly of the partially sym-
metric tensors that are decomposable. Moreover, the notion of decomposable as
well the Segre-Veronese embedding, as the name indicates, is a combination of
both the Segre and the Veronese embeddings.

Definition 2.1.16. A tensor T ∈
⊗k

i=1 SymdiVi has rank one if it is decom-
posable. T has rank r if r is the minimal number of decomposable tensors
vi,1 ⊗ · · · ⊗ vi,k such that T is a linear combination of them. That is,

rank(T ) = min{r ∈ Z≥1 | T =
r∑
i=1

vd1i,1 ⊗ · · · ⊗ vdki,k}.

We will work with partially symmetric tensors on section 4.2.

2.2 Preliminaries on Cohomology and Bott The-

orem

This section follows mainly the lectures notes of Giorgio Ottaviani [Ott95]. An-
other suggestions for an introduction on this topic are the books [Wey03] and
[FH91].

During this section let V be a m+ 1-dimensional complex vector space.

2.2.1 Lie groups and Lie algebras

Let v ̸= 0 ∈ V , we consider the map

φi :
i∧
V →

i+1∧
V, φi(w) = w ∧ v.

Such map is called the Koszul maps.

Definition 2.2.1. The exact sequence

0 →
0∧
V ∼= C φ0−→

1∧
V

φ1−→
2∧
V

φ2−→ . . .
φn−→

n+1∧
V → 0

Is called the Koszul complex of V . The Koszul complex is an exact sequence.

First notice that the Koszul complex is a complex. Indeed φi ◦ φi−1(w) =
φi(w ∧ v) = w ∧ v ∧ v = 0. Furthermore the Koszul complex is an exact se-
quence: Let {e1, . . . , em, em+1} be a basis of V with em+1 = v. Let w =
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∑
i1<···<ir ai1...irei1 ∧ · · · ∧ eir ∈

∧r V such that φr(w) = w ∧ v = 0. This implies
that all the non-zero coefficients ai1...ir have the last index ir = m+ 1. Therefore
φr−1(u) = u ∧ v = w for u =

∑
i1<···<ir−1

ai1...ir−1ei1 ∧ · · · ∧ eir−1 .
The Koszul complex can be extended for vector bundles F over a projective

variety X.

Definition 2.2.2. Let F be a rank m vector bundle over X and let s ∈ H0(X,F)
be a global section such that the zero locus of the section Zs = {x ∈ X|s(x) = 0}
is zero-dimensional, that is codim(Zs) = m. Let φi :

∧iF →
∧i+1F be defined

by φi(w) = w ∧ s and the dual map φti :
∧i+1F∗ →

∧iF∗. The exact sequence

0 →
m∧

F∗ φt
m−1−−−→

m−1∧
F∗ φt

m−2−−−→ . . .
φt
1−→ F∗ → IZs → 0

is called the Koszul complex of the ideal sheaf IZs .

Notice that the classical presentation of the Koszul complex is using the
coordinate ring of Zs:

0 →
m∧

F∗ φt
m−1−−−→

m−1∧
F∗ φt

m−2−−−→ . . .
φt
1−→ F∗ φt

0−→ OX → OZs → 0.

The sequence presented in the Definition 2.2.2 is obtained by considering the
short exact sequence 0 → IZs → OX → OZs → 0.

Definition 2.2.3. A complex manifold G which is also a group and such that
the map

G×G→ G, (x, y) 7→ xy−1

is holomorphic is called a complex Lie group. In the category of Lie groups the
morphisms are holomorphic maps that are group homomorphisms.

Definition 2.2.4. A complex vector space V with a map

[·, ·] : V × V → V

that satisfies:

1. Bilinearity:

[αx+y, βz+w] = αβ[x, z]+α[x,w]+β[y, z]+[y, w] ∀ x, y, z, w ∈ V, α, β ∈ C;

2. Skew-symmetry:
[x, y] = −[y, x], ∀ x, y ∈ V ;

3. Jacobi-identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀ x, y, z ∈ V ;
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is called a Lie algebra. In the category of Lie algebras the morphisms are
vector space morphisms that preserves the bracket [·, ·].

Example 2.2.5. On a complex Lie group G consider the holomorphic vector
fields that are invariant by the left translation Lg : g′ 7→ gg′. The left translation
is completely characterized by the value that assume at any point, in particular
on the identity element e ∈ G. The vector space of left invariant vector fields is
therefore isomorphic to the tangent space TeG.

Let X, Y ∈ TeG be two left invariant vector fields, then XY − Y X is still a
left invariant vector field. Therefore TeG equipped with the the bracket [X, Y ] =
XY − Y X is a Lie algebra.

Definition 2.2.6. The Lie algebra associated to TeG, where G is a Lie group,
is denoted Lie(G).

Example 2.2.7. The Lie algebra of GL(n), denoted GL(n), consist of the n×n
matrices with the bracket defined by [A,B] = A ·B −B · A.

Definition 2.2.8. Let V be a Lie algebra. A subalgebra I ⊂ V is called an ideal
if for all v ∈ V and i ∈ I it holds

[v, i] ∈ I.

The quotient space V/I has the natural structure of quotient Lie algebra.

Definition 2.2.9. A Lie algebra V is called solvable if the derived series

V1 = [V, V ], V2 = [V1, V1], . . . , Vi = [Vi−1, Vi−1]

terminates to zero. A Lie group G is solvable if Lie(G) is solvable.

Theorem 2.2.10. Let G be a Lie group and let H ⊂ Lie(G) be a subalgebra.
Then there exists a connected Lie subgroup H ⊂ G such that Lie(H) = H.

Proof. [FH91, Proposition 8.41]

Theorem 2.2.11. Let H ⊂ G be a closed subgroup. Then H is normal if and
only if the subalgebra Lie(H) is an ideal.

Proof. [NS82, IX §3].

Definition 2.2.12. A Lie algebra V is simple if dimV > 1 and it contains only
the trivial ideals 0 and V . A Lie algebra is semi-simple if it contains no nonzero
solvable ideals. A Lie group G is semi-simple if and only if Lie(G) is semi-simple.

Notice that if I1 and I2 are solvable ideals of V , then also I1 + I2 is a solvable
ideal. This implies that V has a unique maximal solvable ideal rad(V ) that is
called the radical ideal of V . Another characterization for semi-simple algebras
is: V is semi-simple if and only if rad(V ) = 0.

We give a purely algebraic definition of [·, ·]. For this we must define the
adjoint representation that will be used later to define the Cartan subalgebras.
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Definition 2.2.13. Let ρg : G → G be the inner automorphism, defined by an
element g of the Lie group G, given by

ρg : h 7→ ghg−1.

We get a morphism
G→ Aut(G), g 7→ ρg.

Definition 2.2.14. Consider the derivative at the identity of ρg, that is,

(∂ρg)e : Lie(G) → Lie(G).

We define the adjoint representation of G as

Ad : G→ GL(Lie(G)), g 7→ (∂ρg)e.

Definition 2.2.15. We define the adjoint representation of the Lie algebra
Lie(G), denoted ad, by

ad = (∂Ad)e : Lie(G) → GL(LieG).

Definition 2.2.16. We may define the bracket [·, ·] of Definition 2.2.3 for a Lie
group G in terms of the adjoint representation of Lie(G) as

[X, Y ] = ad(X)(Y ).

2.2.2 Cartan subalgebra and the Killing form

We now have the basis to define the Cartan subalgebra. This is one of the main
objects to understand Bott’s Theorem 2.2.71, as it will allow us to define the
notion of weights and roots.

Definition 2.2.17. Let G be a Lie algebra. A subalgebra H ⊂ G is called abelian
if

[h1, h2] = 0

for all h1, h2 ∈ H.

Definition 2.2.18. A subalgebra H ⊂ G is called a Cartan subalgebra if

1. H is abelian and ad|H : H → GL(G) acts diagonally.

2. H is maximal with respect to (1).

Theorem 2.2.19. In any semi-simple Lie algebra G there exists Cartan subal-
gebras H.

Proof. [FH91, Appendix D].
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From now onwards we will denote H to be a fixed Cartan subalgebra of a Lie
algebra G.

Definition 2.2.20. For any α ∈ H∗, where H∗ denotes the dual space of H, we
define

Gα = {X ∈ G | ad(H)(X) = α(H)(X), ∀ H ∈ H}.

Notice that from the Definition 2.2.18 item (1) we have that G is decomposed
as direct sum of the eigenspaces Gα.

Theorem 2.2.21. Let α, β ∈ H∗. Then

[Gα,Gβ] ⊂ Gα+β.

Proof. Let X ∈ Gα, Y ∈ Gβ and H ∈ H. From the property (3) we have that

[H, [X, Y ]] = −[X, [Y,H]] − [Y, [H,X]]

= [X, β(H)Y ] − [Y, α(H)X]

= [α(H) + β(H)[X, Y ].

The next proposition gives a description of H in terms of the eigenspaces.

Proposition 2.2.22.
H = G0.

Proof. The inclusion H ⊂ G0 is trivial. Indeed, let H ′ ∈ H, then

ad(H ′)(H) = [H,H ′] = 0, ∀H ∈ H

since H is abelian (Definition 2.2.18).
On the other hand, the inclusion can not be strict, otherwise we could en-

large H by adding the elements of G0 while satisfying (1) and this violates the
maximality of H.

The last result implies that the decomposition of G mentioned after Definition
2.2.20 is given by

G = H
⊕

α̸=0∈H∗

Gα.

Such decomposition is called the Cartan decomposition of the Lie algebra G.

Definition 2.2.23. Let α ∈ H∗ be a non-zero element such that Gα ̸= 0. Such
α is called a root with respect to the Cartan subalgebra H.

The set of roots is denoted by Φ ⊂ H∗. The eigenspaces Gα are called the
root spaces of G.

Theorem 2.2.24. If α is a root the also −α is a root.
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Proof. Suppose −α is not a root, then for all X ∈ Gα and for some H ∈ H
we have that [−X,H] ̸= −α(H)(X), therefore [X,H] ̸= α(H)(X), this is a
contradiction.

By choosing a direction in H∗ that is irrational with respect to the lattice
generated by the roots, the previous result leads to a decomposition

Φ = Φ+ ∪ Φ−.

Such decomposition is called an ordering of the roots. Moreover it is trivial to
see that −Φ+ = Φ−.

We introduce a bilinear form on the Lie algebra G.

Definition 2.2.25. The bilinear form B is called the Killing form and defined
as

B : G × G → C, (X, Y ) 7→ tr(ad(X) ◦ ad(Y )),

where ad(X) ◦ ad(Y )(Z) = [X, [Y, Z]] ∈ G.
From the definition of the trace operator and [·, ·] we have that B is both

bilinear and symmetric.

Lemma 2.2.26. Let α, β, γ ∈ H∗ be roots. Then

1. Let X ∈ Gα and Y ∈ Gβ, then

ad(X) ◦ ad(Y )(Gγ) ⊂ Gα+β+γ.

2. Let Qα = Gα ⊕ G−α. Then the decomposition

G = H
⊕
α∈Φ+

Qα

is an orthogonal decomposition with respect to the Killing form.

Proof. For (1) we have that

ad(X) ◦ ad(Y )(Gγ) = [X, [Y,Gγ]].

From Proposition 2.2.21, it follows that the containment holds.
For (2), suppose that α ̸= −β, from (1) we have that ad(X) ◦ ad(Y )(Gγ) has

no component coming from Gγ, so the trace must be zero.

Lemma 2.2.27. 1. Let X, Y, Z ∈ G,, then

B ([X, Y ], Z) = B (X, [Y, Z]) .
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2. For any ideal I ⊂ G the orthogonal subspace

I⊥ = {X ∈ G | B(X, Y ) = 0 ∀ Y ∈ I}

is an ideal of G.

Proof. For (1) we have

B([X, Y ], Z) = tr(ad(XY − Y X) ◦ ad(Z))

= tr(ad(X) ◦ ad(Y ) ◦ ad(Z) − ad(Y ) ◦ ad(X) ◦ ad(Z))

= tr(ad(X) ◦ ad(Y ) ◦ ad(Z) − ad(X) ◦ ad(Z) ◦ ad(Y )),

where on the last equality it was used that tr(CD) = tr(DC).
On the other hand we have

B(X, [Y, Z]) = tr(ad(X) ◦ ad(Y Z − ZY ))

= tr(ad(X) ◦ ad(Y ) ◦ ad(Z) − ad(X) ◦ ad(Z) ◦ ad(Y ))

= B([X, Y ], Z).

Therefore the desired equality holds.
We prove (2) now. Let X ∈ I⊥, we wish to show that for all Y ∈ G we have

that [X, Y ] ∈ I⊥. Let Z ∈ I, then

B([X, Y ], Z) = B(X, [Y, Z]) = 0,

since [Y, Z] ∈ I because I is an ideal.

Theorem 2.2.28 (Cartan’s Criterion). Let L ⊂ G be a subalgebra of the Lie
algebra G. Suppose that B(X, Y ) = 0 for all X, Y ∈ L, then L is solvable.

Proof. [FH91, Theorem C5].

Theorem 2.2.29. The Lie algebra G is semi-simple if and only if the Killing
form B is non-degenerate.

Proof. Suppose G is semi-simple, then rad(G) = 0. Let G⊥ = {X ∈ G |B(X, Y ) =
0 ∀ Y ∈ G}, this is is an ideal by Lemma 2.2.27. From Theorem 2.2.28 we have
that G⊥ is solvable. This implies that G⊥ = 0.

On the other hand, suppose that G⊥ = 0 but rad(G) ̸= 0. This means
that the last term Gr in the sequence Gi = [Gi−1,Gi−1] is an abelian ideal, since
[Gr,Gr] = 0.

Notice that from the assumption that G is not semi-simple we have that it is
non-trivial. Let X ∈ Gr and Y ∈ G, then ad(X) ◦ ad(Y ) : G → Gr. This means
that the image of ad(X) ◦ ad(Y ) ◦ ad(X) ◦ ad(Y ) belongs to [Gr,Gr] = 0.

This implies that ad(X)◦ad(Y )◦ad(X)◦ad(Y ) = 0, therefore ad(X)◦ad(Y ) is
nilpotent thus tr(ad(X)◦ad(Y )) = 0. This implies that Gr ⊂ G⊥, however it was
trivial by hypothesis and this is a contradiction, so G must be semi-simple.
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Theorem 2.2.30. A semi-simple algebra is a direct sum of simple Lie subalge-
bras.

Proof. Let I be an ideal of G. From Lemma 2.2.27 we have that I⊥ is also an
ideal. We have that I∩I⊥ is solvable by Theorem 2.2.28, thus the intersection is
trivial. It follows G = I ⊕ I∗. The result follows by considering a minimal ideal
I, so that we have no non-trivial ideals on I and proceed in the same manner
on I⊥.

Lemma 2.2.31. The root system Φ ⊂ H∗ spans H∗.

Proof. Suppose it is not true. This means that there exists some X ∈ H such that
α(X) = 0 for all the roots α ∈ H∗. This is the same to say that [X,Gα] = 0 for all
Gα. This means that X is in the center Z(Gα) that is solvable. However, since G
is semi-simple we have that Z(Gα) = 0, therefore X = 0 that is a contradiction.

We now show that there exists a copy of SL(2) inside of any semi-simple
Lie algebra G. In order to prove that we recall that Lie’s theorem say that a
representation ρ of a solvable linear algebraic group G can be written as an upper
triangular for all g ∈ G, that is, ρ(g) is an upper triangular matrix.

Lemma 2.2.32. Let X ∈ Gα, Y ∈ G−α such that B(X, Y ) ̸= 0. Then [X, Y ], X
and Y span a subalgebra S ⊂ G isomorphic to SL(2).

Proof. The first thing is to notice that from Lemma 2.2.26 and Theorem 2.2.30
we have that such X and Y exist.

From Lemma 2.2.27 it holds that for all H ∈ H

B (H, [X, Y ]) = B ([H,X], Y )

= B
(
ad(H)(X), Y

)
= α(H)B(X, Y ).

Moreover, by definition we have that

[[X, Y ], X] = ad([X, Y ])(X) = α([X, Y ])X

For those two identities we are using the fact that [Gα,G−α] ⊂ G0 = H. We now
wish to show that α([X, Y ]) ̸= 0.

Suppose that [X, Y ] = 0, then S ∼= ad(S) ⊂ SL(G) is a solvable subalge-
bra. Using Lie’s theorem we have that all the elements of ad(S) are of upper
triangular, thus ad[X, Y ] is an upper triangular matrix. On the other hand the
elements of H are diagonalisable, thus ad[X, Y ] = 0 that is a contradiction with
our assumption that [X, Y ] ̸= 0.

Let H = [X, Y ], the multiplication table of SL(2) is given by [H,X] =
2X, [H,Y ] = −2Y, [X, Y ] = H. Adjusting by scalars to obtain this same
multiplication table on S we have α([X, Y ]) = 2.
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Lemma 2.2.33. Let α be a root.

1. For k ∈ Z, k ̸= 1,−1, then kα is not a root.

2. dimGα = 1.

Proof. [Ott95, Lemma 6.16].

The Lemmas 2.2.32 and 2.2.33 imply that the subalgebra S isomorphic to
SL(2) is determined by α. Therefore, when we refer to the copies of SL(2) in G
in the future we will denote it by Sα. Furthermore, the elements H, X, Y in the
proof of Lemma 2.2.32 describing the multiplication table of Sα will be denoted
Hα, Xα, Yα.

We now explore the relations between the Cartan subalgebra H and the
representations of G.

Definition 2.2.34. Let ρ : G → GL(V ) be a representation of G. For any
λ ∈ H∗, denote

Vλ = {v ∈ V |ρ(H)(v) = λ(H)v ∀ H ∈ H}.

Theorem 2.2.35. Let α ∈ Φ be a root, λ ∈ H∗ and ρ : G → GL(V ). We have
that

ρ(Gα)Vλ ⊂ Vα+λ.

Proof. Let X ∈ Gα, v ∈ Vλ and H ∈ H. We wish to show that ρ(X)v ∈ Vα+λ.

ρ(H)(ρ(X)v) = ρ([H,X])v + ρ(X)ρ(H)v

= α(H)ρ(X)v + λ(H)ρ(X)v ∈ Vα+λ.

Definition 2.2.36. An element λ ∈ H∗ such that Vλ ̸= 0 is called a weight of
the representation ρ such that ρ(H)v = λ(H)v. The spaces Vλ are called the
weight spaces.

Theorem 2.2.37. The vector space V is a direct sum of its weight spaces, that
is,

V =
⊕

Vλ.

Proof. [Ott95, Theorem 6.22]

Corollary 2.2.38. Let ρ : G → GL(V ) be a representation and λ a weight of ρ.
Then λ(Hα) ∈ Z for every root α.

Definition 2.2.39. The set

ΛW = {β ∈ H∗|β(Hα) ∈ Z}

is called the weight lattice of G.
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2.2.3 Weyl Group

The Weyl Group will play a major role in the Bott’s Theorem 2.2.71. The coho-
mological spaces that are nonvanishing will correspond to the spaces associated
to weights in the fundamental Weyl chambers.

Proposition 2.2.40. The hyperplane Ωα defined as

Ωα = {β|β(Hα) = 0}

is the hyperplane orthogonal to α.

Proof. Observer that by duality we may state the proposition as: Hα is orthog-
onal to kerα. Let H ∈ kerα. Using Lemma 2.2.27 we have

B(Hα, H) = B([Xα, Yα], H)

= B(Xα, [Yα, H])

= B(Xα, α(H)Yα)

= B(Xα, 0) = 0.

Definition 2.2.41. The Weyl group is defined as the subgroup in GL(H∗) gen-
erated by the orthogonal reflections wα with respect to Ωα

wα(β) = β − 2
B(α, β)

B(α, α)
α.

Observe that we may write such product as well as

wα(β) = β − β(Hα)α.

Indeed to see this equality we have to show that β − 1
2
β(Hα)α ∈ Ωα. We have

that

β(Hα) − 1

2
β(Hα)α(Hα) = β(Hα)(1 − 1

2
α(Hα)) = 0

since α(Hα) = 2. With this we get the following corollary.

Corollary 2.2.42.

β(Hα) = 2
B(α, β)

B(α, α)
.

Theorem 2.2.43.

1. The set of weights of any representation of G is invariant under the action
of the Weyl group.
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2. Let α be a root. If λ is a weight for some G-module V , then in the infinite
sequence

. . . ,−α + λ, λ, λ+ α, . . .

the string of weights for V is a connected set. If λ′ is the right extreme
of this string, then the string has length λ′(Hα) + 1. In other words, after
replacing λ by λ+ kα for a convenient k the string of weights is

wα(λ) = λ− λ(Hα)α, . . . , λ− α, λ.

Proof. [Ott95, Theorem 6.30]

Definition 2.2.44. The fundamental Weyl chamber C is the convex set

C = {γ ∈ H∗|B(γ, α) ≥ 0 ∀ α ∈ Φ+}.

Theorem 2.2.45. The Weyl group acts simply and trasitively on the set of
orderings and likewise on the set of Weyl chambers.

Proof. [FH91, Proposition D.29 and Corollary D.32].

Definition 2.2.46. Let ρ : G → GL(V ) be a representation of G. A nonzero
vector v ∈ V is called highest weight vector of ρ if it satisfies two properties:

1. ρ(Gα)(v) = 0 for all α ∈ Φ+.

2. v is an eigenvector for the the action of H. If ρ(H)(v) = λ(H)v for λ ∈ H∗,
then λ is called a highest weight.

Proposition 2.2.47. All the representations of G have a highest weight vector.

Proof. [Ott95, Proposition 6.34]

Theorem 2.2.48. A representation of G is irreducible if and only if it has a
unique highest weight vector.

Proof. [Ott95, Theorem 6.36]

Theorem 2.2.49. Let ρ : G → GL(V ), ρ′ : GL(V ′) be two irreducible represen-
tations. Let λ and λ′ be the respective highest weights. Then ρ ∼= ρ′ if and only
if λ = λ′.

Proof. One side of the statement is trivial. For the other, let v ∈ V and v′ ∈ V ′

be the two highest weight vectors. Then (v, v′) ∈ V ⊕ V ′ is the highest weight
vector with weight λ for ρ⊕ρ′. Let U ⊂ V ⊕V ′ be the irreducible representation
generated by (v, v′). The projections π1 : U → V and π2 : U → V ′ are both
nonzero, thus by Schur’s lemma they must be isomorphisms. It follows that
V ∼= V ′ ∼= U and ρ ∼= ρ′.

Proposition 2.2.50. The highest weight λ of an irreducible representation lies
in the fundamental Weyl chamber C.
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Proof. Suppose that it is not the case. Then there exists a positive root α ∈ Φ+

such that B(α, λ) < 0. By Theorem 2.2.43 we have that λ′ = wα(λ) = λ−λ(H)α
is a weight too. Since λ(Hα) < 0 we have that λ is not the highest weight, a
contradiction.

Theorem 2.2.51. For all weight λ ∈ C ∩ ΛW there exists an irreducible repre-
sentation Vλ ∈ G with highest weight λ.

Proof. [Ott95, Theorem 6.40].

Definition 2.2.52. A positive root α ∈ Φ+ is simple if α is not the sum of two
positive roots.

Notice that if α1 and α2 are two distinct positive simple roots, thenB(α1, α2) ≤
0. Indeed, if it was not the case we have that α1(Hα2) > 0, thus by The-
orem 2.2.43 we have that α1 − α2 is a root. It cannot be positive since we
have α1 = α2 + (α1 − α2) and α1 is simple. It cannot be negative either since
α2 = −α1 + (α1 − α2) and α2 is simple.

Proposition 2.2.53. Let α1, . . . , αm+1 be the simple positive roots. Then {Hαi
}mi=1

generates H.

Proof. We recall thatHαi
= [Xαi

, Yαi
]. Moreover, B(Hαi

, H) = αi(H)B(Xαi
, Yαi

)
for every H ∈ H. The isomorphism H∗ → H induced by B is defined by

α 7→ Tα,

where B(Tα, H) = α(H) for every H ∈ H. Using the above relations we have
that

Tα =
Hα

B(Xα, Yα)
.

This is a multiple of Hα that proves the result.

Definition 2.2.54. The fundamental weights λi ∈ H∗ are the dual basis of Hαi
,

where αi are the simple roots. Thus this is equivalent to say that λi ∈ H∗ are
the weights such that

λi(Hαj
) = δi,j.

2.2.4 Borel and Parabolic subgroups

Proposition 2.2.55. Let B be a Lie subalgebra of G defined as

B = H
⊕

(⊕α∈Φ+Gα) .

Then B is a maximal solvable Lie algebra.

Proof. From Theorem 2.2.21 we have that B is solvable. Suppose that there
exists another solvable subalgebra B′ ⊃ B. This means that B′ has to contain
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some subalgebra associated to a negative root G−α. Hence B′ ⊃ Sα ∼= SL(2)
which implies

[Sα,Sα] = Sα.

Therefore, B′ cannot be solvable because Sα ̸= 0.

A subalgebra as described in the last proposition is called a Borel subalgebra.
If there exists a Lie group G such that G = Lie(G) and a subgroup B such that
Lie(B) is a Borel subalgebra, then B is called a Borel subgroup.

Proposition 2.2.56. Let B ⊂ G be a Borel subgroup. Then B is closed and
G/B is a projective variety. Furthermore, all the Borel subgroups are conjugates.

Proof. [Ott95, Proposition 7.3].

Definition 2.2.57. A closed subgroup P ⊂ G is called parabolic if it contains
some Borel subgroup.

Theorem 2.2.58. Let P ⊂ G be a closed subgroup. P is a parabolic subgroup if
and only if G/P is a projective variety.

Proof. [Ott95, Theorem 7.5].

Definition 2.2.59. Let ∆ = {α1, . . . , αm} be the set of simple positive roots of
G and let Σ ⊂ ∆. Denote

Φ−(Σ) = {α ∈ Φ−|α =
∑
αi /∈Σ

piαi}.

We denote by P(Σ) the subalgebra

P(Σ) = H
⊕

(⊕α∈Φ+Gα)
⊕

(⊕α∈Φ−(Σ)Gα).

The subgroup P (Σ) is the subgroup such that Lie P (Σ) = P(Σ).

Theorem 2.2.60. Let G be a semisimple and simply connected Lie group. Let
P be a parabolic subgroup of G, then there exists g ∈ G and Σ ⊂ ∆ such that

g−1Pg = P (Σ).

Proof. [Ott95, Theorem 7.8].

Corollary 2.2.61. Let G be semisimple and simply connected and G = G1×· · ·×
Gk the decomposition into direct product of simple simply connected Lie groups.
Let P ⊂ G be a parabolic group. Then there are parabolic groups Pi ⊂ Gi such
that P = P1 × · · · × Pk, moreover

G/P = G1/P1 × · · · ×Gk/Pk.
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Observe that Theorem 2.2.60 and Corollary 2.2.61 implies that rational ho-
mogeneous varieties are classified. They correspond exactly to the product of
varieties G/P (Σ), where G is simple and simply connected and Σ a subset of the
positive simple roots.

Definition 2.2.62. Let E be a bundle over G/P . E is called homogeneous if
there exists an action of G over E such that the following diagram commutes

G× E E

G×G/P G/P

Lemma 2.2.63. G
π−→ G/P is a principal bundle with fiber P .

Proof. [Ott95, Lemma 9.4].

Definition 2.2.64. Let ρ : P → GL(r) be a representation of the parabolic
subgroup P ⊂ G. We define the vector bundle Eρ on G/p associated to this
representation as the bundle with fiber Cr coming from the principal bundle
G

π−→ G/P via ρ.

An equivalent definition for Eρ is via the quotient of G × Cr/ ∼, where the
relation ∼ is defined by (g, v) ∼ (g′, v′) if there exists p ∈ P such that g = g′p
and v = ρ(p−1)v′.

Theorem 2.2.65 (Matsushima). A vector bundle E of rank r over G/P is
homogeneous if and only if there exists a representation ρ : P → GL(r) such that
E ∼= Eρ.

Proof. [Ott95, Theorem 9.7].

We recall that an irreducible representation ρ : P → GL(r) has an unique
highest weight λ associated to it (Theorem 2.2.48). This allows us to associate
the vector bundle Eρ with the highest weight λ of ρ. Depending on which object
we want to emphasize, we may denote the bundle also as Eλ.

Lemma 2.2.66. Let Σ be a subset of the simple roots and P ⊂ G a parabolic
subgroup. We have the decomposition

Lie P = H
⊕

(⊕α>0Gα)
⊕(

⊕α∈Φ−(Σ)Gα
)

= Lie Sp
⊕(

⊕k
i=1[Gαi,G−αi

]
)⊕(

⊕α/∈Φ+(Σ)Gα
)
,

where SP is semisimple and it is called the semisimple part of P .

Proof. [Ott95, Lemma 10.3].
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Definition 2.2.67. Let Σ be a subset of the simple roots and P ⊂ G a parabolic
subgroup. Let U ⊂ P be the subgroup such that

Lie U =

 ⊕
α/∈Φ+(Σ)

Gα

 .

U is called the unipotent part of P .

Proposition 2.2.68 (Ise). A representation ρ : P → GL(V ) is completely re-
ducible if and only if ρ|U is trivial

Proof. [Ott95, Proposition 10.5].

Proposition 2.2.69. Let Σ = {α1, . . . , αk} be a subset of simple roots. Let
λ1, . . . , λk be the corresponding set of fundamental weights. Then all the irre-
ducible representations of P (Σ) are

V ⊗ Lm1
λ1

⊗ · · · ⊗ Lmk
λk
,

where V is a representation of the weight lattice Sp, mi ∈ Z and L denotes a line
bundle.

Proof. [Ott95, Proposition 10.9]

2.2.5 Bott Theorem

Definition 2.2.70. Let λ be a weight and α a root of the semisimple group
G.

1. The weight λ is singular if there exists a positive root α such that B(λ, α) =
0.

2. The weight λ is regular of index p if it is not singular and there exists
exactly p roots α1, . . . , αp ∈ Φ+ such that B(λ, α) < 0.

Theorem 2.2.71. Let G be a semisimple connected group and let P ⊂ G be a
parabolic subgroup. Let λ be a weight and Eλ be the homogeneous bundle arising
from the irreducible representation P with highest weight λ. Denote δ =

∑m
i=1 λi

be the sum of all fundamental weights.

1. If λ+ δ is regular of index p, then

H i(G/P,Eλ) =

{
0 if i ̸= p

Gw(λ+δ)−δ if i = p.

2. If λ+ δ is singular, then

H i(G/P,E) = 0.
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Where weight w(λ+ δ) is the unique element of the Weyl chamber of G which is
congruent to λ+ δ modulo the action of the Weyl group.

Proof. [Ott95, Section 11].

An application of Bott’s theorem that is going to be useful later on sections
3.2 and 4 is the computation of the cohomologies of the sheaf of differential
r-forms denoted Ωr

Pm .

Lemma 2.2.72 (Bott’s Formula). The q-cohomology group of Ωr
Pm(t) is non

vanishing in the following cases and has dimension given by:

hq
(
Ωr

Pm(t)
)

=


(
t+r−m

t

)(
t−1
r

)
if q = 0 ≤ r ≤ m and t > r;

1 if 0 ≤ q = r ≤ m and t = 0;(−t+r
−t

)(−t−1
m−r

)
if q = m ≥ r ≥ 0 and t < r −m.

(2.2.1)

Computing the nonvanishing of the above cohomologies is simple using Bott’s
theorem. Denote by Q the universal quotient bundle in Pm. We have

Ωr
Pm(t) =

(
r∧

Ω1
Pm(1)

)
⊗O(t− r) =

(
r∧
Q∗

)
⊗O(t− r)

=
m−r∧

Q(−1) ⊗O(t− r) =
m−r∧

Q(t− r − 1).

The associated weight to this bundle is λ = λr+1 + (t− r − 1)λ1. The next step
is to calculate when such weight is singular or regular depending on the value of
t.

B(λ+ δ, α1 + · · · + αs) =

{
t− r − 1 + s 1 ≤ s ≤ r,

t− r + s r + 1 ≤ s ≤ m.

This gives the following:

1. For t > r the weight is regular of index 0.

2. For r ≥ t ≥ 1 the weight is singular.

3. For t = 0 the weight is regular of index r.

4. For −1 ≥ t ≥ m− r the weight is singular.

5. For t < m− r the weight is regular of index m.

This means that the cohomology Hq(ΩPm) is non vanishing in the following cases:

1. q = 0 and t > r.

2. q = r and t = 0.
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3. q = m and t < m− r.

We recall another useful theorem for the following chapters.

Theorem 2.2.73 (Künneth’s formula). Let Bi be vector bundles on PVi, for
i = 1, . . . , k, X = PV1 × · · · × PVk and q a nonnegative integer, then

Hq

(
X,

k⊗
i=1

π∗
iBi
)

∼=
⊕

q1+···+qk=q

⊗
i

Hqi(PVi,Bi).

where the sum goes over all tuples of nonnegative integers summing to q.

TorSp (M,k)q has rank equal to βp,q.



Chapter 3

Singular vector tuples

3.1 Introduction to singular vector tuples

We suggest both [Lan12] and [QL17] as references for a deeper understanding of
the notions presented in this chapter.

We will denote the dual space of a vector space V by V ∗ and by [n] the set
of numbers {1, . . . , n}.

Let Vi be a mi + 1-dimensional vector space over C. Let qRi : (V R
i )× (V R

i ) →
R be a real inner product, we permit a small abuse of notation and denote
qi ∈ Sym2V ∗

i the homogeneous quadratic polynomial associated to the inner
product extended over the complex numbers. We consider each space Vi with
an associated action of the special orthogonal group SO(Vi) that respect the
inner product defined by qi. Moreover, we are going to consider each Vi with
a qi-orthornormal basis {x0,i, . . . , xmi,i}. In a simpler terms this means that, if
xi =

∑mi

j=0 αjxj,i ∈ Vi, αj ∈ C, then qi(xi,xi) =
∑mi

j=0 α
2
j . We will identify all

the vector spaces Vi with their dual V ∗
i using their respective inner products.

Definition 3.1.1. The Bombieri-Weyl inner product q of two complex decom-
posable tensors T =

⊗k
i=1 t

di
i , S =

⊗k
i=1 s

di
i ∈

⊗k
i=1 SymdiVi is given by

q(T, S) =
k⊗
i=1

qi(ti, si)
di .

It is naturally extended by linearity to every vector.

Definition 3.1.2. Let T ∈ V =
⊗k

i=1 Vi. A rank-one tensor λx1⊗· · ·⊗xk ∈ V ,
qi(xi,xi) = 1, is an eigentensor of T if and only if

q(T,x1 ⊗ · · · ⊗ xk−1 ⊗ vi ⊗ xk+1 ⊗ · · · ⊗ xk) = λq(xi, vi)

for every vi ∈ Vi and all i ∈ [k]. The number λ ∈ C is the singular value of the
eigentensor. As we present soon in Theorem 3.1.4, denoting x = x1 ⊗ · · · ⊗ xk,
this condition is equivalent to say that T −λx ⊥ TxX̂, where X̂ is the cone over
the Segre variety.

35
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We associate the tuple ([x1], . . . , [xk]), named singular vector k-tuple, to the
eigentensor x1⊗ . . .xk. We will commit an abuse of notation and use the singular
vector k-tuples to refer to the eigentensor. Since for a general T there is a unique
representative of the tuple that is an eigentensor, this passage is well defined.

Notice that from the definition, we can obtain the equations of the locus of
singular vector k-tuples of a tensor T from the minors of the following matrix:

rank

(
T (x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xk)

xi

)
≤ 1 ∀ i ∈ [k] , (3.1.1)

where

T (x1⊗· · ·⊗xi−1⊗xi+1⊗· · ·⊗xk) :=
∑
jℓ∈[nℓ]

tj1··· ji··· jk xj1,1 · · · x̂ji,i · · ·xjk,k (3.1.2)

is the tensor contraction of T = (tj1,...,jk) with respect to x1⊗ · · ·⊗xi−1⊗xi+1⊗
· · · ⊗ xk. The symbol x̂ji,i in (3.1.2) means that the variable xji,i is omitted in
the product.

We remark that being a singular vector k-tuple, up to the value of the singular
value λ, is a projective property. Although some geometrical interpretation is
missed, in many cases it is better to work over projective spaces and disregard
the value of λ.

These definitions can be extended to partially symmetric tensors, in particular
to polynomials.

Definition 3.1.3. Let T ∈
⊗k

i=1

(
SymdiVi

)
. An eigentensor of T is a rank-one

partially symmetric tensor x = λxd11 ⊗ · · ·⊗xdkk , xi ∈ Vi with qi(xi,xi) = 1, such
that

q(T,xd11 ⊗ · · · ⊗ x
di−1

i−1 ⊗ xdi−1
i vi ⊗ x

di+1

ii+1
⊗ · · · ⊗ xdkk ) = λqi(xi, vi)

for every vi ∈ Vi and all i ∈ [k]. The number λ is the singular value of the
eigentensor x. Similar to the tensor case, this is equivalent to say that T −λx ⊥
TxX̂, where X̂ is the cone over the Segre-Veronese variety.

From the definition we have that the equations defining the locus of eigen-
tensors of the tensor T is defined by the 2 × 2-minors of the matrices[

T (xd11 ⊗ · · · ⊗ x
di−1

i−1 ⊗ xdi−1
i ⊗ x

di+1

i+1 ⊗ · · · ⊗ xdkk )

xi

]
(3.1.3)

for all i ∈ [k]. Considering T as a multi-homogeneous polynomial, the flattening
on the first row may be understood as the gradient ∇iT with respect to the
vector xi = (x0,i, . . . , xmi,i).

As in the tensor case, for a general tensor T , we will identify the eigentensor
λxd11 ⊗ · · · ⊗ xdkk to the tuple ([x1], . . . , [xk]), named a singular vector k-tuple of
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T . The condition that T is general implies that there is a unique representative
of the singular vector k-tuple that is an eigentensor.

A singular vector tuple x = (x1, . . . ,xk) is said to be isotropic if qi(xi) = 0
for some i.

Singular vector k-tuples have an important significance, they are the critical
points of the distance function between the tensor T and the cone X̂ over the
Segre-Veronese variety X. Since the Segre-Veronese variety is the variety of rank
one tensors, this result has a greater significance, singular vector tuples consists
of the best rank one approximation of T [Lim05].

We give a precise statement and proof in the case of the Segre variety. The
generalised version follow by a similar argument.

Theorem 3.1.4. [Lim05] Let T ∈ V =
⊗k

i=1 Vi and qi be a real inner product
in Vi extended to the complex numbers. Then the singular vector tuples of T are
the critical points of the distance function defined by the Bombieri-Weyl product
q from the tensor T to the cone X̂ of the Segre variety X.

Proof. Let x = λx1⊗· · ·⊗xk be a critical point of the distance function between
T and X̂, with qi(xi,xi) = 1. Notice that x being a critical point of the distance

function from T to X̂ is equivalent to say that T − x ⊥ TxX̂. This means that
T − x ⊥ x1 ⊗ · · · ⊗ xi−1 ⊗ Vi ⊗ xi+1 ⊗ · · · ⊗ xk for every i. From q(T − x,x1 ⊗
· · · ⊗ xi−1 ⊗ Vi ⊗ xi+1 ⊗ . . .xk) = 0, it follows

q(T,x1 ⊗ · · · ⊗ xi−1 ⊗ vi ⊗ xi+1 ⊗ . . .xk) = λqi(xi, vi),

for every vi ∈ Vi and all i ∈ [k]. This is equivalent to say

T (x1 ⊗ · · · ⊗ xi−1 ⊗−⊗ xi+1 ⊗ . . .xk) = λqi(xi,−),

for every i ∈ [k]. This means that (x1, . . . ,xk) is a singular vector tuple of T
with singular value λ.

Definition 3.1.5. Consider a tensor T ∈ V . Then

ZT := {[x1 ⊗ · · · ⊗xk] ∈ P(V ) | (x1, . . . ,xk) is a singular k-tuple of T} . (3.1.4)

For a general T ∈ V we have dim(ZT ) = 0 and its cardinality |ZT | equals the
ED degree of the Segre variety X = PV1× · · ·×PVk computed by the Friedland-
Ottaviani formula of Theorem 3.1.10.

Definition 3.1.6. We define the pairing [·|·] : SymdiVi × SymdiVi →
∧2 Vi on

decomposable tensors by

[vd|wd] = qi(v, w)d−1v ∧ w.
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Extending this to nondecomposable tensors we obtain

[v1 . . . vd|w1 . . . wd] =
1

d · d!

∑
i′,j′∈[d]

∑
π:[d]\i′→[d]\j′

(∏
i ̸=i′

qi(vi, wπ(i))

)
vi′ ∧ wj′ .

Definition 3.1.7. Using the Definition 3.1.6, we construct for each l ∈ [k] the

pairing [·|·]l :
(⊗k

i=1 SymdiVi

)
×
(⊗k

i=1 SymdiVi

)
→
∧2 Vl by

[f1 ⊗ · · · ⊗ fk|g1 ⊗ · · · ⊗ gk]l =

(∏
i ̸=l

qi(fi, gi)

)
[fl|gl], fi, gi ∈ SymdiVi.

Definition 3.1.8. Let X = PV1 × · · · × PVk be the Segre-Veronese variety of
rank 1 tensors embedded with O(d1, . . . , dk) in P(Symd1V1 ⊗ · · · ⊗ SymdkVk).
Let πl : X → PVl be the projection on the l-th component, and let Ql be
the quotient bundle, whose fibers over a point vl ∈ Vl are Vl/⟨vl⟩. Let El =
π∗
lQl ⊗O(d1, . . . , dl − 1, . . . , dk), we can construct the vector bundle

E =
k⊕
l=1

El.

A tensor T ∈ P(Symd1V1 ⊗ · · · ⊗ SymdkVk) leads to a global section of El which
over a point v = (v1, . . . , vk) is the map sending vd11 ⊗· · ·⊗vdl−1

l ⊗· · ·⊗vdkk to the
natural pairing of T with (vd11 ) · · · (vdl−1

l ) · · · (vdkk ) modulo ⟨vl⟩, that is a vector
in Vl/⟨vl⟩. In other words, the map defined by the section sT is given by

sT : vd11 ⊗ · · · ⊗ vdl−1
l ⊗ · · · ⊗ vdkk 7→ T (vd11 ⊗ · · · ⊗ vdl−1

l ⊗ · · · ⊗ vdkk ) + ⟨vl⟩.

Such bundle has been introduced in [FO14]. The main property that makes
this bundle useful for our purposes is that the zero locus of the global section
sT ∈ H0(E) associated with a tensor T is given exactly by ZT . In other words,
the zero locus of the sections corresponds exactly to the singular vector tuples
of T . This can be obtained clearly by spelling out the sections of the bundles Ei,
they are given exactly by [

∇iT (x)

xi

]
thus the zero locus corresponds exactly to the conditions on the i-th component
for x to be a singular vector tuple.

Definition 3.1.9. We define the ED-degree of a subvariety X ⊂ Symd1V1 ⊗
· · · ⊗ SymdkVk as the number of critical points of the function dT : X → C,
where dT (x) = q(x− T ) is the distance function from x ∈ X to a general tensor
T ∈ Symd1V1 ⊗ · · · ⊗ SymdkVk defined by the Bombieri-Weyl inner product, see
[DOT17]. More precisely, for any real tensor we have a squared distance function
defined on the real part of X. It is convenient to complexify such function to
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the complex part of X, and by abuse of notation we call this complex function
again a distance function.

The ED-degree has been studied in [Dra+13], and we suggest it as a reference
for a better comprehension. In particular, if we consider the variety X to be the
Segre-Veronese variety, we have that the ED-degree counts the number of singular
tuples of a general tensor. We are going to denote the ED-degree of the Segre-
Veronese variety by edX . This particular ED-degree has been studied before in
[FO14], where the next theorem is presented.

Theorem 3.1.10. [FO14, Theorem 15] Let V1, . . . , Vk be vector spaces of di-
mension m1 + 1, . . . ,mk + 1. The number of singular tuples of a general tensor
T ∈ P(Symd1V1 ⊗ · · · ⊗ SymdkVk), is equal to the coefficient of tm1

1 · · · tmk
k in the

polynomial
k∏
l=1

t̂l
ml+1 − tml+1

l

t̂l − tl
,

where t̂l = (
∑k

i diti) − tl.

The technique employed by the authors to obtain such result consists on the
computation of the highest Chern class of the bundle E previously defined in
Definition 3.1.8.

The stabilization of the ED-degree of the Segre-Veronese variety has been
studied in [OSV21], where the next two results have been obtained.

Proposition 3.1.11. [OSV21, Corollary 4.14] Let X ⊂
(
×k−1
i=1 Pmi

)
× Pm be the

Segre variety and N =
∑k−1

i=1 mi. For all m ≥ N , we have

ED
((
×k−1
i=1 Pmi

)
× Pm

)
= EDX

((
×k−1
i=1 Pmi

)
× PN

)
.

Proposition 3.1.12. [OSV21, Corollary 4.16] Let X ⊂
(
×k−1
i=1 SymdiPmi

)
× Pm

be the Segre-Veronese variety and N =
∑k

i=1mi. For all m ≥ N , we have

ED
((
×k−1
i=1 SymdiPmi

)
× Pm

)
= EDX

((
×k−1
i=1 Pmi

)
× PN

)
.

The triangular inequality on the dimensions considered in the previous re-
sults is connected to the dual-defectiveness of the Segre-Veronese variety and the
existence of the hyperdeterminant, as we see in Theorem 3.1.15.

Definition 3.1.13. Consider a tensor space V =
⊗k

i=1 SymdiVi, let m = (m1 +
1, . . . ,mk + 1) be the tensor format of V . Then m satisfies the boundary format
condition if for every i ∈ [k] such that di = 1 we have

mi ≤
∑
j ̸=i

mj. (3.1.5)

When (3.1.5) is satisfied and for some i ∈ [k] the equality holds we say that
m is of boundary format. We say that the format m is beyond boundary format
if it does not satisfy (3.1.5).
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Definition 3.1.14. Let X ⊂ P(W ) be a projective variety, where dim(W ) =
m + 1. Its dual variety X∗ ⊂ P(W ∗) is the closure of all hyperplanes tangent
to X at some smooth point [GKZ94, Chapter 1]. The dual defect of X is the
natural number δX := m− 1−dim(X∗). A variety X is said to be dual defective
if δX > 0. Otherwise, it is dual non-defective. When X = P(W ), taken with its
tautological embedding into itself, X∗ = ∅ and codim(X∗) = m+ 1.

Of particular interest are dual varieties of Segre-Veronese varieties, whose
nondefectiveness is characterized by the following result.

Theorem 3.1.15. [GKZ94, Corollary 5.11] Suppose Xl for l = 1, . . . , k is the
projective space Pml in the Veronese embedding into P(SymdlVl). Then the dual
variety (X1 × · · · ×Xk)

∗ is a hypersurface if and only if the format m = (m1 +
1, . . . ,mk + 1) satisfies the boundary format condition (3.1.5).

The geometry of the fact that the dual variety of the Segre variety is no
longer a hypersurface beyond boundary format and how it influences singular
vector tuples has been understood recently in [OSV21].

Theorem 3.1.16. [OSV21, Theorem 4.13] Let N = 1 +
∑k−1

i=1 (ni − 1) and m ≥
N . Let Det be the hyperdeterminant in the boundary format (n1, . . . , nk−1, N).
Consider a tensor T ∈

⊗k−1
i=1 Vi ⊗ CN+1 ⊂

⊗k−1
i=1 Vi ⊗ Cm+1 with Det(T ) ̸= 0.

Then the critical points of T on the Segre variety
∏k−1

i=1 P(Vi) × P(Cm+1) lie in

the subvariety
∏k−1

i=1 P(Vi) × P(CN+1).

Definition 3.1.17. Given sets Y1, . . . , Yk will denote the unordered cartesian
product by (

×k
i=1Yi

)×r
/Sr =

(
×k
i=1Yi

)(r)
,

where Sr is the symmetric group of order r.
Let T ∈ V =

⊗k
i=1 SymdiVi be a general tensor and X ∈ PV the Segre-

Veronese variety, we define

Eig(T ) = {(x(1), . . . ,x(edX)) | x(i) is a singular tuple of T , ∀ i ∈ [k]} ⊂ X(edX)}

the set of unordered singular vector k-tuples of T .

3.2 The critical space and linear relation among

the singular vector tuples

We start this section by exploring the results on [DOT17] and the construction
of the critical space. We will prolong in this section and show most results since
the technique utilised was the inspiration for the proofs of Theorems 4.1.4 and
4.2.10.

The critical space HT of a tensor T ∈ V has been first introduced in [OP15],
where it was called the singular space of T , and later renamed to critical space
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in [DOT17]. In simple terms, it was defined in [OP15; DOT17] as the set of
all tensors U such that [T, U ]l = 0 for each l ∈ [k], where the bracket [, ] is the
paring introduced in Definition 3.1.7. Recently in [Ott22] this space has been
redefined once again, now in the optics of group action. This definition is more
sophisticated than the previous and we choose to utilise it, for instance one of its
advantages is that it allows the extension of the critical space to Grassmannians
in a very natural manner. Denote by SO(V ) = SO(V, q) the special orthogonal
group that leaves the quadratic form q invariant and let dT be the distance
function from T defined by q.

Definition 3.2.1. Let T ∈ V and G ⊂ SO(V ) be a group, we define the critical
space HG

T of T as the orthogonal space to the orbit of the action of the Lie group
of G on T

HG
T = (Lie G · T )⊥ = {v ∈ V | q(v, w) = 0 ∀ w ∈ Lie G · T}.

The next result presents the most important properties of HT and enlightens
its relation with the singular vector tuples of T .

Theorem 3.2.2. [Ott22, Theorems 1.2 and 1.3] Let X ⊂ V be a subvariety that
is G-invariant for the action of G ⊂ SO(V ). Let x ∈ X ∩HG

T . Then:

1. The critical points of dT lie on HG
T .

2. When T is real, any closest point to T in XR belongs to HG
T .

3. T ∈ HG
T .

4. If the orbit G · x is dense in X then x is a critical point of dT restricted to
X.

5. If X is a cone, x is non-isotropic and the orbit G · [x] is dense in PX, then
there exists λ ∈ C such that λx is a critical point of dT restricted to X.

Theorem 3.2.3. [Ott22, Section 2.2] Let qi be a real inner product in Vi ex-
tended to the complex numbers and consider q the Bombieri-Weyl inner product
defined by them in V =

⊗k
i=1 SymdiVi. Let G = ×k

i=1SO(Vi, qi) ⊂ SO(V, q). Let
{xi,0, . . . , xi,mi

} be the set of variables in Vi. Then

Lie G · T =

〈
xp,j

∂T

∂xp,i
− xp,i

∂T

∂xp,j

〉
0≤i≤j≤mp; p=1,...,k

.

We remark that Theorem 3.2.3 shows that for the choice ofG = ×k
i=1SO(Vi, qi)

the critical space HG
T coincides with the critical space defined in [DOT17] that

we recall below.
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Theorem 3.2.4. [DOT17] For a tensor T ∈
⊗k

i=1 SymdiVi, the critical space

HT ⊂
⊗k

i=1 SymdiVi of T is given by

HT = {U ∈
k⊗
i=1

SymdiVi | [T |U ]l = 0 for all l ∈ [k]},

where [·, ·] is the bracket product of Definition 3.1.7.

From now on for G = ×k
i=1SO(Vi, qi) we are going to denote HT = HG

T .

Theorem 3.2.5. [Ott22, Theorem 2.4] Let T ∈ V =
⊗k

i=1 SymdiVi be a general
tensor, let X ⊂ PV be the Segre-Veronese variety, then HT ∩X consists exactly
of the singular vector tuples of T .

Definition 3.2.6. Let T ∈
⊗k

i=1 SymdiVi, X be the Segre-Veronese variety and
r be a non-negative integer. A critical rank-at-most r tensor for T is a tensor
U ∈ Secr(X) such that T − U ⊥ TUSecr(X).

Notice that the last condition is equivalent to say that U is a critical point
of the distance function defined by the Bombieri-Weyl inner product between T
and the r-secant variety of the Segre-Veronese variety X, this is the geometrical
motivation for the name of such variety. Moreover, this also means that U is a
best rank-at-most r approximation of T .

Lemma 3.2.7. [Dru+17, Lemma 4.2] Let Y ⊂ Rm be a variety and W ⊂ Y be
an dense open subset of YC. Then all the critical points of the distance function
between a general y ∈ Cn and Y lie in W .

Observe that Lemma 3.2.7 implies that all the critical rank-at-most r tensors
for a general T ∈

⊗k
i=1 SymdiVi are smooth points of Secr(X) and can be written

as sum of r non-isotropic rank-one tensors. If we assume that r is at most the
generic rank, then those critical rank-at-most r tensors have rank equal to r. If
r is larger than the generic rank, we have that the general tensor T itself is the
unique critical rank-at-most r tensor.

Proposition 3.2.8. [DOT17, Lemma 2.12] Let T ∈ V =
⊗k

i=1 Vi be a general
tensor and r a non-negative integer. Then all the critical rank-at-most k tensors
of T belong to the critical space HT .

Notice that Proposition 3.2.8 is obtained again as a direct corollary of the
previous result. This exemplifies the strength of such techniques and the new
perspectives that these results creates for the near future.

Let Gr(k, V ) ⊂
∧k V be the Grassmannian variety of k-dimensional vector

subspaces of V . If qV is a quadratic form on V , we may extend it to
∧k V by

q(v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk) = det((qV (vi, wj))1≤i,j≤k).

Proposition 3.2.9. [Ott22, section 3.1] Let T ∈
∧k Vi, then

Lie(SO(V )) · T =

〈
∂T

∂xi
∧ xj −

∂T

∂xj
∧ xi

〉
0≤i≤j≤m

.
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This proposition allows us to construct the critical space HT = Lie(SO(V ))·T
for Grassmann varieties and to find the best rank one approximation of skew-
symmetric tensors.

Theorem 3.2.10. [Ott22, Theorem 3.1] Let T ∈
∧k V be a general skew-

symmetric tensor, then HT ∩Gr(k, V ) consists exactly of the critical points of dT
restricted to Gr(k, V ).

We recall that the ED-degree of Grassmannians varieties is still unknown.
The techniques utilised by the authors in the next results were the main inspi-

ration for the cohomology techniques utilised in the results obtained in Chapter
4. The main idea is to use the fact that the bundle E has the zero locus of its
global sections associated to a tensor T equals to ZT , as discussed after Definition
3.1.8. We then use this to correlate H0(E∗(f1 . . . , dk)) with the equations defin-
ing the critical space. The main goal is to prove that ⟨ZT ⟩ = PHT for a general
tensor T . This result also implies that the tensor T is a linear combination of its
singular tuples. We start the path for this result with two technical lemmas.

Lemma 3.2.11. [DOT17, Lemma 3.4] Let X be the Segre-Veronese variety in
P
⊗k

i=1 SymdiVi, then(
r∧
E∗

)
⊗O(d1, . . . , dk) ∼=

⊕
r1+···+rk=r

k⊗
l=1

π∗
l Ω

rl
Pml (−dl(r − 1) + 2rl).

Proof. Taking the dual bundle of E leads to

E∗ =
k⊕
l=1

(π∗
lQ

∗
l ) ⊗O(−d1, . . . ,−(dl − 1), . . . ,−dk)).

Applying the wedge product gives

r∧
E∗ =

⊕
r1+···+rk=r

k⊗
l=1

rl∧
(π∗

lQ
∗
l ⊗O(−d1, . . . ,−dl + 1, . . . ,−dk)) .

From the definition of Ω we have that Q∗
l = Ω1

Pml (1) and
∧r(Ω1

Pml (1)) = Ωr
Pml (r),

together with the fact that
∧r(F ⊗O(t)) =

∧r F(rt) we obtain that(
r∧
E∗

)
⊗O(d1, . . . , dk) ∼=

⊕
r1+···+rk=r

k⊗
l=1

π∗
l Ω

rl
Pml (−dl(r − 1) + 2rl).

Lemma 3.2.12. [DOT17, Lemma 3.2] Suppose the boundary format condition
holds for

⊗k
i=1 SymdiVi, let r ≥ 2 be an integer and q1, . . . , qk non-negative

integers such that q =
∑k

i=1 qi. Then for all q < r and r1, . . . , rk such that
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r =
∑k

i=1 ri it holds

k⊗
i=1

Hqi (PVl,Ωrl
Pml (−dl(r − 1) + 2rl)) = 0

The proof of this theorem consists in analysing the possible choices of non-
zero cohomologies in the equation 2.2.1 and noticing that not all cohomologies
in the tensor product may be non-zero simultaneously under those hypothesis.

Corollary 3.2.13. Under the hypothesis of Lemma 3.2.12 we have

Hq

((
r∧
E∗

)
⊗O(d1, . . . , dk)

)
= 0.

Proof. The result is a combination of Lemmas 3.2.12, 3.2.11 and Theorem 2.2.73.

We remark that the boundary format condition is crucial for such result,
indeed in general the vanishing of the cohomologies will no longer hold. For
instance, in the tensor format C2⊗C2⊗C4 we have that Hq

((∧2 E∗)⊗O(1, 1, 1)
)

is a 1-dimensional space. This will imply that the isomorphism (3.2.4) does not
hold anymore. Actually we obtain that h0(IZT

⊗O(1, 1, 1)) = h0(E∗⊗O(1, 1, 1))+
1, implying that ⟨ZT ⟩ has codimension one in HT .

We are able to prove the main required tool for our objective.

Lemma 3.2.14. [DOT17, Lemma 3.5] Assume the boundary format condition
for
⊗k

i=1 SymdiVi, let T be a general tensor and m =
∑k

i=1mi. Then

H0(E∗ ⊗ (d1, . . . , dk)) ∼= H0(IZT
⊗O(d1, . . . , dk)).

Proof. Consider the Koszul complex

0 →
m∧

E∗ φm−1−−−→ . . .
φ2−→

2∧
E∗ → E∗ → IZT

→ 0. (3.2.1)

Divide the complex into short exact sequences

0 → F2 → E∗ → IZT
→ 0; (3.2.2)

0 → Fr+1 →
r∧
E∗ → Fr → 0, (3.2.3)

where Fr =
∧r E∗/Imφr.

Tensoring the short exact sequence on (3.2.3) with O(d1, . . . , dk) and taking
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the long exact sequence of cohomologies leads to

· · · → Hr−2

(
r∧
E∗ ⊗O(d1, . . . , dk)

)
→ Hr−2(Fr ⊗O(d1, . . . , dk)) →

→ Hr−1(Fr+1 ⊗O(d1, . . . , dk)) → Hr−1

(
r∧
E∗ ⊗O(d1, . . . , dk)

)
→

→ Hr−1(Fr ⊗O(d1, . . . , dk)) → Hr(Fr+1 ⊗O(d1, . . . , dk)) → . . .

Since we have the vanishings for the cohomologies

Hr−2

(
r∧
E∗ ⊗O(d1, . . . , dk)

)
= Hr−1

(
r∧
E∗ ⊗O(d1, . . . , dk)

)
= 0

we obtain the following chains

H0(F2 ⊗O(d1, . . . , dk)) ∼= H1(F3 ⊗O(d1, . . . , dk)) ∼=
∼= . . . ∼= Hm−1(Fm+1 ⊗O(d1, . . . , dk)) = 0

H1(F2 ⊗O(d1, . . . , dk)) ⊂ H2(F3 ⊗O(d1, . . . , dk)) ⊂
⊂ · · · ⊂ Hm−1(Fm ⊗O(d1, . . . , dk)) = 0

Considering the long exact sequence of (3.2.2) we have that

H0(IZT
⊗O(d1, . . . , dk)) ∼= H0(E∗ ⊗O(d1, . . . , dk)). (3.2.4)

Theorem 3.2.15. [DOT17, Proposition 3.6] Assume the boundary format and
that T is general, then ⟨ZT ⟩ = PHT and codim(HT ) =

∑r
i=1

(
mi+1

2

)
.

Proof. The space of linear forms of
⊗k

i=1 SymdiVi vanishing on ZT is given exactly
by H0(ZT ⊗O(d1, . . . , dk)). From Lemma 3.2.14 we have the isomorphism

H0(ZT ⊗O(d1, . . . , dk)) ∼= H0(E∗ ⊗O(d1, . . . , dk)).

Notice that
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E∗ ⊗O(d1, . . . , dk) =
k⊕
i=1

π∗
lQl ⊗O(−d1, . . . ,−di + 1, . . . ,−dk) ⊗ (d1, . . . , dk)

=
k⊕
i=1

π∗
lQl ⊗O(0, . . . ,

i

1, . . . , 0)

=
k⊕
i=1

π∗
i (Ω

1
Pmi (2)).

From the first line of (2.2.1) we have that H0(E∗ ⊗O(d1, . . . , dk)) has dimension∑k
i=1

(
mi+1

2

)
. Since those are the linear equations defining ⟨ZT ⟩ we have that

codim(ZT ) =
∑k

i=1

(
mi+1

2

)
.

To prove the isomorphism with the critical space we study the map

H0(Ω1
Pml (2)) → H0(IZT

⊗O(d1, . . . , dk))

in more details. The left side is canonically isomorphic to
(∧2 Vl

)∗
via Theorem

2.2.71. An element ξ in this space is mapped to the linear form

k⊗
i=1

SymdiVi → C, U 7→ ξ([T |U ]i).

Letting i vary we obtain the linear forms that cuts HT . Therefore PHT =
⟨ZT ⟩.



Chapter 4

Tensors determined by their

singular vector tuples

In this chapter the goal is to answer the question: Given a general tensor T ,
are there other tensors S ̸= T such that Eig(S) = Eig(T )? Another way of
interpreting it is asking: is the tensor T determined by its eigenscheme? This
question had been studied before in [ASS17] where it was shown that for a general
polynomial f in three variables and odd degree it holds that f is determined by
Eig(f). Later [BGV21] has shown that for a general polynomial f in three
variables and even degree such behavior is no longer seen. It was proven that the
polynomials h with same singular vector tuples as f are given by h = f +µ(x20 +

x21 + x22)
d
2 , where d = deg(f) and µ ∈ C. In this section we extend such result to

polynomials of any degree in Theorem 4.1.4. We further generalise this result to
partially symmetric tensors (or multisymmetric tensor) in Theorem 4.2.10. This
is the work developed by the author in [Tur22].

A first example regarding if a tensor is determined by their singular tuples is
the case of matrices. The next example answers the question and highlights how
different the behavior of singular vector tuples of matrices is from the behavior
of higher order tensors.

Example 4.0.1. The relation between a given set of singular tuples and the
matrices that have such singular tuple locus configuration is described by the
Singular Value Decomposition, since the singular tuples of a matrix are given by
the first columns of the orthogonal matrices on the decomposition. We briefly
describe it next.

Let A ∈ Hom(Y,W ), where Y, W are real vector spaces of dimensions
dimY = n, dimW = m, we recall that the singular value decomposition tells
us that for a general matrix A we have A = Udiag(σ1, . . . , σmin{m,n})V

t, where
U, V are orthogonal matrices, diag is a quasi-diagonal matrix with nonzero en-

tries σi ̸= 0 for all i only in the main diagonal, i.e. diag(i,j) =

{
σi, if i = j

0, if i ̸= j
.

If we let ui and vi be the columns of U and V , as described by Ottaviani and
Paoletti in [OP15], we have that for 1 ≤ i ≤ m = min{m,n}, Avi = σiui and

47
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Atui = σivi, in other words, the pairs (ui, vi) are the singular pairs of A. Let
τ : Hom(Y,W ) 99K (Y ×W )(m), A 7→ Eig(A), where Eig(A) is the set consisting
of the singular tuples of A. Note that τ is not defined if A has two singular values
that are equal. Given a singular tuple locus Z = {(ui, vi)}mi=1, and orthogonal
matrices U, V such that the first m columns are ui and vi we have that

τ−1(Z) = {B ∈ Hom(Y,W )|B = Udiag(σ1, . . . , σm)V t, σi ∈ C}.

is the subset obtained by varying the σi.

We can formulate the problem better in mathematical terms as we did in the
Example 4.0.1 by means of the map τ .

Definition 4.0.2. Let T ∈
⊗k

i=1 SymdiCmi+1 be a general tensor and X the
Segre-Veronese variety, we define the map τ that associates a tensor to its eigen-
scheme

τ : P

(
k⊗
i=1

SymdiCmi+1

)
99K

(
×k
i=1Pmi

)(edX)
, T 7→ Eig(T ). (4.0.1)

We remark that the map τ is not defined for all tensors, since the number of
singular tuples may vary. However for a general tensor the number is always
equal to edX .

Studying the map τ is difficult in general, but exploiting the relation of the
vector bundle E allows us to decompose τ through this vector bundle, and this
proves to be quite advantageous. We decompose τ in the following manner

P
(
Symd1V1 ⊗ · · · ⊗ SymdkVk

) [
P(V1) × · · · × P(Vk)

](edX)

P(H0(E))

φ

τ

ψ .

In this diagram the map φ associates a tensor T to the global section sT described
before in the definition 3.1.8. The map ψ sends a global section s ∈ H0(E) to its
zero locus Z(s), in particular the codomain is well defined for a section sT when
the singular tuples of T consists of exactly edX points.

The idea of the proofs of Theorems 4.1.4 and 4.2.10 is to first describe when
the map φ is injective, or otherwise what is the kernel. The next step is to show
that for a section sT associated to the general tensor T it holds that ψ(sT ) =
ψ(sU) only if sT = λsU .

In sections 4.1 and 4.2 we fix the basis of the vector spaces V1, . . . , Vk to be
{x0,i, . . . , xmi,i} and we choose the inner product qi : Vi × Vi → R such that the
quadratic form associated is given in coordinates by qi(x) = x20,i + · · · + x2mi,i

.
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4.1 Symmetric Tensors

Lemma 4.1.1. [Tur22, Lemma 3.1] Let V be a vector space of dimension m+1,
q = x20 + · · · + x2m a quadratic form on V , consider the action of SO(V ) that
respects q, and a positive integer d. If d is odd, the map

φ : SymdV → H0(Q(d− 1)), f 7→ sf =

[
∂f
∂x0

. . . ∂f
∂xk

x0 . . . xk

]
,

is injective. If d is even, φ has a 1-dimensional kernel, namely, kerφ = ⟨qd/2⟩.

Proof. We recall that SymdV splits as SO(V )-modules as

SymdV = Hd ⊕Hd−2 ⊕ · · · ⊕

{
H1 if d is odd;

H0 if d is even,

where Hd−2j = {fqj|f is a harmonic polynomial of degree d − 2j} is an irre-
ducible SO(V )-module.

Therefore we can restrict φ to each Hj, in such way we have

φ : Hj → Wj ⊂ H0(Q(d− 1)),

where Wj = Im(φ|Hj
). This map is either an isomorphism or zero by Schur’s

Lemma. Let j be such that d−2j ≥ 1, then we have that for g = (x0+ix1)
d−2jqj ∈

Hd−2j it is mapped by φ to

sg =

[
∂g
∂x0

. . . ∂g
∂xm

x0 . . . xm

]
,

that does not have rank 1 everywhere. Indeed

∂g

∂x0
x1 −

∂g

∂x1
x0 =

(
(d− 2j)(x0 + ix1)

d−2j−1
)(
x1 − ix0

)
qj ̸≡ 0.

On the other hand, H0 = {λq d
2 |λ ∈ C}. In such case we have for an element of

H0 that

∂λq
d
2

∂xi
xj −

∂λq
d
2

∂xj
xi = λ(2xixjq

d
2
−1 − 2xixjq

d
2
−1) = 0, ∀ i, j ∈ {0, . . . ,m}.

We conclude that if d is odd, the map φ is an isomorphism in each irreducible
representation; if d is even, it is an isomorphism in each of them, with the
exception of H0, as we wished.

We recall that the bundle Q is a simple bundle, in other words, H0(End(Q)) ∼=
C. With this fact in mind we may state the next result.
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Lemma 4.1.2. [Tur22, Lemma 3.2] Let Z be the zero locus of a section in
Q(d−1), and assume that d ≥ 3. Then the natural map from the Koszul complex
H0(End(Q)) → H0(IZ ⊗Q(d− 1)) is an isomorphism of 1-dimensional spaces.

Proof. Indeed, consider the Koszul complex

0
φm−−→

m∧
Q∗(m(1 − d))

φm−1−−−→ . . .
φ2−→

2∧
Q∗(2(1 − d)) → Q∗(1 − d) → IZ → 0,

tensoring it by Q(d− 1) we obtain the exact sequence

0 →
m∧
Q∗ ⊗Q((m− 1)(1 − d)) → · · · →

→
2∧
Q∗ ⊗Q(1 − d) → End(Q) → IZ ⊗Q(d− 1) → 0.

Let Fr to be defined as the quotient Fr =
∧rQ∗(r(1 − d))/Imφr. Thus we

obtain short exact sequences

0 → F2 → Q∗(1 − d) → IZ → 0,

0 → Fr+1 →
∧rQ∗(r − rd) → Fr → 0,

for r = 2, . . . ,m.
Tensoring the second short exact sequence by Q(d − 1) we obtain the long

exact sequence of cohomologies

· · · → Hr−2(
r∧
Q∗⊗Q((r − 1)(1 − d))) → Hr−2(Fr ⊗Q(d− 1)) →

→ Hr−1(Fr+1 ⊗Q(d− 1)) → Hr−1(
∧

Q∗ ⊗Q((r − 1)(1 − d))) →

→ Hr−1(Fr ⊗Q(d− 1)) → Hr(Fr+1 ⊗Q(d− 1)) → . . .

We have that
∧rQ∗ ⊗Q((r − 1)(1 − d)) =

∧m−rQ⊗Q((r − 1)(1 − d) − 1),
by Lemma 4.2.3 if we have that r ≥ 2, we obtain that Hr−2(

∧m−rQ ⊗ Q((r −
1)(1 − d) − 1)) = 0. Also, if d ≥ 3, Hr−1(

∧m−rQ⊗Q((r − 1)(1 − d) − 1)) = 0.
This means that

H0(F2 ⊗Q(d− 1)) ∼= H1(F3 ⊗Q(d− 1)) ∼= . . . ∼= Hm−1(Fm+1 ⊗Q(d− 1)) = 0,

H1(F2 ⊗Q(d− 1)) ⊂ H2(F3 ⊗Q(d− 1)) ⊂ · · · ⊂ Hm(Fm+1 ⊗Q(d− 1)) = 0.

Applying the long exact sequence of cohomologies to

0 → F2 ⊗Q(d− 1) → End(Q) → IZ ⊗Q(d− 1) → 0

gives the desired result.

We would like to add a remark that, although already utilised, the vanishing
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of the cohomology Hq(
∧rQ∗ ⊗ Q(t)) is carefully done in the next section in

Lemma 4.2.3. We decide in favour of postponing those computations because
the full usefulness of such cohomologies appears in the partially symmetric case.

Corollary 4.1.3. [Tur22, Corollary 3.3] Let f, g ∈ SymdV be two general poly-
nomials such that Z(sf ) = Z(sg), d ≥ 3. Then sf = αsg for some α ∈ C∗.

Proof. The hypothesis that Z(sf ) = Z(sg) implies that sf ∈ H0(IZ(sg) ⊗Q(d−
1)). Since this space is one-dimensional we have that sf = αsg.

We conclude this section observing that since τ = ψ ◦ φ, then the Theorem
4.1.4 is obtained just as the combinination of the Lemma 4.1.1 with the Corollary
4.1.3.

Theorem 4.1.4. [Tur22, Theorem 1.1] Let V be a vector space of dimension
m+ 1. Let d ≥ 3 be an integer, and f ∈ P(SymdV ) be a general polynomial. Let

τ : P
(
SymdV

)
99K PV (edX), f 7→ Eig(f)

be the map that associates to f its eigentensors locus Eig(f). Then

τ−1(τ(f)) =

{
[f ], if d is odd;

{[f + cq
d
2 ]|c ∈ C}, if d is even.

Moreover, the image of the map τ has dimension

dim(Im(τ)) =

{(
d+m
d

)
− 1, if d is odd;(

d+m
d

)
− 2, if d is even.

Remark 4.1.5. Let f ∈ SymdV be a general polynomial of even degree d. Con-
sider v ∈ V and eigentensor of f with q(v, v) = 1 and singular value λ. Then v

is an eigentensor of f + µ(x20 + · · · + x2m)
d
2 , we compute the associated singular

value on the cone. For every w ∈ V we have:

q(f + µ(x20 + · · · + x2m)
d
2 − αvd, vd−1w) = 0

q(f, vd−1w) + µq((x20 + · · · + x2m)
d
2 , vd−1w) = αq(v, w)

∇f(v) + (µd)q(v, v)
d
2
−1v = αv

λv + (µd)v = αv

λ+ µd = α.

Therefore the singular value of v in the polynomial f + µ(x20 + · · · + x2m)
d
2 is

λ + µd. In particular, for µ ∈ R≥0, it does not change which eigentensor gives
the best rank one approximation.
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4.2 Partially symmetric tensors

Now that the pre-image of the map τ is completely analysed for symmetric ten-
sors, we can go through to the next step, that is, we consider the Segre-Veronese
variety Symd1V1 ⊗ · · · ⊗ SymdkVk and we analyse the map τ : P

(
Symd1V1 ⊗ · · · ⊗

SymdkVk
)
99K

[
P(V1)×· · ·×P(Vk)

](edX)
that associates a tensor T to its singular

tuples Eig(T ). We begin the partially symmetric case with the generalization of
the Lemma 4.1.1 to Segre-Veronese varieties.

Theorem 4.2.1. [Tur22, Theorem 4.1] Let V1, . . . , Vk be vector spaces of dimen-
sion m1 + 1, . . . ,mk + 1, and we recall that qi = x20,i + · · ·+ x2mi,i

is the quadratic
form on Vi that defines the distance function for i = 1 . . . , k and fix an action
of the special orthogonal group SO(Vi). We consider the map

φ : Symd1V1 ⊗ · · · ⊗ SymdkVk → H0(E),

where E is defined in the Definition 3.1.8. Then φ is injective if at least one di
is odd. In the case that all the di are even, we have that the kernel of φ is one
dimensional and it is given by

kerφ = ⟨q
d1
2
1 ⟩ ⊗ · · · ⊗ ⟨q

dk
2
k ⟩.

Proof. Since we have that

SymdlVl ∼= Hdl ⊕Hdl−2 ⊕ · · · ⊕

{
H1 if dl is odd;

H0 if dl is even,

and that each Hdj−2tj is an irreducible SO(Vl)-representation, then also Hd1−2t1⊗
· · · ⊗Hdk−2tk is an irreducible SO(V1) × · · · × SO(Vk)-representation, we need to
show that φ is non-zero when dj − 2tj > 0 for at least one j, and that it is zero
when we have dj − 2tj = 0 for all j.

Indeed, in the first case we consider the element

g = g1 ⊗ · · · ⊗ gk, gj = (x0,j + ix1,j)
dj−2tjq

tj
j ,

then φ(g) = sg = (sg1 ⊗ 1) ⊕ · · · ⊕ (1 ⊗ sgk), where sgj ⊗ 1 ∈ Ej is non-zero as
seen before in the symmetric tensor case. Therefore by Schur’s Lemma we have
that in this restriction the map is an isomorphism, thus if dj − 2tj > 0 for some
j, sg does not belong to the kernel of φ.

On the other hand, if all dj−2tj = 0, then gj = cq
dj
2
j , where c ∈ C, then sgj =

0, therefore summing all together we obtain that sg = 0, so by Schur’s Lemma
the restriction of φ on this subrepresentations is the zero map, as wished.

With this result we understand the first map φ in the decomposition τ = ψ◦φ.
Now we can aim to understand better the map ψ, we will show that, under the
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hypothesis of Theorem 4.2.10, when two section s, t have the same image under
the map ψ, where s, t are sections coming from tensors S, T ∈ Symd1V1 ⊗ · · · ⊗
SymdkVk, then s = λt.

The first step to achieve this goal is to prove a similar result to Lemma 4.1.2
for the case of partially symmetric tensors, in order to do that we prove a series
of technical lemmas. We are going to denote by Ωr

Pm(k) the O(k)-twisted sheaf
of differential r-forms.

Lemma 4.2.2. [Tur22, Lemma 4.2] Let E∗ =
⊕k

l=1Q
∗
l (−d1, . . . ,−dl+1, . . . ,−dk),

then, for j = 1, . . . , k, then

r∧
E∗ ⊗Qj(d1, . . . , dj − 1, . . . , dk) =

=
⊕

r1+···+rk=r

k⊗
l=1,l ̸=j

Ωrl
Pml (2rl − dl(r − 1)) ⊗

mj−rj∧
Qj ⊗Qj(−dj(r − 1) + rj − 2).

Proof. From the definition of E we have that

r∧
E∗ =

⊕
r1+···+rk=r

k⊗
l=1

( rl∧
Q∗
l

)(
− rld1, . . . ,−rl(dl − 1), . . . ,−rldk)

)
,

by separating the terms we obtain that

r∧
E∗ =

⊕
r1+···+rk=r

k⊗
l=1

rl∧
Q∗
l (−rdl + rl).

We now tensor it byQj(d1, . . . , dj−1, . . . , dk), so we have that
∧r E∗⊗Qj(d1, . . . , dj−

1, . . . , dk) is equal to

⊕
r1+···+rk=r

k⊗
l=1,l ̸=j

rl∧
Q∗
l (−rdl + rl + dl) ⊗

rj∧
Q∗
j ⊗Qj(−rdj + rj + dj − 1).

We now utilise the facts that Ωrl(rl) =
∧rl(Ω1(1)), Ω1(1) = Q∗ and

∧rj Q∗
j =∧mj−rj Qj(−1), to obtain that

∧r E∗ ⊗Qj(d1, . . . , dj − 1, . . . , dk) is equal to

⊕
r1+···+rk=r

k⊗
l=1,l ̸=j

Ωrl
Pml (2rl − dl(r − 1)) ⊗

mj−rj∧
Qj ⊗Qj(−dj(r − 1) + rj − 2).

Lemma 4.2.3 (Bott’s Formula). [Tur22, Lemma 4.3] The cohomology

Hq

(
mj−rj∧

Qj ⊗Qj(t)

)
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is non-vanishing for the following cases

Hq

(mj−rj∧
Qj ⊗Qj(t)

)
̸= 0, if



q = 0, t ≥ 0;

q = rj − 1, t = −rj, 1 ≤ rj ≤ mj;

q = rj, t = −rj − 1, 0 ≤ rj ≤ mj − 1;

q = mj − 1, t = −mj − 1, 0 ≤ rj ≤ mj − 1;

q = mj, t ≤ −mj − 2.

(4.2.1)

Proof. The proof is an application of Bott’s Theorem 2.2.71, the technique con-
sists on computing if either the associated weights are singular or regular and
their index as described in definition 2.2.70, we remark that in this proof the
product ( , ) represents the Killing form. We denote by δ =

∑mi

i=1 λi the sum of
all fundamental weights.

The associated weight will be calculated in three cases depending on the rj;
the cases are rj = 0, 1 ≤ rj ≤ mj − 1 and rj = mj.

For the case 1 ≤ rj ≤ mj−1, we have that
∧mj−rj Qj⊗Qj(t) is not irreducible,

therefore we have that the associated weight λ is given by two parts

λ = λ(1) ⊕ λ(2).

where λ(1) = λrj+1 + λmj
+ tλ1 and λ(2) = λrj + tλ1. We remind from [Wey03]

that the Killing product satisfies (λi, αj) =

{
1, if i = j;

0, if i ̸= j.

For λ(1) we have that

(λ(1) + δ, α1 + · · · + αs) =


s+ t if s ≤ rj;

s+ t+ 1 if rj + 1 ≤ s ≤ mj − 1;

s+ t+ 2 if s = mj.

This implies the following cases:

1. t ≥ 0, then the weight is regular of index 0.

2. −1 ≥ t ≥ −rj, then the weight is singular (s = −t).

3. If t = −rj − 1, then the weight is regular of index rj.

4. If −rj − 2 ≥ t ≥ −mj, then the weight is singular (s = −t− 1).

5. if t = −mj − 1, then the weight is regular of index mj − 1.

6. if t = −mj − 2, then the weight is singular (s = mj).

7. if t ≤ −mj − 3, then the weight is regular of index mj.
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For λ(2) we have that

(λ(2) + δ, α1 + · · · + αs) =

{
s+ t if s ≤ rj − 1;

s+ t+ 1 if s ≥ rj.

That implies the following cases:

1. If t ≥ 0, then the weight is regular of index 0.

2. If −1 ≥ t ≥ −(rj − 1), then the weight is singular (s = −t).

3. If t = −rj, then the weight is regular of index (rj − 1).

4. If −rj − 1 ≥ t ≥ −mj − 1, then the weight is singular (s = −t− 1).

5. If t ≤ −mj − 2, then the weight is regular of index mj.

For rj = mj we have Qj(t), therefore the associated weight λ is λ = λmj
+ tλ1,

thus we have

(λ+ δ, α1 + · · · + αs) =

{
s+ t if s ≤ mj − 1;

s+ t+ 1 if s = mj.

This implies the following cases

1. If t ≥ 0, then the weight is regular of index 0.

2. If −1 ≥ t ≥ −mj + 1, then the weight is singular (s = −t).

3. If t = −mj, then the weight is regular of index mj − 1.

4. If t = −mj − 1, then the weight is singular (s = mj).

5. If t ≤ −mj − 2, then the weight is regular of index mj.

The final case is when rj = 0, then we have Qj(t + 1) and the associated
weight λ is λmj

+ (t+ 1)λ1, therefore

(λ+ δ, α1 + · · · + αs) =

{
s+ t+ 1 if s ≤ mj − 1;

s+ t+ 2 if s = mj.

This implies the following cases

1. If t ≥ −1, then the weight is regular of index 0.

2. If −2 ≥ t ≥ −mj, then the weight is singular (s = −t− 1).

3. If t = −mj − 1, then the weight is regular of index mj − 1.
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4. If t = −mj − 2, then the weight is singular (s = mj).

5. If t ≤ −mj − 3, then the weight is regular of index mj.

Lemma 4.2.4. [Tur22, Lemma 4.5] Let ml = dimPVl and k ≥ 3. Suppose
that ml ≤

∑
i ̸=lmi holds for every l such that dl = 1. Let r ≥ 2 be an integer,

q1, . . . , qk be non negative integers such that
∑
ql ≤ r − 1, and let r1, . . . , rk be

non negative integers such that
∑
rl = r, then

k⊗
l=1,l ̸=j

Hql(Ωrl
Pml (2rl−dl(r−1)))

⊗
Hqj
(mj−rj∧

Qj⊗Qj(−dj(r−1)+ rj−2)
)

= 0,

for every j ∈ {1, . . . , k}.
Furthermore, if k = 2 and we add the hypothesis that (d1, d2) ̸= (1, 1) the

result still holds.

Proof. Suppose that the cohomology of the tensor product is non-vanishing. We
fix that the index j will associated to the unique case coming from the cohomol-
ogy table (4.2.1), if not said otherwise.

Not all the cases can come from the third, fourth or fifth line of
(4.2.1) and from the second and third lines of (2.2.1). Suppose that one
case comes from either the third, fourth or fifth lines of (4.2.1), and all the
remaining cases come from the second and third line (2.2.1), this means that
ql ≥ rl, and we have that r > q =

∑
ql ≥

∑
rl = r.

So at least one cohomology case must come from the other lines in (4.2.1) or
(2.2.1).

No case can come from the first line of (4.2.1). Suppose that the only
case of (4.2.1) comes from the first line, this means that −dj(r− 1) + rj − 2 ≥ 0,
so we obtain that

rj ≥ (r − 1)dj + 2 > dj(r − 1) + 1 ≥ (r − 1) + 1 = r,

that is rj > r, a contradiction.
No case can come from the first line of (2.2.1). Suppose that we have one

case coming from the first line of (2.2.1) for a fixed l, we have that rl > dl(r−1),
then the only possiblity is that rl = r and all other ri = 0, for i ̸= l and dl = 1.
In such case, for i ̸= l we have that the other cohomologies can not be on the
first line, otherwise it would be 0. Let j be the only case coming from (4.2.1),
then for i ̸= l, j we have that it can not be on the second line of (2.2.1), because
0 = ri = qi = −di(r− 1) and r− 1, di > 0. For j we have that the second line of
(4.2.1) does not apply since qj = rj−1 = −1 and the third line of (4.2.1) implies
0 = qj = rj and −dj(r−1)−2 = −1, then dj(r−1) = −1, that is a contradiction
since both terms on the left side are non negative. So in those cases we have
the vanishing of the cohomology, therefore we have that one case is either on the
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fourth or fifth line of (4.2.1) and all the remaining cases are on the third line of
(2.2.1). If one case is on the fifth line of (4.2.1) and all the others on the third
line of (2.2.1), we have that qi = mi and qj = mj for i ̸= l. This means

ml ≥ rl = r >
∑
i ̸=l

qi =
∑
i ̸=l

mi,

this implies that ml >
∑

i ̸=lmi, that is a contradiction since dl = 1. The
case coming from (4.2.1) can not be on the fourth line of (4.2.1), and all the
others coming from the third line of (2.2.1) either, because in such case we
have that −dj(r − 1) − 2 = −mj − 1, that is, mj − 1 = dj(r − 1), but since
r >

∑
i ̸=l qi =

∑
i ̸=l,j(mi) +mj − 1 ≥ mj, we have that r > mj, and the equality

can not be satisfied since dj ≥ 1. In the case k = 2, notice that r ≥ mj and
since dl = 1, we must have dj ≥ 2. Again the wished equality mj − 1 = dj(r− 1)
can not hold. This implies that no cohomology can come from the first line of
(2.2.1).

No case can come from the second line of (4.2.1). The last remaining
possibility is to have the only case of (4.2.1) coming from the second line. In
such case we notice that we have qj = rj − 1 and no case on (2.2.1) comes from

the first line, thus ql ≥ rl for l ̸= j. This, together with the fact that
∑k

i=1 ql < r,
implies that ql = rl for l ̸= j. We have that −2(rj − 1) = −dj(r − 1), therefore
rj = r and dj = 2, or rj < r and dj = 1.

In the first case we have that rj = r implies that ri = 0 for every i ̸= j. This
means that we have Ωri(2ri−di(r−1)) = OPmi (−di(r−1)). Since −di(r−1) < 0,
we have that the cohomology Hqi(OPmi (−di(r − 1))) does not vanish just for
qi = mi, but since mi > 0, we have that q =

∑
i ̸=j qi + qj =

∑
i ̸=j qi + r − 1 ≥ r,

therefore our cases of interest have vanishing cohomology.

The second possibility for this cohomology to be non-vanishing is that we
have rj < r and dj = 1. Suppose that one of these non-vanishing cohomologies
comes from the second line of (2.2.1) for some l. From the conditions on (4.2.1)
and (2.2.1) respectively, we have that 2(rj − 1) = r − 1 and 2rl − dl(r − 1) = 0,
since dl ≥ 1 this implies that

rj =
r

2
+

1

2
, rl ≥

r

2
− 1

2
,

therefore rj + rl ≥ r. Since k is at least 3, we have another case i, that comes
either from the second or third line of (2.2.1), and we must have ri = 0. If it is
on the second line we have that 2ri − di(r − 1) = 0, thus di(r − 1) = 0, that is
a contradiction. It can not be on the third line either, since ri = mi = 0 is also
a contradiction. Otherwise, in case k = 2, we assume, without loss of generality,
that j = 1 and l = 2, then d1 = 1 and d2 ≥ 2, thus r2 ≥ r − 1, so we obtain

r1 + r2 ≥
r

2
+

1

2
+ r − 1 ≥ r +

1

2
> r,
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that is a contradiction. Therefore, no case can come from the second line on
(2.2.1).

This means that all the other cases must come from the third line of (2.2.1),
that is ql = ml = rl for l ̸= j. We notice that rj >

r
2

implies that rj >
∑

l ̸=j rl,
thus

mj ≥ rj >
∑
l ̸=j

rl =
∑
l ̸=j

ml,

this is a contradiction since dj = 1.

Corollary 4.2.5. [Tur22, Corollary 4.6] On the hypothesis of Lemma 4.2.4 we
have that

Hq((
r∧
E∗) ⊗ E) = 0.

Theorem 4.2.6. [Tur22, Theorem 4.7] On the hypothesis of Lemma 4.2.4, the
induced homomorphism

E∗ ⊗ E → IZ ⊗ E

induces an isomorphism at the level of global sections, where Z is the zero locus
of a section s ∈ E.

Proof. We have the following Koszul complex

0 =
N+1∧

E∗ φN−−→
N∧

E∗ φN−1−−−→ . . .
φ2−→

2∧
E∗ → E∗ → IZ → 0.

Let Fr to be defined as the quotient Fr =
∧r E∗/Imφr. Thus we obtain short

exact sequences
0 → F2 → E∗ → IZ → 0,

0 → Fr+1 →
∧r E∗ → Fr → 0,

for r = 2, . . . , N .

Tensoring the second short exact sequence by E , we obtain the long exact
sequence of cohomologies

· · · → Hr−2(
r∧
E∗ ⊗ E) → Hr−2(Fr ⊗ E) → Hr−1(Fr+1 ⊗ E) →

→ Hr−1(
r∧
E∗ ⊗ E) → Hr−1(Fr ⊗ E) → Hr(Fr+1 ⊗ E) → . . .

(4.2.2)

By Corollary 4.2.5 we have that both terms on the left are zero, therefore we
have that

Hr−2(Fr ⊗ E) ∼= Hr−1(Fr+1 ⊗ E), Hr−1(Fr ⊗ E) ⊂ Hr(Fr+1 ⊗ E).
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This implies that

H0(F2 ⊗ E) ∼= . . . ∼= HN−1(FN+1 ⊗ E) = 0,

H1(F2 ⊗ E) ⊂ · · · ⊂ HN(FN+1 ⊗ E) = 0.

If we consider now the long exact sequence of cohomologies from 0 → F2 ⊗E →
E∗ ⊗ E → IZ ⊗ E → 0, we obtain

H0(F2 ⊗ E) → H0(E∗ ⊗ E) → H0(IZ ⊗ E) → H1(F2 ⊗ E),

since the end terms are zero, we obtain the desired isomorphism.

To make a comparison with the symmetric case, our next objective is to
prove the extension of Corollary 4.1.3 to the partially symmetric case. That is,
we will show if two sections s, t, that arise from the respective tensors S, T ∈
Symd1V1 ⊗ · · · ⊗ SymdkVk, have the same image under ψ, that is, we have the
equality of the zero locus Z(s) = Z(t), then s = λt.

Lemma 4.2.7. [Tur22, Lemma 4.8] Let Ei = π∗
iQi(d1, . . . , di − 1, . . . , dk). If

dimPVj ≥ 2 for all j, then

H0(Hom(E , Ej)) = H0(Hom(Ej, Ej)) = C.

Moreover, if we assume that i ̸= j, then

H0(Hom(Ei, Ej)) = 0.

Proof. For the second equality we have that

Hom(Ei, Ej) = π∗
iQ

∗
i ⊗ π∗

jQj(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) =

OPV1 ⊗ · · · ⊗ π∗
iQ

∗
i (1) ⊗ · · · ⊗ π∗

jQj(−1) ⊗ · · · ⊗ OPVk .

We notice that, for all i, we have that H0(Q∗
i (1)) = H0(Ω1(2)) ̸= 0. Meanwhile,

if dimPVj ≥ 2, then H0(Qj(−1)) = 0, thus by the Künneth’s Formula we have
that

H0(Hom(Ei, Ej)) = 0.

On the other hand,

Hom(Ej, Ej) = OPV1 ⊗ · · · ⊗
(
π∗
j (Q

∗
j ⊗Qj)

)
⊗ · · · ⊗ OPVk = Hom(Qj, Qj),

since the bundle Qj is simple we obtain the desired result.

Lemma 4.2.8. [Tur22, Lemma 4.9] Let ρ ∈ End(H0(E)) be a endomorphism
of H0(E), suppose that f, g ∈ Symd1V1 ⊗ · · · ⊗ SymdkVk are tensors such that
ρ(sf ) = ρ(sg), then sf = λsg for λ ∈ C.
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Proof. Let I1 be the set of indices such that dimPVi = 1 and I2 be the set of in-
dices such that dimPVi ≥ 2. By the previous lemma, we have thatH0(Hom(Ei, Ej)) =
0, whenever j ∈ I2, that is, no map can act there besides its own endomorphism.

Now we consider a section sf coming from a tensor f ∈ Symd1V1 ⊗ · · · ⊗
SymdkVk. We recall that the map φ associates f to the diagonal map of its flat-
tenings in each coordinate l, that is, f : Symd1V1⊗Symdl−1Vl⊗· · ·⊗SymdkVk →
Vl. This means that φ(f) = sf can be interpreted as the diagonal element
sf = (f, . . . , f), where f in the l entry of this vector means the section of El
corresponding to f .

Suppose that the first l indices are in I1 and the others are in I2, both non-
empty. Applying ρ to φ(f) we obtain that

ρ(φ(f)) = (M1(f), . . . ,Ml(f),Ml+1(f), . . . ,Mk(f)) = (g, . . . , g) = sg,

where g ∈ Symd1V1 ⊗ · · · ⊗ SymdkVk is a tensor and Mi(f) ∈ H0(Ei) is a global
section. From the Lemma 4.2.7 we have that Mi(f) = λf for any i ≥ l + 1 and
λi ∈ C. Since Mi(f) = g for all i = 1, . . . , k, we obtain that Mi(f) = λf with
λ ∈ C, thus g = λf .

It remains the case when I2 = ∅. In such case we notice that

Hom(Ei, Ej) = (0, . . . , 0, Q∗
i (1), 0, . . . , 0, Qj(−1), 0, . . . , 0);

since the dimension of each PVi is 1, we have Qj(−1) = OP1 , moreover Q∗
i (1) =

Ω1
P1(2) = OP1 . We recall that both of those bundles are 1-dimensional at the level

of global sections, that is, dimH0(OP1) = 1, therefore dimH0(Hom(Ei, Ej)) = 1.
This implies that if ρ(sg) = sf , then sf = λsg is the only possible image.

Combining the previous results together, we obtain the next theorem.

Theorem 4.2.9. [Tur22, Theorem 4.10] Let S, T ∈ Symd1V1 ⊗ · · · ⊗ SymdkVk
be two general tensors. Assume that ml ≤

∑
i ̸=lmi holds for every l such that

dl = 1, k ≥ 3, and that mj ≥ 1 for all j. Let s, t ∈ E be the sections coming from
the tensors, S and T , and assume that Z(s) = Z(t), then s = λt, for λ ∈ C∗.

Additionally, if k = 2 and we also consider the hypothesis that (d1, d2) ̸=
(1, 1), then the result still holds.

Proof. The Theorem 4.2.6 says that the map H0(End(E)) → H0(IZ⊗E) defined
by ρ 7→ ρ(sg) is an isomorphism. This means that if s, t are two tensors such
that Z(s) = Z(t), then there exists a morphism ρ ∈ EndE such that

ρ(t) = s.

Furthermore, from the Lemma 4.2.8 we obtain that s = λt.

With all those results in mind, we can conclude with a note that combining
together Theorem 4.2.1 with the Theorem 4.2.9 we obtain the Theorem 4.2.10.
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Theorem 4.2.10. [Tur22, Theorem 1.2] Let V1, . . . , Vk be vector spaces of di-
mensionm1+1, . . . ,mk+1. Let d1, . . . , dk be positive integers, and T ∈ P

(
Symd1V1⊗

· · · ⊗ SymdkVk
)
be a general tensor. Let

τ : P
(
Symd1V1 ⊗ · · · ⊗ SymdkVk

)
99K (PV1 × · · · × PVk)(edX), T 7→ Eig(T ),

be the map that associates a tensor T to its singular tuples locus Eig(T ). If k ≥ 3
and suppose that ml ≤

∑
j ̸=lmj whenever dl = 1, and for k = 2 we include the

hypothesis that (d1, d2) ̸= (1, 1), then

τ−1(τ(T )) =

[T ], if di is odd for some i;

{[T + cq
d1
2
1 ⊗ · · · ⊗ q

dk
2
k ]|c ∈ C}, if dl is even for all l.

Moreover, the image of the map τ has dimension

dim(Im(τ)) =

{∏k
l=1

(
dl+ml

d

)
− 1, if di is odd for some i;∏k

l=1

(
dl+ml

d

)
− 2, if dl is even for all l.

4.3 A remark on sections coming from tensors

We make a brief remark that the Lemma 4.2.8 does not mean that all the mor-
phisms in End(E) are multiplication by scalars, since the map φ is not surjective
in general. Indeed, for each space Vl, we can compute what is the image of
φl : SymdlVl → H0(Ql(dl − 1)).

We have the Euler exact sequence

0 → H0(O(dl − 2)) → H0(O(dl − 1) ⊗ Vl) → H0(Q(dl − 1)) → 0.

Moreover we have an isomorphism

H0(O(dl − 1) ⊗ Vl) ∼= Symdl−1V ∗
l ⊗ Vl and H0(O(dl − 2)) ∼= Symdl−2Vl.

In terms of Young diagrams, Symdl−2V ∗
l has the representation

dl−2︷ ︸︸ ︷

where the tableaux has dl−2 columns and dimVl−1 rows. Moreover, Symdl−1V ∗
l ⊗
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Vl is represented by

dl−1︷ ︸︸ ︷

⊗
=

dl︷ ︸︸ ︷

⊕

dl−2︷ ︸︸ ︷

via Pieri’s formula, where all the diagrams have dimVi−1 rows. Thus H0(Ql(dl−
1)) diagram is given by

dl︷ ︸︸ ︷

where the diagram has dimVl − 1 rows.
We can compute what exactly is H0(Q(dl−1)) in terms of irreducible SO(ml)-

representations by restricting the product Symdl−1Vl⊗V as SL(ml)-representations
to SO(ml)-representations. Indeed, we have that as SL(ml)-representations

Symdl−1Vl ⊗ Vl = SymdlVl ⊕ Γ(dl−2,1,0,...,0),

the first summand restricts to

Res
SL(ml)
SO(ml)

(SymdlVl) = Hdl ⊕Hdl−2 ⊕ · · · ⊕

{
H1 if dl is odd;

H0 if dl is even.
(4.3.1)

To compute the restriction of Γ(dl−2,1,0,...,0) we now utilise the fact that

Res
SL(ml)
SO(ml)

(Γλ) =
⊕
λ

NλλΓλ,

with Nλλ =
∑

δNδ,λλ, where Nδλλ is the Littlewood-Richardson coefficient, λ =

(λ1 ≥ λ2 ≥ · · · ≥ λt ≥ 0), ml = 2t or 2t+ 1, and δ = (δ1 ≥ δ2 ≥ · · · ≥ 0), with δi
even for all i. For more details about the restriction and Littlewood-Richardson
coefficients we suggest [FH91] section 25.3 and appendix A respectively.

In our setting λ = (dl−2, 1, . . . , 0) is represented as the Young tableaux given
by

with dl − 1 boxes in the first line and 1 box on the second.
To compute the Littlewood-Richardson coefficient we have to go through all



63

the possible Young tableaux δ with even number of box in each rows and complete
it into λ via a λ-expansion. The procedure is to fill each box in the i-th row of
λ with the number i and from left to right and from top to bottom add each
row to the Young tableaux of δ following the Pieri’s rule; in simple terms, boxes
coming from the same row in λ can not be attached in the same column and
boxes coming from the same column in λ can not be attached in the same row.
For a precise description of the algorithm we refer to the appendices (A7) and
(A8) in [FH91].

If δ = (0), the only possible tableaux for λ is the tableaux of λ itself, that is,
λ = (dl − 2, 1, 0, . . . , 0).

If δ = 2h, for h ≥ 1 and dl−2h−2 ≥ 0, then there are two other possibilities
for λ, indeed λ = (dl − 2h, 0, . . . , 0) or λ = (dl − 2h − 2, 1, 0, . . . , 0), indeed this
results respectively in the following two λ-expansion:

1 1 1 1
1

and
1 1 1 1

2

Notice that, if we tried to add more columns to the second line, we would have
a box of index 1 and a box of index 2 in the first row, that is forbidden by the
Littlewood-Richardson rule since they come from the same column. Similarly, if
we tried to add more rows, we would have the same problem. Therefore those
are all the possible λ. Moreover, the first possibility for λ corresponds to Hdl−2h

and the second to Γ(dl−2h−2,1,0,...,0). Let

Γ = Γ(dl−2,1,0,...,0) ⊕ Γ(dl−4,1,0,...,0) ⊕ · · · ⊕

{
Γ(1,1,0,...,0) if dl is odd;

Γ(0,1,0,...,0) if dl is even,

and

Hdl−2 = Hdl−2 ⊕Hdl−4 ⊕ · · · ⊕

{
H1 if dl is odd;

H2 if dl is even.

We obtain that
Res

SL(ml)
SO(ml)

(Γ(dl−2,1,0,...,0)) = Hdl−2 ⊕ Γ, (4.3.2)

moreover, by assembling together the equations 4.3.1 and 4.3.2 we have found
that

Res
SL(ml)
SO(ml)

(Symdl−1Vl ⊗ Vl) = Hdl−2 ⊕ Γ ⊕Hdl ⊕Hdl−2 ⊕ · · · ⊕

{
H1 if dl is odd;

H0 if dl is even.

Now we can compute the H0(Q(dl − 1)), from the Euler exact sequence we have
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that it is given by the difference Symdl−1Vl ⊗ Vl − Symdl−2Vl, that is,

H0(Q(dl − 1)) =Hdl−2 ⊕ Γ ⊕Hdl ⊕Hdl−2 ⊕ · · · ⊕

{
H1 if dl is odd;

H0 if dl is even;

−Hdl−2 ⊕Hdl−4 ⊕ · · · ⊕

{
H1 if dl is odd;

H0 if dl is even,

therefore we obtain that,

H0(Q(dl − 1)) = Hdl ⊕ Γ,

where Hdl is the subrepresentation of the sections coming from tensors by the
Lemma 4.1.1, thus it is the image of the φl that we sought at the beggining of
this section. We conclude that φl is not surjective.



Chapter 5

Singular vector tuples beyond

boundary format

Notice that during the previous chapter the boundary format condition has been
assumed for all the results. The results presented in this chapter comes from
the work developed by the author together with Luca Sodomaco [ST22] on the
same problem disregarding the boundary format condition. The first non-trivial
example beyond boundary format is for the tensor format C2 ⊗ C2 ⊗ C4. We
explore this example and other formats on this chapter.

Since in this chapter we deal with several different tensor formats we introduce
a new notation, a tensor space V = Cm1+1 ⊗ · · · ⊗ Cmk+1 will said to be a
tensor space of order k and format m = (m1 + 1, . . . ,mk + 1). We recall that
the dimension of the critical space has been given beyond boundary format for
tensors in [OP15].

Proposition 5.0.1. [OP15, Proposition 5.6] Let T ∈ V =
⊗k

i=1 Cmi+1. Assume

m1 ≤ · · · ≤ mk and let D =
∏k−1

i=1 (mi + 1). The dimension of the critical space
HT ⊂ V is {∏k

i=1(mi + 1) −
∑k

i=1

(
mi+1

2

)
for mk + 1 ≤ D(

D+1
2

)
−
∑k−1

i=1

(
mi+1

2

)
for mk + 1 ≥ D .

(5.0.1)

An important concept that will be used in this chapter is the notion of concise
tensor spaces. A tensor space V =

⊗k
i=1Cmi+1 is concise if there exists a tensor

T ∈ V such that does not exist a proper linear subspace Li ⊂ Cmi+1 with
T ∈ VLi

= Cm1+1 ⊗ · · · ⊗Li⊗ · · · ⊗Cmk+1, for every i ∈ [k]. The tensor space V
is non-concise if every tensor belong to some subspace of the form of VLi

. The
tensor T is said to be concise if it does not belong to any VLi

, and non-concise
otherwise.

The conciseness of the tensor space is correlated to the dimension of the
tensor space. Suppose that m1 ≤ · · · ≤ mk, then the tensor space V is concise if
and only if mk + 1 ≤

∏k−1
i=1 (mi + 1).

In this chapter we work in two main problems beyond the boundary format:

65
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1. Does T ∈ ⟨ZT ⟩?

2. Is a generic T determined by its singular vector tuples?

We observe that if we prove (1), (2) for the last concise format (m1+1, . . . ,mk−1+
1,
∏k−1

i=1 (mi + 1)), then the same results follow immediately to all non-concise

formats (m1 + 1, . . . ,mk + 1), mk + 1 >
∏k−1

i=1 (mi + 1), by considering the concise
subspace that T belongs.

Therefore, in this chapter we will be interested in tensors spaces of format
(m1 + 1, . . . ,mk + 1) such that

k−1∑
i=1

mi < mk ≤
k−1∏
i=1

(mi + 1) − 1.

For the sake of simplicity we will denote
∧r E∗⊗O(d1, . . . , dk) by E (r) in this

chapter.

5.1 First examples beyond boundary format

We start this section by analysing the behavior of particular formats beyond
boundary format.

Proposition 5.1.1. [ST22, Proposition 5.6] Let T be a general tensor of format
(2, 2, 4). Then ⟨ZT ⟩ has dimension six in P(V ) ∼= P15 and codimension one in
P(HT ). This is the last concise format (2, 2, N + 1).

Proof. Following the similar cohomology computation in [DOT17, Lemma 3.5],
we have that the vanishing of the cohomologies Hq(E (r)), q = r−1, r−2, does not
hold anymore. Moreover, this means that computing Hr(E (r)) is useful in many
cases. In this case one computes that the only non-zero dimensions hq(E (r)) are

h2(E (3)) = 1 , h3(E (3)) = 1 .

Consider the short exact sequence in (3.2.2). The corresponding long exact
sequence in cohomology is

· · · → Hr−2(E (r)) → Hr−2(Fr(1)) → Hr−1(Fr+1(1)) → Hr−1(E (r)) →
→ Hr−1(Fr(1)) → Hr(Fr+1(1)) → Hr(E (r)) → · · ·

(5.1.1)

The sequence (5.1.1) yields the following inclusions and isomorphisms:

• Hr−2(Fr(1)) ∼= Hr−1(Fr+1(1)) and Hr−1(Fr(1)) ∼= Hr(Fr+1(1)) for r ̸= 3

• H1(F3(1)) ⊂ H2(F4(1)) and H2(F3(1)) ∼= H2(E (3)) for r = 3.

In turn, we get that
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• H0(F2(1)) ∼= H1(F3(1)) ⊂ H2(F4(1)) ∼= H3(F5(1)) ∼= H4(F6(1)) = 0

• H1(F2(1)) ∼= H2(F3(1)) and H3(F4(1)) ∼= H4(F5(1)) ∼= H5(F6(1)) = 0

Therefore, if we take the second short exact sequence in (3.2.3) and we compute
the corresponding long exact sequence in cohomology, we get that

0 = H0(F2(1)) → H0(E (1)) → H0(IZT
(1)) → H1(F2(1)) → H1(E (1)) = 0 ,

thus h0(IZT
(1)) = h0(E (1)) + h1(F2(1)) = 8 + 1. This means that ⟨ZT ⟩ has

codimension 9 in P(V ) ∼= P15, that is dim⟨ZT ⟩ = 15 − 9 = 6.

Example 5.1.2. Experimental computations suggest to consider the following
linear relation. Let (x1,x2,x3) be a singular triple of U . By definition the two
vectors U(x1 ⊗ x2) and x3 are proportional. From this fact we build the 4 × 4
matrix

A :=
[
U(x1 ⊗ x2) x3 U(1,1) U(1,2)

]T
,

where U(i,j) =
[
uij1 . . . uij4

]T
for all (i, j) ∈ {1, 2} × {1, 2}. If U is sufficiently

general, we have that rank(A) = 3. Now let x′
1 =

[
x1,2 x1,1

]T
and consider the

matrix
A′ :=

[
U(x′

1 ⊗ x2) x3 U(2,1) U(2,2)

]T
.

In this case the first two rows of A′ are not proportional. We checked sym-
bolically that still rank(A′) = 3, hence the determinant of A′, which is linear
in the coordinates zijk of P(C2 ⊗ C2 ⊗ C4), is contained in the ideal of ⟨ZU⟩.
We verified also that det(A′) is linearly independent from the equations of HT .
Hence det(A′) can be considered as “the” unknown additional relation among
the singular triples of U .

Developing det(A′) using the Laplace expansion along the first two rows of
A′ and taking into account the relations zijk = x1,ix2,jx3,k, we get that (we omit
the computation)

det(A′) =

∣∣∣∣∣∣∣∣∣
z211 z212 z213 z214
u111 u112 u113 u114
u211 u212 u213 u214
u221 u222 u223 u224

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
z221 z222 z223 z224
u121 u122 u123 u124
u211 u212 u213 u214
u221 u222 u223 u224

∣∣∣∣∣∣∣∣∣ .
From this expression, we immediately observe that this additional relation is
satisfied by the tensor U itself, since substituting zijk by uijk implies that in the
first summand the first and the third rows are the same, as well the first and
fourth rows in the second summand are the same, meaning that [U ] ∈ ⟨ZU⟩.
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Note the change of indices with respect to

det(A) =

∣∣∣∣∣∣∣∣∣
z211 z212 z213 z214
u211 u212 u213 u214
u111 u112 u113 u114
u121 u122 u123 u124

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
z221 z222 z223 z224
u221 u222 u223 u224
u111 u112 u113 u114
u121 u122 u123 u124

∣∣∣∣∣∣∣∣∣ .
Note that both determinants may be seen as bihomogeneous polynomials in the
variables uijk and zijk of bidegree (3, 1). What is more, observe that in the
construction of A we have made a choice for the last two rows. In general, there
are 6 =

(
4
2

)
possibilities to complete the matrix A using the vectors (uijk)k.

Consider also the vector x′
2 =

[
x2,2 x2,1

]T
and build the 9 × 4 matrix

[
U(x′

1 ⊗ x2) U(x1 ⊗ x′
2) U(x2 ⊗ x1) U(x′

2 ⊗ x′
1) x3 U(1,1) U(1,2) U(2,1) U(2,2)

]T
.

(5.1.2)
We computed symbolically all maximal minors of the previous matrix. There
are exactly 6 of them which belong to the ideal of ⟨ZU⟩. One of them is exactly
the determinant of A′ studied above. The other five are obtained considering
all remaining choices of pairs of rows (U(i1,j1), U(i2,j2)) among the last four rows,
the row of x3 and one of the first four rows (according to symmetries of the pair
(U(i1,j1), U(i2,j2)) chosen).

With similar techniques, we are able to prove the following result.

Theorem 5.1.3. [ST22, Theorem 5.8] Let T be a general tensor of format
(2, 3, N + 1).

(i) If N + 1 = 5, then ⟨ZT ⟩ has either dimension 13 or 14 in P(V ) ∼= P29. The
expected dimension is 13, hence there are 2 more linear relations among
the singular tuples of T .

(ii) If N + 1 = 6, ⟨ZT ⟩ has either dimension 13 or 14 in P(V ) ∼= P35. The
expected dimension is 13, hence there are 3 more linear relations among the
singular tuples of T . This is the last concise case of format (2, 3, N + 1).

Proof. (i) Suppose that n = 5. In this case the non-zero dimensions Hq(E (r)) are

h3(E (3)) = 1 , h3(E (4)) = 2 , h5(E (5)) = 3 .

These equalities immediately imply the relations

1. H0(F2(1)) ∼= · · · ∼= H2(F4(1)) ⊂ H3(F5(1)) ∼= · · · ∼= H6(F8(1)) = 0.

2. H1(F2(1)) ∼= H2(F3(1)) ⊂ H3(F4(1)) and H4(F5(1) ⊂ · · · ⊂ H7(F8(1)) =
0.

We study again the sequence (5.1.1) where the vanishing does not hold,
namely for r ∈ {3, 4, 5}:
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Case r = 5: we get h5(F5(1)) = h5(E (5)) = 3.
Case r = 4: it is again straightforward to see that h3(F4(1)) = h3(E (4)) = 2 and
h4(F4(1)) = h5(F5(1)) = 3.
Case r = 3: we have

0 → H2(F3(1)) → H3(F4(1)) → H3(E (3)) → H3(F3(1)) → H4(F4(1)) → 0 .

Since h3(E (3)) = 1, we have either H2(F3(1)) ∼= H3(F4(1)) or H2(F3(1)) →
H3(F4(1)) → H3(E (3)) is exact. In the first case we get h2(F3(1)) = 2 and in
the second h2(F3(1)) = 1.

Plugging this information in the sequence

0 = H0(F2(1)) → H0(E (1)) → H0(IZT
(1)) → H1(F2(1)) → 0

we get that codim(⟨ZT ⟩) ∈ {15, 16}, therefore dim(⟨ZT ⟩) ∈ {13, 14}. This im-
plies that we have at least one new relation among the singular tuples and at
most two.

(ii) Suppose that n = 6. The only non-zero dimensions hq(E (r)) are

h3(E (3)) = 1 , h3(E (4)) = 12 , h3(E (5)) = 9 , h5(E (5)) = 3 .

This implies the relations

1. H0(F2(1)) ∼= H1(F3(1)) ∼= H2(F4(1)) ⊂ H3(F5(1)) and H4(F6(1)) ∼=
· · · ∼= H7(F9(1)) = 0.

2. H1(F2(1)) ∼= H2(F3(1)) ⊂ H2(F4(1)) andH5(F6(1)) ∼= · · · ∼= H8(F9(1)) =
0.

3. H6(F6(1)) ∼= · · · ∼= H9(F9(1)) = 0.

We analyze the long exact sequence (5.1.1) where the vanishing does not hold,
namely for r ∈ {3, 4, 5}:
Case r = 5: we have

0 → H3(E (5)) → H3(F5(1)) → 0 → H4(F5(1)) → 0 → H5(E (5)) → H5(F5(1)) → 0 .

This implies h3(F5(1)) = 9, h4(F5(1)) = 0, h5(F5(1)) = 3.
Case r = 4: we have

0 → H2(F4(1)) → H3(F5(1)) → H3(E (4)) → H3(F4(1)) →
→ 0 → H4(F4(1)) → H5(F5(1)) → 0 .

This yields h2(F4(1)) + 3 = h3(F4(1)) and h4(F4(1)) = 3.
Case r = 3: we have

0 → H1(F3(1)) → H2(F4(1)) → 0 → H2(F3(1)) → H3(F4(1)) →
→ H3(E (3)) → H3(F3(1)) → H4(F4(1)) → 0 .
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We get that h1(F3(1)) = h2(F4(1)). Notice that h3(E (3)) = 1, thus either
h2(F3(1)) = h3(F4(1)) or H2(F3(1)) → H3(F4(1)) → H3(E (3)) is exact. This
implies h2(F3(1)) = h3(F4(1)) (Case 1) or h2(F3(1)) = h3(F4(1)) − 1 (Case 2).

Using these equalities on the long exact in cohomology of the short exact
sequence

0 → F2(1) → E (1) → IZT
(1) → 0

leads to h0(F2(1)) − 19 + dim(IZT
) − h1(F2(1)) = 0.

In the first case we get h2(F4(1)) − 19 + h0(IZT
) − h3(F4(1)) = 0, since

h2(F4(1)) + 3 = h3(F4(1)) we get h0(IZT
) = 22.

For the second case, in a similar manner we get h0(IZT
) = 21. Those two

cases imply that dim(⟨ZT ⟩) ∈ {13, 14}. In turn, we have either two or three
extra relations among the singular tuples of T .

Example 5.1.4. Consider a general tensor U = (uijk) of format m = (2, 3, 5).
It admits 18 singular triples, and by Proposition 5.0.1 the projectivized critical
space P(HU) ⊂ P(C2⊗C3⊗C5) ∼= P29 has dimension 15. Let ZU ⊂ P(C2⊗C3⊗
C5). By Theorem 3.1.10, we have that |ZU | = 18 for a general U . The projective
span ⟨ZU⟩ is strictly contained in P(HU): indeed we showed in Theorem 5.1.3(i)
that 13 ≤ dim(⟨ZU⟩) ≤ 14. We verified symbolically that there exist two new
relations among the singular triples, thus proving that dim(⟨ZU⟩) = 13. We
write them as determinants of 5 × 5 matrices:

det(A1) =
∣∣U(x′

1 ⊗ x2) x3 U(1,1) U(1,2) U(1,3)

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

T(1,1)
U(2,1)

U(1,1)

U(1,2)

U(1,3)

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

T(1,2)
U(2,2)

U(1,1)

U(1,2)

U(1,3)

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

T(1,3)
U(2,3)

U(1,1)

U(1,2)

U(1,3)

∣∣∣∣∣∣∣∣∣∣∣
det(A2) =

∣∣U(x′
1 ⊗ x2) x3 U(2,1) U(2,2) U(2,3)

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

T(2,1)
U(1,1)

U(2,1)

U(2,2)

U(2,3)

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

T(2,2)
U(1,2)

U(2,1)

U(2,2)

U(2,3)

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

T(2,3)
U(1,3)

U(2,1)

U(2,2)

U(2,3)

∣∣∣∣∣∣∣∣∣∣∣
.

Also in this case we have chosen specific vectors (uijk)k to form the matrices A1

and A2, but there are of course other choices and all possibilities can be obtained
by computing all maximal minors of a large matrix similar to the one in (5.1.2).

Example 5.1.5. Consider a general tensor U = (uijk) of format m = (2, 3, 6).
It admits 18 singular triples, and by Proposition 5.0.1 the projectivized critical
space P(HU) ⊂ P(C2 ⊗ C3 ⊗ C6) ∼= P35 has dimension 16. Let ZU ⊂ P(C2 ⊗
C3 ⊗ C6). By Theorem 3.1.10, we have that |ZU | = 18 for a general U . Also in
this case the projective span ⟨ZU⟩ is strictly contained in P(HU). By Theorem
5.1.3(ii) we have that 13 ≤ dim(⟨ZU⟩) ≤ 14, hence there are at least two and at
most three new relations among singular triples. We computed symbolically the
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new three linear relations in this way. Consider x′
1 =

[
x1,2 x1,1

]T
and the 6 × 6

matrices

A1 =
[
U(x′

1 ⊗ x2) x3 U(0,0) U(0,1) U(0,2) U(1,0)

]T
A2 =

[
U(x′

1 ⊗ x2) x3 U(0,0) U(0,1) U(0,2) U(1,1)

]T
A3 =

[
U(x′

1 ⊗ x2) x3 U(0,0) U(0,1) U(0,2) U(1,2)

]T
where U(i,j) =

[
uij1 . . . uij6

]T
for all (i, j) ∈ [2]×[3]. Each determinant det(Aj),

after the substitutions zijk = x1,ix2,jx3,k, gives a linear relation among the 18
singular triples of the general tensor U . Each linear relation can be seen as a
sum of 2 determinants of 6 × 6 matrices.

The next proposition generalizes the observations made in Examples 5.1.2,
5.1.4 and 5.1.5, and provides a method to check easily that the new relations
among singular k-tuples of a tensor U are satisfied by U itself.

Proposition 5.1.6. [ST22, Proposition 6.3] Consider a tensor U = (ui1···ik)

of format m = (m1 + 1, . . . ,mk + 1), where mk ≥
∑k−1

i=1 (mi). Consider the
(mk + 1) × (mk + 1) matrix

A =
[
U(y1 ⊗ · · · ⊗ yk−1) yk UI1 · · · UImk−1

]T
where Il ∈

∏k−1
i=1 [mi + 1], with [mi + 1] = {1, . . . ,mi + 1} and UIl = (uj1··· jk−1jk |

(j1, . . . , jk−1) ∈ Il) for all l ∈ [mk − 1], while using (3.1.2),

U(y1 ⊗ · · · ⊗ yk−1)s =
∑

jℓ∈[mℓ+1]

uj1··· jk−1s y1,j1 · · · yk−1,jk−1
∀ s ∈ [mk + 1] .

Then det(A) contains only terms in y1,j1 · · · yk,jk with (j1, . . . , jk−1) ∈
∏k−1

i=1 [mi+
1] \ {I1, . . . , Imk−1}.

Proof. We compute det(A) by applying the generalized Laplace formula with

respect to the first two rows of A. We use the shorthand U
(p,q)
Il

to denote the row
vector obtained after removing the columns p and q from UIl . We also denote by
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σp,q the permutation of [mk + 1] sending 1 to p and 2 to q.

det(A) =
∑

1≤p<q≤mk+1

sign(σp,q)

∣∣∣∣U(y1 ⊗ · · · ⊗ yk−1)p U(y1 ⊗ · · · ⊗ yk−1)q
yk,p yk,q

∣∣∣∣ ·
∣∣∣∣∣∣∣∣
U

(p,q)
I1
...

U
(p,q)
Imk−1

∣∣∣∣∣∣∣∣
=

∑
1≤p<q≤mk+1

sign(σp,q)
∑

jℓ∈[mℓ+1]

(uj1··· jk−1pzj1··· jk−1q − uj1··· jk−1qzj1··· jk−1p)

∣∣∣∣∣∣∣∣
U

(p,q)
I1
...

U
(p,q)
Imk−1

∣∣∣∣∣∣∣∣
=

∑
jℓ∈[mℓ+1]

∑
1≤p<q≤mk+1

sign(σp,q)

∣∣∣∣uj1··· jk−1p uj1··· jk−1q

zj1··· jk−1p zj1··· jk−1q

∣∣∣∣ ·
∣∣∣∣∣∣∣∣
U

(p,q)
I1
...

U
(p,q)
Imk−1

∣∣∣∣∣∣∣∣
=

∑
jℓ∈[mℓ+1]

det(Ã(j1, . . . , jk−1)) ,

(5.1.3)

where in the second equality in (5.1.3) we plugged in the relations uj1··· jk =
y1,j1 · · · yk,jk and

Ã(j1, . . . , jk−1) :=
[
U(j1,...,jk−1) z(j1,...,jk−1) UI1 · · · UImk−1

]T
.

Hence det(Ã(j1, . . . , jk−1)) ̸= 0 only if (j1, . . . , jk−1) ∈
∏k−1

i=1 [mi+1]\{I1, . . . , Imk−1},
giving the desired result.

Note that equation (5.1.3) tells us that det(A) may be written as a sum
of determinants of the matrices Ã(j1, . . . , jk−1). The number of non-zero sum-
mands is equal to the cardinality of

∏k−1
i=1 [mi + 1] \ {I1, . . . , Imk−1}, that is

(m1 + 1) · · · (mk−1 + 1) − (mk + 1) + 2. For example, we have seen in Example
5.1.2 that the unknown relations among singular triples of a 2× 2× 4 tensor can
be written as the sum of 2 · 2 − 4 + 2 = 2 determinants and in Example 5.1.4
that the unknown relations among singular triples of a 2 × 3 × 5 tensor can be
written as the sum of 2 · 3 − 5 + 2 = 3 determinants.

With this we understand the membership problem T ∈ ⟨ZT ⟩ in the following
cases.

Theorem 5.1.7. [ST22, Theorem 6.4] Let T ∈ V be a general tensor of order k
of the following formats:

1. k = 3, m = (2, 2, N + 1), N ≥ 3;

2. k = 3, m = (2, 3, N + 1), N ≥ 4;

Then T ∈ ⟨ZT ⟩.
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Proof. The first two items are done in the Examples 5.1.2, 5.1.4 and 5.1.5.

The next result extend Theorem 4.2.10 beyond of boundary format for some
tensor formats.

Theorem 5.1.8. [ST22, Theorem 6.6] Let T ∈ V = Cm1+1 ⊗ · · · ⊗ Cmk+1 be a
general tensor of order k of the formats as in Theorem 5.1.7. Then the fiber of
the rational map τ : T 7→ Eig(T ) is T itself. Furthermore, T is determined by its
singular vector tuples.

Proof. Let T ∈
⊗k−1

i=1 Cmi+1 ⊗ L ⊂ V be a general tensor of boundary for-

mat m, that is dim(L) =
∑k−1

i=1 mi. By Theorem 3.1.16 we have that ⟨ZT ⟩ ⊂⊗k−1
i=1 Cmi+1 ⊗ L. Moreover Theorem 4.2.10 says that the fiber of the map

τ : T 7→ Eig(T ) introduced in (4.0.1) is one point for tensors in spaces satisfying
the boundary format. Suppose that U ∈ V is not contained in any subspace
satisfying boundary format. Examples 5.1.2, 5.1.4 and 5.1.5 show that in such
case U ∈ ⟨ZU⟩ and ⟨ZU⟩ is not contained in any subspace of boundary format,
thus ZU ̸= ZT and the fiber of the map at Eig(T ) is a single point.

We now proceed by using the fact that the rank of the map τ satisfies semi-
continuity, therefore the map is generically finite-to-one. Furthermore, since the
fibers are linear spaces, we obtain that the general fiber is a single point.



Chapter 6

Waring problem and tensor

decomposition

In this chapter we describe the algorithm for Waring decomposition presented in
[OO13]. Utilizing the results obtained in [CCO17] on the Waring loci of plane
cubics, we are able to give an algorithm for general plane cubics over the complex
numbers.

6.1 Algorithm for Waring decomposition

Let V be an m+ 1-dimensional vector space over C.

Definition 6.1.1. Let f ∈ SymdV , fix 0 ≤ a ≤ m, 1 ≤ l ≤ d− 1. We construct
the linear map

Pf : Hom

(
SymlV,

a∧
V

)
→ Hom

(
m−a∧

V, Symd−l−1V

)
.

Such map is defined on decomposable polynomials as

Pvd(M)(w) = (M(vl) ∧ v ∧ w)(vd−l−1),

where M ∈ Hom
(
SymlV,

∧a V
)
, w ∈

∧m−a V and we identify
∧m+1 V ∼= C.

The definition of Pf for any element f ∈ SymdV is extended via linearity.

From the definition it seems quite hard to compute directly the matrix of the
map Pf , however the next result from [LO13] gives a better manner to compute
it.

Lemma 6.1.2. [LO13] Let f ∈ SymdV . The matrix of

Pf : Hom

(
SymlV,

a∧
V

)
→ Hom

(
m−a∧

V, Symd−l−1V

)

74
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can be computed using the matrix km+1−a of the Koszul complex

0 → R(−m− 1)
km+1−−−→ . . .

k2−→ R(−1)
k1−→→ R → C → 0,

that has size
(
m+1
a

)
×
(
m+1
a+1

)
, where at the place of the indeterminate xi we sub-

stitute the catalecticant matrix C l
fi
of size

(
m+d−l−1

m

)
×
(
m+l
m

)
, where fi = ∂f

∂xi
.

Proof. [LO13, Section 8.3]

We give now a more general definition of eigenvectors of a tensor.

Definition 6.1.3. Given M ∈ Hom(SymlV,
∧a V ), a vector v ∈ V is an eigen-

vector of the tensor M if
M(vm) ∧ v = 0.

Notice that for a = 1 such definition coincides with the definition of singular
vector tuples utilised throughout chapters 3 and 4.

Lemma 6.1.4. [OO13, Lemma 3.3] Let M ∈ Hom(SymlV,
∧a V ).

1. A vector v ∈ V is an eigenvector of M if and only if M ∈ ker(Pvd).

2. Let f =
∑r

i=1 v
r
i . If each vi is an eigenvector of M , then M ∈ ker(Pf ).

Proof. To prove the first item recall the definition of Pvd :

Pvd(M)(w) = (M(vl) ∧ v ∧ w)(vd−l−1).

This is equal to 0 for all w if and only if M(vl) ∧ v = 0.
The second part follows from the first item by using linearity.

This generalized notion of eigenvectors of tensors can be understood by means
of the universal quotient bundle Q on PV in the same fashions as in chapter 3.

Lemma 6.1.5. [OO13, Lemma 3.7]

1. The fiber of
∧aQ(l) at x = ⟨v⟩ is isomorphic to Hom(⟨vl⟩,

∧a V/⟨v ∧∧a−1 V ⟩).

2. The section sM vanishes in ⟨v⟩ if and only if v is an eigenvector of the
tensor M .

We now introduce the linear map Af that was first introduced in [LO13].
Such map is interesting since the zero loci of kerAf can be utilised to describe
the summands of a Waring decomposition of f , moreover it can be related to
Pf , that can be easily computed, allowing to have an effective algorithm (see
Algorithm 2).

Let L be a line bundle on an irreducible subvariety X that gives the embed-
ding X ⊂ P(H0(X,L)∗) = PW . In particular, if we take L = O(d) on PV , this
gives the embedding of the Veronese variety X = νd(Pn) and W = SymdV .
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Let E be a vector bundle on X. The linear map Af was constructed on
[LO13], it depends linearly on f ∈ W . It comes naturally from the contraction
map

H0(E) ⊗H0(E∗ ⊗ L) → H0(L).

This induces a linear map

H0(E) ⊗H0(L)∗ → H0(E∗ ⊗ L)∗.

Therefore, if we fix an element f ∈ H0(L)∗, we can see such map as

Af : H0(E) → H0(E∗ ⊗ L)∗.

Let f =
∑r

i=1 vi ∈ W . The ideal sheaf of the decomposition of f , that is, the ideal
defining the points {[v1], . . . , [vr]}, is related with the map Af by the following
result.

Proposition 6.1.6. [LO13, Proposition 5.4.1] Let Z = {[vi]}ri=1. Then

H0(IZ ⊗ E) ⊂ ker(Af ), H0(IZ ⊗ E∗ ⊗ L) ⊂ (ImAf )⊥.

The first inclusion is an equality if H0(E∗ ⊗ L) → H0(E∗ ⊗ L|Z) is surjective.
The second one is an equality if H0(E) → H0(E|Z) is surjective.

Notice that the meaning of such result is that with an appropriate bundle E,
we may study the set {[v1], . . . , [vr]} by considering the zero locus of H0(IZ⊗E).
When we have equality of the inclusions in the proposition, this means that we
can obtain it directly from the zero locus of the kernel of Af .

The next two results of [OO13] shows how to choose an appropriated bundle
E so that the equality holds.

Proposition 6.1.7. [OO13, Proposition 4.3] Assume that rank(Af ) = k·rank(E).
Then the equalities hold on Proposition 6.1.6.

Theorem 6.1.8. [OO13, Theorem 4.4] Assume that rank(Af ) = k ·rank(E) and

H0(IZ ⊗ E) ⊗H0(IZ ⊗ E∗ ⊗ L) → H0(I2
Z ⊗ L)

is surjective.
Assume that X is not k-weakly defective, then the common zero locus of

ker(Af ) and of (Im(Af ))⊥ is given by Z itself, hence Z can be reconstructed from
f .

Such results gives the following algorithm.
As previously mentioned, describing the map Af is difficult. The next step is

to relate it to Pf . We now make a summary of the main points of [OO13, section
4.1]. In order to show the relation of Pf and Af , consider the minimal resolution
of the bundle E:

· · · → L2 → L1 → E → 0,
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Algorithm 1 [OO13, Algorithm 4]

Input: f ∈ SymdV and a convenient vector bundle E.

1. Construct the map Af with L = O(d).

2. Compute ker(Af ). If ker(Af ) is trivial the algorithm fails.

3. Find the base locus Z = {[v1], . . . , [vs]} of kerAf . If it does not consist of
finitely many points the algorithm fails.

4. Solve the linear system defined by f =
∑s

i=1 civ
d
i .

Output: The Waring decomposition of f .

where each Li is a direct sum of line bundles and has the property that the
induced map on global sections H0(L1) → H0(E) is surjective.

The minimal resolution of E∗ is given by

· · · → L−1 → L0 → E∗ → 0,

where once again Li is a direct sum of line bundles and for any line bundle L we
have H0(L0 ⊗ L) → H0(E ⊗ L) is surjective.

Dualising this sequence and bringing them together and we obtain the reso-
lution

· · · → L2 → L1
p−→→ L0 → L−1 → . . . ,

where Imp = E. The map p gives the presentation of E. We have the composition

Pf = β ◦ Afα : H0(L1)
α−→ H0(E)

Af−→ H0(E∗ ⊗ L)∗
β−→ H0(L∗

0 ⊗ L)∗,

where α is surjective and β is injective. Hence, we have that rankPf = rankAf ,
but the most important fact coming from this is that the zero locus of ker(Pf )
and ker(Af ) are the same, thus instead of utilising Af on Algorithm 1, we may
use Pf instead. The details of the previous argument are described in [LO13,
Section 8.3] and [OO13, Section 4.1].

With this we are able to present a practical algorithm for Waring decom-
positions of low rank polynomials by techniques of vector bundles (Algorithm
2).

6.2 Waring and forbidden loci

In this section we follow closely the work in [CCO17]. Let V be a complex vector
space of dimension m+ 1 with basis {x0, . . . , xm}. Denote S = C[x0, . . . , xm] the
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Algorithm 2 [OO13, Algorithm 5]

Input: f ∈ SymdV , where V has basis {x0, . . . , xm}.

1. Compute δ− = ⌊d−1
2
⌋, δ+ = ⌈d−1

2
⌉ and choose a = ⌈m

2
⌉.

2. Construct the Koszul matrix km+1−a.

3. Construct the catalecticants Cfi : Symδ+V → Symδ−V of fi = ∂f
xi

for each
i.

4. Construct the matrix Pf : Hom(Symδ+V,
∧a V ) → Hom(

∧m−a V, Symδ−V ).

5. Compute a basis {M1, . . . ,Mt} of ker(Pf ) and associate vectors of polyno-
mials wi to each Mi. If ker(Pf ) is trivial stop, the method fails.

6. Compute the eigenvectors {v1, . . . , vs} of a general element in ker(Pf ).

7. Solve the linear system f =
∑s

i=1 civ
d
i in the unknowns ci.

Output: The unique Waring decomposition of f .

polynomial ring over the basis of V , in other words,

S =
⊕
d≥0

SymdV,

and the d-graded part of S corresponds exactly to SymdV . Let R = C[y0, . . . , ym]
be another polynomial ring. We can define a structure of R-module on S via
differentiation, that is, we interpret the variables yi as the differential form ∂xi.
This action is called the apolarity action and defined by

g ◦ f = g(y0, . . . , ym)f = g(∂x0, . . . , ∂xm)f,

where g ∈ R and f ∈ S.

Definition 6.2.1. Let f ∈ SymdV = Sd, the apolar ring of f , denoted (f)⊥, is
defined as

(f)⊥ = {g ∈ R|g ◦ f = 0}.

In other words, the apolar ring of f consists of the polynomials that under the
act of differentiation annihilates f .

Lemma 6.2.2 (Apolarity lemma). Let X = {p1, . . . , pr} ⊂ Pm be a set of reduced

points. Denote pi =
(
p
(0)
i , . . . , p

(m)
i

)
, and consider the associated linear form

li = p
(0)
i x0 + · · ·+ p

(m)
i xm for all i = 1, . . . , r. Let f ∈ SymdV , then the following

are equivalent:

1. IX ⊂ (f)⊥.



79

Description Normal form Result
three non concurrent lines x0x1x2 Theorem 6.2.6
line + conic meeting transversely x0(x1x2 + x20) Theorem 6.2.7
nodal x0x1x2 − (x1 + x2)

3 Theorem 6.2.8
cusp x30 − x21x2 Theorem 6.2.10
general smooth (a3 ̸= −27, 0, 63) x30 + x31 + x32 + ax0x1x2 Theorem 6.2.9

Table 6.1: Rank 4 plane cubics and their normal form.

2. f =
∑r

i=1 cil
d
i for some ci ∈ C, i = 1, . . . , r.

A set of points X such that the apolarity lemma holds is said to be an apolar
set to f .

In the light of Lemma 6.2.2, we can define the Waring locus of a polynomial.

Definition 6.2.3. Given a homogeneous polynomial f ∈ SymdV , the Waring
locus of f , denoted Wf , is defined as

Wf = {p ∈ Pm | p ∈ X, IX ⊂ (f)⊥ and |X| = rank(f)}.

The forbidden locus of Ff is the complement of Wf ; Ff = Pm \Wf

In other words, the Waring locus of a homogeneous polynomial f consists
of the linear forms that appear, up to scalar multiplication, in a Waring de-
composition of f . If the rank of f is equal to r, another equivalent definition
is

Wf = {[l] ∈ S1 | ∃ l1, . . . , lr−1 ∈ S1, f ∈ ⟨ld, ld1, . . . , ldr−1⟩}.

The forbidden locus on the other hand consists of the linear forms that cannot
appear in any minimal decomposition of f .

The goal in this section is to describe the Waring locus of a rank 4 plane
cubic f . We follow the results obtained in [CCO17] to show that the forbidden
locus in such case is a closed subset for the general plane cubic, this implies
that a general linear form l is on the Waring locus of f , thus it is part of a
Waring decomposition. This is the main fact utilised in section 6.3 to extended
Algorithm 2 to plane cubics of generic rank.

We start by recalling the next two results that will be needed to prove the
results on the description of the Waring locus of rank four cubics.

Proposition 6.2.4. [CCG12, Proposition 3.1] Let 1 ≤ d0 ≤ d1 ≤ · · · ≤ dm and
f = xd00 · · ·xdmm be a monomial in m+ 1-variables. Then

rank(f) =
m∏
i=1

(di + 1).
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Proposition 6.2.5. [BBT13, Corollary 19] Let 1 ≤ d0 ≤ d1 ≤ · · · ≤ dm,
d =

∑m
i=0 di and f = xd00 · · ·xdmm be a monomial in m+1-variables. Then for any

Waring decomposition
f = ld1 + · · · + ldr

the linear forms li have x0 appearing with a nonzero coefficient

Theorem 6.2.6. [CCO17, Theorem 3.3] If f = xd00 · · ·xdmm , with d0 ≤ d1 ≤ · · · ≤
dm, then

Ff = V (y0 · · · yn) ⊂ Pm,

where n = max{i | di = d0}.

Proof. The apolar ideal of f is (f)⊥ = (yd0+1
0 , . . . , ydm+1

m ). Given a point p =
[(p0, . . . , pm)] /∈ V (y0 · · · ym), we have that pi ̸= 0 for i ≤ n, thus assume that
p0 = 1. We prove that p ∈ Wf . For i = 1, . . . ,m, construct the following
hypersurfaces on Pm:

Hi =

{
ydi+1
i − pdi+1

i ydi+1
0 if pi ̸= 0;

ydi+1
i − yiy

di
0 if pi = 0.

The hypersurfaces Hi are the union of di + 1 hyperplanes.
The ideal I = (H1, . . . , Hn) is contained in (f)⊥. Indeed, if di = d0, Hi =

ydi+1
i −pdi+1

i ydi+1
0 and it is trivial. On the other hand, if di > d0, it could happen

that Hi = ydi+1
i − yiy

di
0 , thus xd00 is annihilated by ydi0 .

Moreover, V (I) is the set of reduced points [(1, q1, . . . , qm)] where

qi ∈

{
{ξji pi | j = 0, . . . , di} if pi ̸= 0, where ξdi+1

i = 1;

{ξji | j = 0, . . . , di − 1} ∪ {0} if pi = 0, where ξdii = 1.

Therefore, it is a set of rank(f) distinct points apolar to f and containing the
point p itself, this implies that p ∈ Wf and V (y0 · · · yn) ⊃ Ff . The equality
follows from Proposition 6.2.5.

Notice that if f is a rank four plane cubic that is not a cusp, it holds that
L = (f)⊥2 the degree 2 part of the apolar ideal of f is a net of conics, thus
L = ⟨C1, C2, C3⟩, moreover all the sets of four points apolar to f are the complete
intersection of two conics.

This means that fixing a point p ∈ P2, we can consider the pencil L(−p)
of plane conics passing through p. If L(−p) consists of 4 distinct points, then
p ∈ Wf , otherwise p ∈ Ff . In the plane P(L) we can consider the degree
three curve ∆ of reducible conics in L. Moreover, a pencil of conics L′ has four
distinct base points, no three collinear, if and only if the pencil consists of three
irreducible conics. Therefore, the main technique utilised in the next proofs
consists in considering a fixed point p ∈ P2 and the line P(L(−p)) ⊂ P(L). If the
line is a proper secant line of ∆ and cuts it in three distinct points, then p ∈ Wf .
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Otherwise, p ∈ Ff . Therefore we have to analyse the dual curve ∆̃ ⊂ P(L)∗ of
lines not intersecting ∆ in three distinct points.

To find Ff we can consider the map

ϕ : P(S1) → P(L)∗

([a, b, c]) 7→ [(C1(a, b, c), C2(a, b, c), C3(a, b, c))].

This map is generically 4 : 1, in particular Ff = ϕ−1(∆̃).

Theorem 6.2.7. [CCO17, Theorem 3.12] If f = x0(x1x2 − x20), then

Ff = V (y0y1y2(y
2
0 − 12y1y2)).

Proof. Let L = (f)⊥2 and C1 = y20 − 6y1y2, C2 = y21 and C3 = y22 = 0 be the
conics that generates L. In the plane P(L) with coordinates α, β, γ let ∆ be the
cubic of irreducible conics in L. We have that the equation for ∆ is given by

det

α 0 0

0 β −3α

0 −3α γ

 = αβγ − 9α2 = 0,

Therefore ∆ is the union of the conic C = 9α2 − βγ and the line r = α = 0.
The line r corresponds to L([(−1, 0, 0)]), thus ([(1, 0, 0)]) ∈ Ff .

To understand the forbidden locus Ff we have to study all the lines on P(L)
that do not intersect ∆ in three distinct points. The remaining options are
the lines that cuts C in two distinct points and the lines that go through the
intersection points of r and C: [(0, 1, 0)], [(0, 0, 1)]. More precisely, p ∈ Ff if and
only if the line

L : C1(P )α + C2(P )β + C3(p)γ = 0

satisfies one of the following:

1. L is tangent to the conic C.

2. L passes through [(0, 1, 0)].

3. L passes through [(0, 0, 1)].

The cases (2) and (3) corresponds exactly to y21 = 0 and y22 = 0, thus
V (y1y2) ⊂ Ff . If we assume that p /∈ {y1y2 = 0} it gives that L is tangent
to the conic C if y20(y20 − 12y1y2) = 0. Thus

Ff = V (y0y1y2(y
2
0 − 12y1y2)).

Theorem 6.2.8. [CCO17, Theorem 3.13] If f = x21x2 − x30 − x0x
2
1, then

Ff = (g1g2),
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where g1 = y30 − 6y21y2 + 3y0y2 and g2 = 9y40y
2
1 − 4y61 − 24y0y

4
1y2 − 30y20y

2
1y

2
2 +

4y30y
3
2 − 3y21y

4
2 − 12y0y

5
2.

Proof. We start noticing that [(1, 0, 0)] ∈ Ff since f + x3 = z(y2 − xz) that has
rank 5. Let L = (f)⊥2 , C1 = y0y1, C2 = y20 − 3y22 = 0 and C3 = y21 − y0y2 = 0 the
generators of L.

In the plane P(L) with coordinates α, β, γ let ∆ be the cubic of irreducible
conics in L. We have that the equation of ∆ is given by

det

 β 1
2
α 1

2
γ

1
2
α γ 0

1
2
γ 0 −3β

 = 3α2β − 12β2γ − γ3 = 0.

∆ is an smooth and irreducible cubic, this implies that the only possibility of
a line PL(−p) to not cut ∆ in three distinct points is if the line is tangent. This
gives

Ff = {p ∈ P2 | P(L(−p) is tangent to ∆ ⊂ P(L)}.

The line defined by PL(−p) is given by

L : C1(P )α + C2(P )β + C3(P )γ = 0,

and we wish for it to be tangent to ∆. Consider two cases:

1. C1(P ) ̸= 0.

2. C1(P ) = 0.

For (1), we can compute α from the equation of the line and substitute in the
equation of ∆. The next step is to compute the discriminant D of the form in β
and γ

3(C2β + C3γ)2β − 12C2
1β

2γ − C2
1γ

3,

we get that D = 27C4
1g

2
1g2. This means that if C1(P ) ̸= 0, then p ∈ Ff if and

only if P ∈ V (g1g2).
On the other hand for (2) we obtain that Ff ∩ V (C1) = V (g1g2) ∩ V (C1).

Theorem 6.2.9. [CCO17, Theorem 3.16] If f = x30 + x31 + x32 + ax0x1x2, then:

1. If
(
a3−54
9a

)3
̸= 27, then Ff = ϕ−1(∆̃), where ∆̃ is the dual curve of the

smooth plane cubic

α3 + β3 + γ3 −
(
a3 − 54

9a

)3

αβγ = 0.

2. Otherwise, Ff is the union of three lines pairwise intersecting in three
distinct points.
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Proof. Let L = (f)⊥2 and C1 = ay20 − 6y1y2 = 0, C2 = ay21 − 6y0y2 = 0 and
C3 = ay22 − 6y0y1 be its generators. The cubic curve ∆ of reducible conics has
equation in the plane P(L) with coordinates α, β and γ given by

det

 aα −3γ −3β

−3γ aβ −3α

−3β −3α aγ

 = (a3 − 54)αβγ − 9aα3 − 9aβ3 − 9aγ3 = 0.

Assuming that
(
a3−54
9a

)3
̸= 27 it holds that ∆ is a smooth cubic curve. Thus,

we have that

Ff = {p ∈ P2 | P(L(−p)) is tangent to ∆ ⊂ PL}.

This gives that Ff is obtained as mentioned before Theorem 6.2.7.
Otherwise ∆ is given by the union of three lines intersecting in three distinct

points Q1, Q2, Q3. Hence

Ff = {p ∈ P2 | Qi ∈ P(L(−p)) for some i}.

Theorems 6.2.6, 6.2.7, 6.2.8 and 6.2.9 imply that for those types of normal
form for the plane cubic the forbidden locus is a closed subvariety, in particular
it is for the generic plane cubic. The last case of a cusp in Theorem 6.2.10 is the
only case where the rank 4 plane cubic does not have a closed forbidden locus
and, in such case, the algorithm will not work.

Theorem 6.2.10. [CCO17, Theorem 5.1] Let f = x30 − x21x2 be a cusp, then

Wf = Wx30
∪Wx21x2

⊂ P2,

where Wx30
= P0 and Wx21x2

⊂ P1.

The proof of such theorem is long thus we skip it. It can be found given for
a more general format in [CCO17, Section 5].

Observe that Wx21x2
⊂ P1 is described in Theorem 6.2.6, it consists of the line

P1 without two points: (1 : 0) and (0 : 1). Therefore, we can give a geometrical
interpretation for the Waring locus Wf a cusp f : it is the union of a line with
two points removed and a single point sitting inside of the plane P2. This makes
easy to visualise that Wf is not an open subset of P2, moreover it is not dense
either.

By joining together theorems 6.2.6, 6.2.7, 6.2.8, 6.2.9, 6.2.10 we obtain the
following corollary.

Corollary 6.2.11. Let f be a cubic in P2, then Ff is closed subvariety if and
only if f is not a cusp.
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6.3 Numeric algorithm for general plane cubics

decomposition

In this section we present a numerical algorithm in Macaulay2 [GS] for the Waring
decomposition of a general plane cubic. The main idea is that given a general
plane cubic f ∈ Sym3C3, the results on section 6.2 guarantees that a general
linear form l is part of a Waring decomposition of f , in other words l ∈ Wf . A
general linear form can be understood in this context as a random linear form,
thus we exploit this idea to utilise Algorithm 2. Such algorithm a piori does not
work for a general plane cubic, but we reduce the rank of f by adding αl and
computing which should be the coefficient α such that p = f + αl has rank 3.
We proceed to apply the Algorithm 2 to p.

Notice that actually the algorithm works not only for a general plane cubic,
but it works for any plane cubic of rank 4 except the cusp (see table 6.1). The
reason is that if f is a plane cubic of rank 4, then the forbidden locus of f is a
closed subvariety of P2 if and only if f is not a cusp. The forbidden locus being a
closed subvariety of P2 is equivalent to say that the random linear form l chosen
will be on the Waring locus with probability one, thus we are able to reduce the
rank. Otherwise, if f is a cusp, then l ∈ Ff with probability one, in such case we
cannot reduce the rank of f via a random linear form l and the algorithm fails.
We remark that although we have not implemented, it is still possible to write
an algorithm for the case that f is a cusp, since the Waring locus of the cusp is
completely described in Theorem 6.2.10. The only adaptation necessary in the
code presented next is that instead of choosing a random linear form we would
have to compute a linear form l ∈ Wf and then proceed in the same manner.

Below we present the Macaulay2 code.

n=2;

d=3;

s=4;

R=QQ[x_0..x_n];

b=basis(1,R);

ff=random(3,R) --the general plane cubic

gg=random(1,R) --a random linear form is part of the decomposition

of ff↪→

Q=QQ[x_0..x_n,a_0];

h=sub(ff,Q)-a_0*(sub(gg,Q))^3 --the new polynomial to be

decomposed↪→

m=diff(sub(b,Q),diff(transpose sub(b,Q),

diff(matrix{{0,x_2,-x_1},{-x_2,0,x_0},{x_1,-x_0,0}},h))) --the

catalecticant of h↪→

I=saturate pfaffians(8,m) --computing the pfaffians is faster than

the determinant↪→
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xa=sub(a_0%I,R) --the coefficient such that gg^3 appears on the

decomposition of ff↪→

p=ff-(xa)*(gg)^3

use R

H= diff(b,diff(transpose

b,diff(matrix{{0,x_2,-x_1},{-x_2,0,x_0},{x_1,-x_0,0}},p)))↪→

--H is the substitution of the catalecticant on the Koszul matrix

HM = generators kernel H

r=rank HM --3 is the expected value

m1=sub(sub(random(QQ),R)*transpose

matrix{{HM_(0,0),HM_(1,0),HM_(2,0)},
{HM_(3,0),HM_(4,0),HM_(5,0)},{HM_(6,0),HM_(7,0),HM_(8,0)}},QQ)

↪→

↪→

--The matrix associated to the first generator of the kernel of H

m2=sub(sub(random(QQ),R)*transpose

matrix{{HM_(0,1),HM_(1,1),HM_(2,1)},
{HM_(3,1),HM_(4,1),HM_(5,1)},{HM_(6,1),HM_(7,1),HM_(8,1)}},QQ)

↪→

↪→

m3=sub(sub(random(QQ),R)*transpose

matrix{{HM_(0,2),HM_(1,2),HM_(2,2)},
{HM_(3,2),HM_(4,2),HM_(5,2)},{HM_(6,2),HM_(7,2),HM_(8,2)}},QQ)

↪→

↪→

--A random combination of the matrices coming from the kernel of H

MM=m1+m2+m3

eig=(eigenvectors(MM))_1 --The eigenvectors of MM give the linear

forms of the decomposition of H↪→

S =CC[x_0..x_n,c_0..c_n]

bS = sub(b,S);

for i from 0 to n do l_i=(sum(n+1,j->eig_(j,i)*x_j))^3

--the linear forms obtained from the eigenvectors

mm=matrix{{l_0},{l_1},{l_2},{sub(p,S)}}
coe=sub( transpose contract(mm,symmetricPower(3,bS)),CC)

--the matrix of the coefficients of l0,l1,l2,p

A=submatrix(coe,0..2)

B=submatrix(coe,3)

C=solve(A,B, ClosestFit=>true)

--the coefficients of l0,l1,l2 for the best approximation of p

fc=C_(0,0)*l_0+C_(1,0)*l_1+C_(2,0)*l_2 --the numerical solution

for a decomposition of p↪→

fc-sub(p,S) biggest error noticed was of order 10^(-13)

f=fc+sub(xa*gg^3,S) --the numerical solution for the decomposition

of ff↪→

f-sub(ff,S) biggest error noticed was of order 10^(-13)



Chapter 7

Binary forms of suprageneric

rank

In this chapter we present the work done by the author in collaboration with
Alejandro Gonzáles Nevado [NT20].

7.1 The variety of given rank

Let V be a m + 1-dimension complex vector space. Denote by Sd,r the set of
polynomials in SymdV of rank r, that is,

Sd,r = {f ∈ SymdV | rank(f) = r}.

Let νd(PV ) ⊂ PSymdV be the d-th Veronese variety. If the number r is smaller
or equal to the generic rank

g =

⌈(
m+d
d

)
m+ 1

⌉
of SymdV , then the r-th secant variety of the Veronese variety, denoted Σrνd(PV )
coincides with the Zariski closure of Sd,r, i.e.,

Σrνd(PV ) = Sd,r.

On the other hand, if r ≥ g, the r-th secant variety fulfils the ambient space,
thus Sd,r cannot be expressed as a secant variety of the Veronese variety. The
connection with the secant variety allows the use of a larger spectre of techniques
to tackle the problems related to Sd,r, such as the Terracini lemma, thus the
subgeneric case has been vastly studied in the past. The first goal in this section
is to relate the suprageneric case with the multiple root loci (section 7.2). This
allows a better understanding of the suprageneric case.

The second goal is related with the result obtained in [CS11, Theorem 2],
that, for binary forms, describes the strata of the variety Sd,r for r ≤ g.

86



87

Theorem 7.1.1. [CS11, Theorem 2] Let 0 ≤ r ≤ ⌈d+1
2
⌉ be an integer, then

Sd,r+1 =
(
∪r+1
i=1

)⋃
(∪ri=0Sd,d−i+1) ,

where Sd,0 = Sd,d+1 = ∅. Furthermore, this implies that

Sd,k+1 \ Sd,k = Sd,k+1 ∪ Sd,d−k+1.

We extend such result in Theorem 7.3.4 for binary forms of suprageneric rank.

7.2 The multiple root loci

We follow basically the notation in [LS16]. Given an integer m, we say that a
vector λ = (λ1, . . . , λd) is a partition of m with d parts if λ1 ≥ · · · ≥ λd > 0 and
|λ| := λ1 + · · ·+λd = m. Apart from this notation, we may also write a partition
as a multiset λ = {1m1 , . . . , pmp}, where mi ≥ 0 is an integer for i = 1, . . . , p,
and represents that there are mi elements in the partition that are equal to i.

The set of homogeneous binary forms of degree m corresponds to a variety on
Pm associating the points to the coefficient of each monomial in the polynomial
expansion. The multiple root locus ∆λ associated to a partition λ = (λ1, . . . , λd)
of m is a subvariety of Pm associated to the polynomials that have d roots with
multiplicity λ1, . . . , λd. The dimension of this variety is dim(∆λ) = d and its
singular locus is a subset of the union⋃

λ properly refines µ

∆µ,

as described in [Kur12, Section 3], and in [Chi03].

We are particularly interested in the dual varieties ∆∗
λ. These are studied

in [Oed12] and [LS16]. In particular, Hilbert found that the degree of ∆λ is
deg(∆λ) = d

m1!···mp!
λ1 · · ·λd and, when the dual ∆∗

λ is a hypersurface (i.e., m1 =

0), [Oed12, Theorem 5.3] establishes that its degree is deg(∆∗
λ) = (d+1)!

m2!···mp!
(λ1 −

1) · · · (λd − 1).

Notice that, given a partition λ as above, we have another definition for ∆λ,
it also is the image of

(P1)d // Pn, (l1, . . . , ld)
� // lλ11 . . . lλdd .

It follows that the dimension of ∆λ is d and its smooth points are those in which
all the linear forms li are pairwise different.

The following lemma gives an expression of the tangent space of a multiple
root locus at a smooth point.
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Lemma 7.2.1. [LS16, Lemma 2.1, Lemma 2.2] Let f = lλ11 . . . lλdd ∈ ∆λ be a
smooth point and g ∈ (Pn)∗. Then the tangent space at f is given by

Tf∆λ = {h(x, y)
d∏
i=1

lλi−1
i | h ∈ P(K[x, y]d)}.

Furthermore, g ⊥ Tf∆λ if and only if

d∏
i=1

lλi−1
i (

∂

∂u
,
∂

∂v
)

annihilates g(u, v).

As we want to obtain a good description of the dual variety, we need to
introduce the conormal variety. The conormal variety of ∆λ is given by the
closure of the set

{(f, g) | f ∈ ∆λ is a smooth point and g ⊥ Tf∆λ}.

The dual variety ∆∗
λ is the image of the projection of the conormal variety onto

the second factor. Therefore it is the variety of binary forms that are annihilated
by some f . This observation leads to a parametrization of the conormal variety:
it can be seen as the set of points (f, g) of the form

f(x, y) =
d∏
i=1

(tix− siy)λi , g(u, v) =
d∑

i=1,λi ̸=1

(siu+ tiv)m−λi+2gi(u, v),

where gi(u, v) are binary forms of degree λi− 2, and (si, ti) ∈ P1. The dimension
of the dual variety to ∆λ is given, using [Kat03, Corollary 7.3], by

dim ∆∗
λ = m−m1 − 1.

The inclusions between multiple root loci can be characterized in terms of
refinements of the partitions that define them. Hence we have that ∆λ ⊂ ∆µ if
and only if µ refines λ.

In addition, for a partition λ = {1m1 , . . . , pmp}, we denote its derived partition
λ′ := (1m2 , . . . , (p − 1)mp), and this is a partition of m − d, where d =

∑
mi is

the number of parts. The next proposition gives a result similar to the one in
the previous paragraph for inclusions between dual varieties. These inclusions
are also characterized via refinements of partitions although it is not as direct
as the previous one: the equivalent condition for the inclusion of duals involves
refinements of derived partitions. Expressing this new condition requires thus
the related partitions that we have just introduced.

Proposition 7.2.2. [LS16, Proposition 3.4] Given two partitions λ, µ of m, then
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∆∗
λ ⊂ ∆∗

µ holds if and only if |λ′| ≤ |µ′| and, by adding to the parts, λ′ can be

transformed into a partition λ̃ that is refined by µ′.

7.3 The variety of rank k forms and the multiple

root loci

We are now able to prove the main results obtained in [NT20]. We start by
analysing the strata of the varieties of given rank r for r ≥ g, where g is the
generic rank in SymdP1. A final important remark concerns the good description
of the apolar ideal that we have in the case of a binary form. This description is
fundamental in the proof of the result bridging multiple root loci and varieties
generated by forms of fixed rank, which is itself an intermediate result towards
our main theorem.

Remark 7.3.1. If f is a binary form of degree d, then (f)⊥ = (g1, g2) with
deg(g1) + deg(g2) = n + 2. In addition, if deg(g1) ≤ deg(g2), then rank(f) =
deg(g1) if g1 is square free and rank(f) = deg(g2) otherwise.

The relations between the variety Sd,k was well know for degrees smaller
than 6. Therefore the first interesting example is the case where the degree is
d = 6. We explore this case for ranks bigger than the generic rank r = 4. In the
particular case of f ∈ S6,6, we have that the ideal (f)⊥ = (g1, g2) with d1+d2 = 8,
where d1 and d2 are the respective degrees. Since the rank of f is 6, we must
have d1 = 2, d2 = 6, and g1 has a double root. Therefore the only possibility is
that g1 = l2, where l is a linear form. In such case, by an immediate application
of [LS16, Lemma 2.2], we know that f ∈ ∆∗

3,13 . The other inclusion follows from
dimensional count. We can use such idea to compute any Sd,r. For example,
proceeding similarly for the rank 5 we have that d1 = 3, d2 = 5 and therefore we
have that g1 has two possible cases: either l31 or l21l2. In such case, f ∈ ∆∗

4,12 or
f ∈ ∆∗

3,2,1, respectively. We can see that the first is contained in the second, and
therefore f ∈ ∆∗

3,2,1. The other side follows again by dimensional count.

In [Buc+17, Proposition 19] it was obtained that the dimension of Sd,r for r
bigger than the generic rank is given by

dimSd,r = dim Σd−k+2(νd(P1)) − 1 = 2(d− r + 1).

Using this fact together with the preceding idea developed in the example, we
can obtain the following argument.

Proposition 7.3.2. [NT20, Proposition 2] Let k be an integer and suppose that
d ≥ d− k > ⌈d+1

2
⌉, then

Sd,d−k = ∆∗
3,2k,1d−2k−3 .

Proof. Let f ∈ Sd,d−k be a homogeneous polynomial of degree d and rank d− k.
We know that the apolar ideal (f)⊥ is generated by (g1, g2), such that d1 + d2 =
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d+ 2, with d1 ≤ d2 the respective degrees, and rank(f) = d2, if g1 is not square
free, or rank(f) = d1 otherwise. So we may assume that d2 = d − k, d1 = k + 2
and g1 has a double root. Thence g1 has the following form l20l1 . . . lk and f ∈
∆∗

3,2k,1d−2k−3 . (Notice that all other possibilities for g1, that is, with more than a
single double root, lead to a different partition λ but all of those are such that
λ′ is refined by (2, 1k) and therefore we have ∆∗

λ ⊂ ∆∗
3,2k,1d−2k−3 in such case.) It

follows that Sd,d−k ⊆ ∆∗
3,2k,1d−2k−3 . On the other hand, by the proof of [Buc+17,

Proposition 19], we have that dimSd,d−k = dim Σk+2(νd(P1)− 1 = (2k+ 3)− 1 =
2k + 2, and dim ∆∗

3,2k,1d−2k−3 = d−m1 − 1 = 2k + 2, so equality holds.

Following [CS11, Theorem 2], we obtain a similar result for the varieties of
rank r bigger than the generic rank. Furthermore, we also give another descrip-
tion for Sd,d−k. In order to do that we first recall the description of the Waring
locus of binary forms. In particular, the forbidden locus of a suprageneric-rank
binary form is a closed subvariety.

Theorem 7.3.3. [CCO17, Theorem 3.5] Let f be a degree d binary form and let
g ∈ (f)⊥ be an element of minimal degree. Then:

1. If rank(f) <
⌈
d+1
2

⌉
= g, then Wf = V (g).

2. If rank(f) > g, then Ff = V (g).

3. If rank(f) = g and d is even, then Ff is finite and non empty.

4. If rank(f) = g and d is odd, then Wf = V (g).

Proof. For (1) it is enough to use that the Waring decomposition of f is unique,
thus the apolar set is V (g).

To prove (2) we use remark 7.3.1. The apolar ideal is given by (f)⊥ = (g1, g2),
with d1 = deg g1 < d2 = deg g2, d1 + d2 = d + 2, g1 is not square free and
rank(f) = d2. Notice that the reason this case holds is that f has suprageneric
rank and d1 ≤ g. We first show that Ff ⊃ V (g1). Let p = V (l) ∈ V (g1) for some
linear form l that divides g1, we will show that there is no apolar set of points to
f containing p. This is equivalent to show that there is no square free element of
degree d2 in (f)⊥ divisible by l. Since g1 and g2 have no common factors and l
divides g1, thus l does not divides g2. It follows that the only elements of degree
d2 in (f)⊥ divisible by l are multiples of g1, thus not square free. Hence p ∈ Ff .
On the other hand, if p = V (l) /∈ V (g1), then l does not divide g1. Consider

(f)⊥ : (l) = (l ◦ f)⊥ = (h1, h2),

where c1 = deg h1 ≤ c2 = deg h2 and c1 + c2 = d + 1. Since h1 is a minimal
degree element in (f)⊥ and l does not divide g1, we have h1 = g1 and c2 = d2−1.
Thus rank(f) = rank(l ◦ f) + 1. Since ((f)⊥ : (l))d2−1 is a base point free, we can
choose h ∈ (f)⊥ : (l) to be a degree d2 − 1 square free element not divisible by
l. Hence P ∈ V (hl) and V (hl) is a set of d2 points apolar to f .
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For (3), let (f)⊥ = (g1, g2), with d1 = deg g1 and d2 = deg g2. Since d is even,
then d1 = d2 = rank(f) and f has finitely many apolar sets of rank(f) distinct
points. However, for each p ∈ P1, there is a unique set of rank(f) points apolar
to f and containing p. Thus, there is a unique element g ∈ (f)⊥d vanishing at p.
Thus p ∈ Ff if and only if g is not square free. There are finitely many not square
free elements in (f)⊥d , because they correspond to the intersection of the line given
by (f)⊥d in P(Td) (as in the notation of section 6.2) with the hypersurface given
by the discriminant and this line is not contained in the hypersurface since (f)⊥

contains square free elements.

To prove (4) we have that (f)⊥ = (g1, g2) with d1 = deg g1 and d2 = deg g2.
Since d is odd we have d2 = d1 + 1 and rankf = d1. This means that g1 is a
square free element of minimal degree and f has a unique apolar set of d1 distinct
points given by V (g1).

Theorem 7.3.4. [NT20, Theorem 1] Let k be an integer and suppose that d ≥
d− k > ⌈(d+1

2
)⌉, then Sd,d−k is the union

Sd,d−k = (∪k+1
i=1 Sd,i)

⋃
(∪ki=0Sd,d−i).

In particular Sd,d−k ∖ Sd,d−k+1 = Sd,k+1 ∪ Sd,d−k.

Proof. First we notice that, since Sd,d−k = ∆∗
3,2k,1d−2k−3 , then it can be described

as the set of sums of powers of linear forms

{ld−1
0 g + ld1 + · · · + ldk|li, g are linear forms, for i = 0, . . . k}.

It is trivial that ∪k+1
i=0 Sd,i is contained on Sd,d−k by just considering g = l0. If f

has rank d− i, with i ≤ k, then f =
∑d−i

j=1 l
d
j . It is possible to choose ld−i+1, . . . , ld

linear forms such that

f + ldd−i+1 + · · · + ldd =
d∑
j=1

ldj

has rank d. This can be done by choosing the first linear form ld−i+1 in the
forbidden locus Ff of f , and repeating this procedure inductively to the new
polynomial obtained. Since the obtained polynomial has rank d, we have that it
can be written as ld−1g, for some l, g linear forms. Substituting it on the right
side of the equation, we have that

f = ld−1g −
i∑

j=1

ldd−i+j,
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which is an element of ∆∗
3,2k,1d−2k−3 . So we obtained that

Sd,d−k ⊃ (∪k+1
i=0 Sd,i)

⋃
(∪ki=0Sd,d−i).

For the other inclusion, suppose that f ∈ ∆∗
3,2k,1d−2k−3 , then f = ld−1

0 g + ld1 +

· · · + ldk for some linear forms l0, . . . , lk, g. We analyse two cases. If g = l0, it is
clear that rank(f) ≤ k + 1. Otherwise, suppose that g ̸= l0, then ld−1

0 g has rank
d. Since all the other summands are power of linear forms, each of them can
either decrease the rank by 1, if they are on the Waring locus of ld−1

0 g, or it does
not change the rank, and it remains equal to d, if they are in the forbidden locus;
in both cases, we have that rank(f) ≥ d− k, hence we have the equality.

Theorem 7.3.5. [NT20, Theorem 3] Let d− k >
⌈
d+1
2

⌉
, then the singular locus

of Sd,d−k contains the subvariety Sd,k+1 ∪ Sd,d−k+1.

Proof. Let f = ld−1
0 g+ ld1 + · · ·+ ldk be a point of Sd,d−k. We compute the tangent

space at f , by considering li = aix + biy and g = αx + βy. We can consider a
curve

f(t) =
k∑
i=1

(ai(t)x+ bi(t)y)d + (a0(t)x+ b0(t)y)d−1(α(t)x+ β(t)y),

with f(0) = f , then taking the derivatives on the ai, bi, α, β we have that the
tangent space is generated by

TfSd,d−k = ⟨yld−1
i , xld−1

i , xld−2
0 g, yld−2

0 g, xld−1
0 , yld−1

0 ⟩, i = 1, . . . , k.

This space has 2k+4 generators, but we notice that the last four of them span
a 3-dimensional space, so it has projective dimension 2k + 2 in a general point,
as expected. We consider two cases now, first if g is equal to l0, in other words,
the case that f is a general element of Sd,k+1. We notice that instead of a 3-
dimensional space, the last four elements on the span generates a 2-dimenensional
space, this means that the projective dimension of TfSd,d−k is at most 2k + 1,
therefore f is a singular point. Now instead, assume that li = lj for some i, j ̸= 0
and i ̸= j, then f is a general element of Sd,d−k+1 and the dimension of TfSd,d−k
is less than 2k + 2, again this gives that f is a singular element of Sd,d−k.

7.4 The hypersurface S2k+1,k+2

Let f ∈ S2k+1,k+2, the maximal catalecticant matrix Cf associated to f has size
(k + 1) × (k + 2). In [LS16, Theorem 4.1] it is proven that this hypersurface has
degree 2k(k + 1) and its equation is computed, namely, the defining polynomial
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is the discriminant of

q(u, v) = det


uk+1 ukv . . . uvk vk+1

a0 a1 . . . ak ak+1

a1 a2 . . . ak+1 ak+2

...
...

. . .
...

...

ak ak+1 . . . a2k a2k+1

 .

With this description we can obtain the following result.

Theorem 7.4.1. [NT20, Theorem 11] S2k+1,k is an irreducible component of

Sing(S2k+1,k+2).

Proof. Let (a0, . . . , ad) be the coefficients of polynomials in Sd. The equation of
S2k+1,k+2 has degree 2k in the (k+ 1)-minors bj (for j = 0, . . . , k) of the maximal
catalecticant matrix of size (k+1)×(k+2). Each bj is a homogeneous polynomial
of degree (k + 1) in the ai. Let bα0

0 . . . bαk
k be a monomial with |α| = 2k. The

derivative with respect to ai of such monomial is
∑

j αjb
α0
0 . . . b

αj−1
j . . . bαk

k
∂bj
∂ai

.

Evaluated at a point (a0, . . . , ad) where all bj vanishes (this is a point in S2k+1,k)
this monomial vanishes. This concludes the proof.

The case k = 2 was studied before in [CO12] by Comon and Ottaviani, it is
known as the apple invariant, in such case the singular locus has two irreducible
components, one is S5,2, that comes from the minors of the catalecticant, and the
other comes from the pullback from the locus of cubics with a triple root ∆3,1,1,
that is the dual of the tangent variety T(S5,5) = S5,4. For k ≥ 3, Sing(S2k+1,k+2)
has at least three irreducible components, one is S2k+1,k, that is obtained from
the minors of the catalecticant, the other two components arise from the two
irreducible components of the singular locus of the discriminant of

∑k+1
i=0 ait

i,
it comes as the pullback from the locus of degree k + 1 polynomials with two
double roots and with a triple root. For k = 3 the components can be computed
in Macaulay2 [GS], one is S7,3, that has codimension 2 and degree 10. The other
two components have codimension 2 and degree respectively 24 (8 generators
of degree 7, this component comes as pullback from locus of quartics with two
double roots) and 36 (55 generators of degree among 8 and 12, this component
comes as pullback from locus of quartics with a triple root), this case was named
as the big apple invariant in [LS16].
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