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Abstract

We present a brief survey on finite covers in model theory. In
particular, we focus on those covers whose automorphism group over
the base structure is either abelian or finite. In the last section we show
some recent results due to Hrushovski ([15]) concerning groupoids and
finite internal covers.

Definition 0.1 If C and W are first-order structures we say that π : C →
W is a finite cover of W if

1. π is a surjection with fibres of finite cardinality;

2. the fibres of π are the equivalence classes of an ∅-definable equivalence
relation on C;

3. for any n ∈ N all subsets of Wn which are ∅-definable in the 2-sorted
structure (C,W, π) are already ∅-definable in the structure W .

The general problem is, for a given W , to describe all possible C. A
prominent place in model theory where this problem arises is in the study
of totally categorical structures.

In 1904 Oswald Veblen stole a term from Kant and described a theory
as categorical if it has just one model up to isomorphism (i.e. it has a model
and all its models are isomorphic to each other). The bad news is that there
are no categorical first-order theories with infinite models. This follows at
once from the upward Loewenheim-Skolem theorem. Actually if T is a first-
order theory with infinite models, then the strongest kind of categoricity
we can hope for T is that, for certain infinite cardinals κ, T has exactly
one model of cardinality κ up to isomorphism. This property is called κ-
categoricity. If the theory is κ-categorical for all infinite cardinals κ then
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it is said to be totally categorical. A structure is said to be κ-categorical
or totally categorical if its theory is so. For example, the set of rational
numbers, seen as a countable dense ordered set without endpoints and the
countable random graph are ℵ0-categorical structures, while the theory of
infinite dimensional vector spaces over a fixed finite field is an example of
totally categorical theory.

The idea is that if a first-order theory T forces its models (of a fixed
cardinality) to be all similar to each other, this can only be because the
models of T have few irregularities and asymmetries. So there should be
a good structural description of these models. Considerable work has been
done in classifying totally categorical structures. Anyway, they remain quite
mysterious objects. It is known that (up to interdefinability) there are only
countably many countable totally categorical structures (see [16]). However,
there is not a sufficiently satisfactory explicit description of them. We know
from the Zilber’s Ladder Theorem ([25]) that any totally categorical struc-
ture can be built out from some very well-understood structures (pure sets,
projective or affine spaces over infinite dimensional vector spaces over finite
fields...) by taking a sequence of (finite, affine) covers. In these notes we
give a brief survey on finite covers. In particular we focus on those with
abelian kernel (Section 3) and on those with finite kernel (Section 4). For
the latter kind of covers there is a satisfactory description due to D. Evans
(see Theorem 4.7 in Section 4 and [8]) by a system of certain continuous
homomorphisms denoted in as conjugate system of homomorphisms.

Internality, and finite internal covers arise as well in the study of totally
categorical theories. In particular, the notion of internality was discovered
by Zilber as a tool to study the structure of strongly minimal theories ([26])
which are crucial in the understanding of ℵ1-categorical theories. Later,
Poizat realised in [22] that internality can be used to treat the Galois theory
of differential equations. In more recent times, Hrushovski in [15] describes
finite internal covers using definable groupoids. We give an account of this
here in Section 5. We note that finite covers with finite kernel are an example
of finite internal covers. Then it is natural to ask if and how the description of
finite covers with finite kernel due to Evans is connected with the description
of finite internal covers by definable groupoids given by Hrushovski. This is
an open question we pose at the end of Section 5.

0.1 An introduction to model theory

We assume standard notions from logic to be known. We briefly recall that
a theory is a collection of statements (axioms) written in a fixed formal
language, and a model of the theory T is a structure consisting of an inter-
pretation of the symbols in the language of T , in which all the axioms of
T hold. For example, the theory ACF of algebraically closed fields can be
written in a language with signature (0, 1,+,−, ·) and a model of this the-
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ory is an algebraically closed field. A formula is written in the same formal
language, but has free variables, into which elements of the model can be
plugged. Any such formula φ(x1, . . . xn) (where x1, . . . , xn are all the free
variables of φ) determines a subset φ(M) of Mn, for any model M, namely,
the set of all tuples ā ∈ Mn for which φ(ā) holds (in symbols M |= φ(ā)).
A subset A of Mn is called definable if there exist b1, . . . , bm ∈ M and a
formula φ(x1, . . . , xn, y1, . . . , ym) such that

A = {ā ∈Mn : M |= φ(ā, b̄)}.

If the parameters b̄ can be taken from the subset X ⊆M , then A is said to
be X-definable. The union of the finite X-definable subsets of M is called
the algebraic closure of X, denoted by aclM (X), while the union of the X-
definable singleton subsets of M is the definable closure of X, denoted by
dclM (X). If M is the model of some theory, the set of all statements (in the
underlying language) that are true in M is a theory T (M), and M is a model
of T (M). The set of all the permutations of M which preserve the constants,
the functions and relations of M is a group, called the automorphism group
of M . It is denoted by Aut(M).

Let L and L− ⊂ L be two signatures and M be an L-structure. Then,
we can turn M into an L−-structure by simply forgetting the symbols of L
which are not in L−. The resulting structure M− is called the reduct of M
to L−. In particular, Aut(M) ≤ Aut(M−). In the other way around if C is
the reduct of M to L−, then M is said an expansion of C to L.

We allow our structures to be multi-sorted. The universe of a multi-
sorted structure is made of disjoint sets. The sorts are part of the signature
and they play the role of names for the disjoint sets which constitute the
universe of the structure. The signature of a multi-sorted structure also
says on which sort the constants, the functions and relations are defined.
For example a vector space V can be regarded as 2-sorted structure with
sorts V and S. The universe is made of the two disjoint sets VV = V ,
the set of vectors, and VS = S, the scalars. In addition to the sorts, the
signature consists of the obvious constants and functions for V (i.e. the
standard signature for a group) and for S (i.e. the standard signature for
a field). Moreover we have the function × which is interpreted in V as the
scalar multiplication ×V : VS × VV → VV .

Multi-sorted structures are used to deal with quotient constructions. In-
deed, it is often convenient to enrich a structure with its equivalence relation
classes and deal with them as elements of the structure. More formally, let
M be an L-structure. We consider the set of sorts

S = {SE : E an ∅-definable equivalence relation on Mn for some n ∈ N}

and the many-sorted structure M eq with sorts S, such that the sort SE is
interpreted in M eq as Mn/E for E an ∅-definable equivalence relation on
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Mn. Since = is a definable equivalence relation on M , M can be identified
with the sort S=. All relations and functions of L are considered relations
and functions on the sort M . Moreover for each ∅-definable equivalence
relation E on Mn we have in M eq an n-ary function fE : Mn → SE given
by fE(x̄) = x̄/E.

1 Notation and basic definitions about finite cov-
ers

As a first approach, it is natural to analyze the problem of describing fi-
nite covers of a given structure W , when W is countable and ℵ0-categorical.
In this case, we can apply the theorem of Ryll-Nardzewski, Svenonius and
Engeler and obtain a reformulation of definitions in the group-theoretic lan-
guage. Thus, most of the rest of this paper will be phrased in terms of
permutation groups. For more details about finite covers we address the
reader to [12].

Definition 1.1 A permutation structure 〈W,G〉 consists of a set W and a
closed subgroup G of Sym(W ), the full symmetric group on W . We refer to
G as the automorphism group of the permutation structure, G = Aut(W ),
and we simply denote by W the permutation structure.

In Definition 1.1 closed is meant in the usual topology on Sym(W ):
when W is countable, it is the topology derived by the pointwise conver-
gence. More generally it is the topology whose open sets are unions of
cosets of pointwise stabilizers of finite subsets of W . In this way, Sym(W ) is
a topological group, and closed subgroups are exactly automorphism groups
of relational structures on W (see [3]). Using the language of permutation
structures, one can give an equivalent definition of finite covers.

Definition 1.2 Suppose C and W are permutation structures. A map π :
C →W is a finite cover of W if

1. π is surjective and each fibre C(w) := π−1(w) is finite, for any w ∈W ;

2. the set of fibres is an Aut(C)-invariant partition of C;

3. the image of the induced map µ : Aut(C) → Sym(W ), defined by
µ(g)(w) = π(g(C(w))), for g ∈ Aut(C) and w ∈W , is Aut(W ).

Note that µ is a continuous homomorphism. The kernel of π is by definition
the kernel of µ. We say that the cover is split if the kernel of π admits a
closed complement in Aut(C).

Notation: Let π : C → W be a finite cover of W . If A is a subset of
C and B is a subset of W , then we denote by Aut(A/B) the subgroup
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of permutations of A which extend to elements of Aut(C) fixing pointwise
every element of B in the induced action on W by µ. Using this notation
the kernel of π can be denoted by Aut(C/W ).

Example 1.3 Let W be any permutation structure. Let S be a set with
two elements on which Z2 (the cyclic group of order two) acts non-trivially.
Define C = S×W and let Aut(C) be the full wreath product Z2Wr Aut(W ).
The projection map π : C → W is a finite cover. The kernel of the cover is
ZW2 , the group of functions from W to Z2. The cover is split.

Example 1.4 Let Ω be any infinite set. Let W and C be respectively the
set of unordered and ordered pairs of distinct elements of Ω, considered as
permutation structures with automorphism group Sym(Ω). The two-to-one
map π : C → W given by π((a, b)) = {a, b} is a finite cover with trivial
kernel.

Example 1.5 Let C be the set on non-zero vectors of an infinite dimen-
sional vector space V over a finite field, and Aut(C) = GL(V ) be the group
of its linear transformations. Let W be the set of one-dimensional subspaces
of V and Aut(W ) = PGL(V ), the permutations induced by GL(V ). The
map π : C → W given by π(c) = 〈c〉 is a finite cover. It has finite kernel
consisting of the scalar transformations (so it is isomorphic to the multi-
plicative group of the finite field). The cover is non-split since GL(V ) has
no proper subgroups of finite index.

2 The cover problem

As indicated in § 1, one of the principal question in this subject is:

The Cover Problem. Given a permutation structure W , describe all
the possible finite covers of W .

In the examples we have in mind, W is usually transitive (i.e. Aut(W )
acts transitively on W ), so in any finite cover π : C → W , for all w ∈ W
the fibre groups Aut(C(w)/w), i.e. the groups of permutations induced by
Aut(C) on the fibres, are all isomorphic to some finite group F , as well as the
binding groups Aut(C(w)/W ), i.e. the groups of permutations induced by
the kernel on the fibres, are all isomorphic to some finite group B. For any
w ∈ W , Aut(C(w)/W ) E Aut(C(w)/w); moreover, for any w ∈ W , there is
a homomorphism χw : Aut(W/w)→ Aut(C(w)/w)/Aut(C(w)/W ), defined
by χw(g) = (h|C(w)) Aut(C(w)/W ), where g ∈ Aut(W/w) and h ∈ Aut(C)
is a permutation which extends g. This homomorphism is well defined,
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continuous and surjective ([12], Lemma 2.1.1). We shall refer to it as the
canonical homomorphism of the cover.

Thus, we can attempt to describe the transitive finite covers of W with
given binding group B, fibre group F and canonical homomorphism χ (which
are called the data of a finite cover). Following the approach in [1] and [2],
we can further subdivide the cover problem above as:

Part A Describe the possible kernels K.

Part B Determine the possible group extensions of K by Aut(W ) which
can arise as Aut(C).

We observe that, if π : C → W is a finite cover, then the kernel of π
is a subgroup of the cartesian product of all its binding groups. The next
constructive lemma (cf. Lemma 2.1.2 in [12]) describes how to construct
a finite cover with kernel as big as possible; such covers are completely
determined by the fibre and the binding groups together with the canonical
homomorphism.

Proposition 2.1 Let W be a transitive permutation structure and F a per-
mutation group on a finite set X. Let w0 ∈W , suppose B is a normal sub-
group of F and χ : Aut(W/w0) → F/B a continuous epimorphism. Then
there exists a finite cover σ : M → W with all fibre groups and binding
groups equal to F and B, respectively, and kernel

∏
w∈W B, such that the

canonical homomorphism χw0 is equal to χ. With these properties, σ is
uniquely determined (up to isomorphism over W ).

Finite covers with kernel equal to the cartesian products of all its binding
groups are called free finite covers. Such covers play an important role in
the attempt of describing all finite covers with given data. In fact, every
finite cover π : C → W is an expansion of a free finite cover with the
same fibre groups, binding groups and canonical homomorphisms as π. The
proof of this is quite simple. Let B(w) be the binding groups of π for each
w ∈ W . Then, it is easy to see that

∏
w∈W B(w) Aut(C) is a subgroup of

Sym(C). Moreover, by a general fact about topological groups, compact-
ness of

∏
w∈W B(w) and closeness of Aut(C) imply that

∏
w∈W B(w) Aut(C)

is a closed subgroup of Sym(C). Hence,
∏
w∈W B(w) Aut(C) is the auto-

morphism group of a structure C0 with universe C. In particular, C is an
expansion of C0. The map π0 : C0 → W , defined in the same way as π, is
a finite cover with kernel

∏
w∈W B(w). Hence, π0 is a free finite cover with

binding groups equal to those of π. Also, for any w ∈ W we have that the
fibre group of π0 at w is

Aut(π−1
0 (w)/w) = B(w) Aut(π−1(w)/w) = Aut(π−1(w)/w)
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so, π0 and π have the same fibre groups. The definition of canonical homo-
morphisms shows that they also coincide in π and π0.

It follows that, given an ℵ0-categorical structure W , initial data
D = (B(w), F (w), χw)w∈W and a free finite cover π0 : C0 → W deter-
mined by D, the Cover Problem reduces to find the closed subgroups Γ of
Aut(C0) such that µ(Γ) = Aut(W ).

One of the most relevant cases is when the binding groups are abelian
groups. In this case, as we shall later remind, Part A translates into a
permutation module problem. The nicest answer to Part B is that all finite
covers of W split. this means that, the automorphism group of any finite
cover π : C → W of W is a semidirect product of a profinite subgroup
(the kernel of π) and a closed subgroup isomorphic to Aut(W ). Model-
theoretically this is equivalent to say that any finite cover of W is a reduct
of a finite cover with trivial kernel. There is no reason a priori to expect
that this situation might arise. However, the following result shows that it
is quite usual.

Theorem 2.2 Suppose W is one of the following countable ℵ0-categorical
structures:

1. a pure set;

2. the rational numbers, as an ordered set;

3. any primitive homogeneous graph;

4. any primitive homogeneous directed graph not isomorphic to the count-
able universal homogeneous local order, myopic local order or the dense
local partial order.

Then any finite cover of W splits.

Part (1) was proved independently by M. Ziegler [24], A.A. Ivanov [18]
and W. Hodges, I. Hodkinson (unpublished), whereas was proved by A.
A. Ivanov ([19]). Part (3) and (4) can be found in [7]. Homogeneity in
(4) is meant in the sense of Fraisse, i.e. any isomorphism between finite
sub-(directed) graphs extends to an automorphism of the whole graph. On
the other hand, primitivity means that there are no non-trivial 0-definable
equivalence relations. The proof of the above theorem uses the classification
of the countable homogeneous graphs made by A. Lachlan and R. Woodrow
in [21] and the classification of countable homogeneous directed graphs made
by G. Cherlin [4].

We note that if π is a transitive free finite cover and if the fibre group
splits over the binding group, then also the cover π splits (see Lemma 2.1.4 in
[12]). As we will recall later on, most of the work around the cover problem
has been done in the case when the fibre group splits over the binding group.
In the following, we report a countable family of non-split free finite covers:
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Example 2.3 Let Ω be a pure set, k a positive integer and Wk = [Ω]k

be the set of k-subsets of Ω. Regard Wk as a permutation structure with
Aut(Wk) = Sym(Ω). Note that if w ∈ Wk, then the stabilizer in Aut(Wk)
of w is isomorphic to Sym(w) × Sym(Ω \ w), so in particular has a proper
closed normal subgroup of finite index. Then there is a homomorphism
χw : Aut(Wk/w) → Z2 given by taking χw(g) to be the sign of g restricted
to w. Let πk : Ck → Wk be the free finite cover of Wk with fibre groups Z4

acting regularly, binding group Z2, and canonical homomorphisms χw.

The above free finite covers are not split, essentially because Z4 does not
split over Z2.

In the next sections we describe some results which deal with the follow-
ing special cases of the Cover Problem:

Part C Describe finite covers of W with abelian kernel.

Part D Describe finite covers W with finite kernel.

3 Finite covers with abelian kernel

There are various results which emphisise the importance of reducing the
analysis of the cover problem in the case of abelian kernels (for example, see
[9], [8]). In this case we are in the following situation:

Lemma 3.1 Suppose that π : C → W is a finite cover with abelian kernel
K. Then, K is a topological Aut(W )-module.

Proof. Consider the action ψ : Aut(C) ×K → K by conjugation. Since K
is abelian, K is in the kernel of the action. So, we have an induced action
of the quotient group Aut(C)/K ∼= Aut(W ) on K. Consider Aut(W ) ×K
with the product topology. The Aut(W )-action φ : Aut(W ) × K → K is
continuous. Indeed, the action by conjugation ψ is continuous and if U
is an open set in K then φ−1(U) = (µ × id)ψ−1(U). We claim that µ is
continuous from which it follows that K is a a topological Aut(W )-module.
A typical basic open set of Aut(W ) is the pointwise stabilizer of a finite set
F ⊆W , Aut(W/F ). The preimage of this by µ is Aut(C/F ) which contains
Aut(C/π−1(F )). From the fact that π−1(F ) is a finite set it follows that
Aut(C/F ) is an open subgroup of Aut(C).

Notation: In the sequel, π0 : C0 → W will denote a free finite cover
with abelian kernel K0.
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As said above, if fibre and binding groups are equal, then π0 splits. Let
T be a closed complement to K0 in Aut(C0). Note that any subgroup of K0

which is normalized by T is actually normal in Aut(C0) and vice versa, i.e.
subgroups of K0 normalized by T are exactly the Aut(W )-submodules of
K0 (the action of Aut(W ) on K0 is the one described in Lemma 3.1). Hence
KT is a closed subgroup of Aut(C0) (closeness follows from a general fact
about topological groups). Then, KT can be thought as the automorphism
group of a split covering expansion of π0 with kernel K. This gives part of
the following which is a result of Ahlbrandt and Ziegler [2].

Theorem 3.2 Let π0 : C0 → W be a free finite cover with fibre groups
equal to the binding groups at each point and abelian kernel K0. Regard K0

as a topological Aut(W )-module. Then K is the kernel of some covering
expansion of π0 if and only if K is a closed Aut(W )-submodule of K0.

When the fibre groups and the binding groups are all cyclic groups of
order p, K0 can be identified with the Aut(W )-module FWp of functions from
W into Fp, the field of integers modulo p (the Aut(W )-action on FWp is given
by gf(w) = f(g−1w), for f ∈ FWp , g ∈ Aut(W ) and w ∈ W ). So we are
interested in the closed Aut(W )-invariant subspaces of FWp . For example, in
[1] the authors describe completely the kernels of covering expansions of π0

in the case when W is as in Example 1.5, for the field F2, with binding and
fibre groups equal to F2.

Sometimes the closed Fp Aut(W )-invariant subspaces of FWp can be more
easily described making use of a simple instance of the Pontrjagin duality
(see [23]).

Indeed, there is a natural pairing FWp × FpW → Fp given by
(f,

∑
w aww) 7→

∑
w awf(w). By a standard application of Pontryagin

duality, the closed Fp Aut(W )-submodules of FWp are of the form X0 for
Fp Aut(W )-submodules X of FpW , where X0 denotes the annihilator of X
with respect to this pairing. Moreover if X ≤ Y are Fp Aut(W )-submodules
of FpW then Y 0 ≤ X0 and X0/Y 0 is isomorphic to the Pontrjagin dual S∗

of S = Y/X.
In [14] D. Gray analyzed the case when W = [Ω]n is the set of n-subsets

from a countable set Ω and Aut(W ) = Sym(Ω) naturally acts on [Ω]n.
He showed that the closed Sym(Ω)-submodules of FpW are intersection of
kernels of certain Sym(Ω)-homomorphisms. The proofs use representation
theory of finite symmetric groups, as developed in the book of G. D. James
[17]. Dualising Gray’s results we have a complete description of possible
kernels of a finite cover of [Ω]n with fibre and binding groups of order p.

3.1 Continuous cohomology groups and finite covers

When fibre and binding groups are different, Theorem 3.2 cannot ap-
ply. Hence, one needs a criterion to distinguish among closed Aut(W )-
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submodules of K0 which are actually kernels of covering expansions of π0.
In [13] such a criterion is given in terms of continuous cohomology groups.

Any finite cover gives rise to a short exact sequence.

1→ K → Aut(C)→ Aut(W )→ 1. (1)

All the groups involved in (1) are topological groups, in particular K is
profinite. So the appropriate cohomological context is the continuous one
as well as the appropriate category for this cohomological machinary is the
one of permutation groups regarded as topological groups with continuous
homomorphism. Therefore, these are all Hausdorff topological groups: a
base of open neighbourhoods of the identity consists of open subgroups. We
denote such category by PG. The following definitions are taken from [10].

LetG be a closed permutation group, endowed with the topology induced
by the full symmetric group, and K be a continuous profinite G-module.
Denote by Cnc (G,K) the additive group of continuous functions ϕ : Gn → K.
The usual coboundary operator δn sends Cnc (G,K) to Cn+1

c (G,K), so that
(Cnc (G,K); δn)n∈N is a cochain complex. The homology of this complex,
H∗c (G,K), is the continuous cohomology of G with coefficients in K.

The most important fact is that, any PG-extension of a profinite G-
module K admits a continuous closed section (see[10]). For this reason,
cohomology of low degree continuous cocycles on profinite G-modules retains
their familiar applications: H1

c (G,K) classifies closed complements in the
split extension and H2

c (G,K) classifies all PG-extensions of K by G. More
details about continuous chomology can be found in [10].

With this set-up, the criterion we mentioned above is the following:

Theorem 3.3 (Theorem 2.1 of [13]) Suppose π : C → W is a finite
cover with abelian kernel K and H a closed Aut(W )-submodule of K. Let
e0 be the element in H2

c (Aut(W ),K), which gives rise to Aut(C) (as group
extension of K by Aut(W )).

Let
0→ H

i−→ K → H̄ → 0

be the natural short exact sequence where i is the inclusion map. Consider

· · · → H1
c (Aut(W ), H̄)→ H2

c (Aut(W ), H) i∗−→ H2
c (Aut(W ),K),

where i∗ is the induced map by i in cohomology. Then there exists a covering
expansion of π with kernel H if and only if there exists an element e ∈
H2
c (Aut(W ), H) such that i∗(e) = e0.

Continuation of Example 2.3 Using notation as in Example 2.3, we have
an exact sequence:

0→ Z[Ω]k

2 → Aut(Ck)→ Sym(Ω)→ 1.
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The possible kernels of covering expansions of πk with same fibre and binding
groups as πk can be easily described using the method developed in [14]: they
are sums of images of various of the following Sym(Ω)-homomorphisms:
αj,k : F[Ω]j → F[Ω]k where αj,k(f)(w) =

∑
v∈[w]j f(v), for f ∈ F[Ω]j and

w ∈ [Ω]k.
Consider the case k = 2. Since the exact sequence above is not split,

the 2-cocycle class e0 ∈ H2
c (Sym(Ω),Z[Ω]2

2 ), which gives rise to Aut(C2)
as a group extension of Z[Ω]2

2 by Sym(Ω), is non-zero. If K is a closed
Sym(Ω)-submodule of Z[Ω]2

2 , then it is shown in [13] that H2
c (Sym(Ω),K) =

0. These calculations are obtained applying the Shapiro’s Lemma and other
standard cohomological techniques adapted to the continuous case. Hence,
by Theorem 3.3 we have that the free cover π2 does not admit any proper
covering expansion.

For k > 2 there exist proper covering expansions of πk. The following
theorem describes the minimal ones, i.e. finite covers π : C →Wk such that
Aut(C) ≤ Aut(Ck) and if G ≤ Aut(C) then µ(G) 6= Aut(Wk), where µ is
the induced map defined in Definition 1.2.

Theorem 3.4 (Theorem 4.8 [13]) For 2 < k there exist continuous
homomorphisms γ2,k : Aut(C2) → Aut(Ck) which extend the natural

Sym(Ω)-homomorphisms α2,k : Z[Ω]2

2 → Z[Ω]k

2 . The Aut(Ck)-conjugates of
γ2,k(Aut(C2)) are the minimal covering expansions of πk.

A direct consequence of this result is the solution of the Cover Problem
for the permutation structures Wk with data given as in Example 2.3. In-
deed, it is easy to see that every automorphism group of a finite cover π
with kernel K is of the form KΓ where Γ is the automorphism group of
some minimal covering expansion of π (minimal covering expansions always
exists, by a result of Cossey, Kegel and Kovacs; see [6]). So, once we know
all the minimal covering expansions of a free finite cover π0 of W and all the
possible kernels, we are able to describe all the finite covers of W with the
same data as π0.

4 Finite covers with finite kernel

In this section we give a brief survey on finite covers with finite kernel. The
situation here is rather well understood. We start presenting the compre-
hensive work of Evans on finite covers with finite kernels ([8]).

Definition 4.1 The permutation structure W is said to be irreducible if
Aut(W ) has no proper closed subgroups of finite index.
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We note that if π : C →W is an irreducible finite cover with finite kernel
Aut(C/W ), then Aut(C/W ) is central in Aut(C). Indeed, as Aut(C/W ) is
a finite normal subgroup of Aut(C), its centrilizer in Aut(C) is a closed
subgroup of finite index in Aut(C). Then, from irreducibility of Aut(C) it
follows that Aut(C/W ) is central in Aut(C).

The notion of irreducibility of Definition 4.1 has a model- theoretic mean-
ing in terms of the algebraic and definable closure. Indeed, an easy con-
seguence of the definition of algebraic closure is that if x ∈ aclM (A) for M
an L-structure and A ⊆M then the orbit of x under the action of Aut(M/A)
is of finite cardinality. Respectively, if x ∈ dclM (A), then x is fixed by all
the elements of Aut(M/A). The algebraic closure in M eq is described by
the following result:

Proposition 4.2 Let M be a countable ℵ0-categorical structure and A be
a finite subset of M . The elements of aclM eq (A) corresponds to closed sub-
groups of finite index of Aut(M/A).

Proof Let c ∈ aclM eq (A). Then Aut(M/A, c) is a closed subgroup of finite
index in Aut(M/A).

Let G be a closed subgroup of finite index in Aut(M/A). By general
topological arguments, G is open in Aut(M). Then, there exists a tuple
b̄ such that Aut(M/b̄) ≤ G ≤ Aut(M/A). Consider {(b̄, b̄γ) : γ ∈ G}. By
ℵ0-categoricity these pairs lie in a finite number of orbits under Aut(M):
choose (b̄, b̄γ1), . . . , (b̄, b̄γm) as rapresentatives. Let

R := {(b̄α, b̄γiα) : i ≤ m,α ∈ Aut(M)}.

Then, R is a ∅-definable equivalence relation in M . Let c = [b̄]R. Then,
Aut(M/c) =

⋃
i≤m γi Aut(M/b̄) = G and c ∈ aclM eq (A).

So, for a countable ℵ0-categorical structure W , the notion of irreducibil-
ity it is equivalent to saying that aclW eq(∅) = dclW eq(∅).

In the following, by a digraph (L,R) we mean either a graph or a directed
graph with vertex set L and edge set R.

Definition 4.3 Suppose that (A,R) and (B,R′) are digraphs.

1. A function σ : A → B is a homomorphism if {(σa, σa′) | (a, a′) ∈
R} = R′.

2. A homomorphism of digraphs σ : A → B is a covering if it is onto
and it is locally an isomorphism of digraphs, that is, for all a ∈ A,
the restriction of σ to the subdigraph a+ := {a′ ∈ A : (a, a′) ∈ R}
(a− =: {a′ ∈ A : (a′, a) ∈ R}, respectively) is an isomorphism with
(σa)+ (with (σa)−, respectively).
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If (L,R) is a connected digraph one can construct a universal covering σ :
(U,R′′) → (L,R) in terms of homotopy classes of paths from some fixed
basepoint in (L,R). This factors through any other connected covering and
it is uniquely determined by this property. Any automorphism of (L,R)
lifts to an automorphism of (U,R′′) preserving the fibres of σ. The deck
transformations ∆ are the automorphisms of (U,R′′) which stabilize each
fibre of σ. Quotients by suitable normal subgroups of ∆ give rise to finite
covers of (L,R), which can be irreducible, transitive finite covers of L with
finite kernels, according to the fact that (L,R) is sufficiently “nice”.

Conversely, assuming irreducibility of certain stabilizers and the exis-
tence of a certain type of orbit on triples of vertices, any irreducible transi-
tive finite cover with finite kernel arises from a digraph covering.

Definition 4.4 Suppose W is a permutation structure. We say that
Aut(W )-orbits P ⊆ W 3 and Q,R ⊆ W 2 form a graphic triple (P,Q,R)
if

• (w, x, y) ∈ P implies (w, x), (w, y) ∈ Q and (x, y) ∈ R;

• the digraph with edge set R is connected;

• one of the following conditions hold

1. if (x, y), (y, z), (x, z) ∈ R then there exists w ∈ W with
(w, x, y), (w, y, z), (w, x, z) ∈ P

2. P = {(w, x, y)(w, x), (w, y), (x, y) ∈ R}.

Theorem 4.5 ([8], Theorem 1.13) Suppose W is a transitive irreducible
permutation structure with a graphic triple (P,Q,R). Suppose further that
if (w, x, y) ∈ P then Aut(W/w),Aut(W/w, x),Aut(W/x, y) are irreducible.

Let π : C → W be an irreducible finite cover with finite kernel.
Then there is an Aut(C)-invariant digraph relation R′ on C such that
π : (C,R′)→ (W,R) is a covering of digraphs.

The hypotheses of the theorem above are not satisfied from one of the most
natural example of irreducible finite cover with finite kernel: the non-zero
elements of a vector space over a finite field F covering its projective space
(Example 1.5). Indeed, the set of triples of independent points in the pro-
jective space gives a graphic triple, but the stabilizer of two independent
points x and y is not irreducible (there is a closed normal subgroup, the
pointwise stabilizer of the subspace generated by x and y, such that the
quotient group is isomorphic to the multiplicative group of the field F ). To
state the following theorem we need a definition.

Definition 4.6 Let W be a permutation structure. A strong type on W is
a function p which assigns to each finite subset X of W an Aut(W/X)-orbit
p|X ⊆W \X such that

13



• if X ⊆ X ′ then p|X ′ ⊆ p|X;

• if g ∈ Aut(W ) then g(p|X) = p|(gX).

For example, if W is a projective space over a finite field we can take as
p|X the points of W independent from X. As another example, suppose
W = Q, considered as an ordered set; then we can take p|X to be {a ∈W :
a < x∀x ∈ X}.

If there is a strong type on W we obtain a graphic triple (P,Q,R) by
taking

P = {(w, x, y) ∈W 3) |w, x ∈ p|{y}, w ∈ p|{x, y}}

R = {(x, y) ∈W 2 : x ∈ p|{y}}

Q = R

In this case the digraph (W,R) is simply connected and hence, the universal
covering is an isomorphism. So if additionally the irreducibility conditions
of Theorem 4.5 are satisfied, any irreducible finite cover with finite kernel
of W is one-to-one. The following result describes what happens if there is
not irreducibility of the two-point stabilizers.

Theorem 4.7 ([8], Corollary 3.9) Let W be a countable, transitive ℵ0-
categorical structure with a strong type p. Suppose Aut(W ) and Aut(W/w)
are irreducible (for w ∈ W ). Let A be any finite abelian group. Then there
is a one-to-one correspondence between

1. irreducible finite covers with kernel A

2. system of continuous surjective homomorphisms (φw,x : (w, x) ∈ R)

φw,x : Aut(W/w, x)→ A

satisfying

a) φgw,gx(ghg−1) = φw,x(h) for g ∈ Aut(W ) and h ∈ Aut(W/w, x);

b) if (w, x, y) ∈ P and g ∈ Aut(W/w, x, y) then

φw,y(g) = φw,x(g)φx,y(g).

A family (φw,x : (w, x) ∈ R) as in Theorem 4.7 is called a conjugate
system of homomorphisms for (W,R,A).

Some of the ideas of Theorem 4.7 have been generalized by Jeffrey
Koshan not assuming that W has a strong type (see [20]).
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5 Groupoids and internal covers

In this section we present part of the results of [15] about internal finite
covers and groupoids. In particular we show that there is a bijective corre-
spondence between finite internal covers and definable groupoids.

5.1 Definable groupoids

A category C is a 2-sorted structure with sorts O,M , where O names the
objects and M the morphisms. We equip C with maps i0, i1 : M → O,
where if m ∈ M , i0(m) is the source object of m, while i1(m) is the target
object of m, a partial composition map between morphisms ◦ : M×M →M
satisfying the usual associative laws and an identity map Id : O →M such
that Id(x) : x → x is the identity, i.e. for every morphism f : x → y,
Id(y) ◦ f = f = f ◦ Id(x). The language of categories is then 2-sorted with
relation symbols i0, i1, Id, ◦.

A groupoid G is a category G = (ObG,MorG) where every morphism
is invertible. Every groupoid defines an equivalent relation on ObG, IsoG
defined by: IsoG(x, y) if and only if there exists a morphism in MorG(x, y)
from x to y. On the other hand, for every a ∈ ObG there is a group
Ga := MorG(a, a). Clearly, if IsoG(a, b), then Ga is isomorphic to Gb. Thus,
groupoids generalizes, at different extremes, both groups and equivalence
relations: if ObG = {a}, then the groupoid G reduces to the group Ga,
while if Ga = 1 for every a ∈ ObG, then G coincides with the equivalence
relation IsoG .

For the rest of the paper we suppose G has a single IsoG-class. In this
case G is said to be connected.

Let T be a complete theory with quantifier elimination and U a monster
model of T . Given a groupoid G, we shall say that G is a definable groupoid
for T if ObG,MorG, the maps i0, i1 and the composition map are definable
in U. Let Def(U) be the category of parameter definable subsets of U where
the morphisms are definable maps.

Definition 5.1 A funtor F : G → Def(U) is definable if

{(a, b, c, d, e) : a, b ∈ ObG, c ∈ MorG(a, b), d ∈ F (a), e ∈ F (b), F (c)(d) = e}

is definable.

If F is a faithful functor, refer to (G, F ) as a concrete definable groupoid.

5.2 From definable groupoids to internal covers

In this paragraph we show how to associate to a definable groupoid a finite
internal cover. We start giving the definition of finite internal cover.
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Definition 5.2 ([15], Definition 2.2) Let N be a structure, M the union
of some of the sorts of N . The structure N is a finite internal cover of
M if M is stably embedded in N and Aut(N/M) is finite. Equivalently,
N ⊆ dcl(M, c) for some finite c ∈ acl(M). Similarly, we shall say that the
theory of N is a finite internal cover of the theory of M .

Saying that M is stably embedded in N is equivalent to the fact that the
restriction map to the sorts of M µ : Aut(N) → Aut(M) is surjective (see
Appendix of [5]). Note that finite covers with finite kernel are finite internal
covers.

We now show how to obtain, given a theory T , a finite internal cover of
T from a definable groupoid for T .

Let T be a complete L-theory with quantifier elimination, U a monster
model of T , G a definable concrete groupoid for T and F : G → Def(U) a
faithful definable functor. Consider the following language L′ expanding L:
L′ is the language of T expanded by extra sorts O,C,D, an extra relation
symbol F ′, and the language of categories for a groupoid G′ = (O,C). Let
T ′ ⊃ T be the L′-theory such that the axioms of T ′ coincides with those
of T on the L-sorts, together with the statements that G′ = (O,C) is a
groupoid, the objects of G′ are the objects of G plus a single extra object
∗ (i.e. O = ObG ∪ {∗}), F ′(∗) = D and (G′, F ′) is a concrete groupoid
extending (G, F ), such that G is a full subgroupoid of G′.

Lemma 5.3 ([15], Lemma 2.5) Any model M of T extends to a unique
model M ′ of T ′ up to isomorphism over M . Moreover, for any a ∈ ObG(M)
MorG(a, a) ∼= Aut(M ′/M).

Proof. We sketch how to extend M to M ′. Fix an element a ∈ ObG(M). We
construct (O,C,D, F ′) so that anything involving ∗ in ((O,C), F ′) is a copy
of the corresponding thing in M replacing ∗ by a. More precisely, for any
b ∈ ObG(M), let MorG′(∗, b) be a copy of MorG(a, b), i.e. MorG′(∗, b) =
{c̃ : c ∈ MorG(a, b)}. Then,

C = MorG ∪MorG(∗, ∗) ∪
⋃

b∈ObG(M)

(MorG(∗, b) ∪MorG(b, ∗)),

F ′(∗) is a copy of F (a), i.e. F ′(∗) = {d̃ : d ∈ F (a)}, and D = F ′(∗) and

F ′ = F∪{(∗, b, c̃, d̃, e) : b ∈ ObG(M), c ∈ MorG(a, b), d ∈ F (a), F (c)(d) = e}.

In Lemma 5.3 we consider the groupoid G having a unique IsoG-class. In
the case of several isomorphism classes, a covering model M ′ can be obtained
picking up a representative rν from each isomorphism class ν and adding to
the objects of G a symbol ∗ν for every ν, such that F ′(∗ν) is a copy of F (rν).

Let us call M(G,F ) the structure M ′ constructed above.
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Theorem 5.4 ([15], Part of Theorem 2.8) If MorG(a, a) is finite,
then, M(G,F ) is a finite internal cover of M .

5.3 From internal finite covers to concrete groupoids

Surprisingly, a finite internal cover gives rise to a definable groupoids.

Theorem 5.5 ([15], Proposition 1.5) Suppose T ′ is a finite internal
cover of T , with an extra sort S. Then there exist connected definable con-
crete groupoids (G, F ) in T and (G′, F ′) in T ′ such that

1. Ob(G′) = Ob(G) ∪ {∗};

2. G is a full subgroupoid of G′;

3. F ′ extends F ;

4. F ′(∗) = S;

5. MorG′(∗, ∗) ∼= Aut(M ′/M) for any M ′ |= T ′ (where M is restriction
of M ′ to the T -sorts).

Proof. We just describe how to construct the definable concrete groupoids
(G, F ) and (G′, F ′). Assume that M ′ is a sufficiently saturated model of T ′

and that the restriction of M ′ to the T -sorts is M . By internality we have
that M is stably embedded in M ′ and that S ⊆ dcl(M, c) for some finite
tuple c ∈M ′. Hence, there exists a c-definable D ⊆Mn, for some n, and a
c-definable surjective function gc : D → S. By stable embeddedness, D and
the equivalence relation given by gc (i.e. x ∼= y if and only if gc(x) = gc(y))
are b-definable in M for some tuple b of parameters in M . Thus, we have a
b-definable set Db ⊆M eq and a c-definable bijection fc : S → Db. Actually,
fc is given by g−1

c . As Aut(M ′/M) is finite we can assume c ∈ aclM ′(b) and
tpM

′
(c/b) ` tpM

′
(c/M). Now we let (b, c) vary in a definable set B ×C. So

there exists a definable family of bijections

fc′ : S → Db′

such that if (b′, c′), (b′, c′′) ∈ B × C then tp(c′/b′) = tp(c′′/b′). We are
now ready to construct the concrete groupoids. Let Ob(G) = B, Ob(G′) =
B ∪ {∗}, F ′(∗) = S, F (b′) = Db, for b′ ∈ B. Then, let

• MorG′(∗, b′) = {c′ : (b′, c′) ∈ B × C}, for b′ ∈ B;

• F ′(c′) = fc : S → D′b for c′ ∈ C;

• MorG′(b′, ∗) = {c̃′ : (b′, c′) ∈ B × C};

• F ′(c̃′) = f−1
c′ : Db′ → S.
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Now, it is natural to define, for b′, b′′ ∈ B MorG(b′, b′′) = {[c′′, c′] = fc′′◦f−1
c′ :

Db′ → Db′′ |c′′ ∈ MorG′(∗, b′′), c̃′ ∈ MorG′(b′, ∗)} and F ([c′′, c′]) = fc′′ ◦ f−1
c′ ,

while MorG′(∗, ∗) = {(c′′, c′) = f−1
c′′ ◦ fc′ : S → S : c′, c′′ ∈ MorG′(∗, b′), b′ ∈

B}.

In [15] many other results are proved. In particular, in Section 3
Hrushovski relates finite internal covers to some higher amalgamation prop-
erties. We don’t treat them here. Under the light of the results we presented
here, we pose the following question:

Question 5.6 Is there any relation between the results of Section 4 and the
results of Section 5? In particular, between Theorem 4.7 and Theorems 5.4
and 5.5?

Acknowledgements

Dedicated to Professor Marialuisa J. de Resmini who helped me to move
the first steps in the world of research.

References

[1] G. Ahlbrandt and M. Ziegler, Invariant subspaces of V V , Journal
of Algebra 151 (1991), 26–38.

[2] G. Ahlbrandt and M. Ziegler, What’s so special about (Z/4Z)ω?,
Archive for Mathematical Logic 31 (1991), 115–132.

[3] P. Cameron, Oligomorphic permutation groups, London Mathemat-
ical Society Lecture Notes Series 152, Cambridge University Press,
Cambridge, 1990.

[4] G. Cherlin, The classification of countable homogeneous directed
graphs and countable homogeneous n-tournaments, Mem. Amer.
Math. Soc. 131 (1998).

[5] Z. Chatzidakis, E. Hrushovski, Model Theory of difference fields,
AMS Transactions 351, 8 (1999), 2997–3071

[6] J. Cossey, O. H. Kegel, L.G. Kovacs, Maximal Frattini extensions,
Archiv der Math. (Basel) 35 (1980), 210–217.

[7] D.M. Evans, Splitting of finite covers of ℵ0-categorical structures,
Journal of the London Mathematical Society 54, number 2, (1996),
210–226.

18



[8] D.M. Evans, Finite covers with finite kernel, Annals of Pure and
Applied Logic 88 (1997), 109–147.

[9] D.M. Evans, Computation of first cohomology groups for some finite
covers, Journal of Algebra 193, number 1, (1997), 214–238.

[10] D.M. Evans and P.R. Hewitt, Continuous cohomology of permuta-
tion groups on profinite modules, Communications in Algebra 34
(2006), 1251– 1264.

[11] D.M. Evans and E. Hrushovski, On the automorphism groups of
finite covers, Annals of Pure and Applied Logic 62 (1993), 83–112.

[12] D. M. Evans, A. A. Ivanov and D. Macpherson, Finite covers,
in Model Theory of Groups and Automorphism Groups, edited by
D.M. Evans, London Mathematical Society Lecture Notes Series
244, Cambridge University Press, Cambridge (1977), 1–72 .

[13] D.M. Evans and E. Pastori, Second cohomology groups and finite
covers, http://arxiv.org/abs/0909.0366, to appear in Journal
of Algebra.

[14] D. G. D. Gray, The structure of some permutation modules for the
symmetric group of infinite degree, Journal of Algebra, 193 (1997),
122–143.

[15] E. Hrushovski, Groupoids, imaginaries and internal covers.
Preprint. http://arxiv.org/abs/math/0603413v1.

[16] E. Hrushovski, Totally categorical structures. Trans. Amer. Math.
Soc. 313 (1989), 131–159.

[17] G.D. James, The representation theory of the symmetric groups,
Springer-Verlag, 1978.

[18] A. A. Ivanov, Some combinatorial aspects of the cover problem for
totally categorical theories in Automorphisms of First-Order Struc-
tures, eds. R. Kaye and H. D. Macpherson, pages 215-232, Oxford
University Press, 1994.

[19] A. A. Ivanov, Finite Covers, Cohomology and Homogeneous Struc-
tures, Proceedings of the London Mathematical Society 78 (1999),
1-28;

[20] J. Koshan, Structure results for transitive, untwisted, superlinked
finite covers, Proceedings of the London Mathematical Society
76(1998), 1-32.

19



[21] A. Lachlan and R. Woodrow, Countable ultrahomogeneous undi-
rected graphs, Trans. Amer. Math. Soc. 262 (1980), 51-94.
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