amalgamation

Existence an Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Failure of *n*-uniqueness in amalgamation problems: a group theoretical approach A joint work with P. Spiga

> Elisabetta Pastori University of Turin, Italy UEA, 5 October 2010

Introduction

Independent amalgamatior

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Amalgamation properties concern the possibility of embedding increasingly complex systems of algebraically closed sets (boundedly closed sets, models,...) into a model of a theory.

We can also ask when the result is unique. This yields to properties called *n*-existence and *n*-uniqueness which we will define soon.

- Independent amalgamation
- Existence an Uniqueness
- P_n-structures
- A criterion for *n*-uniqueness
- Topologica groups
- Automorphism groups
- Algebraic closure
- Failure of *n*-uniqueness
- Bibliography

Amalgamation properties have nice uses! They have been used:

- To study the number of isomorphism classes of models in various cardinalities (Shelah).
- To generalize the "Group Configuration Theorem" to the context of simple theories (De Piro, Kim, Young).

More recently Hrushovski discovered surprising connections between amalgamation properties, definable groupoids and generalized imaginary sorts.

The category $\mathcal{C}_{\mathcal{T}}$

Introduction

Independent amalgamation

Existence an Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Amalgamation properties can be formulated in categorical language. We focus on higher amalgamation over algebraically closed sets.

We work in a fixed stable or simple theory T. Let C be a saturated monster model of T and C_T be the category where:

- the objects Ob_T are all the algebraically closed subsets of C;
- the morphisms *Mor*_T are embeddings.

Functors from $\mathcal{P}(n)$

Introduction

Independent amalgamation

Existence an Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphisn groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

We think of the full power set $\mathcal{P}(n)$ on n elements, for $n \in \mathbb{N}$, as a category with inclusion maps as morphisms.

A functor $A: \mathcal{P}(n) \rightarrow \mathcal{C}_{\mathcal{T}}$ is given by

- For every $u \subseteq n$, an algebraically closed set A(u);
- For every pair (u, v) such that $u \subseteq v \subseteq n$ we have an embedding $A_{u,v} : A(u) \to A(v)$.

Functoriality says: whenever $u \subseteq v \subseteq w \subseteq n$, $A_{v,w} \circ A_{u,v} = A_{u,w}$

n-Amalgamation Problems

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Notation: $\mathcal{P}^{-}(n) = \text{set of proper subsets of } n$

Definition

An *n*-amalgamation problem over $acl(\emptyset)$ is a functor

$$A: \mathcal{P}^{-}(n) \rightarrow \mathcal{C}_{T}$$

where

- $A(\emptyset) = \operatorname{acl}(\emptyset);$
- for any $s \in \mathcal{P}^{-}(n)$, $A(s) = \operatorname{acl}(A_{i,s}(A(i)) : i \in s)$;
- for any s ∈ P⁻(n) the set {A_{i,s}(A(i)) : i ∈ s} is independent over acl(Ø).

Solutions of *n*-Amalgamation Problems

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Definition

A *solution* of an *n*-amalgamation problem A over $acl(\emptyset)$ is an extension of A to a functor

$$\bar{A}: \mathcal{P}(n) \to \mathcal{C}_T$$

on the full power set $\mathcal{P}(n)$ satisfying the same conditions (so including the case $s = \{1, ..., n\}$).

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

So, in order to determine a solution of A we need to find $\bar{A}(n)$ and n embeddings

$$\bar{A}_{n\setminus\{i\},n}: A(n\setminus\{i\}) \to \bar{A}(n)$$

compatible with A, that is,

$$\bar{A}_{n\setminus\{i\},n} \circ A_{s,n\setminus\{i\}} = \bar{A}_{n\setminus\{j\},n} \circ A_{s,n\setminus\{j\}}, \forall i,j \in n, \forall s \subseteq n\setminus\{i,j\}.$$

n-Existence and *n*-Uniqueness

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topological groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Definition

T has *n*-existence over $acl(\emptyset)$ if every *n*-amalgamation problem over $acl(\emptyset)$ has at least one solution.

Definition

T has *n*-uniqueness over $acl(\emptyset)$ if any *n*-amalgamation problem over $acl(\emptyset)$ has at most one solution.

2- and 3-existence

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

2-existence says: any 2-amalgamation problem $A: \{\emptyset, \{1\}, \{2\}\} \rightarrow C_T$ has an extension \overline{A} to $\{1, 2\}$ such that $\overline{A}_{\{1\},\{1,2\}}(A(\{1\}))$ and $\overline{A}_{\{2\},\{1,2\}}(A(\{2\}))$ are independent over $\overline{A}_{\{\emptyset\},\{1,2\}}(A(\{\emptyset\}))$.

3-existence says: suppose we are given a 3-amalgamation problem $A : \mathcal{P}^{-}(\{1,2,3\}) \rightarrow \mathcal{C}_{T}$. Think of this as giving the three sides of a triangle as $A(\{1,2\}), A(\{1,3\}), A(\{2,3\})$. \Rightarrow

A has an extension \overline{A} to $\{1, 2, 3\}$ which independently amalgamates the three sides of the triangle.

n-Existence and *n*-Uniqueness: Examples

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

- 2-existence is equivalent to the existence of nonforking extensions
- \Rightarrow 2-existence is true in any simple theory.
- 2-uniqueness is true in any stable theory by stationary of strong types, but can fail for unstable simple theories:

The random graph

The theory of a random graph is simple so it has 2-existence. But if A(i) is the vertex a_i (for i = 1, 2), then there are two solutions to the 2-amalgamation problem A: one with an edge between the points and one with no edge.

n-Existence and *n*-Uniqueness: Examples

- Introduction
- Independent amalgamation
- Existence and Uniqueness
- P_n-structures
- A criterion for *n*-uniqueness
- Topologica groups
- Automorphism groups
- Algebraic closure
- Failure of *n*-uniqueness
- Bibliography

- In simple theories k-uniqueness + k-existence for some k ≥ 2 imply k + 1-existence (Hrushovski).
- In particular in stable theories k-uniqueness for 2 ≤ k ≤ n implies n + 1-existence
- \Rightarrow 3-existence is true in any stable theory.
 - 3-existence holds in any simple theory with elimination of hyperimmaginaries (Kim and Pillay).
- (*) 3-uniqueness can fail for stable theories.

Fact

Among the example of type (*), there is one due to Hrushovski, where the theory fails 3-uniqueness and 4-existence.

Failure of 4-existence: the tetrahedron-free hypergraph

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topological groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Let T be the theory of the random tetrahedron-free hypergraph.

The language of T consists of a ternary relation R, which is "symmetric". Moreover, there is no set of four distinct points such that R holds on every three-element subset.

Fact

T is simple unstable and does not have 4-existence: if $A: \mathcal{P}^{-}(4) \rightarrow \mathcal{C}_{T}$ is a 4-amalgamation problem such that A(i, j, k) is a set of three elements for which the R relation holds, then A has no solution.

P_n -structures

Introduction

Independent amalgamation

Existence and Uniqueness

P_n -structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Let Ω be a countable set, $[\Omega]^n$ the set of *n*-subsets of Ω and $C = [\Omega]^n \times \mathbb{Z}/2\mathbb{Z}$. Also let $E \subseteq \Omega \times [\Omega]^n$ be the membership relation, and let P_n be the subset of C^{n+1} such that $((w_1, \delta_1), \ldots, (w_{n+1}, \delta_{n+1})) \in P_n$ if and only if there are distinct $c_1, \ldots, c_{n+1} \in \Omega$ such that $w_i = \{c_1, \ldots, c_{n+1}\} \setminus c_i$ and $\delta_1 + \cdots + \delta_{n+1} =_2 0$. Now let M_n be the structure with the 3-sorted universe $\Omega, [\Omega]^n, C$ and equipped with relations E, P_n and projection on the first coordinate $\pi : C \to [\Omega]^n$. Since M_n is a reduct of $(\Omega, \mathbb{Z}/2\mathbb{Z})^{\text{eq}}$, we have that $\text{Th}(M_n)$ is stable.

For n = 2 the P_2 -structure described above is the example of Hrushovski of a stable structure witnessing failure of 3-uniqueness and 4-existence.

Aim of the talk

This talk: outline a proof of

P_n -structures

Theorem

For any $n \ge 2$, Th (M_n) does not have (n+1)-uniqueness.

The proof uses mainly group-theoretical tools.

In our paper there is much more:

Theorem

For any $n \ge 2$, Th (M_n) has (k + 1)-existence and k-uniqueness for any $k \leq n$, but Th(M_n) has neither (n + 2)-existence nor (n+1)-uniqueness.

A criterion for *n*-uniqueness

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Notation: Let M be a structure, $A, B \subset M$. Denote by Aut(A/B) the group of permutations of A which extend to automorphisms of M fixing pointwise B.

Proposition (Hrushovski)

A stable theory T has *n*-uniqueness if and only if for any independence-preserving functor $a : \mathcal{P}(n) \to \mathcal{C}_T$

$$\begin{array}{l} \operatorname{Aut}(a(1,\ldots,n-1)/\bigcup_{i=1}^{n-1}a(1,\ldots,\hat{i},\ldots,n-1,n)) = \\ \operatorname{Aut}(a(1,\ldots,n-1)/\bigcup_{i=1}^{n-1}a(1,\ldots,\hat{i},\ldots,n-1,)). \end{array}$$

Hence, in order to use this criterion we need to understand $Aut(M_n)$ and the algebraically closed sets in M_n^{eq} .

Independent amalgamation

Existence and Uniqueness

 P_n -structures

A criterion for *n*-uniqueness

Topological groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Let Ω be an infinite set. We consider Sym(Ω) as a topological group giving it the tolpology where open sets are arbitrary unions of cosets of pointwise stabilizers of finite sets of Ω .

Important fact

Closed subgroups of Sym(Ω) in this topology are precisely automorphism groups of first-order structures on Ω .

The Sym(Ω)-module $\mathbb{F}_2^{[\Omega]^n}$

Introduction

Independent amalgamatio

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Let \mathbb{F}_2 be the field with 2 elements and $\mathbb{F}_2^{[\Omega]^n}$ be the group of functions from $[\Omega]^n$ to \mathbb{F}_2 . The natural action of Sym (Ω) on $[\Omega]^n$ induces an action of Sym (Ω) on $\mathbb{F}_2^{[\Omega]^n}$ given by

$$f^{\sigma}(w)=f(w^{\sigma})$$

which makes $\mathbb{F}_2^{[\Omega]^n}$ into a Sym (Ω) -module. There is a natural faithful action of $\mathbb{F}_2^{[\Omega]^n}$ on $[\Omega]^n \times \mathbb{F}_2$ given by

$$(w,\delta)^f = (w,f(w)+\delta).$$

Hence, $\mathbb{F}_{2}^{[\Omega]^{n}}$ with the relative topology becomes a topological Sym (Ω) -module and a profinite subgroup of Sym $([\Omega]^{n} \times \mathbb{F}_{2})$.

The α -maps

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Definition

If $0 \leq j \leq n$, then the map $\alpha_{j,n} : \mathbb{F}_2^{[\Omega]^j} \to \mathbb{F}_2^{[\Omega]^n}$, given by

$$lpha_{j,n}(f)(\omega) = \sum_{\omega' \in [\omega]^j} f(\omega') \quad (\text{for } \omega \in [\Omega]^n)$$

is a continuous $Sym(\Omega)$ -homomorphism.

Proposition (Gray 1997)

Any closed Sym(Ω)-submodule of $\mathbb{F}_2^{[\Omega]^n}$ is a sum of images of α -maps.

Automorphism groups of the P_n -structures

Proposition (P.-Spiga)

Introduction

Independent amalgamatior

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Let M_n be the P_n -structure described above. Then

$$\operatorname{Aut}(M_n) = \operatorname{im} \alpha_{n-1,n} \rtimes \operatorname{Sym}(\Omega).$$

We sketch a proof.

- There is a natural action of $Sym(\Omega)$ on M_n .
- The relations E, P_n and the partition given by the fibres of π are preserved by Sym(Ω). Hence, Sym(Ω) \leq Aut(M_n).
- Let μ : Aut $(M_n) \rightarrow \text{Sym}(\Omega)$ be the map given by restriction on the sort Ω of M_n .
- μ is surjective $\Rightarrow Aut(M_n)$ is a split extension of ker μ by Sym (Ω) .

.

Independent amalgamatio

Existence an Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

- Every element of ker μ preserves the fibres of π and fixes all the elements of $[\Omega]^n \Rightarrow \ker \mu$ is a closed Sym (Ω) -submodule of $\mathbb{F}_2^{[\Omega]^n}$.
- Let $((w_1, \delta_1), \dots, (w_{n+1}, \delta_{n+1}))$ be in P_n and f be in ker μ . Since ker μ preserves P_n , we have

$$f(w_1) + \delta_1 + \cdots + f(w_{n+1}) + \delta_{n+1} =_2 0$$

But $\delta_1 + \cdots + \delta_{n+1} =_2 0 \Rightarrow$

$$\ker \mu = \{ f \in \mathbb{F}_2^{[\Omega]^n} \mid \sum_{x \in [w]^n} f(x) =_2 0 \text{ for every } w \in [\Omega]^{n+1} \}$$

i.e. ker
$$\mu = \ker \alpha_{n,n+1}$$
.
• ker $\alpha_{n,n+1} = \operatorname{im} \alpha_{n-1,n}$.

Algebraic closure in Meq

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topological groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Algebraic closure in M^{eq}

Let *M* be a countable \aleph_0 -categorical structure and $A \subset_{\text{fin}} M$. The elements of $\operatorname{acl}(A)$ corresponds (up to interdefinability) to closed subgroups of finite index of $\operatorname{Aut}(M/A)$.

Proof of \Rightarrow

Let $c \in \operatorname{acl}(A)$. Then $\operatorname{Aut}(M/A, c)$ is a closed subgroup of finite index in $\operatorname{Aut}(M/A)$.

Algebraic closure in M^{eq}

Proof of \Leftarrow

milloudection

amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Let G be a closed subgroup of f. i. in Aut(M/A). By general topological arguments, G is open in Aut $(M) \Rightarrow$ there exists a tuple \overline{b} such that Aut $(M/\overline{b}) \leq G \leq \text{Aut}(M/A)$. Consider $\{(\overline{b}, \overline{b}^{\gamma}) : \gamma \in G\}$. By \aleph_0 -categoricity these pairs lie in a finite number of orbits under Aut(M): choose $(\overline{b}, \overline{b}^{\gamma_1}), \ldots, (\overline{b}, \overline{b}^{\gamma_m})$ as rapresentatives. Let

$$\mathcal{R} := \{ (\bar{b}^{\alpha}, \bar{b}^{\gamma_i \alpha}) : i \leq m, \alpha \in \operatorname{Aut}(M) \}.$$

Then, \mathcal{R} is a \emptyset -definable equivalence relation in M. Let $c = [\bar{b}]_{\mathcal{R}}$. Then, $\operatorname{Aut}(M/c) = \bigcup_{i \leq m} \gamma_i \operatorname{Aut}(M/\bar{b}) = G$ and $c \in \operatorname{acl}(A)$.

Proposition (P.-Spiga)

Let $A \subset_{\text{fin}} M_n$. Then $\text{Aut}(M_n/A)$ has a unique minimal closed subgroup of finite index.

Sketch of proof

For simplicity take $A \subset \Omega$. The proof is made of several lemmas.

1) Define

Algebraic closure

Failure of *n*-uniqueness

Bibliography

$$V_{\mathcal{A}} = \{ f \in \mathbb{F}_2^{[\Omega]^{n-1}} \mid f(w) = 0 \text{ for every } w \in [\mathcal{A}]^{n-1} \}.$$

The module V_A has finite index in $\mathbb{F}_2^{[\Omega]^{n-1}}$. Also, if V is a closed Sym $(\Omega \setminus A)$ -submodule of $\mathbb{F}_2^{[\Omega]^{n-1}}$ of finite index, then $V_A \subseteq V$.

Continuing

Introduction

- Independent amalgamation
- Existence and Uniqueness
- P_n-structures
- A criterion for *n*-uniqueness
- Topologica groups
- Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

- 2) $\alpha_{n-1,n}(V_A) = \{g \in \operatorname{im} \alpha_{n,n-1} \mid g(w) = 0 \text{ for every } w \in [A]^n\}$
- 3) α_{n-1,n}(V_A) is the unique minimal closed Sym(Ω \ A)-submodule of im α_{n-1,n} of finite index.
- 4) Now consider $\bar{\mathcal{A}}:= A \cup [A]^n \cup ([A]^n \times \mathbb{F}_2).$ Then ,

$$\operatorname{Aut}(M_n/\bar{\mathcal{A}}) = \alpha_{n-1,n}(V_A) \rtimes \operatorname{Sym}(\Omega \setminus A)$$

is the unique minimal closed subgroup of finite index of $Aut(M_n/A)$.

Algebraic closure in M_n

Definition

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Let $A = A_1 \cup A_2 \cup A_3 \subset_{\text{fin}} M_n$, where $A_1 \subset \Omega$, $A_2 \subset [\Omega]^n$ and $A_3 \subset [\Omega]^n \times \mathbb{F}_2$. Consider $\tilde{A}_2 \subseteq \Omega$ the union of the elements in A_2 and $\tilde{A}_3 \subseteq \Omega$ the union of the elements in $\pi(A_3)$. We define

$$\mathrm{supp}(A) := A_1 \cup \widetilde{A_2} \cup \widetilde{A_3} \subset \Omega.$$

EX: if $A = \{1, 2, \{1, 4\}, (\{3, 7\}, 1)\}$, supp $(A) = \{1, 2, 3, 4, 7\}$.

Proposition (P.-Spiga)

Let $A \subset_{\text{fin}} M_n$. Then

 $\operatorname{\mathsf{acl}}(A) \cap M_n = \operatorname{supp}(A) \cup [\operatorname{supp}(A)]^n \cup ([\operatorname{supp}(A)]^n \times \mathbb{F}_2)$

Algebraic closure in M_n^{eq}

Introduction

Independent amalgamation

Existence and Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topological groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

Proposition (P.-Spiga)

Let $A \subset_{\text{fin}} M_n$. Then,

$$\mathsf{dcl}(\mathsf{acl}(A) \cap M_n) = \mathsf{acl}(A)$$

Corollary (P.-Spiga)

Let $A, B \subset_{\text{fin}} M_n$. Then,

 $\operatorname{Aut}(\operatorname{acl}(A) \cap M_n / \operatorname{acl}(B) \cap M_n) = \operatorname{Aut}(\operatorname{acl}(A) / \operatorname{acl}(B)).$

Failure of *n*-uniqueness

Proposition (P.-Spiga)

The theory $T = \text{Th}(M_n)$ does not have n + 1-uniqueness for every $n \ge 2$.

We sketch a proof for n = 2. (The proof in the general case is similar, just more complicated notation). Think of Ω as \mathbb{N} . Let $a : \mathcal{P}(3) \to \mathcal{C}_T$ be the 3-independence preserving functor defined on the objects by $a(s) = \operatorname{acl}(\{1, \ldots, s\})$. We show the following equations hold:

$$|\operatorname{Aut}(\operatorname{acl}(\{1,2\})/\operatorname{acl}(\{1,3\}),\operatorname{acl}(\{2,3\}))|=1$$

and

Failure of

n-uniqueness

 $|\operatorname{Aut}(\operatorname{acl}(\{1,2\})/\operatorname{acl}(1),\operatorname{acl}(2))|>1.$

Failure of *n*-uniqueness

Introductior

Independent amalgamation

Existence an Uniqueness

P_n-structures

A criterion for *n*-uniqueness

Topologica groups

Automorphism groups

Algebraic closure

Failure of *n*-uniqueness

Bibliography

By the results we have shown acl({*i*,*j*}) $\cap M_2 = \{i, j, \{i, j\}, \{(\{i, j\}, 0), (\{i, j\}, 1)\}$ and Aut(M_2 /acl({1,3}), acl({2,3})) = K \rtimes Sym(\Omega \setminus \{1, 2, 3\}) where $K = \{f \in \text{im } \alpha_{1,2} : f(\{1,3\}) = f(\{2,3\}) = 0\}$. By definition of im $\alpha_{1,2}$ for every $f \in K$ there exists $g \in \mathbb{F}_2^{\Omega}$ such that $f(\{i, j\}) = g(i) + g(j)$.

$$\begin{cases} f(\{1,3\}) = g(1) + g(3) = 0 \pmod{2} \\ f(\{2,3\}) = g(2) + g(3) = 0 \pmod{2} \end{cases}$$

Failure of *n*-uniqueness

- Introductior
- Independent amalgamation
- Existence and Uniqueness
- P_n-structures
- A criterion for *n*-uniqueness
- Topologica groups
- Automorphism groups
- Algebraic closure

Failure of *n*-uniqueness

Bibliography

$$\Rightarrow g(1) + g(2) = I(\{1,2\}) = 0 \text{ and } I \text{ investance} \\ \{(\{1,2\},0),(\{1,2\},1)\} \\\Rightarrow \text{Aut}(\operatorname{acl}(\{1,2\})/\operatorname{acl}(\{1,3\}),\operatorname{acl}(\{2,3\})) = \text{id} \\ \text{Now we consider Aut}(\operatorname{acl}(\{1,2\})/\operatorname{acl}(1),\operatorname{acl}(2)). \\ = I(i) = M_{i} = I(i)$$

 $\rightarrow a(1) + a(2) - f(\int 1 2 f) - 0$ and f fixes also

acl
$$(i) \cap M_2 = \{i\}.$$

- $\Rightarrow \operatorname{Aut}(M_2/\operatorname{acl}(1),\operatorname{acl}(2)) = \operatorname{im} \alpha_{1,2} \rtimes \operatorname{Sym}(\Omega \setminus \{1,2\}).$
 - Let $g \in \mathbb{F}_2^{\Omega}$ such that g(1) = 1 and g(a) = 0 for all other $a \in \Omega$. Then $f = \alpha_{1,2}(g) \in \operatorname{im} \alpha_{1,2} \rtimes \operatorname{Sym}(\Omega \setminus \{1,2\})$ is an automorphism of $\operatorname{acl}(\{1,2\})$ such that $(\{1,2\},0)^f = (\{1,2\},0+f(\{1,2\})) = (\{1,2\},1).$
- $\Rightarrow |\operatorname{Aut}(\operatorname{acl}(\{1,2\})/\operatorname{acl}(1),\operatorname{acl}(2))| > 1.$

Works cited

Introduction

- Independent amalgamation
- Existence and Uniqueness
- P_n-structures
- A criterion for *n*-uniqueness
- Topologica groups
- Automorphism groups
- Algebraic closure
- Failure of *n*-uniqueness
- Bibliography

- T. de Piro, B. Kim, J. Millar, Constructing the hyperdefinable group from the group configuration, J. Math. Log. 6 no. 2, (2006), 121–139.
- D. G. Gray, The structure of some permutation modules for the symmetric group of infinite degree, Journal of Algebra, 193, (1997), 122–143.
- E. Hrushovski, Groupoids, imaginaries and internal covers. Preprint. http://arxiv.org/abs/math/0603413v1.
- E. Pastori, P. Spiga Failure of n-uniqueness: a family of examples. To appear in MLQ.