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Abstract

Let W be a first-order structure and ρ be an Aut(W )-congruence
on W . In this paper we define the almost-free finite covers of W
with respect to ρ, and we show how to construct them. These are a
generalization of free finite covers.

A consequence of a result of [5] is that any finite cover of W with
binding groups all equal to a simple non-abelian permutation group
is almost-free with respect to some ρ on W . Our main result gives a
description (up to isomorphism) in terms of the Aut(W )-congruences
on W of the kernels of principal finite covers of W with binding groups
equal at any point to a simple non-abelian regular permutation group
G. Then we analyze almost-free finite covers of Ω(n), the set of or-
dered n-tuples of distinct elements from a countable set Ω, regarded
as a structure with Aut(Ω(n)) = Sym(Ω) and we show a result about
biinterpretability.

The material here presented addresses a problem which arises in
the context of classification of totally categorical structures.

1 Introduction

Given a countable set W , consider the natural action of the symmetric group
Sym(W ) on W . This action yields a topology on Sym(W ) in which pointwise
stabilizers of finite sets give a base of open neighborhoods of the identity.
Let Υ be a closed subgroup of Sym(W ) that acts transitively on W and G a
finite group acting on a finite set ∆. Consider the projection π : ∆×W →W
given by π(δ, w) = w. We denote by GW the set of all functions from W
to G. Let F be the set of closed subgroups of Sym(∆ ×W ) which satisfy
three conditions: (1) Every F ∈ F preserves the partition of ∆ ×W given
by the fibres of π, (2) From (1) we have that every F ∈ F gives an induced
map µF : F → Sym(W ). We require that, for all F ∈ F , µF (F ) = Υ, (3)
The permutation groups induced respectively by F and kerµF on π−1(w),
for all w ∈W , are both equal to G.

Let K = {kerµF , F ∈ F}. In this paper we will deal with the following
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Problem: Given G and Υ, find a description of the elements belonging
to K.

This problem, which is here formulated in terms of infinite permutation
groups, is motivated by questions arising in model theory concerning finite
covers (see [6]).

Definition 1 Let C and W be two first-order structures. A finite to-one
surjection π : C →W is a finite cover if its fibres form an Aut(C)-invariant
partition of C, and the induced map µ : Aut(C) → Sym(W ), defined by
µ(g)(w) = π(gπ−1(w)), for all g ∈ Aut(W ) and for all w ∈ W , has image
Aut(W ).
We shall refer to the kernel of µ as the kernel of the finite cover π. If π :
C →W is a finite cover, the fibre group F (w) at w ∈W is the permutation
group induced by Aut(C) on π−1(w) . The binding group B(w) at w ∈ W
is the permutation group induced by the kernel on π−1(w).

Using the terminology of finite covers, the problem above can be stated in
the following equivalent version: given a finite group G and a first-order
structure W with automorphism group Υ, describe the kernels of the finite
covers of W with F (w) = B(w) = G at any point, which have ∆ ×W as
domain of the covering structures and such that the finite-to-one surjections
π are the projection on the second coordinate.

A more detailed commentary on finite covers and this problem is given
in the last section. However, we avoid the model-theoretic methods using
rather infinite permutation group techniques.

In [2] Ahlbrandt and Ziegler described the subgroups K ∈ K, when G
is an abelian permutation group. In this case GW , the group of functions
from W to G, is an Υ-module with fυ(w) = f(υ−1w), where υ ∈ Υ and
f ∈ GW and the kernels in K are profinite Υ-modules. They proved that K
is exactly the set of closed Υ-submodules of GW .

In this paper, we deal with the case when G is a simple non abelian
regular permutation group. Under this hypothesis our main result, which is
stated and proved in Section 3), gives a description of the elements of K in
terms of the Υ-congruences on W . A key ingredient in the proof is a result
of Evans and Hrushovski ([5], Lemma 5.7).

Previous results are the following. In [10], Ziegler described the groups
K ∈ K in the case when W is a countable set Ω and Υ = Sym(Ω) (the
disintegrated case), for any group G. Increasing the complexity of the set
W , it seems not possible to give a general description of the groups K ∈ K
not depending on the group G. For example, if W is the set of n-subsets
from a countable set Ω, Υ = Sym(Ω) and G is a cyclic group of order a
prime p, then the groups K ∈ K are an intersection of kernels of certain
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Υ-homomorphisms, as is described in [7]. While if G is a simple non abelian
group, then K = {G,GW } (see corollary 6).

In Section 4 we analyze the special case in which given a countable set
Ω, W is defined as the subset of the n-fold cartesian product Ω(n) whose
elements are n-tuples with pairwise distinct entries. Defining Υ as Sym(Ω),
in Proposition 15, 18 and 19 we give an explicit description of the equivalence
classes of the Sym(Ω)-congruences on Ω(n). In these Propositions we see that
the blocks for Sym(Ω) in Ω(n) can be either of finite or of infinite cardinalities.
Proposition 21 shows that if π : C → Ω(n) is a cover of Ω(n) with Aut(C) in
F and G equal to a simple-non abelian finite group such that the kernel of
π determines a Sym(Ω)-congruence on Ω(n) (in the sense of Lemma 5) with
classes of finite cardinality, then, for every m ∈ N greater then n, there exists
a finite cover π′ : C ′ → Ω(m) bi-interpretable with π with binding groups
and fibre groups both equal to G at any point and kernel that determines a
Sym(Ω)-congruence on Ω(m) with classes of infinite cardinality.

In section 5.3 we define the almost-free finite covers. A posteriori we see
that the results of sections 3 and 4 concern examples of almost-free finite
covers with binding groups equal to the fibre groups at any point. Let W
be a transitive structure, ρ be an Aut(W )-congruence on W and [w0] be a
congruence class.

An almost-free finite cover π of W w.r.t ρ is a finite cover whose per-
mutation group induced by its kernel on the union of the fibres of π over
[w0] is isomorphic to the binding group at w0, while the permutation group
induced on the fibres over two elements not in the same congruence class
is the direct product of the two respective binding groups. This definition
generalizes the definition of free finite cover. More in detail a free finite
cover of W is an almost- free finite cover of W with respect to the equality.
In Theorem 24 we show how to construct an almost-free finite cover. The
proof uses Lemma 2.1.2 of [6].

2 General results

Definition 2 A pregeometry on a set X is a relation between elements
x ∈ X and finite subsets X0 ⊂ X, called dependence, which satisfies:

• Reflexivity : x is dependent on {x};

• Extension: x depends on X0 and X0 ⊆ X1 implies x depends on X1;

• Transitivity: x is dependent on X0 and every y ∈ X0 is dependent on
X1 implies x is dependent on X1;

• Symmetry: x is dependent on X0 ∪ {y} but not on X0, implies y is
dependent on X0 ∪ {x}.
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Remark 3 A classical example of a pregeometry is a vector space with linear
dependency.

If Ω is any set then there is a natural topology on Sym(Ω) which makes it
into a topological group. The open sets are unions of cosets of pointwise
stabilizers of finite subsets of Ω. We then make any permutation group P
on Ω into a topological group by giving it the relative topology. If Ω is
countable the topology is metrisable.

From now on W stands for a countable set, Υ for a closed subgroup of
Sym(W ) that acts transitively on W and G for a finite group acting on a
finite set ∆. Consider the projection π : ∆×W →W given by π(δ, w) = w.
We denote by GW the group of functions from W to G. Let F be the set of
closed subgroups of Sym(∆×W ) which satisfy the following conditions:
(i) Every F ∈ F preserves the partition of ∆×W given by the fibres of π.
(ii) Given F ∈ F , let µF : F → Sym(W ) be the naturally induced map
given by point (i). We require that, for all F ∈ F , µF (F ) = Υ.
(iii) The permutation groups induced respectively by F and kerµF on
π−1(w), for all w ∈W , are both equal to G.

It is easy to see that, with the above topology, GW is a compact
subgroup of Sym(∆ ×W ) and the kerµF are closed subgroups of GW and
that µF are continuous and open maps (Lemma 1.4.2, [6]). We introduce
now a notion of isomorphism among the elements of F . We say that F1

and F2 are isomorphic if there exists a bijection φ : ∆ × W → ∆ × W
such that φ(π−1(w)) = π−1(w), for all w ∈ W and such that the induced
map fφ : Sym(∆ ×W ) → Sym(∆ ×W ) sends F1 to F2. Let K = {kerµF ,
F ∈ F}. We now introduce an equivalence relation R on K: we shall say
that K1RK2 if and only if there exists F1, F2 ∈ F such that K1 = kerµF1 ,
K2 = kerµF2 and F1 is isomorphic to F2. We shall denote the R-equivalence
class of an arbitrary K ∈ K by [K]. (We shall say that K1 is isomorphic to
K2 if they are equivalent.)

Let K ∈ K, H ≤ K and w1, . . . , wk ∈W . We define

H(w1, . . . , wk) = {f |{w1,...,wk} | f ∈ H}

and, for simplicity, we shall refer to H(w1, . . . , wk) as H restricted to
w1, . . . , wk. If w ∈ W and Y is a subset of ∆ × W , we shall denote by
K(w/Y ) the restriction to w of the pointwise stabilizer of Y in K. When
using this restriction notation, we view f ∈ K ≤ GW as a function on W .

The following definition and lemma justify the previous notations:

Definition 4 Let K ∈ K. Suppose w1, . . . , wk, w belong to W .We say that
w depends on w1 . . . , wk and write w ∈ cl(w1, . . . , wk), if

K(w/π−1(w1), . . . , π−1(wk)) = 1
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We note that w depends on wi if and only if K(w,wi) ∼= G.

Lemma 5 ([5], Lemma 5.7) Let K ∈ K and w1, . . . , wk, w ∈ W . Then,
if G is a simple group, (W, cl) is a Υ-invariant pregeometry. If G is simple
non-abelian, then (W, cl) reduces to an equivalence relation.

The lemma states that, if G is simple non-abelian and w depends on
w1, . . . , wk, then there is an i ∈ {1, . . . , k} such that w depends on wi and
(W, cl) reduces to a Υ-congruence.

Corollary 6 If Υ acts primitively on W and G is a simple non-abelian
finite group, then K = {G,GW }.

Here there is a result on topological groups that will be useful in the next
section.

Proposition 7 Let G be a topological group. Suppose G is metrisable. Let
A be a compact subgroup of G and B a closed subgroup of G. Then AB and
BA are closed sets.

Proof. It is sufficient to show that AB is closed. Let {cn}n∈N be a sequence
of elements of AB which converges to c. We have cn = anbn, where an ∈ A
and bn ∈ B. Since A is compact, we can select from the sequence {an}n∈N a
subsequence {ank} which converges to an element a ∈ A. We conclude from
the convergence of the sequences {cnk} and {ank} that the sequence {bnk}
converges to the element a−1c, which belongs to B, since B is closed. Hence
c = a(a−1c) ∈ AB and the closure of the set AB is established.

3 Main Theorem

We will denote by C the set of all Υ-congruences on W .

Definition 8 Let ρ ∈ C. We define the subgroup of GW

Kρ := {f : W → G : f constant on Y , ∀Y ∈W/ρ}.

Theorem 9 Suppose that G is a simple non-abelian finite permutation
group acting regularly on ∆. Then there exists a bijection Ψ between C
and K/R given by Ψ(ρ) = [Kρ]. The inverse mapping Φ of Ψ is given by
Φ([K]) = ρK , where ρK is defined by:

wiρKwj ⇔ K(wi, wj) ∼= G.
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Proof. We first show that Ψ maps C into K/R.
Let ρ ∈ C. Then Kρ is a subgroup of GW . First of all we embed Kρ into
GW oΥ in the natural way:

Kρ ↪→ GW oΥ
f 7→ (f, 1)

and then we notice that Kρ is normalized by Υ. Indeed, given σ ∈ Υ, we
have that

(σ(f), 1)(λ,w) := (1, σ) (f, 1) (1, σ−1)(λ,w) = (f(σ−1w)λ,w).

Since f ∈ Kρ, for every wi ∈ [wj ]ρ in W we have f(wi) = f(wj), but, since ρ
is a Υ-congruence on W , we have f(σ−1wi) = f(σ−1wj), for every wi ∈ [wj ]ρ
and so (σ(f), 1) ∈ Kρ.

Since Kρ is normalized by Υ, we can consider the group:

H := Kρ oΥ.

This is a subgroup of GW oΥ and if µ : GWrWΥ 7→ Υ is the map defined
by µ(f, γ) = γ, we then have that µ(H) = Υ and kerµ = Kρ. In order to
prove that Kρ is an element of K it is sufficient to show that H is a closed
subgroup of GW oΥ. Indeed, GW oΥ is closed in Sym(∆×W ).

The first step is to prove that Kρ is closed. The finite group G has the
discrete topology, while GW has the product topology. An element f ∈ GW
is a function from W to G. The w-projection map is the map πw : GW → G
such that πw(f) = f(w). A basis for the product topology on GW is the
family of all finite intersections of π−1

w (U), where U is an open subset of G.
In this topology the maps πw are continuous. Hence, a member of this basis
is of the form ⋂

{π−1
w (Uw) : w ∈ F}

where F is a finite subset of W .
Let [w]ρ be a ρ-class and g an element of the simple finite group G. By

the continuity of πw, π−1
w (g) is a closed subset of GW . Let

M[w]ρ(g) :=
⋂

v∈[w]ρ

π−1
v (g).

Then M[w]ρ(g) is a closed set in GW . We consider next⋃
g∈G

M[w]ρ(g)

and this is still a closed subset of GW . Then, if Σ is the set of all the
equivalence classes of ρ,

Kρ =
⋂

[w]ρ∈Σ

⋃
g∈G

M[w]ρ(g)
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and so Kρ is closed in GW .
Since Kρ is a closed subgroup of the compact group GW , Kρ is compact.

By Proposition 7, H = KρoΥ is closed. Thus, we have shown that Ψ maps
C to K/R.

It is easy to see that the map Φ is well defined. Finally, Lemma 5 shows
that Φ([K]) ∈ C.

In order to prove that Ψ is a bijection, we show that Φ ◦Ψ = id on C.
Let ρ be a Υ-congruence on W and let Φ([Kρ]) = ρ̄. We want to prove that
ρ = ρ̄.
Let wi, wj ∈ W such that wi ρwj , then for every f ∈ Kρ, f is constant on
the equivalence class [wi]ρ, i.e. f(wi) = f(wj). Hence, Kρ(wi, wj) ∼= G and
[wi]ρ ⊆ [wi]ρ̄. Vice versa, let wi ∈ W and suppose there exists wj ∈ W
such that wj /∈ [wi]ρ, but wj ∈ [wi]ρ̄. Since wj /∈ [wi]ρ, there exists an
f ∈ Kρ such that f(wi) = g and f(wj) = 1, where g ∈ G and g 6= 1. Then
Kρ(wi, wj) = G×G and this yields a contradiction.

We shall finally prove that Ψ ◦ Φ = id.
Let K ∈ K , Φ([K]) = ρK and

Ψ(Φ([K])) = [KρK ].

We note that, for every equivalence class [w]ρK , K restricted to [w]ρK
is isomorphic to G. This implies that, for every w ∈ W , there exists an
automorphism αw ∈ Aut(G) with the following property: given any f ∈ K
and [w]ρK , there exists g ∈ G such that f(w̄) = αw̄(g) for all w̄ ∈ [w]ρK . We
denote byNSym(∆)(G) the normalizer ofG in Sym(∆). SinceG acts regularly
on ∆, for every w ∈ W there exists nw belonging to NSym(∆)(G) such that
αw(g) = n−1

w gnw, for g ∈ G. Consider the function n : W → NSym(∆)(G)
given by n(w) = nw. Let FρK ∈ F be a closed subgroup of Sym(∆ ×W )
such that KρK = FρK ∩ GW . Since FρK is closed, n−1FρKn is closed. In
fact, n−1FρKn ∈ F and

K = n−1KρKn = n−1FρKn ∩G
W .

Since n is a bijection of ∆×W which preserves the fibres of π, we have that
n−1FρKn is isomorphic to FρK and then [K] = [KρK ].

Remark 10 It is clear from the previous proof that in every class [K] ∈
K/R there exists K̄ ∈ [K] which is constant on the equivalence classes of
Φ([K]).

4 Special case

Let H be a group acting on a set X, a ∈ X and ∆ ⊆ X. We denote by
aH = {ha : h ∈ H}, by H(∆) the pointwise stabilizer of ∆ in H and by
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H{∆} the setwise stabilizer of ∆ in H. We recall the following theorem,
whose proof can be found in [4].

Theorem 11 ([4], Theorem 1.5A) Let G be a group which acts transi-
tively on a set Ω, and let α ∈ Ω. Let D be the set of blocks ∆ for G containing
α, let H denote the set of all subgroups H of G with Gα ≤ H. There is a
bijection Ψ from D onto H given by Ψ(∆) := G{∆} whose inverse mapping
Φ is given by Φ(H) := αH . The mapping Ψ is order preserving in the sense
that if ∆,Θ ∈ D then ∆ ⊆ Θ⇐⇒ Ψ(∆) ≤ Ψ(Θ).

From now on let W be Ω(n), the set of ordered n-tuples of distinct elements
of the countable set Ω. Let Υ = Sym(Ω) act on Ω(n) in the natural way:
if σ ∈ Sym(Ω), then σ(a1, . . . , an) = (σ(a1), . . . , σ(an)). In the sequel we
denote Sym(Ω) by S when Sym(Ω) acts on Ω. Let ρ be a Υ-congruence,
and ∆ ⊆ Ω(n) be the equivalence class of ρ containing the element α =
(a1, . . . , an). We will refer to ∆ as a block of imprimitivity containing α.

Definition 12 Let α = (a1, . . . , an) ∈ Ω(n). We define

supp(α) := {a1, . . . , an}.

By Theorem 11, the subgroup Υ{∆} = {x ∈ Υ| x∆ = ∆} contains the
stabilizer Υα = S(a1,...,an). A proof of the following lemma can be found in
[4].

Lemma 13 ([4] Lemma 8.4B) Let Σ1 and Σ2 be subsets of an arbitrary
set Ω such that |Σ1 ∩ Σ2| = |Σ1| ≤ |Σ2|. Then

〈Sym(Σ1),Sym(Σ2)〉 = Sym(Σ1 ∪ Σ2),

(we identify Sym(Σ) with the pointwise stabilizer of Ωr Σ ).

Proposition 14 Let α = (a1, . . . , an) ∈ Ω(n). Let ∆ 6= Ω(n) be a block
containing α. Let {Γi}i∈I be the set of finite subsets of Ω such that

Υα ≤ S(Γi) ≤ Υ{∆}.

Let Γ =
⋂
i∈I Γi. Then

Υα ≤ S(Γ) ≤ Υ{∆} ≤ S{Γ}.

Moreover Γ is finite and Γ ⊆ {a1, . . . , an}.

Proof. We notice that the index set I is non-empty: for instance the
set {a1, . . . , an} belongs to {Γi}i∈I . Moreover, it is finite since every Γi ⊆
{a1, . . . , an}. In order to prove that Υα ≤ S(Γ) it is sufficient to notice that
for every i ∈ I, Γ ⊆ Γi. Then Υα ≤ S(Γi) ≤ S(Γ), for every i ∈ I.
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We use Lemma 13 to prove the inclusion S(Γ) ≤ Υ{∆}. Let Σi = Ωr Γi,
for i ∈ I. Then by Lemma 13 we have 〈S(Γi), i ∈ I〉 = S(

T
i∈I Γi) and so

S(Γ) ≤ Υ{∆}.
Notice that Γ is the smallest subset of Ω such that Υα ≤ S(Γ) ≤ Υ{∆}.

We want to prove the set Γ has the smallest cardinality among the finite
sets X of Ω such that S(X) ≤ Υ{∆}. Suppose not, then there exists a finite
subset of Ω, say Σ, with |Σ| � |Γ| and S(Σ) ≤ Υ{∆}. By Lemma 13, we have

Υα ≤ S(Γ) ≤ S(Γ∩Σ) ≤ Υ{∆}

and, since Γ is the smallest subset of Ω such that Υα ≤ S(Γ) ≤ Υ{∆}, this
yields a contradiction. Thus, the set Γ has the smallest cardinality among
the finite subsets X of Ω such that S(X) ≤ Υ{∆}.

Let x ∈ Υ{∆}, then we have S(xΓ) = x−1S(Γ)x ≤ Υ{∆}, and so, applying
again Lemma 13 we get that Υ{∆} ≥ 〈S(Γ), S(xΓ)〉 = S(Γ∩xΓ). Thus, for all
x ∈ Υ{∆}, Γ = xΓ by the minimality of Γ and Υ{∆} ≤ S{Γ}.

As the following result shows, a ρ-class in Ω(n) can be a finite subset or
an infinite subset of Ω(n).

Proposition 15 Let ∆ 6= Ω(n) be the equivalence class of a Υ-congruence
ρ containing the element (a1, . . . , an) ∈ Ω(n). Then
a) ∆ is finite if and only if S(a1,...,an) ≤ Υ{∆} ≤ S{a1,...,an};
b) ∆ is a countably infinite set if and only if S(Γ) ≤ Υ{∆} ≤ S{Γ}, for some
finite set Γ & {a1, . . . , an}.

Proof.
a) Suppose ∆ is a finite set in Ω(n). If there doesn’t exist any Γ &

{a1, . . . , an} such that S(a1,...,an) ≤ S(Γ) ≤ Υ{∆}, then by Proposition 14,
since S(a1,...,an) ≤ Υ{∆}, we have S(a1,...,an) ≤ Υ{∆} ≤ S{a1,...,an}.

Hence, suppose that there exists a finite set Γ & {a1, . . . , an} such that
S(a1,...,an) � S(Γ) ≤ Υ{∆}. Let x ∈ S(Γ) ≤ Υ{∆}, then x∆ = ∆. Take
ai ∈ {a1, . . . , an} \ Γ. Then pick a ∈ Ω such that a /∈ supp(δ), for every
δ ∈ ∆. By k-transitivity of S, for any k ∈ N, it is possible to choose an
element x in S(Γ), such that x(ai) = a. Then

x(a1, . . . , ai, . . . , an) = (x(a1), . . . , a, . . . , x(an)) ∈ ∆.

But this yields a contradiction, since a /∈ supp(δ), for every δ ∈ ∆.
In the other direction, if S(a1,...,an) ≤ Υ{∆} ≤ S{a1,...,an}, then

∆ = (a1, . . . , an)Υ{∆} ⊆ (a1, . . . , an)S{a1,...,an}

and |(a1, . . . , an)S{a1,...,an} | is finite.
b) We now assume ∆ is a countably infinite set. Suppose there does

not exist any finite set Γ0 & {a1, . . . , an} such that S(Γ0) ≤ Υ{∆}. By
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Theorem 11 we have that S(a1,...,an) ≤ Υ{∆}. Since for every finite set Γ0 &
{a1, . . . , an} we have S(Γ0) � Υ{∆}, then {a1, . . . , an} is the smallest subset of
Ω such that S(a1,...,an) ≤ Υ{∆} and so, by Proposition 14, Υ{∆} ≤ S{a1,...,an}.
Take an element (b1, . . . , bn) of ∆, such that {b1, . . . , bn} 6= {a1, . . . , an}; as
∆ is infinite, this element exists. By the n-transitivity of S, there exists an
element x ∈ S such that x(a1) = b1, . . . , x(an) = bn. Then x(a1, . . . , an) ∈ ∆
and so we have an element x ∈ Υ{∆} but not in S{a1,...,an}. This yields a
contradiction. So there exists at least a set Γ0 & {a1, . . . , an} such that
S(Γ0) ≤ Υ{∆}. Take Γ to be the intersection of all such sets. By Proposition
14 we have that S(Γ) ≤ Υ{∆} ≤ S{Γ}.

Conversely suppose Γ & {a1, . . . , an}, and S(Γ) ≤ Υ{∆} ≤ S{Γ}. Then
(a1, . . . , an)S(Γ) ⊆ ∆, and since (a1, . . . , an)S(Γ) is infinite, then ∆ is infinite.

Remark 16 If |Γ| = n, n ≥ 1, then S(Γ)ES{Γ} and S{Γ}/S(Γ)
∼= Symn the

symmetric group on n points. Given an element α = (a1, . . . , an) ∈ Ω(n) and
a finite block ∆ containing it, we have that H = Υ{∆} satisfies the following
inclusions: S(Γ) ≤ H ≤ S{Γ} ≤ S, where Γ = {a1, . . . , an}. Then H/S(Γ) is
isomorphic to a subgroup of Symn. There exists a bijection Θ between the
subgroups of Symn and the subgroups of S{Γ} which contain S(Γ).

Put
KF = {K ∈ K| ρK has finite equivalence classes}.

Proposition 17 Let L be the set of subgroups of Symn. Then there exists
a bijection

ζ : KF /R → L.

Proof. By Theorem 9, it is sufficient to find a bijection between the set
of finite blocks containing an element α = (a1, . . . , an) and L. Let ∆ be a
finite block in Ω(n) containing α. We have that

Υα = S(Γ) ≤ Υ{∆} ≤ S{Γ} ≤ S

where Γ =supp(α). Then by Remark 16, Υ{∆} is the image by Θ of a
subgroup of Symn. If ∆1 6= ∆2 then Υ{∆1} 6= Υ{∆2}. By Remark 16, it
follows that the map ζ is injective. In the other direction, let H ∈ L. By
the remark 16, Θ(H) is a subgroup L of S{Γ} which contains Υα = S(Γ).
Then, by Theorem 11, we have a finite block αL containing α.

Proposition 18 Let α = (a1, . . . , an) ∈ Ω(n) and let DαF be the set of the
finite blocks in Ω(n) containing α. Then the elements of DαF are exactly the
sets αH , where H is a subgroup of Sym{a1, . . . , an}.

Proof. Let ∆ ∈ DαF . Let H ′ be the subgroup of Sym(Ω) such that αH
′

= ∆.
Then

Υα ≤ H ′ ≤ S{Γ},
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where Γ = supp(α). Since S{Γ}/S(Γ)
∼= Symn we have that H ′ = H ×

Sym(Ω \ Γ), where H is a subgroup of Sym{a1, . . . , an}. Then ∆ = αH .
Conversely, taken a subgroup H ≤ Sym{a1, . . . , an}, αH = αH×Sym(Ω\Γ).
By Theorem 11 αH is a block in Ω(n) .

The same argument works for the following:

Proposition 19 Let α = (a1, . . . , an) ∈ Ω(n) and let DαI be the set of non-
trivial infinite blocks in Ω(n) containing α. Then the elements of DαI are
exactly the sets αL×Sym(Ω\Ξ), where Ξ ( {α1, . . . , αn} and L is a subgroup
of Sym(Ξ).

Let us mention a little remark about Proposition 18. Let α =
(a1, . . . , an). Denote Sym{a1, . . . , an} by Symn. Consider the set

αSymn = {σ(a1, . . . , an), σ ∈ Symn}.

Let [K] ∈ KF /R, and K̄ ∈ [K] be the largest subgroup of GW which is
constant on the equivalence classes of Φ(K). By Proposition 18 there exists
a subgroup T of Symn such that K restricted to ∆ = αT is constant on it.
The block system which includes ∆ is {g∆ : g ∈ Sym(Ω)}. We look at the
restriction of K̄ to the set αSymn . This is the subgroup of Gα

Symn of the
function from αSymn to G constant on the subsets bT (α), where bT are the
left cosets of T in Symn. We notice that the cardinalities of the finite blocks
in Ω(n) are exactly the cardinalities of the subgroups of Symn.

5 Commentary

5.1 Finite Covers

As is well known, a subgroup of Sym(W ) is closed if and only if it is the
group of automorphisms of some first-order structure with domain W (see
for instance Proposition (2.6) in [3]). Thus we state the following definition.

A permutation structure is a pair 〈W,G〉, where W is a non-empty set
(the domain), and G is a closed subgroup of Sym(W ). We refer to G as
the automorphism group of W . If A and B are subsets of W (or more
generally of some set on which Aut(W ) acts), we shall refer to Aut(A/B) as
the group of permutations of A which extend to elements of Aut(W ) fixing
every element of B and to Aut(A/{B}) as the group of permutations of A
which extend to elements of Aut(W ) stabilizing setwise the set B.

Permutation structures are obtained by taking automorphism groups
of first-order structures and we often regard a first-order structure as a
permutation structure without explicitly saying so. When π : C → W is a
finite cover (Definition 1), we frequently use the notation C(w) to denote
the fibre π−1(w) above w in the cover π : C →W .

11



We recall that the fibre group F (w) of π on C(w) is Aut(C(w)/w), while
the binding group B(w) of π on C(w) is Aut(C(w)/W ). It follows that
the binding group is a normal subgroup of the fibre group. If Aut(W ) acts
transitively on W , then all the fibre groups are isomorphic as permutation
groups, as are the binding groups. There is a continuous epimorphism χw :
Aut(W/w) → F (w)/B(w) called the canonical epimorphism (Lemma 2.1.1
[6]). Thus if Aut(W/w) has no proper open subgroup of finite index, then
F (w) = B(w).

Let π1 : C1 → W and π2 : C2 → W be two finite covers of W . Then π1

is said to be isomorphic over W to π2 if there exists a bijection α : C1 → C2

with α(π−1
1 (w)) = π2(w) for all w ∈ W , such that the induced map

fα : Sym(C1)→ Sym(C2) satisfies fα(Aut(C1)) = Aut(C2).

The Cover Problem is, given W and data (F (w), B(w), χw), to deter-
mine (up to isomorphism) the possible finite covers with these data.

If C and C ′ are permutation structures with the same domain
and π : C → W , π′ : C ′ → W are finite covers with π(c) = π′(c) for all
c ∈ C = C ′, we say that π′ is a covering expansion of π if Aut(C ′) ≤ Aut(C).

Suppose that C and W are two permutation structures and π : C →W
is a finite cover. The cover is free if

Aut(C/W ) =
∏
w∈W

Aut(C(w)/W ),

that is, the kernel is the full direct product of the binding groups.
The existence of a free finite cover with prescribed data depends on the

existence of a certain continuous epimorphism.
Indeed, let W be a transitive permutation structure and w0 ∈W . Given

a permutation group F on a finite set X, a normal subgroup B of F and a
continuous epimorphism

χ : Aut(W/w0)→ F/B,

then there exists a free finite cover σ : M → W with fibre and binding
groups at w0 equal to F and B, and such that the canonical epimorphism
χw0 is equal to χ . With these properties σ is determined uniquely (see [6],
Lemma 2.1.2).

A principal cover π : C → W is a free finite cover where the fibre and
binding groups at each point are equal. Free covers are useful in describing
finite covers with given data because every finite cover π : C → W is an
expansion of a free finite cover with the same fibre groups, binding groups
and canonical homomorphisms as in π (see [6], Lemma 2.1.3).

12



Let’s go back to Section 2. Using the language of finite covers, F is the
set of the expansions of the principal finite covers of 〈W,Υ〉, with all fibre
groups and binding groups equal to a given group G.

In the case when G is a simple non-abelian regular group, our main
theorem shows that the Υ-congruences on W describe (up to isomorphisms
over W ) the kernels of expansions belonging to F .

5.2 Bi-interpretability

Definition 20 Two permutation structures are bi-interpretable if their au-
tomorphism groups are isomorphic as topological groups.

For a model-theoretic interpretation, if the permutation structures arise
from ℵ0-categorical structures, see Ahlbrandt and Ziegler ([1]). Usually
classification of structures is up to bi-interpretability.

Let n ∈ N. Consider Ω(n) as a first-order structure with automorphism
group equal to Sym(Ω).

Proposition 21 Let M1 := ∆× Ω(n) and π1 : M1 → Ω(n) be a finite cover
of Ω(n) with all binding groups and fibre groups equal to a simple non-abelian
finite group G acting on ∆. Let K1 be the kernel of π1.

Suppose that the congruence classes which K1 determine have finite car-
dinality. Then, ∀m > n there exists a permutation structure M2 := ∆×Ω(m)

and a finite cover π2 : M2 → Ω(m) with all fibre groups and binding groups
equal to G such that M1 is bi-interpretable with M2 and the kernel K2 of π2

determines a Sym(Ω)-congruence with equivalence classes of infinite cardi-
nality.

Proof. By the notation M1(α), we mean the copy of ∆ over the element
α ∈ Ω(n). The kernel K1, by Lemma 5, determines a Sym(Ω)-congruence ρ
which, by hypothesis, has equivalence classes of finite cardinality. Let m be
a positive integer greater than n and M2 be the set

M2 := {(δ, w) : w = (α, c1, .., cm−n) ∈ Ω(m) where α ∈ Ω(n) and δ ∈M1(α)}

Obviously M2 = ∆×Ω(m). Let µ1 : Aut(M1)→ Sym(Ω) be the map induced
by π1 and Λ be the subgroup of Aut(M1)× Sym(Ω)

Λ = {(σ, g) : g = µ1(σ)}.

Our claim is to show that 〈M2,Λ〉 is a permutation structure and that
π2 : M2 → Ω(m) given by π2(w,m) = w is a finite cover of Ω(m) with
F (w) = B(w) = G and kernel K2 which determines a Sym(Ω)-congruence
with equivalence classes of infinite cardinality.
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It is easy to check that Λ is a permutation group on M2 which preserves
the partition of M2 given by the fibres of π2.

We equip Aut(M1) × Sym(Ω) with the product topology. This topol-
ogy coincides with the topology of the pointwise convergence induced by
Sym(M1 × Ω(m)) on Aut(M1)× Sym(Ω). The map Φ given by

Aut(M1)× Sym(Ω)
p2→ Sym(Ω)

and the map Ψ given by

Aut(M1)× Sym(Ω)
p1→ Aut(M1)

µ1→ Sym(Ω)

where p1 and p2 are the projections on the first and second component,
respectively, are continuous. The permutation group Λ is equal to the dif-
ference kernel

Z = {(σ, g) ∈ Aut(M1)× Sym(Ω) : Ψ(σ, g) = Φ(σ, g)}

which, by Proposition 3 page 30 of [8], is closed in Aut(M1) × Sym(Ω).
Moreover, Aut(M1)×Sym(Ω) is closed in Sym(M1×Ω(m)) and then 〈M2,Λ〉
is a permutation structure. The usual map induced by π2

µ2 : Λ→ Sym(Ω(m))

has image Sym(Ω). The kernel of µ2, which we denote by K2, is

K2 = {(σ, id) ∈ Λ : σ ∈ K1}.

Then K1
∼= K2. Let (δ, w) = (δ, α, c1, . . . , cm−n) ∈ M2 where α ∈ Ω(n) and

c1, . . . , cm−n ∈ Ω \ supp(α) and are all distinct. Let (σ, id) be an element
in K2. If we restrict it to the fibre over w, we see that it is the same as
restricting σ to the fibre over α. Hence the binding group over w, B2(w),
is clearly isomorphic to G. The same holds for the fibre group: let w =
(α, c1, . . . , cm−n), then F2(w) is the restriction of the group

Aut(M2/w) = {(σ, g) ∈ Λ : g ∈ Sym(Ω)((α,c1,...,cm−n)}

to the fibre over w. Since g ∈ Sym(Ω)((α,c1,...,cm−n)} then g ∈ Sym(Ω)(α).
Hence σ ∈ Aut(M1/α) and so F2(w) is isomorphic to G.

Moreover, if we consider two points of Ω(m), say w = (α, c1, . . . , cm−n)
and w′ = (α′, c′1, . . . , c

′
m−n), with αρα′, we have that K2(w,w′) ∼= G. Vice

versa if K2(w,w′) ∼= G, it means that K1(α, α′) ∼= G. Then the Sym(Ω)-
congruence, ρ′, that K2 determines is given by wρ′w′ if and only if αρα′. In
the equivalence class of w = (α, c1, . . . , cm−n) for instance there are all the
elements of the form (α, c′1, . . . , c

′
m−n), with c1, . . . , cm−n ∈ Ω \ supp(α) and

pairwise distinct. Then the equivalence classes of ρ′ are of infinite cardinality.
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Next we check the bi-interpretability. We consider the map

β : Λ → Aut(M1)
(σ, g) 7→ σ

The kernel of β is kerβ = {(id, g) ∈ Λ : g = µ1(id)}. Then β is injective.
It is also surjective since, given σ ∈ Aut(M1), (σ, µ1(σ)) ∈ Λ. Clearly the
inverse map is given by β−1(σ) = (σ, µ1(σ)).

It is a topological isomorphism. Indeed, take a basic open neighbourhood
of the identity in Aut(M1), say Aut(M1)(Γ), where Γ = {δi}i∈I is a finite set
of M1. Each δi ∈M1(αi). Then

β−1(Aut(M1)(Γ)) = {(σ, µ1(σ)) : σ ∈ Aut(M1)(Γ)}.

For each αi, we choose ci1, . . . , c
i
m−n ∈ Ω such that wi = (αi, ci1, . . . , c

i
m−n) is

an extension of αi to an element of Ω(m). The map

β−1 : Aut(M1) → Aut(M1)× Sym(Ω)
σ 7→ (σ, µ1(σ))

is continuous. The image of β−1 is Λ and as Λ has the topology induced
by Aut(M1) × Sym(Ω), then β−1 : Aut(M1) → Λ is continuous. Hence, we
have proved the bi-interpretability.

5.3 Almost-free finite covers

Let W be a transitive structure, ρ an Aut(W )-congruence on W and π :
C → W a finite cover. Given a ρ-equivalence class [w], we shall denote
by C([w]) =

⋃
wi∈[w]C(wi), by F π([w]) the permutation group induced by

Aut(C/{[w]}) on C([w]), and by Bπ([w]) the permutation group induced by
the kernel of π on C([w]). Note that Bπ([w])E F π([w]).

Lemma 22 Let W be a transitive structure, ρ an Aut(W )-congruence on
W and π : C →W be a finite cover. Then, for every ρ-class [w] in W

1. there exists a finite-to-one surjection

π[w] : C([w])→ [w]

such that its fibres form an F π([w])-invariant partition of C([w]);

2. there is a continuous epimorphism

χπ[w] : Aut(W/{[w]})→ F π([w])/Bπ([w]).
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Proof. The first point is clear.
The second point requires a little proof. Let g ∈ Aut(W/{[w]}). Then

there exists h ∈ Aut(C/{[w]}) which extends g. Let ψ : Aut(W/{[w]}) →
Aut(C/{[w]})/Aut(C/W ) be the map defined by ψ(g) = hAut(C/W ). This
map is well defined. Suppose that also h̄ extends g. Then h−1h̄ ∈ Aut(C/W )
and so hAut(C/W ) = h̄Aut(C/W ). Consider the restriction to the set of
fibres over {[w]}. So we have a map ξ[w] : Aut(C/{[w]})/Aut(C/W ) →
Sym(C([w])/Bπ([w]), given by ξ[w](hAut(C/W )) = h|C([w])B

π([w]), which
is clearly onto F π([w])/Bπ([w]). Let g ∈ Aut(W/{[w]}). We define
χπ[w](g) := ξ[w]ψ(g). In order to prove that χπ[w] is continuous, we show
that ψ and ξ[w] are continuous.

The restriction map ξ[w] is continuous by Lemma 1.4.1 of [6].
Consider Sym(C([w]) with the topology of pointwise convergence and
Sym(C([w])/Bπ([w]) with the quotient topology. Let µ|Aut(C/{[w]}) :
Aut(C/{[w]}) → Aut(W/{[w]}) be the map induced by µ. Since [w] is
a ρ-equivalence class Aut(C/{[w]}) is an open subgroup of Aut(C). Indeed,
let c ∈ C([w]). Take h ∈ Aut(C/c). Then h(C([w])) = C([w]). If g = µ(h),
we have g(w) = w, and [w] being an Aut(W )-congruence class, this im-
plies that g([w]) = [w]. Hence Aut(C/c) ⊆ Aut(C/{[w]}) which implies
that Aut(C/{[w]}) is an open subgroup of Aut(C). By the same reasoning
we get that Aut(W/{[w]}) is open in Aut(W ). Now, since µ is open also
µ|Aut(C/{[w]}) will be open. Hence by Proposition 1, page 21 of [8], we have
the continuity of ψ.

Definition 23 Let W be a transitive structure and ρ an Aut(W )-
congruence on W . Let π : C → W be a finite cover of W , w ∈ W , with
binding groups isomorphic to a group G and kernel K. We shall say that π
is almost free with respect to ρ if

1. K([w]) ∼= G for each [w] ∈W/ρ

2. K(w1, w2) ∼= G×G for each w2 /∈ [w1].

For a class of almost free finite covers take for example the set of finite
covers of a transitive structure with all the binding groups and fibre groups
isomorphic to a simple non-abelian group G.

Let R := W/ρ. Given a transitive structure W and an Aut(W )-
congruence ρ, naturally we have an induced map

M : Aut(W )→ Sym(R).

The map M is continuous, but the image of Aut(W ) by M is not necessarily
closed. The following counterexample is due to Peter Cameron (private
communication).
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Take the generic bipartite graph B, and consider the group G of
automorphisms fixing the two bipartite blocks, acting on the set of edges of
the graph. On the set of edges there are two equivalence relations, ”same
vertex in the first bipartite block”, and ”same vertex in the second bipartite
block”. Clearly G is precisely the group preserving these two equivalence
relations, and so is closed. But the group induced on the set of equivalence
classes of each relation is highly transitive and not the symmetric group,
therefore not closed.

Let C and W be two structures. We shall call π : C →W a cover of W
if π is a surjective map, the fibres of π form an Aut(C) -invariant partition
of C and the induced map µ : Aut(C)→ Sym(W ) has image Aut(W ). The
difference with finite covers is that here we don’t require the fibres of the
cover to have finite cardinality. We shall extend the terminology of finite
covers to covers in the obvious way: for example the fibre group at w ∈ W
of π will be Aut(C(w)/w), the binding group at w Aut(C(w)/W ) and so
on. In particular, a cover π is a free cover if the kernel of π is the full direct
product of all its binding groups.

Theorem 24 Let W be a countable ℵ0-categorical transitive structure and
ρ an Aut(W )-congruence on W . We suppose that the following assumptions
hold:

1. Let F be a closed permutation group on a set X. Fix w0 ∈W and let
[w0] be the ρ-equivalence class of w0.

Suppose that there exists a finite -to-one surjection

σ : X → [w0]

such that the fibres form an F -invariant partition of X and that the
induced map T : F → Sym([w0]) has image Aut(W/{[w0]}|{[w0]}.

2. Let B be the kernel of T and G be the permutation group induced by
B on σ−1(w0) . Suppose that B is isomorphic to G and that the index
of B in F is at most countable.

3. Assume that the map M is injective, open and with closed image.

The map T induces a map χ : Aut(W/{[w0]})→ F/B defined as χ(g) = hB,
where h ∈ F and T (h) = g|[w0].

Then there exists an almost free finite cover π0 of W with respect to ρ
with binding groups isomorphic to G, F π0([w0]) = F , Bπ0([w0]) = B and
map χπ0

[w0] equal to χ. Moreover, if π̃0 is an almost free finite cover with
respect to ρ with F π̃0([w0]) and Bπ̃0([w0]) isomorphic as permutation groups
to F and B respectively via a bijection γ such that γ(π̃−1

0 (w)) = π−1
0 (w)
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for every w ∈ [w0], and χπ̃0

[w0] equal to χ (up to isomorphism), then π̃0 is
isomorphic over W to π0.

Proof. We give to R the first-order structure with automorphism group
the image of M . Let r0 = [w0]. It is easy to see that the map χ and the
map

M−1 : Aut(R/r0)→ Aut(W/{[w0]})
are continuous. If we compose the map M−1 with χ, we obtain a continuous
map from Aut(R/r0) to F/B, which we continue to denote by χ. The
reason of using the same notation for the two χ is that they are essentially
the same from a group theory point of view, since M−1 is an isomorphism.
In the proof it will be clear from the context which one of the two maps we
are referring to. The proof is developed in a series of steps.

Step a) We are going to build a free cover π : S → R with fibre group
and binding group at r0 respectively equal to F and B, with fibre S(r0)
equal to X and canonical epimorphism at r0 equal to χ. After having built
the free cover π, we are going to prove that if ν is a free cover with fibre
and binding group at r0 isomorphic as permutation groups to F and B
respectively, and χr0 equal to χ (up to isomorphism), then ν is isomorphic
over R to π.

The arguments we shall use for the construction of π are essentially the
same as those of the proof of Lemma 2.1.2 in [6]. Note that in Lemma 2.1.2
in [6] the authors deal with finite covers. Nevertheless, the extra hypothesis
that the group F is closed in Sym(X) allows the arguments used there to
work as well in our case although the cardinality of X may be infinite. So,
even if it would be sufficient for Step a) to address the reader to [6], since we
are going to use specific steps out of the proof of Lemma 2.1.2, we shall give
the general lines of it for the use of the reader. For the details we refer to [6].

First the following cover is constructed. Let χ : Aut(R/r0)→ F/B and
C be the set of left cosets of kerχ in Aut(R). Consider the map θ : C → R
given by θ(g kerχ) = gr0. The permutation group Aut(R) induces a group
of permutations on C. The induced group is a closed subgroup of Sym(C)
and so we can consider C as a relational structure with automorphism
group isomorphic to Aut(R). Then the map θ is a cover with trivial kernel.

Let Y = θ−1(r0)tX be the disjoint union of θ−1(r0) and X. The group
F acts on Y : the action of h ∈ F on m ∈ θ−1(r0) is h(m) = (χ−1(hB))(m).
Put on Y the relational structure given by F . For every r ∈ R choose
gr ∈ Aut(R) such that grr = r0 (with gr0 = id). Then gr(θ−1(r)) = θ−1(r0)
and it induces an embedding ηr : θ−1(r)→ Y .
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The next step is the following: we build a cover π′ : S′ → R, where the
domain of S′ is made of the disjoint union of R, C and R× Y and π′ is the
identity on R, acts as θ on C, and as the projection to the first coordinate on
R× Y . We also have an injection τ : C → R× Y given by τ(c) = (r, ηr(c)),
whenever θ(c) = r. Moreover, the structure of S′ is made up of the original
structure on R and C and for each n-ary relation R on Y we have an n-ary
relation R′ on R× Y given by

R′((r1, y1), · · · , (rn, yn)) iff ri = rj , for all i, j and R(y1, · · · , yn).

Now we see how to extend an automorphism of R to a permutation of S′

which preserves the above structure.
If g ∈ Aut(R), then g determines an automorphism of C. Also, if gr1 =

r2, then via τ there is a bijection τgτ−1 from {r1}×θ−1(r0) to {r2}×θ−1(r0).
In fact, let h ∈ Aut(R/r0) and h kerχ ∈ θ−1(r0), since τ−1(r1, h kerχ) =
g−1
r1 h kerχ, we have that τgτ−1(r1, h kerχ) = (r2, gr2gg

−1
r1 h kerχ).

Since gr2gg
−1
r1 ∈ Aut(R/r0), if we choose a representative z in the class

χ(gr2gg
−1
r1 ) then z(h kerχ) = gr2gg

−1
r1 h kerχ and this extends to a permuta-

tion β(r, g) of Y . If we also denote by β(r, g) the induced map from r×Y to
gr× Y , then ω(g) = g ∪

⋃
r∈R β(r, g) is a permutation of S′ which preserves

the structure we put on S′ and extends g.
Let π be the restriction of π′ to S = R ×X considered as permutation

structure with Aut(S′) acting. Then π : S → R is a free cover of R with
kernel isomorphic to GR.

Now the uniqueness, the last step. Let ν : N → R be a cover with
fibre group and binding group at r0 isomorphic as permutation groups to
F and B respectively. Let γ : N(r0) → X be the bijection which gives rise
to the isomorphism (we call it γ̃) as permutation groups which sends the
fibre group at r0 of ν to F and the binding group at r0 of ν to B. Then
χr0 = γ̃ ◦ χ. For each r ∈ R, gr can be extended to an automorphism
ĝr ∈ Aut(N). We define the map β : N → R ×X in the following way: if
n ∈ ν−1(r), define β(n) := (r, γ(ĝr(n))) ∈ R × X. As is shown on Lemma
2.1.2 in [6], Step 5, this is a bijection which gives rise to an isomorphism of
covers.

Step b). Let gr ∈ Aut(R) be the permutations used above for construct-
ing the free cover S. Then we construct a finite cover of W in the following
way. Consider the set

C0 := {(w, k) : w ∈ r and k ∈ σ−1(M−1(gr)(w))}.

Let π0 : C0 → W be the map given by π0(w, k) = w. Since σ : X → [w0]
is a finite-to-one surjection, we have that π0 is a finite-to-one surjection as
well.
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Let α : R×X → C0 be the map defined in the following way: let k ∈ X,
then there exists w ∈ [w0] such that k ∈ σ−1(w). We define

α(r, k) := ((M−1(g−1
r ))w, k).

Then α is a bijection. Indeed, it is surjective because, given (w, k) ∈ C0

with w ∈ r and k ∈ σ−1(M−1(gr)(w)), we have that

(w, k) = (M−1(g−1
r )(M−1(gr)(w)), k) = α(r, k).

In order to prove that α is injective take (r1, k1) 6= (r2, k2) ∈ R × X with
k1 ∈ σ−1(w1) and k2 ∈ σ−1(w2) and suppose that ((M−1(g−1

r1 ))w1, k1) =
((M−1(g−1

r2 ))w2, k2). Then k1 must be equal to k2 which implies that w1 =
w2. If r1 6= r2, then M−1(g−1

r1 )w1 and M−1(g−1
r2 )w2 belong to different equiv-

alence class and so we have a contradiction. Let fα : Sym(S) → Sym(C0)
be the map induced by α. The image by fα of Aut(S) is closed in Sym(C0).
We denote it by Aut(C0).

Let C0(w) be the fibre over w of π0. If w ∈ r1 then C0(w) =
σ−1(M−1(gr1)(w)). We have that α−1C0(w) = (r1, σ

−1(M−1(gr1)(w)).
Take an element g of Aut(S). We are going to show that fα(g) = αgα−1

preserves the partition of C0 given by the fibres of π0.
Let ḡ ∈ Aut(W ) such that M(ḡ) is the induced permutation on R by g.

If M(ḡ)r1 = r2, there exists f ∈ F such that

g(r1, σ
−1(M−1(gr1)w)) = (r2, f(σ−1(M−1(gr1)w))) = (r2, σ

−1(M−1(gr2)ḡw))).

By the proof of Lemma 2.1.2 in [6], we see that the element
f is a representative of the class χ(M−1(gr2)ḡM−1(g−1

r1 )). Hence
g(r1, σ

−1(M−1(gr1)w)) = (r2, σ
−1(M−1(gr2)ḡw)) and then

αgα−1C0(w) = C0(ḡw),

i.e. the fibres of π0 form an Aut(C0)-invariant partition of C0.
Let µ0 : Aut(C0) → Sym(W ) be the induced homomorphism. Take an

element g ∈ Aut(W ) and an extension g̃ ∈ Aut(S) of M(g). The argument
above shows as well that Imµ0 is equal to Aut(W ). The kernel of µ0 is
α kerπα−1. It is isomorphic to GR. Since kerπ induces on σ−1(w) and on
X a group isomorphic to G, then kerπ0 induces on any fibre of π0 and on
C0([w0]) a group isomorphic to G as well. So condition 1) of Definition
23 is verified. Let now w1 and w2 be two elements of W belonging to two
different ρ-equivalence classes, say r1 and r2. Since π is a free cover on
R, kerπ induces on S(r1) ∪ S(r2) a group isomorphic to G × G. Then
kerπ0 induces on C0([w1]) ∪ C0([w2]) a group isomorphic to G × G, and
on C0(w1) and on C0(w1) a group isomorphic to G. This implies that also
condition 2) of Definition 23 is verified. So we have an almost free finite
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cover π0 : C0 →W as required.

Step c). Let ν0 : N0 → W be a finite cover of W with binding groups
isomorphic to a finite group G, with kernel isomorphic to GR and with
Bν0([w0]) and F ν0([w0]) isomorphic as permutation groups to B and F re-
spectively via a bijection

γ : N0([w0])→ X (1)

such that γ(π̃−1
0 (w)) = π−1

0 (w) for every w ∈ [w0]. Suppose that χν0

[w0] is
equal to χ.

Let ν : N0 → R be given in the obvious way by ν(δ) = r if δ ∈ N0[w] and
[w] = r. The fibres of ν form a partition of N0 invariant under the action
of Aut(N0). Indeed, let g ∈ Aut(R), consider M−1(g) which extends to
ḡ ∈ Aut(N0). Then, if δ ∈ N0([w]) there exists n ∈ [w] such that δ ∈ N0(n)
and ḡδ ∈ N0(M−1(g)w) ⊆ N0(g[w]).

The fibre group at r0 is equal to F ν0 [w0] and the binding group at r0

is equal to Bν0([w0]). The map χr0 : Aut(R/r0) → F ν0([w0])/Bν0([w0]) is
exactly the composition of M−1 : Aut(R/r0) → Aut(W/{[w0]}) and χν0

[w0].
Since the data of π and ν are the same up to isomorphism, by Lemma 2.1.2
in [6] ν and π are isomorphic over R via the bijection β(δ) = ([w], γ(ĝr(δ))),
if δ ∈ N0([w]) and ĝr ∈ Aut(N0) is an extension of M−1gr.

Let δ ∈ N0(w) (so ĝrδ ∈ N0(M−1(gr)w)). Since γ(π̃−1
0 (w)) = π−1

0 (w)
for every w ∈ [w0], we have that γ(ĝrδ) ∈ σ−1(M−1(gr)w) and then

α([w], γ(ĝrδ)) = (M−1(g−1
r gr)w, γ(ĝrδ)) = (w, γ(ĝrδ)).

Consider the bijection

N0
β→ S

α→ C0

δ 7→ ([w], γ(ĝrδ)) 7→ (w, γ(ĝrδ))
(2)

Then αβAut(N0)β−1α−1 = αAut(S)α−1 = Aut(C0), i.e. Aut(N0) and
Aut(C0) are isomorphic over W .

Corollary 25 Let W be a transitive structure, w0 ∈ W , and ρ be an
Aut(W )-congruence on W . Assume that the permutation group induced by
Aut(W/{[w0]}) on [w0] is closed in Sym([w0]). Moreover suppose that the
map M is injective, open and with closed image. Let G be a finite permuta-
tion group acting on a finite set ∆. Then there exists an almost-free finite
cover of W w.r.t. ρ and with binding groups equal to G.

Proof. We shall denote by A the permutation group induced by
Aut(W/{[w0]}) on [w0]. Consider the wreath product GWr[w0]A acting in
the usual way on [w0]×∆. Let σ : [w0]×∆→ [w0] be given by σ(w, δ) = w.
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Denote by B the diagonal subgroup of G[w0]: it is normalized by A and
so we can make the semidirect product F := B o A. This is closed by
Proposition 7. Using the notation of Theorem 24 we have that χ is the
homomorphism induced by restriction on [w0]. The hypotheses of Theorem
24 are satisfied and so we have an almost free finite cover π : W ×∆→W .

The following remark establish a link between section 3 and this section.

Remark 26 Let W be a transitive structure which satisfies the hypotheses of
Corollary 25. Let π′ : W ×∆→W be the finite cover given by π′(w, δ) = w
with Aut(W ×∆) = Kρ o Aut(W ) (for Kρ see the notation of Theorem 9)
acting on W × ∆ in the usual way: (f, σ)(w, δ) = (σw, f(w)δ). Then the
almost free finite cover which we constructed in the proof of Corollary 25 is
exactly π′.

Indeed, let F and B be as in the proof of Corollary 25. Since F π
′
([w0]) =

F , Bπ′([w0]) = B and χπ
′

[w0] = χ we have that the identity map can be taken
as the bijection γ. If gr ∈ Aut(R) for r ∈ R are the permutations used
in Step a) of the proof of Theorem 24, we take as ĝr ∈ Kρ o Aut(W ) the
permutations (id, gr). Since σ−1(w) = ∆ for every w ∈ [w0], we see that
the structure C0 is W ×∆ and then it follows immediately that the bijection
αβ : W ×∆→ C0 of Step c) is the identity map.

Corollary 27 Let W be a transitive structure, w0 ∈ W , and ρ be an
Aut(W )-congruence on W . Assume that the permutation group induced
by Aut(W/{[w0]}) on [w0] is closed in Sym([w0]). Moreover suppose that
the map M is injective, open and with closed image. Let G be a simple
non-abelian finite permutation group acting on itself by conjugation. Then
there exist at least two non-isomorphic almost free finite covers with respect
to ρ, with isomorphic kernels.

Proof. As above, we shall denote by A the permutation group induced by
Aut(W/{[w0]}) on [w0]. Take ∆ = G and let π : W × G → W be the
almost free finite cover cover built in Corollary 25. Using the notation of
Corollary 25 and the topological results in section 1.4 of [6] we have that the
map T : F → A is continuous, maps closed subgroups to closed subgroups
and is open. Then the isomorphism map S : A → F/B is a topological
isomorphism.

Since Bπ([w0]) = B ∼= G, by conjugation of G by elements of F π([w0]) =
F we get a map γ : F π([w0])/G → Out(G). The image of γ is H/G, for
some H ≤ Aut(G). Composing S with γ, we have a map

S̄ : A→ H/G.

We see that γ is continuous. Indeed, the kernel of γ is CFπ([w0])(G)G/G,
where CFπ([w0])(G) is the centralizer of G in F π([w0]). The group G is finite
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and hence closed in F π([w0]). Its orbits on [w0] × G are finite and so it is
also compact. Moreover, CFπ([w0])(G) is closed.

By Proposition 7 we have that CFπ([w0])(G)G is closed in F π([w0]). Since
it has finite index in F π([w0]), CFπ([w0])(G)G is open in F π([w0]) and hence
CFπ([w0])(G)G/G is open in F π([w0])/G.

Let P : H → H/G be the quotient map and

F1 := {(σ, h) : σ ∈ A, h ∈ H and P (h) = S(σ)}

be the fibre product between A and H. This is a permutation group on
[w0] × G with action given by: (σ, h)(w, g) = (σw, h(g)). By the same
reasoning as in Proposition 21, we have that F1 is closed in Sym([w0]×G).

The group B1 := {(id, g) : id ∈ Sym({[w0]}), g ∈ G} is a normal sub-
group of F1. Let χ : Aut(W/{[w0]})� F1/B1 be the map given by

χ(g) = (g|[w0], h)B1,

where h belongs to the coset S(g|[w0]). The map χ is well defined.
Let

σ : [w0]×G→ [w0]

be the projection on the first component. The induced map F1 → Sym([w0])
has image A. Hence, by Theorem 24, we can build an almost-free finite
cover π1 w.r.t ρ with binding groups isomorphic to G. Note that the kernel
is isomorphic to Kρ.

5.4 Problems

We described in an explicit way the kernels of expansions of the free finite
cover of 〈Ω(n), Sym(Ω)〉, when the fibre groups and the binding groups are
both equal to a simple non-abelian regular finite permutation group G.

1. What happens for finite covers where the base structure is a Grass-
mannian of a vector space over a finite field?

2. What happens for finite covers of Ω(n) if the fibre groups and the bind-
ing groups are isomorphic to a simple abelian group? Here one would
need to work with the closed Sym(Ω)-submodules of FΩ(n)

p . We recall
that the case where the base permutation structure is 〈[Ω]n, Sym(Ω)〉,
where [Ω]n is the set of n-subsets from Ω with Sym(Ω) acting on it in
the obvious way, was solved by Gray ([7]).
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