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A FAVARD TYPE PROBLEM FOR 3-D CONVEX BODIES

STEFANO CAMPI and PAOLO GRONCHI

Abstract

A theorem due to Favard states that among all plane sets of given area and perimeter, the
symmetric lens has maximum circumradius. This paper deals with the higher dimensional problem
of finding the convex body in R3 of given volume and mean width with the largest possible
diameter. It is shown that the solution is the convex hull of a surface of revolution with constant
Gauss curvature and a segment lying on the axis of revolution. Such a body is conjectured to
maximize also the circumradius in the same class.

1. Introduction

A well-known result in convex geometry states that the symmetric lens is the
unique solution of the following problem:

Find the compact convex set in R
2 of given perimeter and area with the largest

possible circumradius.
We recall that a symmetric lens is the intersection of two discs with the same

radius and that the circumradius of a set is the radius of the smallest disc containing
it.

This extremal property of the symmetric lens was proved by Favard [6] and occu-
pies a significant place in the framework of geometric inequalities of isoperimetric
type. Among these inequalities, the Bonnesen inequalities
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proved in [2], give lower bounds of the isoperimetric deficit of a set, the left-hand
side, in terms of the inradius and circumradius, respectively. Here, L and A denote
the perimeter and the area of the set and R and r its circumradius and inradius,
the latter being the radius of the largest disc contained in the set.

In spite of the similarity, (1.1) and (1.2) differ in one important respect. Inequality
(1.1) is sharp, since for every value of the isoperimetric deficit the convex hull of
two suitable discs with the same radius gives equality. On the other hand, (1.2) is
not sharp: If the isoperimetric deficit is strictly positive, then (1.2) is strict also.
For more details on Bonnesen’s inequalities and their variants, we refer to Bonnesen
and Fenchel [3], Osserman [7] and Schneider [8].

A natural question that we shall deal with in the present paper is whether it
is possible to find results in higher dimensions analogous to Favard’s theorem. It
is worth saying at once that the literature contains only a partial result of this
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type, due to Zalgaller [9]. To describe it, let K be a convex body in R
3, i.e., a

three-dimensional compact convex set, and let V and S denote its volume and
surface area, respectively. The classical isoperimetric inequality (see, for instance,
[4], p.145) states that

S3 ≥ 36πV 2 .

Theorem 1.1 Zalgaller [9]. Let S0 and V0 be two numbers such that S3
0 ≥

36πV 2
0 . Among all three-dimensional convex bodies such S ≤ S0 and V ≥ V0, the

unique body having maximum diameter is a mean curvature spindle-shaped body
of surface area S0 and volume V0.

A mean curvature spindle-shaped body is a centrally symmetric convex body
of revolution which can be seen as the convex hull of a surface of revolution with
constant mean curvature and a segment lying on the axis of revolution.

Note that Zalgaller’s result refers to the diameter of the set instead of the
circumradius. Therefore, it answers a three-dimensional Favard-type question in
the class of bodies of revolution. The same paper [9] contains the conjecture that
the solution does not change in the full class of convex bodies.

While it is natural to replace the area of a plane set with the volume of a three-
dimensional one, there are two possible substitutes for the perimeter, namely, the
surface area and the mean width. Indeed, the perimeter of a planar convex body is
an average of all its widths. The width along a direction v is the distance between
the support lines (hyperplanes, in R

d) orthogonal to v. These two possible choices
are also suggested by the Steiner formula for parallel sets of a given convex body
in R

d (see, for instance, [8], p.197). The d-dimensional measure of K + tB, where
B is the unit d-ball and + stands for the Minkowski sum (vector addition), is
a polynomial of degree d in t. For d = 2, the perimeter is the coefficient of the
linear term. For d = 3, a multiple of the mean width and the surface area are the
coefficients of t and t2, respectively.

An analytical expression for the mean width can be given in terms of the support
function hK of a convex body K, whose definition is:

hK(z) = max
x∈K

〈z, x〉 , for every z ∈ S
2 ,

where 〈·, ·〉 denotes the scalar product and S
2 the unit sphere in R

3.
Thus, the mean width W of K can be expressed as

W =
1

2π

∫
S2

hK(z) dz . (1.3)

The mean width W and the volume V of a three-dimensional convex body satisfy
the isoperimetric inequality

πW 3 ≥ 6V ,

known as Urysohn inequality (see, for instance, [4], p.145).
This paper is devoted to the following problem.

Problem 1. Let W0 and V0 be two numbers such that πW 3
0 ≥ 6V0. Among

all three-dimensional convex bodies such W ≤ W0 and V ≥ V0, find the bodies of
maximum diameter.
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In Section 2 we shall prove that the solution exists and is unique, of course up
to isometries. The description of the solution is given in Sections 3, 4 and 5 and is
summarized in the following theorem.

Theorem 1.2. The unique solution of Problem 1 is a Gauss curvature spindle-
shaped body of mean width W0 and volume V0.

A Gauss curvature spindle-shaped body is a body analogous to the one introduced
by Zalgaller, where mean curvature is replaced by Gauss curvature.

Actually, Theorem 1.2 is inspired by Theorem 1.1. Nevertheless, our proof makes
use of different tools, such as the Brunn-Minkowski inequality, the Gauss map and
the area measure of a convex body, all coming from the Brunn-Minkowski theory.

The constraints on surface area and mean width give rise to conditions on the
mean curvature and the Gauss curvature of the extremal bodies, respectively. This
fact can be explained by looking at the following expressions for S and W , when
K is smooth:

S =

∫
∂K

(

1

R1

1

R2

)

dp , (1.4)

W =
1

4π

∫
∂K

(

1

R1
+

1

R2

)

dp , (1.5)

where R1 and R2 are the principal radii of curvature of ∂K at p and the integration
is performed with respect to the (n− 1)-dimensional Hausdorff measure (see [3], p.
72).

Obviously, the solution of Problem 1 also maximizes the circumradius in the class
of bodies of revolution. As in the case of the problem solved by Zalgaller through
Theorem 1.1, we may conjecture that the solution of Problem 1 has the largest
possible circumradius in the whole class of three-dimensional convex bodies.

Authors other than Favard himself provided different proofs of the maximality
of the symmetric lens, for example Besicovitch [1], Zalgaller [9] and Campi [5].
Unfortunately, none of the available proofs in the plane case seems to generalize to
higher dimensions.

Finally, we recall that analogous problems concerning the minimum and the
maximum of the inradius of three-dimensional convex body have been considered
and solved by Zalgaller [9].

2. Existence and uniqueness of the solution

For convenience, let us denote by K(V0,W0) the class of all three-dimensional
convex bodies K such that V (K) ≥ V0 and W (K) ≤ W0, and by d(K) the diameter
of K. The class K(V0,W0) is endowed with the Hausdorff metric and the functionals
V (K), W (K), d(K) are continuous this metric.

Let K ∈ K(V0,W0). Since K contains a segment whose length is d(K), the
monotonicity of the mean width implies that

W (K) ≥
1

2
d(K) .

Hence, if we identify translates of bodies, then K(V0,W0) is compact. Therefore,
the maximum of d(K) over K ∈ K(V0,W0) exists.
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Let us show that if K is a solution of Problem 1, then

V (K) = V0 and W (K) = W0 . (2.1)

Assume that V (K) > V0 and let K̃ ∈ K(V0,W0) be a proper subset of K such that
d(K̃) = d(K) and W (K̃) < W (K). For suitable λ > 1, we have λK̃ ∈ K(V0,W0)
and d(λK̃) = λd(K̃) = λd(K), which contradicts the assumption on K. Similarly,
if W (K) < W0, then, for suitable λ > 1, λK gives a contradiction.

We prove now that the solution of Problem 1 is unique in K(V0,W0), up to
isometries.

Suppose, on the contrary, that K1 and K2 are two distinct solutions. Via a
possible rigid motion, K1∩K2 still has maximum diameter. Consider the Minkowski
sum K̃ = K1+K2

2 . By the Brunn-Minkowski inequality (see [8], p.309), we have

V (K̃) >

(

1

2
V (K1)

1

3 +
1

2
V (K2)

1

3

)3

= V0 , (2.2)

where strict inequality holds since we are assuming that K1 and K2 are not homo-
thetic. By the linearity of the mean width with respect to Minkowski addition,
W (K̃) = W0 and hence K̃ ∈ K(V0,W0). Since K̃ has maximum diameter, the strict
inequality (2.2) contradicts (2.1).

The same argument we just used can be repeated to show that if K is a solution
of Problem 1, then K is a centrally symmetric body of revolution about a diameter.

3. Regularity of the solution

In order to describe the solution K, it is sufficient to characterize its section with
a plane through the axis of revolution. Fix an orthonormal system (O;x, y) in the
plane and assume that the diameter of K lies on the x-axis symmetrically with
respect to O. The boundary of K is then obtained by rotating the meridian curve
γ, contained in the half-plane y ≥ 0, around the x-axis. Let us denote by C the
section of K with the xy-plane and by hC its support function. For simplicity, we
write hC(θ) instead of hC(cos θ, sin θ).

The curve γ can be parametrized by
{

x(θ) = hC(θ) cos θ − h′
C(θ) sin θ

y(θ) = hC(θ) sin θ + h′
C(θ) cos θ .

Hence

V (K) = π

∫D/2

−D/2

y2 dx = π

∫π

0

(

hC(θ) sin θ + h′
C(θ) cos θ

)2(
hC(θ) + h′′

C(θ)
)

sin θ dθ .

Integrating by parts gives

V (K) = π

∫π

0

(2

3
hC(θ)3 sin θ −

1

3
h′

C(θ)3 cos θ − hC(θ)h′
C(θ)2 sin θ

)

dθ .

Note that the last equality requires no regularity assumptions on ∂C.
Furthermore,

W (K) =

∫π

0

hC(θ) sin(θ) dθ .

We now show that every interior point of γ is regular, i.e., the normal cone has
dimension one.
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Suppose, on the contrary, that there exists a point p = (p1, p2) in the interior of γ
whose normal cone contains the arc [θ1, θ2]. Cut the curve γ with a line orthogonal
to the axis of symmetry of the arc at a distance ε from p and let q1 and q2 be the
intersection points. Replace the arc of γ with the chord q1q2, and denote by γ̃ the
curve so obtained. Let K̃ be the convex body enclosed by the surface of revolution
of γ̃ about the x-axis and let C̃ be its section with the xy-plane. Clearly, for every
ε > 0, V (K̃) < V (K) and W (K̃) < W (K). Precisely,

W (K) − W (K̃) =
π∫
0

(hC(θ) − hC̃(θ)) sin θ dθ

=
(θ1+θ2)/2∫

θ1

ε sin(θ−θ1)

sin
θ2−θ1

2

sin θ dθ +
θ2∫

(θ1+θ2)/2

ε sin(θ2−θ)

sin
θ2−θ1

2

sin θ dθ

= ε

2 sin
θ2−θ1

2

(cos θ1 − cos θ2)
θ2−θ1

2 .

If we denote by ỹ the barycenter of the triangle q1pq2 and by A(·) the area, then

V (K) − V (K̃) = 2πỹA(q1pq2) =
2πε2

tan θ2−θ1

2

(

p2 −
ε(cos θ1 − cos θ2)

3 sin θ2−θ1

2

)

.

Consider the Minkowski sum K̂ of K̃ and λx̄, where x̄ is a unit segment parallel to
the x-axis. Since W (λx̄) = λ/2, if we take

λ =
ε

sin θ2−θ1

2

(cos θ1 − cos θ2)
θ2 − θ1

2
,

then W (K̂) = W (K) = W0. Moreover, denoting by K̃|x⊥ the orthogonal projection
of K̃ onto a plane orthogonal to the x-axis,

V (K̂) = V (K̃) + λA(K̃|x⊥)

= V (K) − 2πε2

tan
θ2−θ1

2

(

p2 −
ε(cos θ1−cos θ2)

3 sin
θ2−θ1

2

)

+ ε(cos θ1−cos θ2)

sin
θ2−θ1

2

θ2−θ1

2 A(K̃|x⊥) .

Hence, for ε sufficiently small, V (K̂) > V (K) = V0, which is a contradiction.

4. Gauss curvature of the solution

We show now that the solution is the convex hull of a surface of revolution with
positive constant Gauss curvature (except at the points on the axis) and a segment
lying on the axis of revolution.

Note that the above property does not exhaust the description of the solution.
Indeed, two parameters need still to be determined, namely the value of the Gauss
curvature and the length of the segment. Section 5 deals with this aspect.

We are going to prove the statement by means of local variations of the solution.
To do this, it is convenient to introduce the Gauss map, which we adapt here to
bodies of revolution about the x-axis. Let H be such a body. For every point p
in ∂H, let f(p) be the corresponding point on the meridian curve γH . We denote
by gH(p) the set of outward unit normals to ∂H at f(p), and by GH(p) the set of
outward unit normals to ∂H at p. Note that GH maps ∂H into S

2, while we can
regard gH as a map from ∂H to [0, π], by identifying each outer unit normal with
its angle with the x-axis. For simplicity, if ω is a subset of [0, π], then we define
s(ω) = GH(g−1

H (ω)).
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Let ω = [θ1, θ2] with 0 < θ1 ≤ θ2 < π and let ε > 0. For every p in the subset
g−1

K (ω) of ∂K, consider the segment of length ε issuing from p along the outer
normal to ∂K. Define K(ω, ε) as the convex hull of K and all these segments.

It is easy to check that

hK(ω,ε)(z) ≤ hK(z) + ε

and that equality occurs when z ∈ s(ω).
Moreover, let K(ω,−ε) be the largest convex body of revolution such that

hK(ω,−ε)(z) ≤ hK(z) , for every z ∈ S
2

and

hK(ω,−ε)(z) ≤ hK(z) − ε , for every z ∈ s(ω) .

Thus,

W (K(ω, ε)) − W (K) = 1
2π

∫
S2

[

hK(ω,ε)(z) − hK(z)
]

dz (4.1)

≤ ε
2π A(GK(ω,ε)(∂K(ω, ε) \ ∂K)) .

Analogously,

W (K) − W (K(ω,−ε)) ≥ εA(s(ω)) . (4.2)

From the definitions of K(ω, ε) and K(ω,−ε) it follows that

V (K(ω, ε)) − V (K) ≥ εA(g−1
K (ω)) (4.3)

and

V (K) − V (K(ω,−ε)) ≤ εA(∂K(ω,−ε) \ ∂K) . (4.4)

Let K̃ = [K(ω1, ε1)](ω2,−ε2), where the intervals ω1, ω2 are disjoint and have
positive distance from the x-axis. It is easy to check that if ε1, ε2 are sufficiently
small, then d(K̃) = d(K).

From (4.1), (4.2), (4.3) and (4.4) we deduce that K̃ belongs to K(V0,W0) if ε1

and ε2 satisfy

ε1A(GK(ω1,ε1)(∂K(ω1, ε1) \ ∂K)) ≤ ε2A(s(ω2)) (4.5)

and

ε1A(g−1
K (ω1)) ≥ ε2A(∂K(ω2,−ε2) \ ∂K) . (4.6)

If (4.5) or (4.6) is strict, then K̃ does not satisfy (2.1), which contradicts the fact
that K̃ maximizes the diameter in K(V0,W0). This happens if

A(∂K(ω2,−ε2) \ ∂K)

A(s(ω2))
<

A(g−1
K (ω1))

A(GK(ω1,ε1)(∂K(ω1, ε1) \ ∂K))
. (4.7)

Letting ε1 and ε2 tend to zero, inequality (4.7) holds if

A(g−1
K (ω2))

A(s(ω2))
<

A(g−1
K (ω1))

A(s(ω1))
. (4.8)

Therefore, if K is the solution, then

A(g−1
K (ω))

A(s(ω))
= constant , (4.9)

for every closed subinterval ω of [0, π] with g−1
K (ω) at positive distance from the

x-axis. Since g−1
K (ω) = G−1

K (s(ω)), identity (4.9) states that the area measure σK
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of K is proportional to the Hausdorff measure on S
2 (see [8], Th. 4.2.5), except

possibly two conical parts with vertex on the axis of revolution. We recall that for
a smooth convex body K, the area measure of a Borel subset β of S

2 is the integral
over G−1

K (β) of the Gauss curvature of ∂K. Since a body is uniquely determined,
up to translation, by its area measure, the proof is concluded.

5. Characterization of the solution

The final step consists in understanding whether the meridian curve of the
solution has two segments at the endpoints or not. Of course, the answer might
depend on the values V0 and W0. Actually, we show that the solution always
contains two conical parts, except when πW 3

0 = 6V0. In such a case the class
K(V0,W0) contains only the ball with those parameters.

Let K ∈ K(V0,W0) and y = f(x), −d/2 ≤ x ≤ d/2, a representation of its
meridian curve γK , where d = d(K). Denote by α the angle such that tan α =
f ′(−d/2), 0 < α ≤ π/2 and by ℓ the common length of the two segments on the
graph of f(x). If k denotes the Gauss curvature of the central part of K, then the
function f(x) satisfies in [ℓ cos α − d/2, d/2 − ℓ cos α] the differential equation

kf(x)
(

1 + f ′(x)2
)2

+ f ′′(x) = 0 .

A first integration yields

f ′(x) = −sign(x)

√

1

kf(x)2 + 1 − (1 + kℓ2) sin2 α
− 1 , (5.1)

where we used the condition

f ′(ℓ cos α − d/2) = tanα .

From f ′(0) = 0, we deduce that

kf(0)2 = (1 + kℓ2) sin2 α . (5.2)

Integrating (5.1) gives

f(x)∫

ℓ sin α

dt
√

1
kt2+1−(1+kℓ2) sin2 α

− 1
= −|x| +

d

2
− ℓ cos α . (5.3)

Note that for fixed W 3
0 /V0, different choices of V0 and W0 correspond to homo-

thetic solutions. Since we are interested in the shape of the solution, we may assume
f(0) = 1 as a normalization. Setting ρ = ℓ sin α, from (5.2) and (5.3), the diameter
is given by

d = 2ρ
cos α

sin α
+

2

sin α

∫π/2

arcsin ρ

Γ(α, ρ, t) dt , (5.4)

where

Γ(α, ρ, t) =

√

1 − ρ2 − sin2 α cos2 t . (5.5)

The volume V of K is the sum of the volume of the two cones and of the central
part. Therefore, we obtain

V =
2

3
πρ3 cos α

sin α
+

2π

sin α

∫π/2

arcsin ρ

Γ(α, ρ, t) sin2 t dt . (5.6)
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Finally, let us show that the mean width W of K can be expressed, in terms of α,
ρ, V and d, as

W =
3V sin2 α + πd(cos2 α − ρ2)

2π(1 − ρ2)
. (5.7)

Indeed, by definition (1.3),

W =
1

2π

∫
Σ1

hK(z) dz +
1

2π

∫
Σ2

hK(z) dz ,

where Σ1 = s((π
2 − α, π

2 + α)) and Σ2 = S
2 \ Σ1.

It is convenient to use here the following expression for the volume of K (see [3],
p. 64):

V =
1

3

∫
S2

hK(z) dσK(z) .

Consequently,

V =
1

3

∫
Σ1

hK(z)

k
dz +

1

3

∫
Σ2

hK(z) dσK(z) .

Hence,

2πW − 3kV =

∫
Σ2

hK(z) dz − k

∫
Σ2

hK(z) dσK(z) .

Note that in Σ2 the area measure is concentrated on the boundary and the support
function can be easily evaluated. Thus, (5.7) follows.

Now, looking at the expressions (5.4), (5.6) and (5.7), we note that K has minimal
mean width among all bodies with the same volume and diameter. Indeed, if L is
a body such that

V (L) = V (K) , d(L) = d(K) and W (L) < W (K) ,

then L belongs to K(V0,W0) and solves Problem 1. This contradicts (2.1).
Thus, let us consider the function W in (5.7) under the constraint

V 1/3

d
= µ , (5.8)

where V and d are defined by (5.6) and (5.4). The isodiametric inequality (see [4],
p. 145), states that µ ≤ (π

6 )1/3, where equality holds only for balls.
In order to show the existence of the conical parts, for every fixed µ < (π

6 )1/3, it
is sufficient to prove that the minimum of W is not attained when ρ = 0.

To this end, let us remark that ∂
∂α

V 1/3

d vanishes, for ρ = 0, only for α = π
2 .

Hence, for every point (0, α), with α < π
2 , the level set (5.8) issuing from it defines

a function α = α(ρ) in a one-sided neighborhood of ρ = 0. Consequently, W can
be thought of as a function of ρ, that, for simplicity, we denote by W (ρ). We claim
that W ′(0) = W ′′(0) = 0 and W ′′′(0) < 0.

Indeed, calculations lead to the following asymptotic expansion:

W ′(ρ) =
3Γ2 sin2 α(6Γ2 − 3Γ4 − 2Γ1) − Γ1Γ4 cos2 α

sin α cos α(3Γ2Γ3 − Γ1Γ4)
ρ2 + O(ρ3) , (5.9)

where

Γ1 =

∫π/2

0

Γ(α, 0, t) dt , Γ2 =

∫π/2

0

Γ(α, 0, t) sin2 t dt ,
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Γ3 =

∫π/2

0

dt

Γ(α, 0, t)
and Γ4 =

∫π/2

0

sin2 t

Γ(α, 0, t)
dt .

First, 3Γ2Γ3 − Γ1Γ4 > 0. Indeed, by Hölder’s inequality,

1 =

∫π/2

0

sin t dt ≤ (Γ2Γ3)
1/2 ,

while Γ1 ≤ π
2 and Γ4 ≤ 1.

Let us check that the numerator in (5.9) is negative. By Hölder’s inequality,
Γ1Γ4 ≥ 1 and

π

4
=

∫π/2

0

sin2 t dt ≤ (Γ2Γ4)
1/2 ,

1

2

( α

sinα
+ cos α

)

=

∫π/2

0

Γ(α, 0, t) sin t dt ≤ (Γ1Γ2)
1/2

and

Γ2
2 ≤

(∫π/2

0

sin2 t dt

)(∫π/2

0

Γ2(α, 0, t) sin2 t dt

)

=
π2

16
(1 −

1

4
sin2 α) .

Therefore, the numerator is bounded from above by

(
3

16
π2 + 1) sin2 α −

9

32
π2 sin4 α − 1 ,

which is negative for every α.
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