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Abstract. Basic properties of finite subsets of the integer lattice Zn are investigated from
the point of view of geometric tomography. Results obtained concern the Minkowski addi-
tion of convex lattice sets and polyominoes, discrete X-rays and the discrete and continuous
covariogram, the determination of symmetric convex lattice sets from the cardinality of their
projections on hyperplanes, and a discrete version of Meyer’s inequality on sections of convex
bodies by coordinate hyperplanes.

1. Introduction

Geometric tomography is the area of mathematics concerning the retrieval of information
about an unknown geometric object from data concerning its sections by lines or planes or
projections onto lines or planes. When the object is a convex body, many results from convex
geometry come into play. Examples are when the data consists of X-rays (Hammer’s X-ray
problem), or areas of projections (Aleksandrov’s projection theorem, Shephard’s problem), or
areas of central sections (Funk’s section theorem, the Busemann-Petty problem). See [12] for
more information on all these topics.

The unknown object may also be a finite set. Then discrete X-rays measure line counts
(see Section 2 for formal definitions), and early work of A. Rényi on projections of probability
distributions and of H. J. Ryser on reconstruction of binary matrices from row and column
sums can be regarded as contributions to a discrete version of Hammer’s X-ray problem;
see [12, Note 2.2]. This topic only took on a life of its own much later, however, with the
introduction in 1994 of the term discrete tomography by Larry Shepp. When the unknown
finite set is restricted to a lattice, it models the atoms in a crystal; the invention of new
methods in electron microscopy that can effectively measure discrete X-rays of crystals was in
fact the major motivation behind discrete tomography. Further details can be found in [21]
and in references given below.

Summarizing, we have by now a rich theory of geometric tomography, involving not only
X-rays but many other types of data, and a thriving new field called discrete tomography
that more or less concerns only discrete X-rays. The purpose of this paper is to lay the
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groundwork for an extension of discrete tomography that will bring it more in line with
geometric tomography. While one can certainly consider arbitrary finite subsets of Rn, there
seems little doubt that the most interesting problems and applications concern finite subsets
of Zn, and we focus on these here.

Corresponding to compact convex sets in Rn are the convex lattice sets in Zn and an
important subclass, the convex polyominoes. Section 3 is a systematic investigation into the
behavior of convexity in the lattice setting under Minkowski addition, and it turns out that
this fundamental operation is far less predictable than in the continuous framework. For
example, the Minkowski sum of convex polyominoes in Zn is a convex polyomino for n = 2
but not n ≥ 3, and while the Minkowski sum of convex lattice sets need not in general be
convex, it is true that if A is a convex lattice set in Z2, then A + A and A + (−A) are convex.

In Section 4, we study X-rays and the covariogram. We show that the discrete version of
the covariogram is related to the continuous version, and present an example for the discrete
covariogram that also provides an example for the continuous covariogram that it in a sense
optimal.

Section 5 is motivated by the intriguing possibility, one that apparently has not been con-
sidered before, of discrete versions of Alexandrov’s projection theorem: When is an origin-
symmetric convex lattice set determined by the cardinalities of its projections on hyperplanes?
We establish a connection with the discrete covariogram, and find several examples, one of
which shows that a discrete Alexandrov projection theorem must have additional hypotheses.
In Section 6 we turn from projections to sections and find a best-possible discrete version in
Z2 of Meyer’s inequality on sections of convex bodies by coordinate hyperplanes.

The results of this paper, some positive and some negative, indicate that while the envisioned
extension of discrete tomography appears feasible, much more work will have to be done before
it reaches the same stage of development as geometric tomography. Several of the basic tools
of convex geometry have discrete analogues, but the discrete setting appears to render these
far less reliable. Nevertheless, the program seems to us eminently worthwhile. Lattice sets
and polyominoes are fundamental objects of interest, not only in mathematics but also in
physics and computer science; several remarks indicating connections and applications are
scattered throughout this paper. We have also included several fascinating open problems
whose solution will be valuable contributions.

2. Definitions and preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space Rn. If u ∈ Sn−1,
we denote by u⊥ the (n−1)-dimensional subspace orthogonal to u. The standard orthonormal
basis for Rn will be {e1, . . . , en}.

If A is a set, we denote by |A|, int A, and conv A the cardinality, interior, and convex hull
of A, respectively. The dimension of A is the dimension of its affine hull aff A, and is denoted
by dim A. The notation for the usual orthogonal projection of A on a subspace S is A|S.

If A and B are subsets of Rn, their vector or Minkowski sum is

A + B = {a + b : a ∈ A, b ∈ B},
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and if r ∈ R, then

rA = {ra : a ∈ A}.
Thus −A is the reflection of A in the origin. We also write DA = A−A = A + (−A) for the
difference set of A.

We write Vk for k-dimensional Lebesgue measure in Rn, where k = 1, . . . , n, and where we
identify Vk with k-dimensional Hausdorff measure. If K is a k-dimensional convex body in Rn,
then V (K) is its volume Vk(K). The notation dz will always mean dVk(z) for the appropriate
k = 1, . . . , n.

A set is origin symmetric if it is centrally symmetric, with center at the origin.
Let K be a convex body in Rn, that is, a compact convex set with nonempty interior. In

this case DK = K −K is usually referred to as the difference body of K. We denote by

hK(x) = max{x · y : y ∈ K}
its support function, by

(1) wK(u) = hK(u) + hK(−u),

for u ∈ Sn−1, its width function, and by

bK(u) = V (K|u⊥),

for u ∈ Sn−1, its brightness function. The projection body of K is the origin-symmetric convex
body ΠK defined by

hΠK = bK .

Aleksandrov’s projection theorem (see, for example, [12, Theorem 3.3.6]) states that if K and
L are origin-symmetric convex bodies in Rn such that bK = bL (or, equivalently, ΠK = ΠL),
then K = L. An introduction to the theory of projection bodies is provided in [12, Chapter 4].

Let E be a bounded Lebesgue measurable subset of Rn. The function

gE(x) = Vn(E ∩ (E + x)),

for x ∈ Rn, is called the covariogram of E. Analogously, we define the discrete covariogram of
a finite subset A of Rn by

gA(x) = |A ∩ (A + x)|,
for x ∈ Rn.

A convex polytope is the convex hull of a finite subset of Rn. We sometimes refer to a finite
subset of the n-dimensional integer lattice Zn as a lattice set. A convex lattice set is a finite
subset of Zn such that A = conv A ∩ Zn. If A is a convex lattice set, we denote the set
A + A + · · · + A (m summands) by A[m]. (Note that whereas for convex bodies K we have
K + K + · · ·+ K = K[m] = mK, it is not true for finite sets that A[m] = mA.)

A polyomino is a finite subset A of Zn such that the union A + [0, 1]n of lattice unit cubes
has a connected interior. We shall also refer to the set A+[0, 1]n (itself called a polyomino by
many authors) as the animal of the polyomino A. A convex polyomino is a polyomino that is
also a convex lattice set.
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One can also consider weaker forms of convexity. Call a vector u ∈ Zn primitive if the line
segment [o, u] contains no lattice points other than o and u. Then a finite subset A of Zn

is called u-convex if the intersection of A with a line L parallel to u consists of consecutive
lattice points in L. When n = 2 and u = e1 (or e2), then u-convex sets have also been called
horizontally convex (or vertically convex, respectively). Such properties and connectivity of
finite sets in Z2 were studied by Daurat [8].

Let A be a finite subset of Zn and let u ∈ Zn \ {o}. The discrete X-ray of A parallel to u is
the function XuA defined by

XuA(v) = |A ∩ (Lu + v)|,
for each v ∈ u⊥, where Lu denotes the line through o and u. The function XuA is in effect
the projection, counted with multiplicity, of A on u⊥. For an introduction to the many known
results on discrete X-rays and their applications, see [5], [14], [15], and [21].

3. Minkowski addition and convexity

Certain basic topics such as Helly’s theorem have been studied in the context of convex
lattice sets (see, for example, [1] and other papers arising from the work of Doignon [11]).
There is also a large body of work concerning the lattice-point enumerator, some of which
involves obtaining upper or lower bounds for the number of lattice points in the Minkowski
sum of two convex polytopes; see, for example, [13], [18], and the references given in these
papers. Despite this, we are not aware of an investigation into the basic convexity properties
of Minkowski addition in a lattice setting.

When the two convex lattice sets on the left of Figure 1 are summed by Minkowski addition,
the resulting set, on the right of Figure 1, is not convex. Note that these lattice sets are even
origin symmetric if placed with their centers at the origin.

+ =

Figure 1. Minkowski sum does not preserve convexity of lattice sets.

Polyominoes are of fundamental interest in many areas, and their convexity properties have
also received some attention; see, for example, [10]. The Minkowski sum of two polyominoes
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is clearly a polyomino, but in three or more dimensions, Minkowski addition of convex lattice
sets fails to preserve convexity even for important special cases. For example, let

Q = conv {(−1, 1, 0), (1,−1, 0), (1, 2, 0), (−1,−2, 0)} ∩ Z3

and let

(2) A = conv {Q, (0, 0, 2), (0, 0,−2)} ∩ Z3.

Then A is an origin-symmetric convex polyomino in Z3 consisting of the 11 points in Q
and the points (0, 0,±1), (0, 0,±2). (To see this, note that since Q contains no points with
coordinates that are all even, (0, 0, 1) is the only point in A with last coordinate 1.) Now
clearly x = (−1, 1, 2) ∈ A + A and y = (1, 3, 0) ∈ A + A, but (x + y)/2 = (0, 2, 1) 6∈ A + A, so
A + A is not convex. Moreover, since −A = A, DA = A + (−A) is also not convex.

The following construction provides further examples by lifting sets into one dimension
higher. Let A and B be convex lattice sets in Zn, and choose origin-symmetric convex poly-
ominoes C and D such that A ⊂ C and B ⊂ D. In Zn+1, take

X = ({−1} × −A) ∪ ({0} × C) ∪ ({1} × A)

and
Y = ({−1} × −B) ∪ ({0} ×D) ∪ ({1} ×B).

Then X and Y are convex polyominoes in Zn+1, and the intersection of X + Y with the
hyperplane x1 = 2 is precisely A + B. If we let A be the origin-symmetric convex polyomino
from the previous paragraph, take B = A, and apply this construction repeatedly, we obtain
origin-symmetric convex polyominoes X in Zn, n > 3 such that X + X = DX is not convex.
Furthermore, if we apply this construction to the sets A and B in Figure 1, we obtain origin-
symmetric convex polyominoes X and Y in Z3 such that X + Y is not even convex with
respect to a coordinate direction.

In view of these somewhat surprising facts, it is necessary to supply proofs of two theorems
supplying positive results in the planar case, that may otherwise seem rather obvious.

Theorem 3.1. If A and B are convex polyominoes in Z2, then A + B is also a convex
polyomino.

Proof. Let A and B be convex polyominoes in Z2, and let P = conv A and Q = conv B.
Without loss of generality, suppose that o is a vertex of both P and Q. Label the vertices of
P clockwise around the boundary by v1 = o, v2, . . . , vm, and let Ei = [vi, vi+1], i = 1, . . . , m
be the edges of P , where the indices are taken modulo m. Since P + Q is the union of P and
the sets Q + x, where x is a boundary point of P , it is easy to see that P + Q = P ∪ F ∪G,
where

F = ∪m
i=1(Q + vi),

G = ∪m
i=1Gi,

and Gi = Ei + [o, ui] is a parallelogram with ui a vertex of Q. Since (Q + vi) ∩ Z2 ⊂ A + B
for i = 1, . . . , m, we have F ∩Z2 ⊂ A + B, so to prove the theorem it will suffice to show that
G ∩ Z2 ⊂ A + B.
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To this end, fix i ∈ {1, . . . , m}. Since Ei has endpoints vi and vi+1 and A is a polyomino,
there is a simple polygonal arc Ci = ∪p

j=1[sj, sj+1] ⊂ P , where s1 = vi, sp+1 = vi+1, each line
segment [sj, sj+1] is of length one, and each sj ∈ A. Moreover, we can ensure that if Ri is the
open region bounded by Ci and Ei, then Ri ∩ Z2 = ∅. Similarly, there is a simple polygonal
arc Di = ∪kUk ⊂ Q, where each Uk is a line segment of length one whose endpoints lie in B,
such that Di has endpoints o and ui. For each j, int (Di +[sj, sj+1]) contains no lattice points,
so using the fact that Ri ∩ Z2 = ∅, we conclude that

Gi ∩ Z2 ⊂ (Q + vi) ∪ (Q + vi+i) ∪p+1
j=1 (B + sj) ⊂ A + B.

Therefore G ∩ Z2 ⊂ A + B, as required. ¤

It is natural to consider a generalization of Theorem 3.1 whereby convexity is replaced by
u-convexity for a given primitive u ∈ Z2. However, the resulting statement is false. To see
this, let u = (2, 5), let A = [(0, 0), (4, 0)]∪ [(4, 0), (4, 8)]∩Z2, and let B = {(0, 0), (0, 1), (0, 2)}.
Then A and B are u-convex polyominoes, but A + B is not u-convex, since (0, 0) ∈ A + B
and (4, 10) ∈ A + B but (2, 5) 6∈ A + B.

Despite the previous example, the following version of Theorem 3.1 holds for vertical and
horizontal convexity.

Theorem 3.2. If A and B are vertically-convex (or horizontally-convex) polyominoes in Z2,
then A + B is also a vertically-convex (or horizontally-convex, respectively) polyomino.

Proof. Suppose that A and B are vertically-convex polyominoes; the proof for the horizontally-
convex case is similar. We may assume that o ∈ A and that A is contained in the closed half
plane lying to the left of the y-axis. Suppose that ai ∈ A and bi ∈ B, i = 1, 2 are such that
a1 + b1 lies below a2 + b2 on the same vertical line L. It suffices to show that each lattice point
on L between a1 + b1 and a2 + b2 belongs to A + B.

From our assumptions it follows that bi lies on or to the right of L, i = 1, 2. Since A is a
polyomino, there is a simple polygonal arc D composed of line segments of length one whose
endpoints lie in A, such that D has endpoints o and a2. Moreover, by the vertical convexity
of A, we may assume that D lies in the closed strip bounded by the vertical lines through o
and a2. Similarly, there is a simple polygonal arc E composed of line segments of length one
whose endpoints lie in B, such that E has endpoints b1 and b2, and by the vertical convexity
of B, we may assume that E lies in the closed strip bounded by the vertical lines through b1

and b2.
Without loss of generality, we may assume that the x-coordinate of b2 is greater than or

equal to that of b1, so that a2 + b1 lies on or to the left of L. Since the polygonal arc D + b1

has endpoints b1 and a2 + b1, it must meet L at some lattice point, a3 + b1, say. Now for each
lattice point x on E, all the lattice points on the polygonal arc D + x lie in A + B, and D + x
meets L. It follows that all the lattice points on L between a3 + b1 and a2 + b2 belong to
A+B. Since A is vertically convex, all the lattice points on L between a1 + b1 and a3 + b1 also
belong to A + B. It follows that each lattice point on L between a1 + b1 and a2 + b2 belongs
to A + B. ¤
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The next lemma gives a formula for the difference body of a polygon that may be of some
independent interest. It will find application in the proof of Theorem 3.4, which, together
with the set A defined by (2), shows that it does not hold when n ≥ 3.

Lemma 3.3. Let P be a convex polygon in R2 with vertices v1, . . . , vm. Then

(3) DP = (∪m
i=1(P − vi)) ∪ (∪m

i=1(−P + vi)) .

Proof. By the definition of DP , we have

(4) (∪m
i=1(P − vi)) ∪ (∪m

i=1(−P + vi)) ⊂ DP,

so it suffices to prove the reverse containment.
Suppose first that P has no pair of parallel edges. Then each edge of DP is either a translate

of an edge of P , or a translate of an edge of −P . (This can be seen by noting that in R2 the
surface area measure of DP is the sum of the surface area measures of P and −P .) Therefore
we can partition DP into triangles as follows:

(5) DP = ∪2m
i=1Ti,

where Ti = conv {Ei, o} shares the edge Ei with DP and has o as a vertex. Fix i and suppose,
without loss of generality, that Ei is a translate of an edge Fi of P by a vector ui. (The
argument for the other case is similar.) Let Ei be orthogonal to a direction u. By (1), we have
wDP (u) = 2wP (u) and the origin symmetry of DP implies that wDP (u) = 2wTi

(u). Therefore

wTi−ui
(u) = wTi

(u) = wP (u).

It follows that −ui = vi, say, is the vertex of P opposite the edge Fi, so Ti − ui = Ti + vi ⊂ P
and hence Ti ⊂ P − vi. In view of (5) we have proved the reverse containment to (4), as
required.

Now suppose P has at least one pair of parallel edges. We can write P = limk Pk, where
each Pk is a convex polygon with the same number of vertices as P but with no pair of parallel
edges. Since (3) holds for each Pk, it also holds for P . ¤
Theorem 3.4. Let A be a convex lattice set in Z2 and let m ∈ N. Then the sets A[m] =
A + A + · · ·+ A (m summands) and DA = A + (−A) are also convex lattice sets.

Proof. Let A be a convex lattice set in Z2 and let m ∈ N. Let x be a vertex of P = conv A,
and let {T1, . . . , Tk} be a partition of P into lattice triangles with one vertex at x and the
other two at adjacent vertices of P . Define Ai = Ti ∩ Z2 and let m ∈ N and y ∈ mP ∩ Z2.
Then y ∈ mTi ∩ Z2 for some i ∈ {1, . . . , k}, and if Ai[m] is a convex lattice set, we have
y ∈ Ai[m] ⊂ A[m] and A[m] is also a convex lattice set.

Therefore to prove A[m] is convex we may assume that P = conv A is a lattice triangle.
The proof is by induction on the number r of lattice points in int P . Suppose that r = 0
and without loss of generality let P = conv {o, p, q}. Note that mP can be partitioned into
translates of P of the form P + ip + jq, i, j ∈ {0, . . . , m− 1}, i + j ≤ m− 1, and translates of
−P of the form −P + ip + jq, i, j ∈ {0, . . . ,m− 1}, 1 ≤ i + j ≤ m. Let z ∈ mP ∩ Z2. Since
int P contains no lattice points, z must actually belong to a translate P + ip+jq of P for some
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i, j ∈ {0, . . . ,m− 1}, i + j ≤ m− 1. Therefore z ∈ A + ip + jq ⊂ A[m], and the case r = 0 is
finished. Suppose that the inductive hypothesis holds for r < s and int P contains exactly s
lattice points. Let v be one of these points, and partition P into three lattice triangles P1, P2,
and P3, each with a vertex at v and two others at vertices of P . Let Ai = Pi ∩ Z2, i = 1, 2, 3,
and note that Pi = conv Ai and int Pi has less than s lattice points. Now if w ∈ mP ∩ Z2,
then w ∈ mPi ∩Z2 for some i and so w ∈ Ai[m] ⊂ A[m]. This completes the proof that A[m]
is convex.

To see that DA is convex, let P = conv A have vertices v1, . . . , vm, and note that DP =
conv DA. Let x ∈ DP ∩ Z2. By Lemma 3.3, either x ∈ P − vi for some i or x ∈ −P + vi for
some i. Since A − vi = (P − vi) ∩ Z2 and −A + vi = (−P + vi) ∩ Z2, we have x ∈ DA, as
required. ¤

4. X-rays, the covariogram, and their discrete analogs

Let E be a bounded Lebesgue measurable set in Rn. It is a well-known fact that E is
determined, up to a set of measure zero, among all bounded Lebesgue measurable sets by
its X-rays XuE in all directions u ∈ Sn−1; see, for example, [12, Theorem C.1.1] and the
references given there. In particular, if two convex bodies K and L in Rn have equal X-rays
in all directions, they must be equal. (For an introduction to X-rays of convex bodies, see
[12, Chapter 1].) The statement that the covariograms of K and L are equal provides weaker
information. Indeed, it can be shown that gK = gL if and only if for each u ∈ Sn−1, their
X-rays XuK and XuL parallel to u are rearrangements of one another. We omit the proof
since the main interest here is in finite sets, for which we prove the analogous statement below
in Theorem 4.1.

The covariogram of a bounded Lebesgue measurable set is clearly unchanged by a translation
or a reflection in the origin. If K is a convex body in Rn, then the support of gK is DK.
Therefore, if K and L are convex bodies such that gK = gL, then DK = DL. It follows
that a centrally symmetric convex body K is determined up to translation, among all convex
bodies, by its covariogram. (As Bianchi [3] remarks, this requires also the observation that
gK(o) = V (K) and fact that in the class of all convex bodies with a given difference body, the
unique origin-symmetric member has maximal volume, a consequence of the Brunn-Minkowski
inequality.) Matheron [23, p. 86] (or see [16]) observed that gK = gL also implies ΠK = ΠL.

Let A be a finite subset of Rn. Again, A is determined among all finite sets by its discrete
X-rays XuA in all directions u ∈ Sn−1. Indeed, one can say much more. By a result of Rényi
[25], as extended by Heppes [20], if |A| = m then A is determined by any set of m+1 discrete
X-rays in mutually nonparallel directions.

The discrete covariogram gA of a finite subset A of Rn is also unchanged by a translation
or a reflection in the origin, and the support of gA is the difference set DA = A + (−A). By
Theorem 3.4, we have for n = 2 the convenient fact that when A is a convex lattice set, gA is
supported by the convex lattice set DA. Note that

gA(x) = |{y ∈ A : y − x ∈ A}|,
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the number of chords in A that are translates of the line segment [o, x]. Thus the covariogram
can be identified with the multiset A + (−A), that is, the set DA where each element is
repeated with multiplicity. In particular, gA = gB if and only if A and B have the same set of
chords, each repeated with multiplicity, and this is true if and only if the multisets A + (−A)
and B + (−B) are equal.

Finite multisets A and B such that the multisets A + (−A) and B + (−B) are equal are
sometimes called homometric. The structure of homometric multisets turns out to be impor-
tant in X-ray crystallography via the Patterson function, by which the difference set of the
atoms in a crystal can be determined from its X-ray diffraction pattern; see, for example, [17].
Rosenblatt and Seymour [26], using algebraic techniques, find an algorithm for reconstructing
all multisets A with a given difference multiset A + (−A).

Let u ∈ Zn, let F be a finite subset of Zn, and let j be a nonnegative integer. Define

aF (j, u) = |{v ∈ u⊥ : XuF (v) ≥ j}|.
If A and B are convex lattice sets in Zn, we say, by analogy with the usual meaning of the
term, that their X-rays XuA and XuB are rearrangements of each other if aA(j, u) = aB(j, u)
for each j.

Theorem 4.1. Let A and B be convex lattice sets in Zn. Then gA = gB if and only if for
each u ∈ Zn, the X-rays XuA and XuB of A and B parallel to u are rearrangements of each
other.

Proof. Let u ∈ Zn be primitive, let F be a convex lattice set in Zn, and let j be a nonnegative
integer. If v ∈ u⊥ and XuF (v) = k ≥ j + 1, then there are exactly k − j chords of F that are
translates of [o, ju] lying in the line through v parallel to u. Therefore

gF (ju) =
∞∑

k=j+1

(k − j)|{v ∈ u⊥ : XuF (v) = k}|

=
∞∑

k=j+1

(k − j)(aF (k, u)− aF (k + 1, u))

=
∞∑

k=j+1

aF (k, u)(6)

for each j. (This is a discrete version of the final equation on [16, p. 512].) The result follows
immediately. ¤

The previous theorem shows that, as in the continuous case, the statement that two finite
sets have equal discrete covariograms is formally weaker than the statement that all their
X-rays are equal. Below, we examine in more detail what information is given by the discrete
covariogram. The following connection between continuous and discrete covariograms will be
useful.
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Lemma 4.2. Let A be a finite subset of Rn with discrete covariogram gA, and let C be a
bounded Lebesgue measurable set in Rn with continuous covariogram gC. Then for all x ∈ Rn,∑

a1,a2∈A

V ((C + a1) ∩ (C + a2 + x)) =
∑

z∈DA

gC(z + x)gA(z).

Proof. Let x ∈ Rn. We have∑
a1,a2∈A

V ((C + a1) ∩ (C + a2 + x)) =
∑

a1,a2∈A

V (C ∩ (C + a2 − a1 + x))

=
∑

a1,a2∈A

gC(a1 − a2 + x)

=
∑

z∈DA

gC(z + x)gA(z).

¤
Theorem 4.3. Let A and B be finite subsets of Rn with equal discrete covariograms. If C is
a bounded Lebesgue measurable set such that

(7) V (A + C) = |A|V (C) and V (B + C) = |B|V (C),

then A + C and B + C have equal continuous covariograms.

Proof. The assumption V (A+C) = |A|V (C) says that there are no overlaps in the Minkowski
sum A + C, except for sets of measure zero. Specifically, the assumption implies that for all
a1, a2 ∈ A and almost all c1, c2 ∈ C, if a1 + c1 = a2 + c2, then a1 = a2 and c1 = c2. Using this
fact, it is easy to see that

V ((A + C) ∩ (A + C + x)) =
∑

a1,a2∈A

V ((C + a1) ∩ (C + a2 + x)) ,

for all x ∈ Rn. By Lemma 4.2, we obtain

gA+C(x) =
∑

z∈DA

gC(z + x)gA(z),

for all x ∈ Rn. The conclusion of the theorem now follows from the hypotheses (7) and
gA = gB, and the consequence DA = DB of the latter equation. ¤

The following is a result of Cabo and Janssen [7]. Since it appeared only in a technical
report, we provide a proof (somewhat shorter than that in [7]).

Proposition 4.4. If C and D are bounded, origin-symmetric, regular (equal to the closure of
their interiors), compact subsets of Rn with equal continuous covariograms, then C = D.

Proof. It is well known (see, for example, [3]) that for any Lebesgue measurable set E, gE =
1E ∗ 1−E, the convolution of the characteristic functions of E and −E. The origin symmetry

implies 1C∗1C = 1D∗1D, and taking Fourier transforms, we obtain
(
1̂C

)2

=
(
1̂D

)2

. Therefore
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1̂C(x) = ±1̂D(x), for each x ∈ Rn. Since the Fourier transform is analytic, and any analytic

function is determined by its values on a set with a limit point, we conclude that 1̂C = ±1̂D.
Fourier inversion yields 1C = 1D almost everywhere, and since C and D are regular, we have
C = D, as required. ¤
Corollary 4.5. If A and B are finite origin-symmetric subsets of Rn with equal discrete
covariograms, then A = B.

Proof. Let C be an origin-symmetric n-dimensional ball of sufficiently small radius so that
(7) holds. Then gA+C = gB+C , by Theorem 4.3. Since A + C and B + C are bounded, origin-
symmetric, regular compact sets, Proposition 4.4 yields A + C = B + C, and it follows that
A = B. ¤

The covariogram problem, attributed to Matheron (compare [23, p. 86]) asks whether gK

determines a convex body K, among all convex bodies, up to translation and reflection in
the origin. The answer is affirmative when n = 2 and K is a polygon (a result of W. Nagel;
see [2] for a complete proof) or when K is C2

+ (see [3] and [4]), and is negative when n ≥ 4
(proved by Bianchi [3]). Applications of the covariogram to stereology, image processing, and
mathematical morphology are discussed in [6], [27], and [28]. Remarkably, the problem is still
open when n = 2.

Let A be a finite set in Rn. It is natural to ask whether gA determines a convex lattice set A,
among all convex lattice sets, up to translation and reflection in the origin. The authors of [9]
use the algebraic method of Rosenblatt and Seymour [26] to give an algorithm for constructing
a finite subset of Zn, if one exists, with a given covariogram. They also note, without giving
specific examples, that sets not equal up to translation and reflection in the origin may have
the same covariogram. The question raised above is also answered negatively in a strong way
by the example depicted in Figure 2. This displays convex polyominoes A and B that are not
congruent, yet satisfy gA = gB.

Figure 2. Noncongruent convex polyominoes with equal covariograms.

Examples such as these have some relevance to the (continuous) covariogram problem. To
see this, let A and B be finite subsets of Zn such that gA = gB. If C = [0, 1]n, then by
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Theorem 4.3, the sets K = A + [0, 1]n and L = B + [0, 1]n have equal covariograms. In
particular, if A and B are the convex polyominoes shown in Figure 2, then the animals
A + [0, 1]2 and B + [0, 1]2 have equal covariograms.

The condition that two convex bodies in Rn have equal covariograms if and only if for
each u ∈ Sn−1, their X-rays parallel to u are rearrangements of one another is much stronger
than the property that the two bodies have equal chord length distributions; indeed, the
distributions of lengths of chords parallel to any given direction must be equal. The previous
example can therefore be viewed as related to an example of Mallows and Clark [22]. These
authors answered an old question of Blaschke by exhibiting two noncongruent convex polygons
with equal chord length distributions. Thus the polygons A + [0, 1]2 and B + [0, 1]2 have the
stronger property that their covariograms are equal, but on the other hand the polygons are
not convex. Indeed, they cannot be convex by Nagel’s result mentioned above, but they are
“close to convex” since they arise from convex polyominoes, and in this sense the example is
probably optimal.

5. Projections of finite sets

To set the scene, we briefly describe some previous work on projections of finite sets. Moti-
vated by a file management problem, Schwenk and Munro [31] consider the minimum of the
geometric mean of the cardinality of projections of a finite subset A of Rn onto coordinate
subspaces of fixed dimension k. Their result in the case k = n− 1, for example, is that

(
n∏

j=1

|A|e⊥j |
)1/n

≥ |A|(n−1)/n.

However, this follows immediately from (and is equivalent to) the Loomis-Whitney inequality
(see, for example, [12, p. 340]), as can be seen by replacing each point in A by a small cube
whose facets are parallel to the coordinate hyperplanes. In [31] a more general inequality
is given, involving projections onto all k-dimensional coordinate subspaces of Rn, but this
too follows from a corresponding generalization of the Loomis-Whitney inequality due to
Hadwiger [19, Theorem 4.4.2]. Schwenk [30] tackles a variant of the problem above in which
the geometric mean is replaced by the maximum, and solves this when n = 3 and k = 2,
noting that the general case appears very difficult.

We begin our investigation with the following connection between projections of convex
lattice sets and the discrete covariogram.

Lemma 5.1. If A is a convex lattice set in Zn and u ∈ Zn is primitive, then

(8) |A|u⊥| = |A| − gA(u).

Proof. By (6), we have

|A| − gA(u) = gA(0u)− gA(1u) = aA(1, u) = |{v ∈ u⊥ : XuA ≥ 1}| = |A|u⊥|.
¤
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By analogy with the standard terminology for projection bodies (see, for example, [12,
Chapter 4]), let us write ΠA = ΠB if ∣∣A|u⊥

∣∣ =
∣∣B|u⊥

∣∣ ,

for all u ∈ Zn, and say that A and B have equal projection counts. (Note that ΠA and ΠB
are not defined separately as sets.)

Corollary 5.2. Let A and B be convex lattice sets in Zn. If gA = gB, then ΠA = ΠB.

Proof. Note that ΠA = ΠB if and only if |A|u⊥| = |B|u⊥| for all primitive u ∈ Zn. Since
gA(o) = |A|, the implication gA = gB ⇒ ΠA = ΠB follows immediately from Lemma 5.1. ¤

By analogy with Aleksandrov’s projection theorem, it is natural to ask whether, if centrally
symmetric convex lattice sets have equal projection counts, they must be translates of each
other. The symmetry assumption is necessary, since it follows from Corollary 5.2 that the sets
convex lattice sets A1 and B1 shown in Figure 2 satisfy ΠA1 = ΠB1, yet they are not translates
of each other (nor even congruent). Convexity is clearly essential, but one can ask whether
arbitrary finite lattice sets with equal projection counts must be homothetic. However, this
is false, as the sets A2 and B2 in Figure 3 demonstrate.

Figure 3. Nonhomothetic lattice sets with equal projection counts.

Surprisingly, there are actually noncongruent origin-symmetric convex polyominoes A and
B in Z2 with ΠA = ΠB, as in Figure 4.

Figure 4. Noncongruent origin-symmetric convex polyominoes with equal pro-
jection counts.
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For the sets A3 and B3 in Figure 4, we have of course DA3 6= DB3, since if DA3 = DB3, the
origin symmetry of the sets would imply that A3 = B3. With the symmetry condition removed,
however, it is possible to find noncongruent convex polyominoes with equal projection counts
and equal difference sets. The following general construction can produce such examples. Let
C be a finite origin-symmetric set in Rn, and let p ∈ C and q ∈ C \{p,−p} be such that there
is a point r ∈ C \ {p, q} such that r ∈ [p, q]. Let A = C \ {p, q} and B = C \ {−p, q}. Then
ΠA = ΠB. (Even more general constructions along these lines are possible.)

If we apply this construction with C = conv {p,−p, q,−q} ∩ Z2, where p = (−2, 1) and
q = (0,−1), we obtain the convex polyominoes A4 and B4 shown in Figure 5. Note that these
satisfy not only ΠA4 = ΠB4, but also DA4 = DB4. They also show that the converse of
Corollary 5.2 is false, since gA4(x) = 2 6= 1 = gB4(x) when x = (−2, 2).

Figure 5. Noncongruent convex polyominoes with equal projection counts and
difference sets.

Now consider the convex polyominoes A5 and B5 on the left and right of Figure 6. Here we
also have DA5 = DB5, but since |A5| 6= |B5|, we have ΠA5 6= ΠB5 and hence gA5 6= gB5 .

Figure 6. Noncongruent convex polyominoes with equal difference sets but
different cardinalities.

Despite the example shown in Figure 3, it might be possible to find a conditional discrete
version of Aleksandrov’s projection theorem, even in Z2. The following question also remains
open, even for origin-symmetric convex polyominoes.

Problem 5.3. Let n ≥ 3, and let A and B be centrally symmetric convex lattice sets in Zn

with dim A = dim B = n such that for each u ∈ Zn, we have

|A|u⊥| = |B|u⊥|.
Is A a translate of B?
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6. Sections of finite sets

Dual to Aleksandrov’s projection theorem is Funk’s section theorem (see [12, Theorem 7.2.6]),
which implies that origin-symmetric convex bodies whose intersections with hyperplanes
through the origin have equal volumes must be equal. It is easy to see that the discrete
analog of this fact holds. Indeed, a stronger statement is true. Suppose that A and B are
origin-symmetric convex lattice sets in Zn such that for each u ∈ Zn we have

|A ∩ u⊥| ≤ |B ∩ u⊥|.
Let v ∈ Zn and let Lv be the line through o and v. Clearly we can choose u ∈ Zn so that
Lv ⊂ u⊥, A ∩ u⊥ = A ∩ Lv, and B ∩ u⊥ = B ∩ Lv. Then |A ∩ Lv| ≤ |B ∩ Lv|. It follows by
convexity and origin symmetry that A ⊂ B. In particular, the dual question to Problem 5.3
has an affirmative answer.

Let A be a convex lattice set. For u ∈ Zn, let

mA(u) = max{|A ∩ (u⊥ + x)| : x ∈ Zn}.
Suppose that n = 2. If v ∈ Zn is primitive and parallel to u⊥, then kv ∈ DA if and only
if there are x, y ∈ A with x − y = kv and hence if and only if k ≤ mA(u) − 1. It follows
that convex lattice sets A and B in Z2 satisfy mA = mB if and only if DA = DB. The
noncongruent convex polyominoes shown in Figure 6 therefore satisfy mA = mB. However,
the following is a discrete version of the old and still-unsolved problem of Bonnesen (see [12,
Problem 8.10(i)].

Problem 6.1. Let A and B be convex lattice sets in Zn. If n ≥ 3 and mA = mB, is A = B
up to translation and reflection in the origin?

For the remainder of this section, we consider a discrete version of the following dual Loomis-
Whitney inequality proved by Meyer [24]. This states that if K is a convex body in Rn, then

(9) V (K)n−1 ≥ dn

n∏
i=1

V (K ∩ e⊥i ),

where

(10) dn =
((n− 1)!)n

(n!)n−1
,

and equality holds if and only if K is a cross-polytope with vertices on the coordinate axes.

Problem 6.2. Find the best-possible constants cn such that if A is a convex lattice set in Zn,
then

(11) |A|n−1 ≥ cn

n∏
i=1

|A ∩ e⊥i |.

By approximating cross-polytopes with convex lattice sets, we see that cn ≤ dn, where dn is
given by (10). Let A = {±ei : 1 ≤ i ≤ n−1,±jen : 0 ≤ j ≤ m} ⊂ Zn. Then |A| = 2m+2n−1,
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|A ∩ e⊥n | = 2n− 1, and |A ∩ e⊥i | = 2m + 2n− 3. This shows that cn ≤ 1/(2n− 1). Note that
d3 = 2/9 > 1/5, while dn < 1/(2n− 1) for n ≥ 4.

Theorem 6.3. If A is a convex lattice set in Z2, then

(12) |A| ≥ 1

3

2∏
i=1

|A ∩ e⊥i |,

and the constant 1/3 is the best possible.

Proof. It will be convenient to set x = |A ∩ e⊥1 | and y = |A ∩ e⊥2 |.
Suppose first that o ∈ A. Let A ∩ e⊥1 = {−a2, . . . , a1} and A ∩ e⊥2 = {−b2, . . . , b1}. If

a2 = b2 = 0, we have

(13) |A| ≥ (a1 + 1)(b1 + 1)/2 + 1.

Using (13) in each quadrant, we see that in general we have

|A| ≥
(

(a1 + 1)(b1 + 1) + (a1 + 1)(b2 + 1) + (a2 + 1)(b1 + 1) + (a2 + 1)(b2 + 1)

2

)
+

+4− (a1 + a2 + 1)− (b1 + b2 + 1)− 1

=
(a1 + b1)(a2 + b2)

2
+ 3 =

(x− 1)(y − 1)

2
+ 3.

Now if x, y ≥ 3, we have

(x− 1)(y − 1)

2
+ 3 ≥ xy

3
⇔ (x− 3)(y − 3)

6
+ 2 ≥ 0,

which is true. If x ≤ 2, say, then |A| ≥ y + 1 ≥ (xy)/2 + 1 ≥ (xy)/3.
Now suppose that o 6∈ A. Since A is convex, it suffices to consider the situation when

A ∩ e⊥1 = {a2, . . . , a1} and A ∩ e⊥2 = {b2, . . . , b1}, where 0 < a2 ≤ a1 and 0 < b2 ≤ b1. Using
(13) again, we obtain

|A| ≥ (a1 + 1)(b1 + 1)

2
+ 1−

(
(a2 + 1)(b2 + 1)

2
− 1

)

= ((a1 − a2 + 1)(b1 − b2 + 1) + a2(b1 − b2) + b2(a1 − a2)) /2 ≥ xy

2
,

an even better estimate in this case than the one required.
We have proved that c2 ≥ 1/3. Let A = {(±1, 0), (±0, i) : 0 ≤ i ≤ m}. Then |A| = 2m + 3,

x = 3 and y = 2m + 1, which shows that c2 ≤ 1/3. ¤
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