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Abstract. The Sylvester (d + 2)-points problem deals with the probability S(K)
that d + 2 random points taken from a convex compact subset K of Rd are not the
vertices of any convex polytope and asks for which sets S(K) is minimal or maximal.
While it is known that ellipsoids are the only minimizers of S(K), the problem of
the maximum is still open, unless d = 2.

In this paper we study generalizations of S(K), which include the Busemann
functional – appearing in the formula for the volume of a convex set in terms of
the areas of its central sections – and a functional introduced by Bourgain, Meyer,
Milman and Pajor in connection with the local theory of Banach spaces.

We show that also for these more general functionals ellipsoids are the only min-
imizers and, in the two-dimensional case, triangles (or parallelograms, in the sym-
metric case) are maximizers.

1. Introduction.
Let Kd denote the class of all convex bodies in Rd, i.e. of all d-dimensional

compact convex set. For K ∈ Kd, the functional

(1.1) S(K; d) =
1

[V (K)]d+2

∫

K

. . .

∫

K

[x0, x1, . . . , xd] dx0dx1 . . . dxd ,

where V (K) denotes the volume of K and [x0, x1, . . . , xd] the volume of the convex
hull of x0, x1, . . . , xd, is the normalized mean expected value of the volume of the
simplex whose vertices are randomly, independently and uniformly chosen from K.

This functional is well known in the literature because, if multiplied by d + 2,
it is exactly the probability that one of d + 2 random points from K falls in the
convex hull of the remainders and then answers to the relevant question posed by
Sylvester in 1864 [Sy]. For the historical development of this problem, see Pfiefer
[Pf].

Nowadays, by Sylvester’s problem it is meant the following one: Which are the
convex bodies giving the maximum or the minimum of S(K; d)?

Classical compactness arguments, based on the fact that the functional S(K; d)
is affinely invariant, imply the existence of maximizers and minimizers.
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In 1917 Blaschke [B1] solved the problem in the case d = 2. He showed that el-
lipses are the only minimizers and that triangles are the only maximizers of S(K; 2).

For d > 2, Groemer [G1] proved that ellipsoids are the only minimizers of
S(K; d). The problem of finding maximizers of S(K; d) is still open and it is
conjectured that simplices are the only solutions.

A functional of the same type as the Sylvester one appears in the Busemann
formula which expresses the volume of a convex body in terms of the areas of its
central sections. Assume that K contains the origin in its interior and keep one of
the random points in (1.1) still at the origin. Thus, we have the functional

(1.2) B(K; d) =
1

[V (K)]d+1

∫

K

. . .

∫

K

[0, x1, . . . , xd] dx1 . . . dxd .

The Busemann intersection formula (see [Bu]) states that

V (K)d−1 =
d!
2

∫

Sd−1
V (K ∩ u⊥)d+1B(K ∩ u⊥; d− 1) du ,

where Sd−1 denotes the unit sphere in Rd, u⊥ is the hyperplane through the origin
orthogonal to u and the integration is performed with respect to the Hausdorff
(d− 1)-dimensional measure.

In [Bu] Busemann proved also that B(K; d) attains its minimum if and only if
K is an origin symmetric ellipsoid. Such a result is known as Busemann’s random
simplex inequality.

During the last century, different generalizations and variants of the Sylvester
functional (1.1) were proposed. The most natural one sounds the extension pro-
posed by Groemer, where the number of random points is arbitrary and the volume
of the resultant random polytope is raised to the p-th power:

(1.3) S(K; m; p) =
1

[V (K)]m+p+1

∫

K

. . .

∫

K

[x0, x1, . . . , xm]p dx0dx1 . . . dxm .

Groemer [G2] proved that ellipsoids are still the only minimizers of S(K; m; p) for
every m ≥ d and p ≥ 1. Schöpf [So] obtained the same result for every p > 0
and m = d. In the planar case, Dalla and Larman [DL] proved that triangles are
maximizers of S(K;m; 1) and Giannopoulos [Gi] showed that they are the only
maximizers.

Analogously, one can consider the following extension of Busemann’s functional
(1.2):

(1.4) B(K;m; p) =
1

[V (K)]m+p

∫

K

. . .

∫

K

[0, x1, . . . , xm]p dx1 . . . dxm .

Looking at the formula (1.1), we notice that the volume of the random simplex
[x0, x1, . . . , xd] equals to

1
d!

V

(
d∑

i=1

xix0

)
,
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where xix0 denotes the segment joining xi to x0 and the sum is made according to
the Minkowski addition of subsets of Rd:

A + B = {x + y : x ∈ A, y ∈ B} .

This fact suggests the following extension of functional (1.4):

(1.5) I(K;m; p) =
1

V (K)m+p

∫

K

. . .

∫

K

V




m∑

j=1

0xj




p

dx1 . . . dxm ,

which was introduced by Bourgain, Meyer, Milman and Pajor [B-P] in connection
with some comparisons between norms in the local theory of Banach spaces. They
considered the following more general version
(1.6)

I(K1, K2, . . . , Km; p) =
1

(V (K1) . . . V (Km))
m+p

m

∫

K1

. . .

∫

Km

V




m∑

j=1

0xj




p

dx1 . . . dxm ,

where K1,K2, . . . , Km ∈ Kd, and proved that, for p > 0,

(1.7) I(K1, . . . ,Km; p) ≥ I(B1, B2, . . . , Bm; p) ,

where Bi is the ball with the same volume as Ki centered at the origin.
Notice that the polytopes defined as Minkowski sums of segments, appearing in

(1.5) and (1.6), are called zonotopes and play an important role in convex geometry
(see [SW]).

In this paper we study the functional I(K; m; p), for p ≥ 1, and we prove that
origin symmetric ellipsoids are the only minimizers (Theorem 7). Furthermore, we
show that triangles are maximizers in the class of plane convex figures containing the
origin and parallelograms in that of origin symmetric plane convex sets (Theorem 8).
The main tool will be a general convexity property (Theorem 6) for the functional
(1.6), which implies also inequality (1.7), for p ≥ 1.

A further extension of the Sylvester-Busemann functional that we consider in
the present paper can be defined by introducing the Lp-centroid body of a compact
set of Rd.

For K ∈ Kd, the support function hK is defined by

(1.8) hK(u) = max
z∈K

〈z, u〉 , u ∈ Rd ,

where 〈 , 〉 denotes the standard scalar product.
For each real number p ≥ 1, the Lp-centroid body of K is the convex body ΓpK

whose support function is

(1.9) hΓpK(u) =
{

1
cd,pV (K)

∫

K

|〈u, z〉|p dz

} 1
p

, u ∈ Rd ,
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where
cd,p =

κd+p

κ2κdκp−1
,

with
κr = π

r
2 /Γ(1 +

r

2
) .

Notice that κd is the volume of the unit ball Bd of Rd and the constant cd,p is such
that ΓpB

d = Bd, for every d and p.
Up to constants, Γ1K is known in the literature as the centroid body of K (see,

for example, Gardner [Ga], Chapter 9, and Schneider [Sc], Section 7.4) and Γ2K is
the classical Legendre ellipsoid of K, which is related to the moments of inertia of
K. The definition of Lp-centroid body for general p was introduced by Lutwak and
Zhang in [LZ].

A basic result regarding Lp-centroid bodies is the Lp-Busemann-Petty centroid
inequality

(1.10) V (ΓpK) ≥ V (K) ,

where p ≥ 1 and equality holds if and only if K is an origin symmetric ellipsoid. For
p = 1, (1.10) was first stated by Petty [P1] as a reformulation of Busemann’s random
simplex inequality (for more details see Lutwak [L]). For p = 2, inequality (1.10)
was proved by Blaschke [B1] when d = 3 and by John [J1] in higher dimensions.
For general p inequality (1.10) has been independently proved by Lutwak, Yang
and Zhang [LYZ] and by the authors [CG1].

The volumes of Γ1K and Γ2K are related to the Busemann functional through
the formulas

V (Γ1K) =
(

2
cd,1

)d

V (K)B(K; d; 1) ,

V (Γ2K) = κd

(
d!

cd
d,2

V (K)B(K; d; 2)

)1/2

(see [P1], [B2]), while for p 6= 1, 2 an expression of the same kind for the volume of
the Lp-centroid body is not available.

The volume of ΓpK strongly depends on the location of the body K. In [CG2],
it is shown that V (Γp(K−x)) is a strictly convex function of x. In the same paper,
the extrema of the functionals

max
x∈K

V (Γp(K − x))
V (K)

,

min
x∈K

V (Γp(K − x))
V (K)

,

have been investigated.
Here, the interest is focused on the functional

(1.11) A(K; p; q) =
[

1
V (K)q+1

∫

K

V (Γp(K − x))q dx

]1/q

,
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where p, q ≥ 1. Notice that (1.11) is related to the Sylvester functionals. Indeed,

A(K; 1; 1) =
2d

cd
d,1

S(K; d; 1) ,

A(K; 2; 2)2 = κ2
dd!(d + 2)dS(K; d; 2) .

We shall prove in Section 3 that in Kd ellipsoids are the only minimizers of
A(K; p; q) and that triangles (parallelograms, in the origin symmetric case) are
maximizers, when d = 2.

2. Preliminaries.
The method we use here for dealing with the functionals (1.5), (1.6) and (1.11)

is based on the idea of shadow system introduced by Rogers and Shephard (see
[RS] and [Sh]). The same method was already used by Colesanti and the authors
in [CCG], [CG1], [CG2].

Given a direction v and an arbitrary index set I such that, for every i ∈ I, ai

is a point of a bounded subset A of Rd, a shadow system along v is the family of
convex bodies Kt ⊂ Rd

(2.1) Kt = conv{ai + α(i)t v : i ∈ I} ,

where α is a real bounded function on I, and the parameter t runs in an interval
of the real axis.

In [RS] it is proved that the volume V (Kt) of a shadow system is a convex
functions of t.

Such a result was extended to other geometric quantities different than the vol-
ume. For example, all the quermassintegrals enjoy the same convexity property.
We recall that the quermassintegrals of a convex body can be introduced through
the coefficients of the polynomial expansion appearing in Steiner formula (see, e.g.,
[Ga], Ch. A.4, or [Sc], Ch. 4.2). The surface area and the mean width of a convex
set are special instances of quermassintegrals.

A shadow system can be seen as a continuous transformation process of a given
set. The most remarkable example is given by the Steiner symmetrization of a
convex body K. In this case, the speed function α : K → R is constant on each
chord of K parallel to the direction v of the movement and, at every t, the union of
these chords is just Kt. A shadow system whose speed function has these properties
is called a parallel chord movement. In such a movement the volume is a constant
function of the parameter.

It is easy to check that, if the speed function α of a parallel chord movement is
an affine function, that is, α : K → R and α(x) = 〈x, u〉+ c, for some vector u ∈ v⊥

and real constant c, then Kt is an affine image of K, for every t.
A basic feature of shadow systems, that will be used later, regards the Minkowski

addition and is expressed by the following lemma.

Lemma 1. If {Kt : t ∈ [0, 1]} and {Ht : t ∈ [0, 1]} are shadow systems along the
same direction v, then {Kt + Ht : t ∈ [0, 1]} is still a shadow system along v.

Proof. Let {Kt : t ∈ [0, 1]} be defined by (2.1) and

Ht = conv{cj + γ(j)t v : j ∈ J } .
5



For every t, the Minkowski sum Kt + Ht is the convex hull of its extreme points.
Since every extreme point of Kt +Ht is contained in the Minkowski sum of the sets
of extreme points of Kt and Ht, we can write

Kt + Ht =conv{ai + α(i)t v + cj + γ(j)t v : i ∈ I, j ∈ J }
=conv{wi,j + (α(i) + γ(j))t v : (i, j) ∈ I × J } ,

where wi,j = ai + cj . ¤
In [CG1] it is proved the following result, which will be a basic tool in studying

the functional A(K; p; q).

Theorem 1. If {Kt : t ∈ [0, 1]} is a parallel chord movement along the direction v,
then ΓpKt is a shadow system along the same direction v. Furthermore, the volume
of ΓpKt is a strictly convex function of t unless the speed function of the movement
{Kt : t ∈ [0, 1]} is linear.

This theorem is also the main ingredient for the proof of the Lp-Busemann-
Petty centroid inequality given in [CG1] and of its two-dimensional reverse forms
(see [CG2]).

3. Extrema of A(K; p; q).
In this section we consider the problem of finding convex sets at which A(K; p; q)

attains its minimum or maximum value.
An easy consequence of definitions (1.9) and (1.11) is the continuity of A(K; p; q)

with respect to the Hausdorff metric, for every p, q ≥ 1. Let us check that A(K; p; q)
is affinely invariant. Given a linear map L ∈ GL(d), (1.9) implies that

hΓp(LK)(u) = hΓpK(L∗u) , for every u ∈ Rd ,

where L∗ is the adjoint of L. On the other hand, (1.8) yields

hΓpK(L∗u) = hLΓpK(u) ,

hence Γp(LK) = LΓpK. Therefore,

A(LK; p; q)q =
1

V (LK)q+1

∫

LK

V (Γp(LK − x))q dx =

=
1

|detL|q+1V (K)q+1

∫

K

V (Γp(LK − Ly))q|detL| dy =

= A(K; p; q)q .

Thus, the invariance of A(K; p; q) under translations and the above equality provide
the invariance under affine transformations.

Theorem 2. If {Kt : t ∈ [0, 1]} is a parallel chord movement, then A(Kt; p; q) is
a convex function of t, for every p, q ≥ 1. Moreover, it is strictly convex unless the
speed function is an affine function.

Proof. Let v be the direction and α be the speed function of the movement. Then

A(Kt; p; q) =
[

1
V (Kt)q+1

∫

Kt

V (Γp(Kt − x))q dx

]1/q

=
[

1
V (K0)q+1

∫

K0

V (Γp(Kt − x− α(x)tv))q dx

]1/q

,(3.1)
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where we used the fact that the Jacobian of the map x → x + α(x)t v equals 1.
Formula (3.1) can be rewritten as

A(Kt; p; q) = ‖s(t, ·)‖q ,

where the norm is taken in Lq(K0) and

s(t, x) =
V (Γp(Kt − x− α(x)tv))

V (K0)1+
1
q

.

For every x ∈ K0, the family {Kt − x − α(x)tv : t ∈ [0, 1]} is a parallel chord
movement with speed function α(·) − α(x). Therefore, by Theorem 1, s(t, x) is a
convex function of t.

Thus, if we fix λ, t1, t2 ∈ [0, 1], then, by Minkowski’s inequality for Lq-norms,
we have

A(K(1−λ)t1+λt2 ; p; q) = ‖s((1− λ)t1 + λt2, ·)‖q

≤ ‖(1− λ)s(t1, ·) + λs(t2, ·)‖q ≤ (1− λ)‖s(t1, ·)‖q + λ‖s(t2, ·)‖q(3.2)

= (1− λ)A(Kt1 ; p; q) + λA(Kt2 ; p; q) .

Theorem 1 says that the first inequality of (3.2) is just an equality if and only if
α(z) − α(x) = 〈z − x, u〉, for some u ∈ v⊥, that means α is an affine function. In
this case, s(t, x) is constant with respect to t and then equality holds everywhere
in (3.2). ¤
Theorem 3. For every p, q ≥ 1, the minimum of A(K; p; q) in the class of all
convex bodies is attained if and only if K is an ellipsoid.

Proof. Let K ∈ Kd and fix a direction v. If we denote with K|v⊥ the orthogonal
projection of K onto v⊥, then K can be represented by

K = {x + yv ∈ Rd : x ∈ K|v⊥, y ∈ R, fv(x) ≤ y ≤ gv(x)} ,

where fv and −gv are convex functions on K|v⊥.
The Steiner process of symmetrization of K with respect to v⊥ can be described

by a parallel chord movement as follows. In (2.1), take α(x) = −(fv(x|v⊥) +
gv(x|v⊥)) and t ∈ [0, 1]. For t = 0 we obtain K, for t = 1 the reflection Kv of K in
the hyperplane v⊥, and, for t = 1

2 , the Steiner symmetral of K with respect to v⊥.
The affine invariant functional A(K; p; q) attains the same value at K and Kv.

Therefore, Theorem 2 implies that the value of A(K; p; q) is not increased if we pass
from K to its Steiner symmetral. Moreover, A(K; p; q) strictly decreases unless the
speed of the movement is an affine function, that is, unless all the midpoints of the
chords of K parallel to v lie on a hyperplane.

It is well known (see, e.g., [P2]) that ellipsoids are the only bodies enjoying this
property for every direction v.

To end the proof, we have only to notice that standard compactness arguments
provide the existence of minimizers of A(K; p; q) and that the affine invariance
guarantees that A(K; p; q) is constant on all the ellipsoids. ¤

Let us consider now the problem of finding maximizers of the functional A(K; p; q).
As already noticed, such a problem is still open even for the original Sylvester func-
tional, unless d = 2. We also solve the problem for A(K; p; q) in the two-dimensional
case.
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Theorem 4. For every p, q ≥ 1 and d = 2, the maximum of A(K; p; q) in the class
of all convex bodies is attained if K is a triangle.

Proof. Let P be a polygon with n vertices, where n > 3. Call v1, v2, v3 three
consecutive vertices of P and u the direction of v3 − v1. The shadow system {Pt :
t ∈ [t0, t1]}, with t0 < 0 < t1, along u, with speed 1 at v2 and 0 at all the other
vertices, is a parallel chord movement if we choose [t0, t1] as the largest interval
such that the area of Pt is constant for all t ∈ [t0, t1]. We notice that Pt0 and Pt1

have n− 1 vertices and, by Theorem 2,

A(P ; p; q) < max{A(Pt0 ; p; q), A(Pt1 ; p; q)} .

The inequality is strict because the speed of the movement cannot be affine. If
n > 4, iterations of this procedure lead to the fact that triangles are the only
maximizers of A(K; p; q) in the class of polygons.

By the continuity of A(K; p; q), an approximation argument ends the proof. ¤
The above proof can be easily adapted for obtaining the following result.

Theorem 5. For every p, q ≥ 1 and d = 2, the maximum of A(K; p; q) in the class
of all centrally symmetric convex bodies is attained if K is a parallelogram.

4. Extrema of I(K; m; p).
In this section we deal with the functional I(K; m; p), defined in (1.5).
The continuity of I in Kd with respect to the Hausdorff metric can be easily

checked. Moreover, for every linear map L ∈ GL(d), we have

I(LK; m; p) =
1

V (LK)m+p

∫

LK

. . .

∫

LK

V

(
m∑

i=1

0xi

)p

dx1 . . . dxm

=
1

|detL|m+pV (K)m+p

∫

K

. . .

∫

K

V

(
m∑

i=1

0L(yi)

)p

|detL|mdy1 . . . dym

=I(K; m; p) ,

where we used the fact that linear transforms commute with the Minkowski addi-
tion.

Standard arguments provide the existence of the minimum of I(K; m; p). As
far as the maximum is concerned, it is easy to see that I(K; m; p) is not bounded
in Kd. Nevertheless, if we restrict ourselves to the convex bodies containing the
origin, then the maximum exists. This fact, owing to the continuity and the linear
invariance of the functional, is a consequence of John’s theorem ([J2], Theorem 3),
which ensures that every convex body contains an ellipsoid E and is contained in
a copy of E, rescaled by a factor d.

We give here a characterization of ellipsoids as the only minimizers of I(K; m; p)
in all dimensions, and, for d = 2, we show that triangles are maximizers.

First, we prove a convexity result for the general functional I(K1, . . . , Km; p)
introduced by (1.6).

Theorem 6. Let {Ki,t : t ∈ [0, 1]} ⊂ Kd, i = 1, 2, . . . , m, with m ≥ d, be parallel
chord movements along the same direction v ∈ Rd. Then, for p ≥ 1, the functional
I(K1,t, . . . ,Km,t; p) is a convex function of t.
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Proof. Let αi : Ki → R be the speed function of the parallel chord movement
{Ki,t : t ∈ [0, 1]}, i = 1, 2, . . . ,m. Then, starting from definition (1.6), a change of
variables gives

I(K1,t,K2,t, . . . , Km,t; p) =

1

(V (K1,0) . . . V (Km,0))
m+p

m

∫

K1,0

. . .

∫

Km,0

V

(
m∑

i=1

0(xi + α(xi)t v)

)p

dx1 . . . dxm ,

as the Jacobian of the map xi → xi + α(xi)t v is 1.
Now,

V

(
m∑

i=1

0(xi + α(xi)t v)

)

is a convex function of t. Indeed, each term of the Minkowski sum is a shadow
system and Lemma 1 implies that the sum is a family of polytopes which is still a
shadow system. The Rogers-Shephard theorem, quoted in Section 2, provides the
convexity in t of the volume, which is kept by its p-th power, since p ≥ 1.

The statement follows from the fact that integrals of convex functions are still
convex. ¤

A first consequence of Theorem 6, is the Bourgain-Meyer-Milman-Pajor inequal-
ity (1.7), for p ≥ 1. Indeed, the functional I(K1, . . . , Km; p) does not increase when
we apply Steiner symmetrizations to K1, . . . , Km with respect to the same hyper-
plane v⊥. On the other hand, it is well known (see, e.g. , Bonnesen and Fenchel
[BF], Ch. 9) that iterated Steiner symmetrizations along a suitable sequence of
directions, independent of i, reduce Ki to a ball of the same volume, for every i.

Theorem 7. If K ∈ Kd, m ≥ d and p ≥ 1, then

I(K; m; p) ≥ I(Bd; m; p) ,

where Bd denotes the unit d-ball. Equality holds if and only if K is an origin
symmetric ellipsoid.

Proof. We have only to prove the ”only if” part of the statement. To do this,
let us fix a direction v and consider the parallel chord movement {Kt : t ∈ [0, 1]}
corresponding to the Steiner process of symmetrization of K with respect to v⊥ (see
the proof of Theorem 3). We show that I(K 1

2
; m; p) < I(K0; m; p) = I(K1;m; p),

unless the speed of the movement is a linear function in K. This fact will imply that,
for a minimizer, all the midpoints of the chords parallel to v lie on a hyperplane
through the origin. The same argument used in the proof of Theorem 3 leads to
the conclusion.

If I(K 1
2
; m; p) = I(K0;m; p) = I(K1; m; p), then, by Theorem 6, I(Kt;m; p) is

independent of t and so V

(
m∑

i=1

0(xi + tα(xi)v)
)

is constant in t, for almost every

m-ples of points from K. By continuity, ”almost” can be deleted.
Let us choose x1, x2, . . . , xd−1 from K such that det(v, x1, . . . , xd−1) 6= 0. We

can assume that α(x1) = α(x2) = · · · = α(xd−1) = 0, by adding possibly a suitable
9



linear function. For every xd lying on the hyperplane through 0, x1, . . . , xd−1,
setting xd+1 = xd+2 = · · · = xm = xd, we have that

V

(
m∑

i=1

0(xi + tα(xi)v)

)

=V
(
0x1 + 0x2 + · · ·+ 0xd−1 + (m− d + 1)0(xd + tα(xd)v)

)

=(m− d + 1)|det(x1, x2, . . . , xd−1, xd + tα(xd)v)|
=(m− d + 1)tα(xd)|det(v, x1, x2, . . . , xd−1)| .

Since the last quantity has to be independent of t, we must have α(xd) = 0.
Thus, we have shown that, in every section of K through the origin, which is

not parallel to v, the function α is linear, that is, there exists a function w(u) :
Sd−1 \ v⊥ → v⊥ such that

α(x) = 〈x,w(u)〉 , for every x ∈ K ∩ u⊥ .

By taking into account that {Kt : t ∈ [0, 1]} is a parallel chord movement, we
deduce that α is linear in the union of all the chords of K, parallel to v, intersecting
K ∩ u⊥.

This fact easily implies that, if the origin is contained in K or d > 2, then the
function w is constant and, consequently, the function α is linear in K.

In case that d = 2 and 0 /∈ K, we deduce that w is constant on each connected
component of K \ {rv : r ∈ R}. If there are two connected components, then it is
sufficient to consider the restriction of the movement to the interval [ 12 − ε, 1

2 + ε],
with ε so small that 0 ∈ Kt, for all t in such an interval. ¤
Theorem 8. For d = 2, m ≥ 2 and p ≥ 1, the maximum of I(K; m; p) in the
class of all convex bodies containing the origin is attained when K is a triangle
with a vertex at the origin and the maximum of I(K;m; p) in the class of all origin
symmetric convex bodies is attained when K is parallelogram.

Proof. Since translations are trivial cases of parallel chord movements, Theorem
6 implies that I(K − x; m; p) is a convex function of x. Thus, if P is a polygon
containing the origin, then we can assume that the origin is one of the vertices of P .
Now, following the same method used in the proof of Theorem 4 (keeping fixed the
vertex at the origin), we can reduce P to a triangle without decreasing the value of
the functional. An approximation argument leads to the conclusion.

The second part of the theorem easily follows by adapting the proof for the not
symmetric case. ¤

As already claimed in Section 2, every quermassintegral of a shadow system is a
convex function of the parameter. This means that the functionals


 1

V (K)q+1− iq
d

∫

K

Wi(Γp(K − x))q dx




1/q

,

1

V (K)m+p− ip
d

∫

K

. . .

∫

K

Wi




m∑

j=1

0xj




p

dx0 . . . dxm ,
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where Wi denotes the i-th quermassintegral, keep the same convexity property as
A(K; p; q) and I(K;m; p). Notice that W0 is the volume, W1 and Wd−1, up to
constants, the surface area and the mean width, respectively. The last two coincide
with the perimeter when d = 2.

Hence, ellipsoids are minimizers of such new functionals and triangles (or paral-
lelograms) are maximizers, for d = 2.

For the functional S(K;m; p), defined in (1.3), this type of generalization has
been recently considered by Hartzoulaki and Paouris in [HP], where a characteri-
zation of balls as minimizers is shown.
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