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In this paper, the connections between model theory and the theory of infinite permutation groups
(see [11]) are used to study the n-existence and the n-uniqueness for n-amalgamation problems of
stable theories. We show that, for any n ≥ 2, there exists a stable theory having (k + 1)-existence
and k-uniqueness, for every k ≤ n, but has neither (n + 2)-existence nor (n + 1)-uniqueness. In
particular, this generalizes the example, for n = 2, due to E.Hrushovski given in [3].
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1 Introduction

Considerable work (e.g. [1], [3], [4], [9], [13]) has explored higher amalgamation properties for stable
and simple theories. In this paper we analyze uniqueness and existence properties for a countable family
of stable theories. In contrast to previous methods our approach uses group-theoretic techniques. We
begin by giving some basic definitions.

Let T be a complete and simple L-theory with quantifier elimination. We denote by CT the category
of algebraically closed substructures of models of T with embeddings as morphisms. Also, given n ∈
N, we denote by P (n) the partially ordered set of all subsets of {1, . . . , n} and by P (n)− the set
P (n) \ {1, . . . , n}.

An n-amalgamation problem over acl(∅) is a functor a : P (n)− → CT such that

(i): a(∅) = acl(∅);

(ii): whenever s1, s2, s3 ∈ P (n)− and (s1 ∩ s2) ⊂ s3, the algebraically closed sets a(s1), a(s2) are
independent over a(s1 ∩ s2) within a(s3);

(iii): a(s) = acl{a(i) | i ∈ s}, for every s ∈ P (n)−.

In here we denote by acl(A) the algebraic closure of A in T eq. We recall that the objects of P (n)−

(viewed as a category) are simply the elements of P (n)−. Also, the morphisms of P (n)− are the
inclusions ιs,t : s ↪→ t, for every s, t ∈ P (n)− with s ⊆ t. In particular, an n-amalgamation problem
assigns a morphism

as,t : a(s)→ a(t),

to every s, t ∈ P (n)− with s ⊆ t. The morphism as,t is called transition map and, by functoriality, we
have

as2,s3 ◦ as1,s2 = as1,s3 ,

for every s1, s2, s3 ∈ P (n)− with s1 ⊆ s2 ⊆ s3. By definition, the morphisms in CT are the embeddings,
that is, as,t is the restriction of an automorphism to the algebraically closed substructure a(s).
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A solution of a is a functor ā : P (n)→ CT extending a to the full power set P (n) and satisfying the
conditions (i), (ii), (iii) (i.e. including the case s = {1, . . . , n}). In particular, in order to find a solution
of a, we need to determine n embeddings

fi : a({1, . . . , n} \ {i}) −→ a({1, . . . , n}) = acl({a(i) | i ∈ {1, . . . , n}}),

(for 1 ≤ i ≤ n) compatible with a, that is,

fi ◦ as,{1,...,n}\{i} = fj ◦ as,{1,...,n}\{j}

for every i, j ∈ {1, . . . , n} and s ⊆ {1, . . . , n} \ {i, j}.
The theory T is said to have n-existence (over acl(∅)) if every n-amalgamation problem over acl(∅)

has at least one solution. Similarly, we shall say that the theory T has n-uniqueness (over acl(∅)) if
every n-amalgamation problem over acl(∅) has at most one solution up to isomorphism (for more details
see [9] and [12]).

It is a well known fact that every simple theory has 2-existence, by the presence of non-forking
extensions. Moreover, if the theory is stable, then, by stationarity of strong types, 2-uniqueness holds.
Consequentially, also 3-existence holds (for a proof see Lemma 3.1 of [9]). However, 3-uniqueness and
4-existence can fail for a general stable theory. Indeed, in [3], the authors thank E. Hrushovski for
supplying an example of a stable theory which has neither 4-existence nor 3-uniqueness. The example
is the following. Its construction involves a finite cover (for more details about finite covers see [5]).

Example 1.1 Let Ω be a countable set, [Ω]2 the set of 2-subsets of Ω, and C = [Ω]2×Z/2Z. Also let
E ⊆ Ω×[Ω]2 be the membership relation, and let P be the subset of C3 such that ((w1, δ1), (w2, δ2), (w3, δ3))
lies in P if and only if there are distinct c1, c2, c3 ∈ Ω such that w1 = {c2, c3}, w2 = {c1, c3}, w3 = {c1, c2}
and δ1 + δ2 + δ3 = 0. Now let M be the model with the 3-sorted universe Ω, [Ω]2, C and equipped with
relations E,P and projection on the first coordinate π : C → [Ω]2. Since M is a reduct of (Ω,Z/2Z)eq,
we get that T = Th(M) is stable. It is shown in [3] that T has neither 4-existence nor 3-uniqueness.

In this paper we generalize this example. We summarize our main results in the following theorem.

Theorem 1.2 For any n ≥ 2, there exists a stable theory Tn such that Tn has (k+ 1)-existence and
k-uniqueness for any k ≤ n, but Tn has neither (n+ 2)-existence nor (n+ 1)-uniqueness.

Also in Proposition 6.2 we prove that, for n = 2, the stable theory T2 given in Theorem 1.2 coincides
with the theory in Example 1.1.

All the material we present is expressed in a purely algebraic terminology. Indeed, the problem of
n-uniqueness for a theory has also a natural formulation in terms of permutation groups, as is shown
in [9, Proposition 3.5]. We adopt this approach here.

In Section 2, we introduce certain permutation modules which will be used to construct the auto-
morphism groups of the countable ℵ0-categorical structures Mn on which is based Theorem 1.2.

As is clear from the definition, the study of amalgamation problems requires a precise understanding
of the algebraic closure in T eq. Since the structures Mn are countable and ℵ0-categorical, the algebraic
closure can be rephrased with group theoretic terminology: it can be determined by studying certain
closed subgroups of the automorphism group of Mn. This is done in Section 3 and Section 4.

2 The Sym(Ω)-submodule structure of F[Ω]n

We begin by reviewing some definitions and basic facts about permutation groups and permutation
modules.

If C is a set, then the symmetric group Sym(C) on C can be considered as a topological group. The
open sets in this topology are arbitrary unions of cosets of pointwise stabilizers of finite subsets of C.
A subgroup Γ of Sym(C) is closed if and only if each element of Sym(C) which preserves all the orbits
of Γ on Cn, for all n ∈ N, is in Γ. It is well known that closed subgroups in this topology are precisely
automorphism groups of first-order structures on C, see [2, Theorem 5.7] or [11].
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Throughout the sequel we denote by F a field, F2 the integers modulo 2, Ω a countable set and [Ω]n

the set of n-subsets of Ω.
The natural action of the symmetric group Sym(Ω) on [Ω]n turns F[Ω]n, the vector space over F with

basis consisting of the elements of [Ω]n, into a Sym(Ω)-module. We will characterize the submodules of
F[Ω]n in terms of certain Sym(Ω)-homomorphisms. The following definition is based on concepts first
introduced in [10].

Definition 2.1 ([6], Def. 3.4) If 0 ≤ j ≤ n, then the map βn,j : F[Ω]n → F[Ω]j , given by

βn,j(ω) =
∑

ω′∈[ω]j

ω′ (for ω ∈ [Ω]n)

and extended linearly to F[Ω]n, is a Sym(Ω)-homomorphism (in here we denote by [ω]j the set of
j-subsets of ω).

It is shown in [6] (see also [10]) that the submodules of F[Ω]n are completely determined by the maps
βn,j . Indeed, it is proved in [6, Corollary 3.17] that every submodule U of F[Ω]n is an intersection of
kernels of β-maps, i.e. U = ∩j∈S kerβn,j for some subset S of {0, . . . , n}.

Using the controvariant Pontriagin duality we have that the dual module of F[Ω]n is F[Ω]n , i.e. the
set of functions from [Ω]n to F. We recall that F[Ω]n has a natural faithful action on [Ω]n × F given
by (w, δ)f = (w, f(w) + δ). Hence, F[Ω]n , endowed with the relative topology, becomes a topological
Sym(Ω)-module and a profinite subgroup of Sym([Ω]n × F). Also, given any map βn,j : F[Ω]n → F[Ω]j ,
there is a natural dual continuous Sym(Ω)-homomorphism β∗n,j : F[Ω]j → F[Ω]n defined by

(β∗n,jf)(ω) =
∑
x∈[ω]j

f(x).

Now, the lattice of the closed submodules of F[Ω]n is the dual of the lattice of the submodules of F[Ω]n.
We point out that using the algorithm described in [6, Section 5], the lattice of the closed submodules
of F[Ω]n can be easily computed. Here we record the following fact that we are frequently going to use.

Proposition 2.2 For n ≥ 1, we have imβ∗n,n−1 = kerβ∗n+1,n.

P r o o f. The submodule imβn+1,n of F[Ω]n is of the form ∩j∈S kerβn,j , for some subset S of {0, . . . , n}.
By [6, Proposition 3.19], we have that imβn+1,n ⊆ kerβn,j if and only if 2 divides n+ 1− j. Therefore
S = {j | 2 divides n+ 1− j}.

Also by [6, Proposition 4.1], we have that if 2 divides n + 1 − j, then kerβn,n−1 ⊆ kerβn,j . This
yields imβn+1,n = ∩j∈S kerβn,j = kerβn,n−1. In particular, the sequence

F[Ω]n+1
βn+1,n // F[Ω]n

βn,n−1 // F[Ω]n−1

is exact.
Now the Pontriagin duality is an exact controvariant functor on the sequences of the form A→ B →

C. This says that imβ∗n,n−1 = kerβ∗n+1,n.

3 Closed submodules of finite index in F[Ω]n

2

If A is a finite subset of Ω, then we write simply Sym(Ω\A) for the subgroup of Sym(Ω) fixing pointwise
A. In this section we study the closed Sym(Ω \ A)-submodules of F[Ω]n−1

2 of finite index. We start by
considering the case A = ∅.

Lemma 3.1 If n ≥ 1, then F[Ω]n

2 has no proper closed Sym(Ω)-submodule of finite index.
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P r o o f. Let K be a closed submodule of F[Ω]n

2 of finite index. Then, F[Ω]n

2 /K is a finite Sym(Ω)-
module. Since Sym(Ω) has no proper subgroup of finite index, we get that Sym(Ω) centralizes F[Ω]n

2 /K.
It follows that fσ − f ∈ K, for every σ ∈ Sym(Ω).

Let L be the annihilator of K in F2[Ω]n, i.e. L = {w ∈ F2[Ω]n | g(w) = 0 for every g ∈ K}. Since K
is a closed Sym(Ω)-submodule, the set L is a Sym(Ω)-submodule of F2[Ω]n. Now, let f be in F[Ω]n

2 , σ
in Sym(Ω) and w in L. We get

0 = (fσ − f)(w) = fσ(w)− f(w) = f(wσ
−1
− w).

This says that wσ
−1 − w is annihilated by every element of F[Ω]n

2 . Therefore, wσ
−1 − w = 0 and

σ centralizes w. This shows that Sym(Ω) centralizes L. Since n ≥ 1, the only element of F2[Ω]n

centralized by Sym(Ω) is the zero vector. Hence L = 0 and, by the Pontriagin duality, K = F[Ω]n

2 .

In the forthcoming analysis we shall denote finite subsets of Ω by capital letters, while the elements
of [Ω]n will be generally denoted by lower cases.

Now, let A be a finite subset of Ω. To describe the closed Sym(Ω \ A)-submodules of F[Ω]n−1

2 of
finite index we have to introduce some notation. Let B be a subset of A. We denote by VB,A the

Sym(Ω \A)-submodule of F[Ω]n−1

2 defined by

VB,A = {f ∈ F[Ω]n−1

2 | f(w) = 0 ∀w ∈ [Ω]n−1 with w ∩A 6= B} (1)

and we denote by VA the Sym(Ω \A)-submodule of F[Ω]n−1

2 defined by

VA =
⊕

B⊆A,|B|<n−1

VB,A. (2)

In the following lemma we describe the elements of VA.

Lemma 3.2 Let A be a finite subset of Ω. Then

VA = {f ∈ F[Ω]n−1

2 | f(w) = 0 for every w ∈ [A]n−1}. (3)

P r o o f. We denote by W the vector space on the right hand side of Equation (3). We start by
proving that VA ⊆W . Let B be a subset of A with |B| < n−1 and f be in VB,A. Consider w in [A]n−1.
Since |B| < n− 1, |w| = n− 1 and w ⊆ A, we have w ∩A = w 6= B. By Equation (1), we get f(w) = 0.
This implies f ∈W and so VB,A ⊆W . Thence, by Equation (2), we obtain VA ⊆W .

Conversely, we prove that W ⊆ VA. Let f be in W . For every subset B of A with |B| < n− 1 define

fB(w) =
{
f(w) if w ∩A = B,

0 if w ∩A 6= B.

Clearly, fB ∈ F[Ω]n−1

2 and, by Equation (1), fB ∈ VB,A. Let w be in [Ω]n−1 with w * A. Since
|w ∩A| < n− 1, we have ∑

B⊆A,|B|<n−1

fB

 (w) =
∑

B⊆A,|B|<n−1

fB(w) = fw∩A(w) = f(w).

Similarly, let w be in [Ω]n−1 with w ⊆ A (that is, w ∈ [A]n−1). As f ∈ W , we have f(w) = 0. Also,
by definition of fB , we obtain fB(w) = 0. This shows that f =

∑
B⊆A,|B|<n−1 fB . By Equation (2), it

follows that f ∈ VA.
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Lemma 3.3 Let A be a finite subset of Ω. For each B ⊆ A, the Sym(Ω\A)-modules VB,A are closed

submodules of F[Ω]n−1

2 . Moreover,

F[Ω]n−1

2 =
⊕

B⊆A,|B|≤n−1

VB,A (4)

and each VB,A is Sym(Ω \A)-isomorphic to F[Ω\A]n−1−|B|

2 .

P r o o f. Since VB,A is an intersection of pointwise stabilizers of finite sets of [Ω]n−1 × F2, it is closed

in F[Ω]n−1

2 . It is straightforward to verify the remaining statements.

Lemma 3.4 Let A be a finite subset of Ω. The module VA has finite index in F[Ω]n−1

2 . Also, if V is
a closed Sym(Ω \A)-submodule of F[Ω]n−1

2 of finite index, then VA ⊆ V .

P r o o f. By Equations (2) and (4), we have that F[Ω]n−1

2 /VA is isomorphic to ⊕|B|=n−1VB,A, which

has dimension
( |A|
n−1

)
. Therefore VA has finite index in F[Ω]n−1

2 .

Let V be a closed Sym(Ω \A)-submodule of F[Ω]n−1

2 of finite index. Let B ⊆ A with |B| < n− 1. By

Lemma 3.3, VB,A is Sym(Ω \ A)-isomorphic to F[Ω\A]n−1−|B|

2 . Since [VB,A : VB,A ∩ V ] = [VB,A + V : V ]
is finite, we have that VB,A ∩ V has finite index in VB,A. Now, by Lemma 3.1, the module VB,A does
not have any proper closed Sym(Ω \ A)-submodule of finite index. Therefore VB,A = VB,A ∩ V and
VB,A ⊆ V . By definition of VA in Equation (2), we get VA ⊆ V .

In the following lemma we describe the elements of VA + kerβ∗n,n−1.

Lemma 3.5 Let A be a finite subset of Ω. We have VA+kerβ∗n,n−1 = {f ∈ F[Ω]n−1

2 | (β∗n,n−1f)(w) =
0 for every w ∈ [A]n}.

P r o o f. If n = 1, then the equality is clear. So assume n ≥ 2.
By Lemma 3.2, the elements of VA are the functions f ∈ F[Ω]n−1

2 vanishing on each element of [A]n−1.
Now, if f1 ∈ VA, f2 ∈ kerβ∗n,n−1 and w ∈ [A]n, then

(β∗n,n−1(f1 + f2))(w) = (β∗n,n−1f1)(w) =
∑

w′∈[w]n−1

f1(w′) = 0.

Therefore, it remains to prove that if f ∈ F[Ω]n−1

2 and (β∗n,n−1f)(w) = 0 for every w ∈ [A]n, then

f ∈ VA + kerβ∗n,n−1. Let a be a fixed element of A and let g ∈ F[Ω]n−2

2 be the function defined by

g(ω) =
{
f(ω ∪ {a}) if ω ⊆ A and a /∈ ω,

0 otherwise .

Set f2 = β∗n−1,n−2g. By Proposition 2.2, we have that f2 ∈ imβ∗n−1,n−2 = kerβ∗n,n−1. Set f1 = f − f2.
We claim that f1 lies in VA, from which the lemma follows. By Lemma 3.2, it suffices to prove that
f1(w′) = 0 for every w′ ∈ [A]n−1. Let w′ be in [A]n−1. Assume a ∈ w′. By the definition of g, we have

f2(w′) = (β∗n−1,n−2g)(w′) =
∑

ω∈[w′]n−2

g(ω) = g(w′ \ {a}) = f(w′)

and f1(w′) = 0. Now assume a /∈ w′. By the definition of g and by the hypothesis on f , we have

f2(w′) = (β∗n−1,n−2g)(w′) =
∑

ω∈[w′]n−2

g(ω) =
∑

ω∈[w′]n−2

f(ω ∪ {a})

=
∑

x∈[w′∪{a}]n−1

f(x) + f(w′) = (β∗n,n−1f)(w′ ∪ {a}) + f(w′) = f(w′),

and f1(w′) = 0.
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Definition 3.6 We write WA for β∗n,n−1(VA), with VA as in Equation (2).

Now, using the previous lemmas we describe the closed Sym(Ω\A)-submodules of imβ∗n,n−1 of finite
index.

Proposition 3.7 Let A be a finite subset of Ω. The module WA is the unique minimal closed
Sym(Ω \ A)-submodule of imβ∗n,n−1 of finite index. Furthermore, WA = {g ∈ imβ∗n,n−1 | g(w) =
0 for every w ∈ [A]n}.

P r o o f. Let W be a closed Sym(Ω \ A)-submodule of imβ∗n,n−1 of finite index. By the first iso-

morphism theorem W is the image via β∗n,n−1 of some closed Sym(Ω \ A)-submodule V of F[Ω]n−1

2

of finite index. Now, by Lemma 3.4, we get VA ⊆ V . So β∗n,n−1(VA) ⊆ β∗n,n−1(V ) = W . Hence,
WA = β∗n,n−1(VA) is the unique minimal closed Sym(Ω \A)-submodule of imβ∗n,n−1 of finite index.

Now, from Lemma 3.5 the rest of the proposition is immediate.

4 The infinite family of examples

Before introducing our examples, we need to set some auxiliary notation.

Definition 4.1 Let M be a structure and A,B subsets of M . We denote by Aut(A/B) the subgroup
of Aut(M) fixing setwise A and fixing pointwise B. The setwise stabilizer of A in Aut(M) will be denoted
by Aut(M){A}, while the permutation group induced by Aut(A/B) on A will be denoted by Aut(A/B).

Let n ≥ 2 be an integer and Ω be a countable set.

Definition 4.2 We consider Mn the multisorted structure with sorts Ω, [Ω]n and [Ω]n × F2 and
with automorphism group imβ∗n,n−1 o Sym(Ω). Note that this is well-defined as imβ∗n,n−1 is a closed

submodule of F[Ω]n

2 .
Moreover, the theory Tn = Th(Mn) is stable (see Section 6).

In the next paragraph we introduce some notation that would be useful to describe the algebraically
closed sets of Mn.

Denote by π : [Ω]n × F2 → [Ω]n the projection on the first coordinate. Given A a finite subset of
Mn, we have that A is of the form A1 ∪ A2 ∪ A3, where A1 belongs to the sort Ω, A2 belongs to the
sort [Ω]n and A3 belongs to the sort [Ω]n × F2. Consider Ã2 ⊆ Ω the union of the elements in A2 and
Ã3 ⊆ Ω the union of the elements in π(A3). We define the support of A, written supp(A), to be the
subset A1 ∪ Ã2 ∪ Ã3 of Ω. Finally, we define cl(A) to be the subset of Mn

cl(A) := supp(A) ∪ [supp(A)]n ∪ ([supp(A)]n × F2)

In the rest of this section we describe the algebraically closed sets in the structure Mn. Here we
consider structures up to interdefinability, which allows us to identify an ℵ0-categorical structure with its
automorphism group. So we identify two substructures A1, A2 of a structure M , if Aut(A1) = Aut(A2).
If M is an ℵ0-categorical structure and A ⊂ M , we denote the algebraic closure acleq(A) of A simply
by acl(A), i.e. the union of the finite Aut(M/A)-invariant sets of M eq. We recall that definable
subsets of acl(A) correspond, up to interdefinability, to closed subgroups of Aut(M/A) of finite index,
see [8, Section 4.1] or Theorem 4.1 in the article “The structure of totally categorical structures” by W.
Hodges [11, page 116].

Similarly, if A ⊂ M , we denote the definable closure dcleq(A) of A simply by dcl(A), i.e. the set of
the points of M eq fixed by Aut(M/A).

Lemma 4.3 Let A be a finite set of Mn. Then

Aut(Mn/ cl(A)) = Wsupp(A) o Sym(Ω \ supp(A))

(where Wsupp(A) is the closed Sym(Ω \ supp(A))-submodule of imβ∗n,n−1 in Definition 3.6). Moreover,
Aut(Mn/ cl(A)) is the unique minimal closed subgroup of finite index of Aut(Mn/A).
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P r o o f. Set Γ = Aut(Mn/ cl(A)). We first prove that Γ = Wsupp(A)oSym(Ω\supp(A)). By definition
of the multisorted structure Mn, we have AutMn = imβ∗n,n−1 o Sym(Ω). Therefore, an element of Γ is
an ordered pair of the form gσ, where g ∈ imβ∗n,n−1 and σ ∈ Sym(Ω). The action of gσ on the elements
belonging to the sorts Ω and [Ω]n is given by the permutation σ. Also, the action of gσ on the element
(w, x) belonging to the sort [Ω]n × F2 is given by

(w, x)gσ = (wσ, x+ g(w)).

This implies that the automorphism gσ fixes the elements in supp(A) and in [supp(A)]n (in the sorts
Ω and [Ω]n) if and only if σ ∈ Sym(Ω \ supp(A)). Also, the automorphism gσ fixes the elements in
[supp(A)]n × F2 (in the sort [Ω]n × F2) if and only if g(w) = 0 for every w ∈ [supp(A)]n. Hence,
by the description of the elements of Wsupp(A) in Proposition 3.7, we have gσ ∈ Γ if and only if
gσ ∈Wsupp(A) o Sym(Ω \ supp(A)).

We claim that Γ is the unique minimal closed subgroup of Aut(Mn/A) of finite index. Note that Γ
is a closed subgroup of Aut(Mn/A) of finite index.

Now, let H be a closed subgroup of Aut(Mn/A) of finite index. Up to replacing H with H ∩ Γ,
we may assume that H ⊆ Γ. Let µ : Γ → Sym(Ω \ supp(A)) be the natural projection. Since µ is a
surjective continuous closed map and Sym(Ω \ supp(A)) has no proper subgroup of finite index, we get
that µ(H) = Sym(Ω\ supp(A)). This yields that H ∩Wsupp(A) is a closed Sym(Ω\ supp(A))-submodule
of Wsupp(A) of finite index. Now Proposition 3.7 shows that H∩Wsupp(A) = Wsupp(A). So Wsupp(A) ⊆ H
and H = Γ.

In the following we denote by aclMn
the acl in Mn.

Proposition 4.4 Let A be a finite set of Mn. Then aclMn
(A) = cl(A).

P r o o f. Let b be an m-tuple in Mn and A be a finite set of Mn. We first claim that Aut(Mn/b) ≥
Aut(Mn/ cl(A)) if and only if the underlying set of b is conteined in cl(A) . One direction is obvious.
Suppose that Aut(Mn/b) ≥ Aut(Mn/ cl(A)) for some finite A ⊂Mn. Then by Lemma 4.3 we have that
Aut(Mn/ cl(cl(A), b) is a closed subgroup of finite index in Aut(Mn/ cl(A), b) = Aut(Mn/ cl(A)). Hence
Aut(Mn/ cl(cl(A), b) is a closed subgroup of finite index in Aut(Mn/A). By uniqueness of the minimal
closed subgroup of finite index of Aut(Mn/A) we get that Wsupp(A) o Sym(Ω \ supp(A)) is equal to
Wsupp(cl(A),b) o Sym(Ω \ supp(cl(A), b)) and, since supp(cl(A), b) = supp(A, b), this is possible if and
only if supp(b) ⊆ supp(A), which proves the claim.

By definition, aclMn
(A) is the union of the finite orbits onMn of Aut(Mn/A). Let c ∈ aclMn

(A). Then
Aut(Mn/A, c) is a closed subgroup of finite index in Aut(Mn/A). Hence, by Lemma 4.3, Aut(Mn/A, c) ≥
Aut(Mn/ cl(A). By the above argument we have that c ∈ cl(A).

Let c ∈ cl(A), then Aut(Mn/A) ≥ Aut(Mn/A, c) ≥ Aut(Mn/ cl(A)). Hence the index of Aut(Mn/A, c)
in Aut(Mn/A) is finite.

Let ceq ∈M eq
n . Then ceq is a 0-definable equivalence class of a tuple b of elements in Mn. We denote

by ∫(ceq) the union of elements in Mn of ceq. Similarly if A ⊆ M eq
n , we denote by ∫(A) the set of

elements in Mn

⋃
ceq∈A ∫(ceq).

Proposition 4.5 Let A be a finite set of Mn. Then ∫(acl(A)) = cl(A). In particular acl(∅) = ∅.

P r o o f. Fix an enumeration b of aclMn
(A) and set Γ = Aut(Mn/ aclMn

(A)). Consider the trivial
relation R = {(bα, bα) : α ∈ Aut(Mn)}. Since R is an Aut(Mn)-orbit, R is a 0-definable equivalence
relation in Mn. Consider the R-equivalence class of b. The pointwise stabilizer of b in Aut(Mn) is Γ
which, by Lemma 4.3 and Proposition 4.4, has finite index in Aut(Mn/A) and so b ∈ acl(A).

Let ceq ∈ acl(A), then Aut(Mn/A, c
eq) is a closed subgroup of finite index of Aut(Mn/A). By

Lemma 4.3 Aut(Mn/A, c
eq) contains Γ. Being Aut(Mn/A, c

eq) also open in Aut(Mn/A) there exists
a finite tuple b in Mn such that Aut(Mn/A, c

eq) contains the basic open subgroup Aut(Mn/A, b).
Moreover ceq = b

Aut(Mn/A,c
eq)

. By ℵ0-categoricity the index of Aut(Mn/A, b) in Aut(Mn/A, c
eq) is

finite. Then, the index of Aut(Mn/A, b) in Aut(Mn/A) is finite and so Γ ≤ Aut(Mn/A, b). Hence by
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8 E. Pastori and P. Spiga: Failure of n-uniqueness: a family of examples

the same argument used in Proposition 4.4, we get that the underlying set in Mn of b is contained
in cl(A) = aclMn

(A). From the fact that Aut(Mn/A, c
eq) ≤ Aut(Mn/A) and b ∈ aclMn

(A) it follows
immediately that also the underlying set of the Aut(Mn/A, c

eq)-orbit b
Aut(Mn/A,c

eq)
is contained in

aclMn(A).

Corollary 4.6 Let A be a finite set of Mn. Then,

Aut(Mn){aclMn (A)} = Aut(Mn){acl(A)}.

P r o o f. From Proposition 4.4 and Proposition 4.5 it follows that Aut(Mn){acl(A)} ≤ Aut(Mn){aclMn (A)}.
Now, let g ∈ Aut(Mn){aclMn (A)}. Note that aclMn

(Ag) = aclMn
(A). Consequently, acl(Ag) = acl(A). If

ceq ∈ acl(A), then the index of Aut(Mn/A, c
eq) in Aut(Mn/A) is finite. Therefore, Aut(Mn/A

g, (ceq)g) =
g−1 Aut(Mn/A, c

eq)g has finite index in Aut(Mn/A
g) = g−1 Aut(Mn/A)g, which implies that (ceq)g ∈

acl(Ag) = acl(A).

Proposition 4.7 Let A be a finite subset of Mn. Then, dcl(aclMn
(A)) = acl(A).

P r o o f. Let ceq ∈ acl(A), i.e. the stabilizer of ceq in Aut(Mn/A) has finite index in Aut(Mn/A). We
need to show that the stabilizer of ceq in Aut(Mn/ aclMn(A)) is equal to Aut(Mn/ aclMn(A)). We have
the following disequality:

|Aut(Mn/ aclMn
(A)) : Aut(Mn/ aclMn

(A), ceq)| ≤ |Aut(Mn/A) : Aut(Mn/A, c
eq)|

Then |Aut(Mn/A) : Aut(Mn/ aclMn
(A), ceq)| is finite. By Lemma 4.3 and Proposition 4.4 it follows

that Aut(Mn/ aclMn
(A), ceq), is equal to Aut(Mn/ aclMn

(A)), i.e. ceq ∈ dcl(aclMn
(A)).

Let ceq ∈ dcl(aclMn
(A)). We need to show that Aut(Mn/A, c

eq), has finite index in Aut(Mn/A). We
have that

|Aut(Mn/A) : Aut(Mn/ cl(A)), ceq)| =
|Aut(Mn/A) : Aut(Mn/A, c

eq)||Aut(Mn/A, c
eq) : Aut(Mn/ cl(A), ceq)| (5)

Since ceq ∈ dcl(aclMn
(A)) we have that Aut(Mn/ aclMn

(A), ceq) = Aut(Mn/ aclMn
(A)). Lemma 4.3

and the equality (5) imply that |Aut(Mn/A) : Aut(Mn/A, c
eq)| is finite. This proves that ceq ∈ acl(A)

and the proof is complete.

Corollary 4.8 Let A be a finite subset of Mn. Then

Aut(Mn/ aclMn
(A)) = Aut(Mn/ acl(A)).

P r o o f. Let g ∈ Aut(Mn/ aclMn
(A)) and ceq ∈ acl(A). Proposition 4.7 yields that (ceq)g = ceq, which

means that g ∈ Aut(Mn/ acl(A)). It remains to prove that Aut(Mn/ acl(A)) ≤ Aut(Mn/ aclMn
(A)).

Consider the trivial relation R given by R = {(b, b) : b ∈ Mn}. This is a 0-definable relation. Let
a ∈ aclMn(A). Then {a} ∈ M eq

n and Aut(Mn/A, {a}) = Aut(Mn/A, a) is a closed subgroup of finite
index in Aut(Mn/A). Hence, we can consider that aclMn(A) ⊆ acl(A) and the thesis follows at once.

Remark 4.9 Proposition 4.4 yields that if A is a finite set of Mn, then aclMn
(A) = aclMn

(supp(A)).
Therefore, from Proposition 4.7 it follows that acl(A) = acl(supp(A)).

Proposition 4.10 Let A1, . . . , An be finite subsets in the sort Ω. Then

acl(acl(A1), . . . , acl(An)) = acl(
n⋃
i=1

Ai).
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P r o o f. Obviously, acl(
⋃n
k=1Ak) ⊆ acl(acl(A1), . . . , acl(An)).

Let ceq ∈ acl(acl(A1), . . . , acl(An)) and set G = Aut(Mn/ acl(A1), . . . , acl(An)). Then, the pointwise
stabilizer Gceq has finite index in G. By Corollary 4.8 we have that

G =
n⋂
i=1

WAi o Sym(Ω \Ai).

Moreover, G ≥ W⋃n
i=1 Ai

o Sym(Ω \
⋃n
i=1Ai) and G is a closed subgroup in Aut(Mn/

⋃n
i=1Ai). So, G

is a closed subgroup of finite index in Aut(Mn/
⋃n
i=1Ai) which implies that also Gceq is of finite index

in Aut(Mn/
⋃n
i=1Ai). Now, Gceq = G ∩Aut(Mn/

⋃n
i=1Ai, c

eq) and

|Aut(Mn/
⋃n
i=1Ai) : Aut(Mn/

⋃n
i=1Ai, c

eq)| =
|Aut(Mn/

⋃n
i=1Ai) : Gceq |/|Aut(Mn/

⋃n
i=1Ai, c

eq) : Gceq |,

i.e. ceq ∈ acl(
⋃n
i=1Ai).

5 k-existence and k-uniqueness for Mn

In this section we prove Theorem 1.2. Note that, up to renaming the elements of Ω, we may assume
that Ω = N. In the sequel we denote by [k] the subset {1, . . . , k} of N. Also, given i ∈ [k], we denote by
[k]− i the set {1, . . . , k} \ {i}. Finally, we denote the theory Th(Mn) by Tn.

We start by studying k-uniqueness in Tn. We first single out the following technical lemma which
would be used in Proposition 5.2.

Lemma 5.1 Let k and n be integers, with k < n, and A1, . . . , Ak be subsets of Ω. Then

(†)
k⋂
i=1

(
VAi

+ kerβ∗n,n−1

)
=

(
k⋂
i=1

VAi

)
+ kerβ∗n,n−1.

P r o o f. We denote the left-hand-side of (†) by V1,k and the right-hand-side of (†) by V2,k (where the
label k is used in order to remember the number of intersections).

We argue by induction on k. Note that if k = 0 or k = 1, then there is nothing to prove. Assume
(†) holds for k intersections (where k ≥ 1) and that k + 1 < n. In particular, we point out that n > 2.
We prove that (†) holds for k + 1 intersections. Clearly, V2,k+1 ⊆ V1,k+1. Let g be in V1,k+1. We need
to show that g ∈ V2,k+1. By induction hypothesis (on the sets A1, . . . , Ak), we have

V1,k+1 =

((
k⋂
i=1

VAi

)
+ kerβ∗n,n−1

)
∩ (VAk+1 + kerβ∗n,n−1). (6)

By Equation (6) and Proposition 2.2, we have

g = g1 + β∗n−1,n−2h1 = g2 + β∗n−1,n−2h2, (7)

where g1 ∈ ∩ki=1VAi , g2 ∈ VAk+1 and h1, h2 ∈ F[Ω]n−2

2 . We claim that (up to replacing h1 by h1 + l,
where l ∈ kerβ∗n−1,n−2), we may assume that h1 − h2 ∈ ∩ki=1VAi∩Ak+1 .

Let w be an (n − 1)-subset of Ω contained in Ai ∩ Ak+1 for some i = 1, . . . , k. Since g1 ∈ VAi
and

g2 ∈ VAk+1 , we see that g1(w) = g2(w) = 0. So, from Equation (7) we obtain

g(w) = (β∗n−1,n−2h1)(w) = (β∗n−1,n−2h2)(w),

that is, (β∗n−1,n−2(h1−h2))(w) = 0. As w is an arbitrary (n−1)-subset of Ai∩Ak+1, Lemma 3.5 yields
h1 − h2 ∈ VAi∩Ak+1 + kerβ∗n−1,n−2. As i is an arbitrary element in {1, . . . , k}, we get

h1 − h2 ∈
k⋂
i=1

(VAi∩Ak+1 + kerβ∗n−1,n−2).
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10 E. Pastori and P. Spiga: Failure of n-uniqueness: a family of examples

Since k + 1 < n, we have k < n − 1 and so we may now apply our inductive hypothesis on the sets
A1 ∩Ak+1, . . . , Ak ∩Ak+1. We have

h1 − h2 ∈

(
k⋂
i=1

VAi∩Ak+1

)
+ kerβ∗n−1,n−2. (8)

From Equation (8), we get h1−h2 = h+l, where h ∈ ∩ki=1VAi∩Ak+1 and l ∈ kerβ∗n−1,n−2. Set h′1 = h1+l.
We have

h′1 − h2 = h1 + l − h2 = h ∈ ∩ki=1VAi∩Ak+1

and our claim is proved.
Let t be the element of F[Ω]n−2

2 defined by

t(w) =

 h1(w) if w ⊆ Ai for some i = 1, . . . , k,
h2(w) if w ⊆ Ak+1,

0 otherwise.

Note that the function t is well-defined. Indeed, recall that n > 2 and note that if w is an (n−2)-subset
of Ω with w ⊆ Ai ∩Ak+1 (for some i = 1, . . . , k), then h1(w) = h2(w) as h1 − h2 ∈ VAi∩Ak+1 .

We claim that g + β∗n−1,n−2t ∈ ∩k+1
i=1 VAi

. We have to show that g + β∗n−1,n−2t vanishes in [Ai]n−1,
for i = 1, . . . , k + 1. Let w be an (n − 1)-subset of Ω with w ⊆ Ai, for some i = 1, . . . , k + 1. If i ≤ k,
then we have

(g + β∗n−1,n−2t)(w) = (g1(w) + β∗n−1,n−2h1(w)) + βn−1,n−2h1(w) = 0,

where in the first equality we used Equation (7) and the fact that t and h1 coincide in [Ai]n−2, and in
the second equality we used that g1 ∈ VAi

. Similarly, if i = k + 1, then

(g + β∗n−1,n−2t)(w) = (g2(w) + β∗n−1,n−2h2(w)) + βn−1,n−2h2(w) = 0,

where in the first equality we used Equation (7) and the fact that t and h2 coincide in [Ak+1]n−2, and
in the second equality we used that g2 ∈ VAk+1 .

Finally, as β∗n−1,n−2t ∈ kerβ∗n,n−1, we get that g ∈ V2,k+1.

Proposition 5.2 The theory Tn has k-uniqueness for every k ≤ n.

P r o o f. Let k be an integer with k ≤ n and a : P (k)− → CTn be a k-amalgamation problem.
We need to show that a has at most one solution up to isomorphism. Since every stable theory has
1- and 2-uniqueness, we may assume that k ≥ 3. Set Γ1 = Aut(a([k − 1])/ ∪k−1

i=1 a([k] − i)) and
Γ2 = Aut(a([k − 1])/ ∪k−1

i=1 a([k − 1]− i)). By [9, Proposition 3.5], it is enough to prove that

Γ1 = Γ2, (9)

i.e. Γ1,Γ2 give rise to the same action on a([k − 1]) (see Definition 4.1).
By Remark 4.9, the algebraically closed sets of finite subsets of Mn are of the form acl(A), for some

finite subset A of the sort Ω. By Corollary 4.6 the setwise stabilizer of acl(A) in Aut(Mn) is simply
(Sym(Ω \A)× Sym(A)) n imβ∗n,n−1. Using Corollary 4.8, we get that the pointwise stabilizer of acl(A)
in Aut(Mn) is Sym(Ω \A) nWA.

Let a(i) = acl(Bi), where Bi are finite subsets of Mn for 1 ≤ i ≤ k. Set Ai = supp(Bi), for 1 ≤ i ≤ k,
and A = ∪k−1

i=1 Ai. Note that by definition of amalgamation problem and by Proposition 4.10, we have
a([k − 1]) = acl(A). Therefore, by the previous paragraph, as k ≥ 3, we get that Γ1 is equal to

((Sym(Ω \A)× Sym(A)) n imβ∗n,n−1) ∩
k−1⋂
i=1

(Sym(Ω \ ((A ∪Ak) \Ai)) nW(A∪Ak)\Ai
)
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i.e.

Γ1 = Sym(Ω \ (A ∪Ak)) n
k−1⋂
i=1

W(A∪Ak)\Ai
(10)

and Γ2 is equal to

((Sym(Ω \A)× Sym(A)) n imβ∗n,n−1) ∩
k−1⋂
i=1

(Sym(Ω \ (A \Ai)) nWA\Ai
)

i.e.

Γ2 = Sym(Ω \A) n
k−1⋂
i=1

WA\Ai
. (11)

As Sym(Ω\(A∪Ak)) and Sym(Ω\A) act trivially on the elements of acl(A), by Equations (10) and (11),
in order to prove that Γ1 = Γ2 it suffices to show that

W1 =
k−1⋂
i=1

W(A∪Ak)\Ai
and W2 =

k−1⋂
i=1

WA\Ai

induce the same action on acl(A). Also, W1 and W2 act trivially on the elements belonging to the
sorts Ω and [Ω]n of Mn. Thus, it suffices to study the action of W1 and W2 on the elements of acl(A)
belonging to the sort [Ω]n × F2, that is, on [A]n. Clearly, W1 ⊆W2. Therefore, it remains to show that
for every element f of W2 there exists an element f of W1 such that f and f induce the same action on
[A]n.

Let f be in W2. By Definition 3.6, we get that f = β∗n,n−1g, for some g ∈ ∩k−1
i=1 (VA\Ai

+ kerβ∗n,n−1).
Lemma 5.1 (applied to k − 1, n and (A \A1), . . . , (A \Ak−1)) yields

k−1⋂
i=1

(
VA\Ai

+ kerβ∗n,n−1

)
=

(
k−1⋂
i=1

VA\Ai

)
+ kerβ∗n,n−1.

Thence, up to replacing g by g + l (for some l ∈ kerβ∗n,n−1), we may assume that g ∈ ∩k−1
i=1 VA\Ai

. Let

g be the function in F[Ω]n−1

2 defined by

g(w) =
{
g(w) if w ⊆ A,

0 otherwise.

Set f = β∗n,n−1g. By construction, f and f coincide in [A]n, that is, f and f induce the same action on
[A]n. Thus, it remains to prove that f ∈ W1, that is, f vanishes on every n-subset L of (A ∩ Ai) \ Ai,
for i = 1, . . . , k. Let L be an n-subset of (A ∪ Ak) \ Ai. We consider three cases L ⊆ A, |L ∩ Ak| ≥ 2
and |L ∩Ak| = 1.

If L ⊆ A, then f(L) = f(L) = 0 (because f and f coincide on [A]n).
If |L ∩Ak| ≥ 2, then (L \ {x}) * A, for every x in L. By definition of g, we have g(L \ {x}) = 0 and

f(L) =
∑
x∈L g(L \ {x}) = 0.

If |L ∩ Ak| = 1 and L ∩ Ak = {x}, then (arguing as in the previous paragraph) f(L) =
∑
x∈L g(L \

{x}) = g(L \ {x}). As L ⊆ (A ∪Ak) \Ai, we have that L \ {x} ⊆ A \Ai. Since g ∈ VA\Ai
, we get that

g(L \ {x}) = g(L \ {x}) = 0.

J.Goodrick and A.Kolesnikov recently proved that if a complete stable theory T has k-uniqueness for
every 2 ≤ k ≤ n, then T has n+ 1-existence [7]. For completeness we report the proof of their result.
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12 E. Pastori and P. Spiga: Failure of n-uniqueness: a family of examples

Theorem 5.3 Let T be a complete stable theory. If T has k-uniqueness for every 2 ≤ k ≤ n, then
T has n+ 1-existence.

P r o o f. Note that the existence and the uniqueness of nonforking extensions of types in a stable
theory yields that any stable theory has both 2-existence and 2-uniqueness.

Since T is a complete stable theory, for every regular cardinal k, there exists a saturated model
of cardinality k. In the sequel we shall consider the objects of CT lying inside a very large saturated
“monster model” C of T .

Suppose a is an (n+ 1)-amalgamation problem. We have to prove that a has a solution a′. First, let
B0 and B1 be sets of C such that tp(B0/a(∅)) = tp(a([n])/a(∅)), tp(B1/a(∅)) = tp(a({n + 1})/a(∅)),
and

B0 |̂
a(∅)

B1.

Let σ0 and σ1 be two automorphisms of C fixing pointwise a(∅) and such that B0 = σ0(a([n])), B1 =
σ1(a({n+ 1})).

Define a′([n+ 1]) to be the algebraic closure of B0∪B1. To determine the solution a′ of a, it remains
to define the transition maps a′s,[n+1] : a′(s)→ a′([n+ 1]), for all subsets s of [n+ 1]. The map a′∅,[n+1]

must be the identity on a(∅). For i in [n], we let a′{i},[n+1] : a({i})→ a′([n+ 1]) be the map σ0 ◦ a{i},[n],
and we let a′{n+1},[n+1] be the map σ1. Now, the following claim concludes the proof of the theorem.

Claim: For every proper non-empty subset s of [n + 1], there is a way to define the transition maps
a′s,[n+1], which is consistent with a and the definition of a′{i},[n+1] given above, and such that

a′s,[n+1](a(s)) = acl

(⋃
i∈s

a({i})

)
.

We argue by induction on the size k of the set s. If k = 1, then there is nothing to prove. Suppose
we have defined a′s,[n+1] as in the claim, for all s ⊆ [n+ 1] such that |s| < k. Let s be a subset of [n+ 1]
such that |s| = k. The family of sets {a(t) | t ( s} forms a k-amalgamation problem with the same
transition maps as a. Call a1 this amalgamation problem. By the induction hypothesis, the family of
sets {a′t,[n+1](a(t)) | t ( s} forms another k-amalgamation problem with the transition maps given by
set inclusions. Call a2 this amalgamation problem. Notice that a1 and a2 are isomorphic, and that both
have independent solutions. Namely, a1 can be completed to a(s) using the transition maps in a, and
a2 has a natural solution (a2)′ such that

(a2)′(s) = acl

(⋃
i∈s

a({i})

)
,

where the transition maps are again given by set inclusions. So, by the k-uniqueness property, there
is an isomorphism of these solutions, which yields the desired transition map a′s,[n+1] from a(s) to
acl(

⋃
i∈s a({i})).

Now we are ready to prove that Tn has k-existence for every k ≤ n+ 1.

Proposition 5.4 The theory Tn has k-existence for every k ≤ n+ 1.

P r o o f. By definition, Tn = Th(Mn) is complete. Since Tn is a stable theory, the proof of this
proposition follows at once from Proposition 5.2 and Theorem 5.3.

Next, we show that Tn does not have n+ 1-uniqueness.

Proposition 5.5 The theory Tn does not have n+ 1-uniqueness.
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P r o o f. Recall that by construction n ≥ 2. Let a : P (n + 1)− → CTn
be the (n + 1)-amalgamation

problem defined on the objects by a(s) = acl(s) and where the morphisms are inclusions. In order to
prove this proposition we show the following equations:

|Aut(acl([n])/ ∪ni=1 acl([n+ 1]− i))| = 1, (12)
|Aut(acl([n])/ ∪ni=1 acl([n]− i))| = 2. (13)

In fact, by [9, Proposition 3.5], Equations (12), (13) yield that a has more than one solution up to
isomorphism, i.e. Tn does not have n+ 1-uniqueness.

We start by proving Equation (12). Since [n], [n+1]−i have size n, Proposition 4.4 yields aclMn
([n]) =

[n]∪{[n]}∪{([n], 0), ([n], 1)} and aclMn
([n+1]−i) = ([n+1]−i)∪{[n+1]−i}∪{([n+1]−i, 0), ([n+1]−i, 1)}.

By the description given in the previous paragraph, every permutation in Sym(Ω) fixing pointwise
the elements in ∪ni=1 acl([n+ 1]− i) also fixes pointwise every element in acl([n]). Therefore, it suffices
to consider the elements in imβ∗n,n−1. Let f be in imβ∗n,n−1 and suppose that f fixes every element in

∪ni=1 acl([n + 1]− i), i.e. f([n + 1]− i) = 0, for 1 ≤ i ≤ n. Let g ∈ F[Ω]n−1

2 such that f = β∗n,n−1g. We
have

0 =
n∑
i=1

f([n+ 1]− i) =
n∑
i=1

n+1∑
j 6=i

g([n+ 1] \ {i, j}). (14)

Now, for j 6= n+ 1, the summand g([n+ 1] \ {i, j}) appears twice in Equation (14) and therefore over
F2 their sum is zero. Hence

0 =
n∑
i=1

f([n+ 1]− i) =
n∑
i=1

g([n]− i) = (β∗n,n−1g)([n]) = f([n]).

This yields that f fixes ([n], 0), ([n], 1). Hence Equation (12) follows.
We now prove Equation (13). Since [n]−i has size n−1, Proposition 4.4 implies aclMn

([n]−i) = [n]−i.
Therefore,

∪ni=1 aclMn([n]− i) = ∪ni=1([n]− i) = [n].

Also, aclMn
([n]) = [n]∪{[n]}∪{([n], 0), ([n], 1)}. Corollary 4.6 and Corollary 4.8 yield that every element

of Aut(acl([n])/ ∪ni=1 acl([n] − i)) fixes the elements belonging to the sorts Ω and [Ω]n of aclMn
([n]).

Hence, in order to prove Equation (13), it suffices to find an automorphism of aclMn([n]) mapping ([n], 0)
into ([n], 1). Let g ∈ F[Ω]n−1

2 with g([n − 1]) = 1 and g(w) = 0 for w 6= [n − 1]. Set f = β∗n,n−1g and
note that f([n]) = 1. As Aut(Mn) = imβ∗n,n−1 o Sym(Ω), the map f is an automorphism of Mn. By
construction f is an automorphism of aclMn

([n]) and ([n], 0)f = ([n], 0 + f([n])) = ([n], 1).

Finally, we show that Tn does not have n+ 2-existence.
Proposition 5.6 The theory Tn does not have n+ 2-existence.

P r o o f. We construct an n + 2-amalgamation problem a over ∅ (that is, a(∅) = ∅) for Tn with no
solution.

Let g be the element of F[Ω]n−1

2 defined by

g(w) =
{

1 if w = [n− 1],
0 if w 6= [n− 1].

Consider f = β∗n,n−1g and note that, as Aut(Mn) = imβ∗n,n−1 o Sym(Ω), the element f is an automor-
phism of Mn.

Let a be the functor a : P (n+2)− → CTn defined on the objects by a(s) = acl(s) and with morphisms
defined by

as,s′ =
{

f |a(s) if s = [n] and s′ = [n+ 1],
inclusion otherwise, (15)
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14 E. Pastori and P. Spiga: Failure of n-uniqueness: a family of examples

where f |a(s) denotes the restriction of the automorphism f to a(s). It is not obvious from Equation (15)
that a is a functor. Therefore, in the following paragraph, we prove that a is well-defined, that is,
as2,s3 ◦ as1,s2 = as1,s3 for every s1, s2, s3 in P (n+ 2)− with s1 ⊆ s2 ⊆ s3.

If s2 6= [n + 1] and s3 6= [n + 1], then (by Equation (15)) the morphisms as1,s2 , as2,s3 and as1,s3
are inclusions and so clearly as2,s3 ◦ as1,s2 = as1,s3 . If s2 = [n + 1], then s2 is a maximal element
of the partially ordered set P (n + 2)−. Thence s3 = s2 and, by Equation (15), as2,s3 is the identity
map. Thus as2,s3 ◦ as1,s2 = as1,s3 . In particular, from now on we may assume that s3 = [n + 1] and
s2 6= [n+ 1]. As s1 ⊆ s2, if s2 6= [n], then s1 6= [n] and so, by Equation (15), the morphisms as1,s2 , as2,s3
and as1,s3 are inclusions and as2,s3 ◦ as1,s2 = as1,s3 . If s2 = s1 = [n], then as1,s2 is the identity map and
as2,s3 ◦ as1,s2 = as1,s3 . The only case that remains to consider is s3 = [n + 1], s2 = [n] and s1 6= [n].
Thence as1,s2 and as1,s3 are inclusion maps and as2,s3 = f |a(s2). Since s1 ⊆ s2 = [n] and s1 6= [n], we
have |s1| < n − 1. Therefore, a(s1) = acl(s1) and by Proposition 4.4 aclMn

(s1) = s1 consists only of
elements belonging to the sort Ω of Mn. As f acts trivially on the elements belonging to the sort Ω,
by Proposition 4.5 we obtain as2,s3 ◦ as1,s2 = (f |a(s2))|a(s1) = f |a(s1) = as1,s3 . Finally, this proves that
a : P (n+ 2)− → CTn

is a functor.
By Proposition 4.3, a(∅) = acl(∅) = ∅. Therefore, the functor a is an n + 2-amalgamation problem

over ∅ for Mn.
We claim that a cannot be extended to P (n+ 2). We argue by contradiction. Let a : P (n+ 2)→ CTn

be a solution of a. In particular, a is an extension of a to the whole of P (n + 2). Denote by xi the
morphisms a[n+2]−i,[n+2], for 1 ≤ i ≤ n + 2. So, by definition of morphism, xi is the restriction to
acl([n+ 2]− i) of an automorphism fiσi of Mn, where fi ∈ imβ∗n,n−1 and σi ∈ Sym(Ω).

Since a is a functor and a extends a, we get

xi ◦ a[n+2]\{i,j},[n+2]−i = a[n+2]−i,[n+2] ◦ a[n+2]\{i,j},[n+2]−i (16)
= a[n+2]−j,[n+2] ◦ a[n+2]\{i,j},[n+2]−j

= xj ◦ a[n+2]\{i,j},[n+2]−j .

Let i and j be in [n + 2] with i 6= j. Fix an enumeration of aclMn([n + 2] \ {i, j}) and denote it as
bij = (bij1,, . . . ). Then, as it is shown in Proposition 4.5 bij ∈ acl([n+ 2] \ {i, j}) and, of course, also in
acl([n+ 2] \ {i}). By Proposition 4.4 the ordered pair ([n+ 2] \ {i, j}, 0) belongs to the sort [Ω]n × F2

of Mn and lies in aclMn
([n+ 2] \ {i, j}). Set bij1 = ([n+ 2] \ {i, j}, 0). We have

xi(bij) = xi(([n+ 2] \ {i, j}, 0), . . . ) (17)
= ((([n+ 2] \ {i, j})σi , 0 + fi([n+ 2] \ {i, j})), . . . )
= ((([n+ 2] \ {i, j})σi ,mij), . . . ),

where

mij = fi([n+ 2] \ {i, j}). (18)

Consider the matrix M = (mij)ij , with mii = 0.
Let i and j be in [n+2] with i 6= j and {i, j} 6= {n+1, n+2}. By Equation (15) and by hypothesis on

{i, j}, the morphism a[n+2]\{i,j},[n+2]−i is an inclusion map and so it fixes ([n+ 2] \ {i, j}, 0). Therefore,

xi ◦ a[n+2]\{i,j},[n+2]−i(bij) = xi ◦ a[n+2]\{i,j},[n+2]−i(([n+ 2] \ {i, j}, 0), . . . )
= xi(([n+ 2] \ {i, j}, 0), . . . )
= ((([n+ 2] \ {i, j})σi ,mij), . . . ),

where in the last equality we used Equations (17) and (18). Similarly, replacing i with j, we obtain

xi ◦ a[n+2]\{i,j},[n+2]−i(bij) = xj ◦ a[n+2]\{i,j},[n+2]−j(([n+ 2] \ {i, j}, 0), . . . )
= xj(([n+ 2] \ {i, j}, 0), . . . )
= ((([n+ 2] \ {i, j})σj ,mji), . . . ).

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 15

Now, by Equation (16), we have

xi ◦ a[n+2]\{i,j},[n+2]−i(bij) = xi ◦ a[n+2]\{i,j},[n+2]−i(([n+ 2] \ {i, j}, 0), . . . )
= xj ◦ a[n+2]\{i,j},[n+2]−j(([n+ 2] \ {i, j}, 0), . . . ).

In particular,

mij = mji, for every i, j with {i, j} 6= {n+ 1, n+ 2}. (19)

By Equation (15) the morphism a[n+2]\{n+1,n+2},[n+2]−(n+1) is an inclusion map and so it fixes
([n+ 2] \ {n+ 1, n+ 2}, 0). Therefore,

xn+1 ◦ a[n+2]\{n+1,n+2},[n+2]−(n+1)(bn+1,n+2)
= xn+1 ◦ a[n+2]\{n+1,n+2},[n+2]−(n+1)(([n+ 2] \ {n+ 1, n+ 2}, 0), . . . )
= xn+1(([n+ 2] \ {n+ 1, n+ 2}, 0), . . . )
= ((([n+ 2] \ {n+ 1, n+ 2})σn+1 ,m(n+1)(n+2)), . . . ).

By Equation (15) the morphism f |a([n]) = a[n],[n+1] = a[n+2]\{n+1,n+2},[n+2]−(n+2) maps ([n+ 2] \ {n+
1, n+ 2}, 0) to ([n+ 2] \ {n+ 1, n+ 2}, 1). Therefore,

xn+2 ◦ a[n+2]\{n+1,n+2},[n+2]−(n+2)(bn+1,n+2)
= xn+2 ◦ a[n+2]\{n+1,n+2},[n+2]−(n+2)(([n+ 2] \ {n+ 1, n+ 2}, 0), . . . )
= xn+2 ◦ f |a([n])(([n+ 2] \ {n+ 1, n+ 2}, 0), . . . )
= xn+2(([n+ 2] \ {n+ 1, n+ 2}, 1), . . . )
= ((([n+ 2] \ {n+ 1, n+ 2})σn+2 ,m(n+2)(n+1) + 1), . . . ).

By Equation (16) (applied to i = n+ 1 and j = n+ 2), we have

(([n+ 2] \ {n+ 1, n+ 2})σn+1 ,m(n+1)(n+2))
= (([n+ 2] \ {n+ 1, n+ 2})σn+2 ,m(n+2)(n+1) + 1)

and

m(n+1)(n+2) = m(n+2)(n+1) + 1. (20)

Now, we are ready to get a contradiction. We claim that each row of M adds up to zero. We have
n+2∑
j=1

mij =
∑

j∈([n+2]−i)

mij =
∑

j∈([n+2]−i)

fi([n+ 2] \ {i, j})

= (β∗n+1,nfi)([n+ 2]− i) = 0,

where in the first equality we used that mii = 0, in the second equality we used Equation (18) and in
the last equality we used that fi ∈ imβ∗n,n−1 = kerβ∗n+1,n. In particular, the sum of all the entries of
M is zero. Hence

0 =
∑
ij

mij =
∑
i<j

(mij +mji).

By Equation (19), mij = mji if {i, j} 6= {n+1, n+2}. So, in the previous sum there is only one non-zero
summand. Namely, m(n+1)(n+2) +m(n+2)(n+1) = 0. Now, Equation (20) yields

m(n+1)(n+2) +m(n+2)(n+1) = m(n+1)(n+2) +m(n+1)(n+2) + 1 = 1,

a contradiction. This contradiction finally proves that the extension a does not exist.

Now, Theorem 1.2 follows at once from Proposition 5.2, 5.4, 5.5, 5.6. Finally, we point out that
Proposition 5.5 also follows from Theorem 5.3 and Proposition 5.6.
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6 Extension of Example 1.1

In this section we remark that for every n ≥ 2 the theories Tn are stable and that the family of examples
{Mn}n≥2 generalizes the example due to E.Hrushovski given in [3], see Example 1.1 in Section 1.

Definition 6.1 Let Ω be a countable set, and C = [Ω]n × Z/2Z. Also let E ⊆ Ω × [Ω]2 be the
membership relation, and let P be the subset of Cn+1 such that ((w1, δ1), . . . , (wn+1, δn+1)) ∈ P if and
only if there are distinct c1, . . . , cn+1 ∈ Ω such that wi = {c1, . . . , cn+1} \ ci and δ1 + · · · + δn+1 = 0.
Now let Mn be the model with the 3-sorted universe Ω, [Ω]n, C and equipped with relations E,P and
projection on the first coordinate π : C → [Ω]n. Since Mn is a reduct of (Ω,Z/2Z)eq, we get that
Th(Mn) is stable.

Proposition 6.2 Let Mn be the structures described in Definition 6.1. Then Aut(Mn) = imβ∗n,n−1o
Sym(Ω). In particular, Mn and Mn are interdefinable.

P r o o f. First we show that Sym(Ω) is a subgroup of Aut(Mn). Indeed, the group Sym(Ω) acts with
its natural action on the sorts Ω and [Ω]n of Mn. Also, if g ∈ Sym(Ω) and ({a1, . . . , an}, δ) ∈ C, then we
set ({a1, . . . , an}, δ)g = ({ag1, . . . , agn}, δ). This defines an action of Sym(Ω) on Mn. It is straightforward
to see that the relations E,P and the partition given by the fibers of π are preserved by Sym(Ω). Hence,
Sym(Ω) ≤ Aut(Mn).

Let µ : Aut(Mn) → Sym(Ω) be the map given by restriction on the sort Ω of Mn. Since µ is
a surjective homomorphism, we have that Aut(Mn) is a split extension of kerµ by Sym(Ω). Every
element of kerµ preserves the fibres of π and fixes all the elements of [Ω]n. So kerµ is a closed Sym(Ω)-
submodule of F[Ω]n

2 .
Let ((w1, δ1), . . . , (wn+1, δn+1)) be in P and f be in kerµ. Since kerµ preserves P , we have

f(w1) + δ1 + · · ·+ f(wn+1) + δn+1 = 0.

From the definition of P and β∗n+1,n, we get

kerµ = {f ∈ F[Ω]n

2 |
∑

x∈[w]n

f(x) = 0 for every w ∈ [Ω]n+1} = kerβ∗n+1,n.

By Proposition 2.2, we have that kerβ∗n+1,n = imβ∗n,n−1. Therefore Aut(Mn) = Aut(Mn) and Mn,Mn

are interdefinable.
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