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Abstract. For any convex n-gon P we consider the polygons obtained dropping a vertex
or an edge of P . The area distance of P to such (n − 1)-gons, divided by the area of P , is
an affinely invariant functional on n-gons whose maximizers coincide with the affinely regular
polygons. We provide a complete proof of this result.

We extend these area functionals to planar convex bodies and we present connections with
the affine isoperimetric inequality and parallel X-ray tomography.

1. Introduction

Given a convex polygon P with n vertices zj ordered counterclockwise, we define Wj(P ) to
be the triangle zj−1zjzj+1 and Tj(P ) to be the (possibly infinite) triangle outside P bounded
by the side zjzj+1 and the continuations of its two adjacent sides (see Fig. 1). Henceforth,
the index j is taken modulo n, and |C| denotes the area of C.

In this paper we consider the following affinely invariant functionals defined on the class Pn

of planar convex n-gons, i.e., polygons with exactly n vertices:

(1) F (P ) = min
j=1,...,n

|Wj(P )|
|P | ,

(2) G(P ) = min
j=1,...,n

|Tj(P )|
|P | ,

and we are interested in the maximizers of these functionals.
In Theorem 1.8 it is shown that the maximizers of the above functionals are affinely regular

n-gons, i.e., affine images of regular n-gons. This class, denoted by Rn, often appears in
geometric problems with affine invariance [1], [18], [3], [4], [16].

A characterization ofRn as extremals of area functionals was obtained by Renyi and Sulanke
[18]. They proved in Satz 2 that

∏n
i=1 |Wi(P )|/|P |n attains its maximum on Rn.

The functional F was first introduced by Lopez and Reisner [16] in connection with algo-
rithms for the approximation of a convex set by polygons. They showed that Theorem 1.8 for
the functional F is a consequence of the result by Renyi and Sulanke.

The functional G was first introduced by Longinetti [14], where Theorem 1.8 is proved for
n = 5, 6, via elementary geometric arguments. The functional G and a similar functional
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(not affinely invariant) considered in [13] are related to Hammer’s X-ray problem for planar
convex bodies proposed in [9]: How many X-ray pictures of a convex body must be taken
in order to permit its reconstruction? The solution of this problem is given by Gardner and
McMullen [5]. We refer to [6, Ch. 1] for an overview of this topic. In Section 6 we present in
detail the connection between the functional G and the stability of the reconstruction in the
Hammer’s problem. In Section 5, we discuss some extensions of functionals F and G to the
class of planar convex bodies related to the affine length of a convex body and to the affine
isoperimetric inequality. These functionals are also related to the approximation of planar
convex bodies by polygons ([8], [16]). In particular, F is related to the approximation of an
n-gon P by (n− 1)-gons contained in P . Similarly, G is related with the approximation of P
by (n− 1)-gons containing P . Because of this we use the word inner or outer in connection
with F or G, respectively.

Figure 1. Triangles Wj and Tj of P .

As a first remark we deal with the trivial cases n = 3, 4. For n = 3, we have F (P ) = 1
and G(P ) = ∞, for every P . For n = 4, by elementary arguments, one can prove that the
maximizers of F have diagonals which divides them into triangles of equal area, and G(P ) = ∞
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only for parallelograms. Hence, all maximizers of F and G are parallelograms, and viceversa.
As mentioned, some instances of Theorem 1.8 were already proved. In this paper we complete
this result in a unique frame to all n, for both the inner and outer functional.

We now provide a guide to the proof of Theorem 1.8. The functionals F and G are con-
tinuous with respect to the Hausdorff metric in Pn, which is not compact, since n-gons can
converge to polygons with fewer vertices. Hence, we have first to prove the existence of the
maximizers in Lemma 2.1.

A first step towards the characterization of these maximizers is to show that they satisfy an
inner (or outer) equal-area property which has some interest by itself. Consider the following
classes:

(3) Φn = {P ∈ Pn : |W1(P )| = |W2(P )| = · · · = |Wn(P )|} ,

(4) Γn = {P ∈ Pn : |T1(P )| = |T2(P )| = · · · = |Tn(P )|}.
Henceforth, we say that a polygon P has the inner (outer) equal-area property when P belongs
to Φn (Γn, respectively). Section 2.1 contains the proof of the following proposition.

Proposition 1.1. F and G attain their maximum on Φn and Γn, respectively.

Figure 2. Polygons from Φ6 and Γ6.

It can be proved that the classes Φ5 and Γ5 coincide with the one of affinely regular pen-
tagons. For n > 5, it is easy to see that the above class is larger than the class Rn of affinely
regular polygons. For example, hexagons in Γ6 are, up to an affine transformation, the inter-
section of two concentric equilateral triangles (see the shaded polygon in Fig. 2). A proof can
be found in [14]. Similarly, hexagons in Φ6 are, up to an affine transformation, equiangular
(see the larger polygon in Fig. 2). In [10] the polygons of Φn are considered and a wider
class of Φn containing not necessarily convex n-gons is explicitly parametrized by n − 5 real
parameters modulo the action of the affine group.

Roughly speaking, (3) or (4) are n − 1 independent constraints. Since n-gons depend on
the 2n coordinates of its vertices, it follows that Φn and Γn depend on n + 1 parameters, and
therefore, modulo the action of the affine group, depend on n− 5 parameters. So, in order to
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show that all maximizers of F and G are in Rn other significant properties must be proved.
A subclass of Φ2m was characterized by Bianchi and Longinetti in [2, Lemma 1].

Let lj be the length of the side zjzj+1 of P , i.e. lj =‖ zj − zj+1 ‖ and dj the length of the
diagonal zj−1zj+2.

Definition 1.2. We define Fn as the class of convex n-gons such that

(5)

(
dj+1 − lj+1

dj+1

)(
dj − lj

lj

)
=

(
dj−2 − lj−2

dj−2

)(
dj−1 − lj−1

lj−1

)
for j = 1, . . . , n.

We say that P has the inner-ratio property when P ∈ Fn. Assuming that all triangles Tj

of P are bounded, we define vj as the vertex of Tj not in P . Also, set sj =‖ vj − zj ‖ and
pj =‖ zj+1 − vj ‖. Let ej be the length of the segment joining the outer points vj+1, vj−1.
Notice that ej = pj−1 + lj + sj+1.

Definition 1.3. We define Gn as the class of convex n-gons such that

(6)
sj ej−1

lj−1(pj−2 + lj−1)
=

pj ej+1

lj+1(sj+2 + lj+1)
for j = 1, . . . , n.

We call this the outer-ratio property. Notice that the outer-ratio property is an equality
between ratio of length of segments on the two lines through vj in Fig. 1.

The following theorems, proved in Sections 2.1, 2.2, are important steps toward the goal.

Theorem 1.4. If P ? is a maximizer of F in Pn, then P ? ∈ Fn .

Theorem 1.5. If P ? is a maximizer of G in Pn, then P ? ∈ Gn .

In Section 3, through an algebraic manipulation, we will prove that in (5) the ratios λj =
dj/lj are independent of j. Analogously, for the outer problem, we will prove that in (6) the
ratios ζj = sj/lj−1 = pj−1/lj are independent of j. In Section 4 we go back to planar geometry
and prove the following theorems.

Theorem 1.6.
Φn ∩ Fn = Rn .

Theorem 1.7.
Γn ∩ Gn = Rn .

These results permit us to obtain the goal of the paper.

Theorem 1.8. All maximizers of F or G on Pn are affinely regular polygons.

2. First variations at extremal polygons

Observe that for each P ∈ Pn the triangles Wj(P ) have positive area, hence F (P ) > 0,
but if P is close to a polygon with n − 1 vertices, then F (P ) is close to zero. Therefore
infP∈Pn F (P ) = 0 and F has no minimum in Pn. Similarly, infP∈Pn G(P ) = 0 and G has no
minimum in Pn. Then all the extremals of the functionals F and G in Pn are maximizers.
In this section we obtain the more significant properties of these polygons. We use only
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elementary arguments of Euclidean geometry in the proof of Proposition 1.1. The idea of the
proof is to consider a maximizer P ? of each functional and a suitable local variation P ?

ε of one
or two vertices. An analysis of the sign of the area difference ∆ε yields the results.

To prove directly the subsequent Theorems 2.5 and 2.7, which are the principal goal of this
section, a more complicated perturbation P ?

ε of P ? involving five consecutive vertices of P ?

can be carried out. In this case one has to take into account only the first order terms of ∆ε.
This computation, using Proposition 1.1, can be explicitly obtained in terms of the sides and
angles of P ?.

Here, we prefer to give a different proof, less geometric, via partial differentiation of area
functionals (Lemma 2.2, and Lemma 2.3) with respect to the vertices zj. This yields the
Lagrange multiplier systems (21) and (27) for the area |P | under the corresponding equal-
area property constraints. At the end of each subsection, an algebraic manipulation of such
systems will give the proof of Theorem 2.5 for the inner problem and the proof of Theorem
2.7 for the outer one.

We begin with the following result.

Lemma 2.1. The functionals F and G have maxima in Pn.

Proof. From the well-known John theorem about the maximal ellipse contained in P , see [11],
we can restrict to n-gons with fixed area 1, and contained in a circular annulus A of radii r
and 2r. Clearly r ≥ 1/

√
4π and the diameter of P is less or equal to D = 4/

√
π. Represent

each polygon in Pn as a point in R2n with coordinates the coordinates of its vertices. With
respect to the standard metric on R2n, F is continuous and the class of n-gons with vertices
contained in A is compact. Since F > 0, it is trivial to show that a convergent maximizing
sequence on Pn has vertices which converge to n distinct points, no three collinear.

Turning to G, some difficulties arise since |Tj| may be unbounded. Let αj be the exterior
angle of P at the vertex zj. If Tj(P ) is bounded then

(7) |Tj(P )| = 1

2
l2j (cot αj−1 + cot αj)

−1.

The function cot x is convex in (0, π/2) and odd with respect to the point π/2. Thus

(8) cot

(
x1 + x2

2

)
≤ cot x1 + cot x2

2
if x1, x2 > 0 and x1 + x2 < π.

Since αj > 0 and
n∑

j=1

αj = 2π, there exists j such that

αj−i + αj

2
≤ 2π

n
.

Therefore, by (7) and (8) it follows that

min
j=1,...,n

|Tj(P )| < 1

4
D2 tan

2π

n
.



6 PAOLO GRONCHI AND MARCO LONGINETTI

Hence, G is bounded from above on Pn, for n ≥ 5.
Now consider a maximizing sequence {Pm} of n-gons with vertices in the circular annulus

A, which converges to P ?. It remains to show that P ? has exactly n vertices. We can suppose

(9) min
j=1,...,n

|Tj(P
m)| > 1

2
sup

P∈Pn

G(P ) = µ > 0 , for all m.

For each P with vertices in A, consider a triangle similar to Tj(P ) bounded by the contin-
uations of its sides not in P and a line parallel to the side zj+1zj through the center of A. If
hj denotes the altitude of Tj(P ) to the side zj+1zj, then this larger triangle has an altitude
smaller than hj + 2r and a base larger than 2r. Hence

lj
hj

≥ 2r

hj + 2r
,

i.e., lj ≥ (2r − lj)hj/2r. Since ljhj = 2|Tj(P )| ≥ 2µ, we deduce l2j ≥ (2r − lj)µ/r and
consequently that the sides of the polygons Pm are uniformly larger than a positive constant.
This implies that n distinct points z?

j of P ? are limits of the sequences of the vertices of
Pm. Moreover, from (9), the limit of the area |Tj(P

m)| is strictly positive. Hence, no three
consecutive points z?

j are collinear and they are all distinct vertices of P ?. ¤

Proof of Proposition 1.1. The claim that G attains its maximum on Γn was already proved in
[14, Theorem 1]. The arguments are similar to the one we use for the functional F and will
not be repeated here.

For the inner case, we argue by contradiction. Assume that P ? is a maximizer of F not in
Φn. Let Wr be a triangle of maximal area among the n triangles Wj. Moving the vertex zr

towards the interior of P ? reduces the area of P ?. Since F cannot increase, the value min |Wj|
has to decrease. Hence, either Wr−1 or Wr+1 is of minimal area. The freedom we have in
choosing the direction along which zr moves easily implies that they are both of minimal area.
Therefore,

|zr−1zr−2zr−3| = |Wr−2| ≥ |Wr−1| = |zrzr−1zr−2|
|zr+1zr+2zr+3| = |Wr+2| ≥ |Wr+1| = |zrzr+1zr+2| .

Then, the distance of zr−3 from the line containing the edge zr−2zr−1 is larger or equal to that
of zr. Analogously, the distance of zr+3 from the line containing zr+2zr+1 is larger or equal to
that of zr. From the convexity of P ?, the triangle U = zr−3zrzr+3 is ordered counterclockwise
and contained in P ?. Therefore, any movement of zr inside U increases the area of both Wr−1

and Wr+1 and decreases the area of P . The maximality of P ? implies that |Wr| cannot be
larger than min |Wj|. ¤

We represent with complex variable xj +iyj the vertices zj, i.e. zj represents both a point in
the plane and a complex number; so the area functionals |Tj|, |Wj| and |P | are real functions of
complex variables zj. We use partial derivatives of functions with respect to complex variables
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with the notation

fz =
∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Lemma 2.2. If T is the triangle with vertices a, b, c ordered counterclockwise, then

(10)
4

i

∂|T |
∂a

= c− b

Proof. If a = xa + iya, b = xb + iyb, and c = xc + iyc the result is obtained by an elementary
computation starting from the formula

4

i
|T | = 2

i
((xc − xb)(ya − yb)− (xa − xb)(yc − yb)) =

(11) = (c− b)(a− b)− (c− b)(a− b) .

¤
Lemma 2.3. Let b, c, d and e be the vertices of a convex quadrilateral ordered clockwise. Let
abc be the triangle T outside the quadrilateral bounded by bc and the continuations of the two
sides eb and dc. The area of |T | depending on b, c, d, e, satisfies:

−4i|T |b = (a− c) + (a− b)|ae|/|be| ,(12)

−4i|T |c = (b− a) + (c− a)|ad|/|cd| ,(13)

−4i|T |d = (a− c)|ac|/|cd| ,(14)

−4i|T |e = (b− a)|ab|/|be| .(15)

Proof. Observe that the vertex a is a function of b, c, d, e and each proof starts by differentiating
(11) with respect to these variables. For example, in order to get (13) we have

(16) 4i|T |c = −(c− b)ac + (c− b)ac + (a− b).

To compute the partial derivatives of a and a with respect to c we differentiate the collinear
conditions of a with b and e and with c and d, i.e.

(a− b)(e− b)− (e− b)(a− b) = 0 ,(17)

(a− c)(c− d)− (c− d)(a− c) = 0 ,(18)

and we obtain

(e− b)ac − (e− b)ac = 0 ,

(c− d)ac − (c− d)ac = d− a .

Solving for ac, ac in the previous equations we obtain

ac = (e− b)(d− a)/
(
(e− b)(c− d)− (e− b)(c− d)

)
,

ac = (e− b)(d− a)/
(
(e− b)(c− d)− (e− b)(c− d)

)
.
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By substituting in (16) we get

4

i

|T |
∂c

= (b− a) + (d− a)
(c− b)(e− b)− (c− b)(e− b)

(e− b)(c− d)− (e− e)(c− d)
.

The proof of (13) is obtained via the formula

(19) (c− b)(e− b)− (c− b)(e− b) =
|ac|
|cd|

(
(e− b)(c− d)− (e− b)(c− d)

)
.

Indeed, by subtracting the left hand side of (17) from the left hand side of (19) we deduce

(c− b)(e− b)− (c− b)(e− b) = (c− a)(e− b))− (c− a)(e− b) .

Since a, c, d are collinear the vector (c− a) is proportional to the vector (d− c) by the factor
|ac|/|cd|. This proves (19).

The proof of (12) can be obtained in a similar way or simply interchanging b and c, e and
d, by a reflection. We remark that such a reflection changes the sign as in formula (11).

The proof of (14) follows from similar computations. More explicitly, by differentiating (11)
with respect to D we obtain

(20) 4i|T |d = −(c− b)ac + (c− b)ad .

By differentiating with respect to d the constraints (17) and (18), we get

(e− b)ad − (e− b)ad = 0 ,

(c− d)ad − (c− d)ad = a− c .

This implies

ad = (e− b)(a− c)/
(
(e− b)(c− d)− (e− b)(c− d)

)
,

ad = (e− b)(a− c)/
(
(e− b)(c− d)− (e− b)(c− d)

)
.

By substituting in (20) we get

4

i

|T |
∂d

= (a− c)
(c− b)(e− b)− (c− b)(e− b)

(e− b)(c− d)− (e− b)(c− d)
,

and from (19) we prove (14). A similar argument proves (15). ¤

2.1. Inner case.

Proposition 2.4. Let P ? be a maximizer of F on Pn. Then there exist real numbers µ1, . . . , µn

such that the following equations hold for the vertices of P ?:

(21) (zj−1 − zj+1) = µj−1(zj−1 − zj−2) + µj(zj−1 − zj+1) + µj+1(zj+2 − zj+1) ,

for j = 1, . . . , n.
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Proof. By Proposition 1.1, each maximizer P ? satisfies the inner equal-area property. Choosing
a suitable affine transformation we can assume that |Wj(P )| = 1 for j = 1, . . . , n. By the
Lagrange multipliers argument we have that at P ? the gradient of the area functional |P |
is a linear combination of the gradients of the constraints |Wi(P )| = 1, i.e. there exist real
multipliers µj such that at P ?,

∂|P |
∂zj

=
∑

i

µi
∂|Wi|
∂zj

for j = 1, . . . , n .

Since Wj depends only on zj−1, zj, zj+1 we have that

∂|Wi|
∂zj

= 0 for i 6∈ {j − 1, j, j + 1} .

Now we apply Lemma 2.2 to the triangles Wj−1,Wj,Wj+1 with respect to the vertex zj and
find that

4

i

∂|Wj−1|
∂zj

= zj−1 − zj−2 ,

4

i

∂|Wj|
∂zj

= zj−1 − zj+1 ,

4

i

∂|Wj+1|
∂zj

= zj+2 − zj+1 .

Since P can be decomposed in the disjoint subsets Wj, P \Wj and the latter does not depend
on the vertex zj, we have also

(22)
4

i

∂|P |
∂zj

=
4

i

∂|Wj|
∂zj

= zj−1 − zj+1.

The five previous equations prove (21). ¤

The system (21) is a system of 2n real equations in the 3n real unknowns zj, µj, and so it
can not determine the maximizers. The inner equal-area property adds more information. In
particular, we have that for each j the vector (zj+2 − zj−1) is parallel to (zj+1 − zj). So any
maximizer P ? also satisfies the following system for suitable positive λj

(23) (zj+2 − zj−1) = λj(zj+1 − zj) .

We notice that the λj are well defined and positive because all vertices of P ? are distinct and
P ? is convex.

The system (23) and the system (21) represent 4n real equations in the 4n real unknowns
zj, µj, λj. In principle we can eliminate the unknowns zj, µj from those system and reduce to
n equations involving only λj. This is obtained in the following theorem.
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Theorem 2.5. Let P ? be a maximizer of F on Pn, n ≥ 5. Then the real numbers λj defined
by (23) satisfy

(24)
(λj−2 − 1)(λj−1 − 1)

λj−2

=
(λj+1 − 1)(λj − 1)

λj+1

,

with λj > 1 for j = 1, 2, . . . , n.

Proof. From (23) we get
zj+2 = zj−1 + λj(zj+1 − zj) ,

and
zj−2 = zj+1 − λj−1(zj − zj−1) .

By substituting in (21) and rearranging the terms we obtain

(zj+1 − zj)(µj−1 + µj + µj+1 − 1− λjµj+1)+

+(zj − zj−1)(µj−1 + µj + µj+1 − 1− λj−1µj−1) = 0 .

Since P ? ∈ Pn the vertices zj are distinct and not collinear. This implies that the vectors
(zj+1− zj), (zj − zj−1) are linearly independent and their coefficients in the previous equation
must be zero. Hence, we get for j = 1, . . . , n,

(25)

{
µj−1 + µj + µj+1 − 1 = λjµj+1

µj−1 + µj + µj+1 − 1 = λj−1µj−1 .

We infer that the λj are such that the linear system (25) has a solution µ1, µ2,. . . ,µn. Taking
into account the six equations involving only the five unknowns µj−2, µj−1, µj, µj+1, and µj+2,
we deduce that the determinant of the matrix



1 1 1− λj−1 0 0 1
0 1 1 1− λj 0 1
0 0 1 1 1− λj+1 1

1− λj−2 1 1 0 0 1
0 1− λj−1 1 1 0 1
0 0 1− λj 1 1 1




has to be zero. After some manipulations, we get the following equation

(26) λjλj−2(1− λj+1)λj−1(1− λj)− λj−1λj+1(1− λj−2)λj(1− λj−1) = 0 .

Since all λj > 0, the previous equation can be simplified as in (24). Suppose that there exists a
λj ≤ 1. Up to an affine transformation we can assume that zj−1, zj, zj+1 are three consecutive
vertices of a square Q. Since λj ≤ 1, zj+2 belongs to Q. Then using (23) we obtain that
zj+3 − zj has the direction of zj+2 − zj+1. This means that zj+3 belongs to a line supporting
Q at zj. Any choice of zj+3 on such a line gives a contradiction, since or zj−1 belongs to the
convex hull of the other vertices, or the side zj+2zj+3 intersects the boundary of Q. ¤

We remark that by the definition (23) of λj, we have λj = dj/lj and (24) implies P ? ∈ Fn,
the class of the n-gons with the inner-ratio property defined by (5). So from Theorem 2.5 we
obtain Theorem 1.4.
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2.2. Outer case. In order to get the Lagrange multipliers system for the outer case in a
simple way we recall that vj is the intersection of the two lines through the consecutive
vertices zj−1, zj and the vertices zj+1, zj+2, (see Fig. 1), lj =‖ zj+1 − zj ‖, i.e., the length of
the j-side, and sj =‖ vj − zj ‖, pj =‖ zj+1 − vj ‖.
Proposition 2.6. Let P ? be a maximizer of the functional G on Pn, n ≥ 5. Then there
exist real numbers η1, . . . , ηn such that the following equations hold for the vertices of P ?, for
j = 1, . . . , n.

(27)

(zj−1 − zj+1) = ηj−2(zj−1 − vj−2)
pj−2

lj−1

+ ηj−1

(
(vj−1 − zj−1) + (vj−1 − zj+1)

pj−1

lj

)

+ ηj

(
(zj+1 − vj) + (zj−1 − vj)

sj

lj−1

)

+ ηj+1(vj+1 − zj+1)
sj+1

lj
.

Proof. By Proposition 1.1 each maximizer P ? satisfies the outer equivalent triangle property.
Choosing a suitable affine transformation we can assume that |Tj(P )| = 1, for j = 1, . . . , n.
By the Lagrange multipliers argument, at P ? the gradient of the area functional |P | is a linear
combination of the gradients of the constraints |Ti(P )| = 1, i.e. there exist real multipliers ηj

such that, at P ?,
∂|P |
∂zj

=
∑

i

ηi
∂|Ti|
∂zj

for j = 1, . . . , n.

Since |Ti| depends only on zi−1, zi, zi+1, zi+2 we get

4

i

∂|Ti|
∂zj

= 0 for i 6∈ {j − 2, j − 1, j, j + 1} .

By Lemma 2.3, we obtain
4
i
|Tj−2|zj

= (zj−1 − vj−2)
pj−2

lj−1
,

4
i
|Tj−1|zj

= (vj−1 − zj−1) + (vj−1 − zj+1)
pj−1

lj
,

4
i
|Tj|zj

= (zj+1 − vj) + (zj−1 − vj)
sj

lj−1
,

4
i
|Tj+1|zj

= (vj+1 − zj+1)
sj+1

lj
.

The five previous equations and (22) yield (27). ¤
Since the lengths pj, lj, sj are functions of the vertices zj the system (27) appears as a system

of 2n real equations in the unknowns zj, ηj, i.e. 3n real unknowns, and so it can not determine
the maximizers n-gons. From the outer equivalent triangle property of any maximizer P ? we
have that, for each j, the vector (vj − vj−1) is parallel to (zj+1− zj−1). Hence P ? satisfies also
the following system for suitable positive ζj

(28) (vj − vj−1) = ζj(zj+1 − zj−1).

We notice that the ζj are well defined and positive because all vertices of P ? are distinct and
P ? is convex.
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The previous equations and system (27) represent 4n real equations in the 4n real unknowns
zj, ηj, ζj. In principle we can eliminate the unknowns zj and ηj from those systems and reduce
to n equations involving only ζj. This is obtained in the following theorem.

Theorem 2.7. Let P ? be a maximizer of G on Pn, n ≥ 5. Then the real numbers ζj defined
by (28) satisfy

(29)
(1 + ζj+2)

ζj+1(1 + ζj+1 + ζj+2)
=

(1 + ζj−1)

ζj(1 + ζj + ζj−1)
,

with ζj > 0, for j = 1, 2, . . . , n.

Proof. From the outer equivalent triangle property we have that (vj − vj−1) is parallel to
(zj+1 − zj−1). From this it follows that the triangles vj, zj, vj−1 and zj+1, zj, zj−1 are similar.
Therefore,

(30) ζj =
|vj − vj−1|
|zj+1 − zj−1| =

sj

lj−1

=
pj−1

lj
.

Moreover, from the collinearity of vj with zj, zj−1 we can express vj in terms of zj, zj−1 and
positive ζj

vj = zj + ζj(zj − zj−1) .

Similarly we have

vj+1 = zj+1 + ζj+1(zj+1 − zj),
vj−1 = zj + ζj−1(zj − zj+1),
vj−2 = zj−1 + ζj−1(zj−1 − zj) .

This permits us to eliminate in (27) all the vectors vi, i.e.,

(31)

(zj−1 − zj+1) = ηj−2ζ
2
j−1(zj − zj−1)+

ηj−1 [(zj − zj−1) + ζj(zj − zj+1) + (zj − zj+1)(1 + ζj)ζj] +
ηj [(zj+1 − zj)− ζj(zj − zj−1) + (zj−1 − zj)(1 + ζj)ζj] +
ηj+1(zj+1 − zj)ζ

2
j+1 .

Rearranging the terms we obtain

(zj−1 − zj)
(
1 + ηj−2ζ

2
j−1 + ηj−1 − ηj(2ζj + ζ2

j )
)
+

+(zj − zj+1)
(
1− ηj−1(2ζj + ζ2

j ) + ηj + ηj+1ζ
2
j+1

)
= 0.

Since P ? ∈ Pn, the vertices zj are distinct and not collinear. This implies that the vectors
(zj+1− zj), (zj − zj−1) are linearly independent and their coefficients in the previous equation
must be zero, i.e.,

(32)

{
ηj−2ζ

2
j−1 + ηj−1 − ηj(2ζj + ζ2

j ) = −1
−ηj−1(2ζj + ζ2

j ) + ηj + ηj+1ζ
2
j+1 = −1
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for j = 1, . . . , n. We shift by one the index in the first equation and adding to and subtracting
from the second one, we obtain

(33)

{
ηj−1ζj − ηj +ηj+1ζj+1 = 1
ηj−1ζj(1 + ζj) −ηj+1ζj+1(1 + ζj+1) = 0

for j = 1, . . . , n.
We infer that the ζj are such that the linear system (33) has a solution η1, η2, . . . , ηn.

Taking into account the six equations involving only the five unknowns ηj−2, . . . , ηj+2, we
deduce that the determinant of the matrix



ζj−1 −1 ζj 0 0 1
0 ζj −1 ζj+1 0 1
0 0 ζj+1 −1 ζj+2 1

ζj−1 + ζ2
j−1 0 −ζj − ζ2

j 0 0 0
0 ζj + ζ2

j 0 −ζj+1 − ζ2
j+1 0 0

0 0 ζj+1 + ζ2
j+1 0 −ζj+2 − ζ2

j+2 0




has to be zero. After some manipulations we obtain

ζj−1(1 + ζj)(1 + ζj+1)ζj+2·
· [ζj(1 + ζj+2)(1 + ζj + ζj−1)− ζj+1(1 + ζj−1)(1 + ζj+1 + ζj+2)] = 0 .

Since ζj > 0, the previous equation can be simplified as in the statement (29) and we
conclude the proof. ¤

We remark that by (30) the relations between the ζj’s of Theorem 2.7 can be expressed in
terms of ratios of the length of the sides of the outer triangles Wj(P

?). It turns out that (29)
implies that P ? ∈ Gn, the class of the n-gons with the outer ratio property defined by (6). So
from Theorem 2.7 we obtain Theorem 1.5.

3. Circulant Systems

In this section we have collected the steps of the proofs which are not strictly related with
the geometry of the problem. We focus on the systems (24), (29) and we prove that the only
suitable solutions are those independent of j.

First we deal with the inner problem.

Proposition 3.1. Any solution of the system of equations

(λj−2 − 1)(λj−1 − 1)

λj−2

=
(λj+1 − 1)(λj − 1)

λj+1

,

for j = 1, 2, . . . , n, with λj > 1 for all j, satisfies λi = λj for all i and j.

Proof. Set γj = 1/(λj − 1), for all j. Notice that λj > 1 implies γj > 0. Then equations (24)
reduce to

(34) γj−1(1 + γj−2) = γj(1 + γj+1) .
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Consider the maximum number among the expressions γj(1 + γj−1), for all j. Assume this
maximum is attained by γM(1 + γM−1). From (34) we obtain

γM(1 + γM−1) ≥ γj(1 + γj+1) ,

for every j = 1, 2, . . . , n. Now, from γM(1 + γM−1) ≥ γM−1(1 + γM) we have

(35) γM ≥ γM−1 .

From γM(1 + γM−1) ≥ γM(1 + γM+1) we find

(36) γM−1 ≥ γM+1 .

From (34) we deduce that γM(1+γM−1) = γM+1(1+γM+2) and so we can also write γM+1(1+
γM+2) ≥ γM+1(1 + γM), which implies that

(37) γM+2 ≥ γM ,

and γM+1(1 + γM+2) ≥ γM+2(1 + γM+1), which yields

(38) γM+1 ≥ γM+2 .

By combining inequalities (35), (36), (37), and (38) we discover γM+1 ≥ γM+2 ≥ γM ≥ γM−1 ≥
γM+1 and so γM−1 = γM = γM+1 = γM+2. Taking into account (34) again yields γi = γj, for
all i and j. ¤

We now turn to the outer problem.

Proposition 3.2. Any solution of the system of equations

ζj(1 + ζj+2)

1 + ζj+1 + ζj+2

=
ζj+1(1 + ζj−1)

1 + ζj + ζj−1

for j = 1, 2, . . . , n, with ζj > 0 for all j, satisfies ζi = ζj for all i and j.

Proof. Set

(39) aj =
ζj

1 + ζj + ζj+1

, bj =
ζj+1

1 + ζj + ζj+1

.

Notice that ζj > 0, for all j, implies that all aj and bj are positive and that

(40) aj + bj < 1 .

The system (29) can be rewritten in terms of aj, bj as

(41)
1− aj+1

bj

=
1− bj−1

aj

.

Furthermore, it is easy to check that the relation

(42)
1− aj

bj

=
1− bj+1

aj+1

also holds for every j = 1, 2, . . . , n.
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Now consider the maximum number among the expressions (1 − aj+1)/bj or (1 − aj)/bj

involved in (41) and (42) and call it C. Assume first that C appears in (41), i.e., C = 1−aM+1

bM
,

for some M . From 1−aM+1

bM
≥ 1−aM

bM
we infer

(43) aM ≥ aM+1 .

From
1− bM−1

aM

=
1− aM+1

bM

≥ 1− bM

aM

we deduce

(44) bM ≥ bM−1 .

From
1− aM+1

bM

=
1− bM−1

aM

≥ 1− aM

bM−1

we deduce bM−1 − b2
M−1 ≥ aM − a2

M and then

(bM−1 − aM)(1− bM−1 − aM) ≥ 0 .

Since bM−1 ≤ bM by (44), inequality (40) implies that (1− bM−1 − aM) > 0. Therefore

(45) bM−1 ≥ aM .

Analogously, from
1− aM+1

bM

≥ 1− aM+2

bM+1

=
1− bM

aM+1

we infer

(aM+1 − bM)(1− aM+1 − bM) ≥ 0 .

Inequalities (40), (43) ensure that (1− aM+1 − bM) > 0 and so

(46) aM+1 ≥ bM .

Combining inequalities (43), (44), (45), (46) we obtain

bM−1 ≥ aM ≥ aM+1 ≥ bM ≥ bM−1

and so

bM−1 = aM = aM+1 = bM .

Now it is easy to use (41) and (42) to deduce that all aj and bj have to be equal, and from
this fact and (39) that all the ζj are equal.

Assume now that C appears in (42), i.e., C = (1−aM)/bM , for some M . From (1−aM)/bM ≥
(1− bM)/aM and (40) we deduce

(47) aM ≥ bM .

From 1−bM+1

aM+1
= 1−aM

bM
≥ 1−aM+1

bM+1
and (40) we deduce

(48) bM+1 ≥ aM+1 .
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From 1−bM+1

aM+1
= 1−aM

bM
≥ 1−bM

aM+1
we infer

(49) bM ≥ bM+1 .

From 1−aM

bM
≥ 1−aM+1

bM
we obtain

(50) aM+1 ≥ aM .

Once again we have obtained a sequence of inequalities that can be satisfied only if aM =
aM+1 = bM = bM+1. As in the previous case, it is now easy to conclude that all ζj have to be
equal. ¤

G. Ottaviani has analyzed the case n = 7 for the inner and outer problem. By using the
computer algebra system Macaulay, he found that in the complex variables γ1, . . . , γ7, the
system (34) has a zero set which consists of the trivial line γ1 = · · · = γ7 and of an algebraic
surface of degree 14. It is interesting that the line and the surface are disjoint components.
Similarly, he found that for the outer problem the zero set of the system (29) contains the
trivial line and a surface of degree 71.

4. Proofs of Theorems 1.6 and 1.7

In this section we complete the characterization of the maximizers of F and G, thus proving
Theorems 1.6, 1.7. To do this we turn back to geometry.

Proof of Theorem 1.6. As noted in Section 2.1, each polygon P contained in Φn ∩Fn satisfies
systems (23), (24). By Proposition 3.1 we deduce that there exists a λ > 1 such that

(51) zj+2 − zj−1 = λ(zj+1 − zj) , for all j.

Such a condition is satisfied only by affinely regular n-gons. This is proved in [4, Statement 3,
Theorem 1], where the result is attributed to Coxeter [3]. We provide a proof for completeness
and for the convenience of the reader.

Up to an affine transformation, we can assume that three consecutive edges of P , z1z2, z2z3

and z3z4, say, all have length one. By (51), the quadrilateral z1z2z3z4 is an isosceles trapezium,
and so the angles of P in z2 and z3 are also equal. Denote by r2 the bisector of the angle in
z2. By assumption, r2 is the axis of the segment z1z3. Since the vertex zn, consecutive to z1,
is determined by the relation zn − z3 = λ(z1 − z2) and z4 by z4 − z1 = λ(z3 − z2), it is easily
seen that r2 is the axis of the segment z4zn. Similarly, zn−1 and z5 are uniquely determined
by the previous vertices (and λ) and then r2 is also the axis of the segment z5zn−1. This
argument shows that r2 is a symmetry axis of P . Analogously, considering the vertex z3 of
the trapezium z1z2z3z4, the bisector r3 of the angle in z3 is a symmetry axis of P . This clearly
implies that P is a regular polygon. ¤

Proof of Theorem 1.7. As noted in Section 2.2, each polygon P contained in Γn ∩ Gn satisfies
systems (28), (29). By Proposition 3.2 we deduce that there exists a ζ > 0 such that

(52) vj − vj−1 = ζ(zj+1 − zj−1) , for all j.
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This means that the pairs of triangles vj−1vjzj, zj+1zj−1zj are all similar with the same ratio
of similarity. Hence,

vj − zj = ζ(zj − zj−1) ,

vj − zj+1 = ζ(zj+1 − zj+2) .

Therefore the triangles vjzj+1zj, vjzj+2zj−1 are also similar and

(53) zj+2 − zj−1 = (1 + ζ)(zj+1 − zj) , for all j.

Such a condition is just like (51) and the same argument of the previous proof implies that P
is an affinely regular polygon. ¤

Theorems 1.6 and 1.7 were the last ingredients in the proof of Theorem 1.8, whose quanti-
tative form is the following.

Theorem 4.1. Let P ∈ Pn, n ≥ 5, then

(54) min
j=1,...,n

|Tj(P )| ≤ |P | 2 sin2 π/n

n cos 2π/n
,

(55) min
j=1,...,n

|Wj(P )| ≤ |P |4 sin2(π/n)

n
,

and equality holds if and only if P is an affinely regular n-gon.

Notice that (54) implies the inequality [16, Lemma 3].

5. Extensions and affine length

Let C be a planar convex body, and let γ be a connected closed proper subset of ∂C,
i.e., a closed arc with endpoints a and b. Define C(γ) as the intersection of all half-planes
supporting C at boundary points in ∂C \ γ. The boundary of C(γ) is obtained by extending
∂C \ γ with the continuations of the half-lines tangent in a and b at ∂C \ γ. Consider the
region I(C, γ) = C(γ) \ C and the area ratio |I(C, γ)|/|C|. Now let Γ be a finite family of
connected closed subsets γi of ∂C with disjoint empty interior:

Γ = {γ1, . . . , γn : γi ⊂ ∂C, int(γi) ∩ int(γj) = ∅ for i 6= j, i, j = 1, . . . , n} .

Define

(56) G(C, Γ) = min
j=1,...,n

|I(C, γj)|
|C| .

Denoting by #Γ the number of elements of Γ, we define

(57) Gn(C) = max
#Γ=n

G(C, Γ).

Theorem 5.1. For n > 4 and for any planar convex body C we have

(58) Gn(C) ≤ max
P∈Pn

G(P ) .

Equality holds if and only if C is an affinely regular n-gon.
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Proof. Let C be a planar convex body and let Γ be a finite family of arcs γi on ∂C with
endpoints ai, bi. We can consider families of arcs which partition ∂C, i.e., such that ai+1 = bi

for all i. This can be proved by taking a partition Γ? with arcs γ?
i so that γi ⊂ γ?

i . Since
I(C, γi) ⊂ I(C, γ?

i ) we have G(C, Γ) ≤ G(C, Γ?).
Let P be the convex polygon whose vertices are the endpoints ai, bi of the arcs γi of Γ.

Clearly, P ⊂ C and P has exactly n edges. Moreover, if Ti(P ) is the outer triangle defined in
the introduction corresponding to the edge with vertices ai, bi, then I(C, γi) ⊂ Ti(P ), and

G(C, Γ) ≤ G(P ) .

This immediately yields (58) and the equality conditions. ¤
Corollary 5.2. Let K and K ′ be two planar convex bodies such that their symmetric difference
has n > 4 connected components C1, . . . , Cn. Then

(59) min
i=1,...,n

|Ci| ≤ |K ∩K ′|max
P∈Pn

G(P ) .

Equality holds if and only if K ∩K ′ is an affinely regular polygon with n = 2m edges and, up
to an affine transformation, K and K ′ are two congruent regular m-gons, and K ′ is K rotated
by π/m about its center.

Proof. We consider the family Γ of the closed arcs

γi = ∂Ci ∩ ∂(K ∩K ′) .

Since

|Ci| ≤ |I(K ∩K ′, γi)| ,
we can apply the previous theorem to C = K ∩ K ′. Equality holds if and only if C is an
affinely regular 2m-gon and so K and K ′ have to be affinely regular m-gons. ¤

We present another possible extension of the previous area functionals. Let C be a convex
body. Let D be a convex body containing C and such that D \ C consists of at least m
connected components D1, . . . , Dm. Let

Hm(C, D) = min
i=1,...,m

|Di| .

Arguing as above, when we look for the maximizers of Hm(C, D)|C|−1 it is easy to see that one
can assume that C and D are m-gons. The number #(D \C) of the connected components of
D \ C is m, and hence the edges of D support C at its vertices. We get the following result.

Theorem 5.3. For m ≥ 3 and for any two planar convex bodies C, D with C ⊂ D, #(D\C) =
m, we have

(60)
Hm(C,D)

|C| ≤ 1

m
tan2 π

m
.

Equality holds if and only if C, D are affinely regular m-gons and the vertices of C are the
midpoints of the edges of S.
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Proof. Standard compactness arguments show that Hm(C, D)|C|−1 has a maximum. As al-
ready stated in advance, we can assume that such a maximum is attained when C and D are
two m-gons P and S, P ⊂ S. Let zj be the vertices of P and vj the vertices of S labeled so
that zj belongs to the segment vjvj−1.

First we prove that all triangles Sj with vertices zj, vj, zj+1 have equal area. Indeed, if
|Si| > minj=1,...,m |Sj|, then a small counterclockwise rotation of the side of S through zi

around zi decreases the area of Si and increases the area of Si−1. Possible iterations of this
procedure to different edges of S would permit to increase the value of our functional. The
assumption on the maximality of the pair (P, S) implies

(61) |Si| = |Si−1| ,
Arguing as in the proof of Proposition 2.4, we consider the Lagrange multipliers system

relative to |P | as a function of zj, vj, under the constraints |Sj| ≥ const, zj ∈ vj−1vj. De-
note by µj the parameters corresponding to the constraints |Sj| ≥ const, and by νj the one
corresponding to det(zj − vj−1, zj − vj) = Ai = 0. Hence, we obtain the system

∂|P |
∂zj

=
m∑

i=1

µi
∂|Si|
∂zj

+
m∑

i=1

νi
∂Ai

∂zj

for j = 1, . . . , n .

0 =
∂|P |
∂vj

=
m∑

i=1

µi
∂|Si|
∂vj

+
m∑

i=1

νi
∂Ai

∂vj

for j = 1, . . . , n .

Since we are looking for minimizers of |P | with unilateral constraints |Sj| ≥ const, we have

(62) µj ≥ 0 for j = 1, . . . , n .

Taking into account the results in Section 2 we get:

(63) (zj−1 − zj+1) = µj−1(vj−1 − zj−1) + µj(zj+1 − vj) + νj(vj−1 − vj),

(64) 0 = µj(zj − zj+1) + νj(zj − vj−1) + νj+1(vj+1 − zj+1).

The constrain Ai = 0 can be written as zj = vj−1 + ρj(vj − vj−1), where the variables ρj

satisfy 0 < ρj < 1. Consequently,

|Sj| = |(zj+1 − vj) ∧ (zj − vj)| = ρj+1(1− ρj)|Uj| ,
where Uj denotes the triangle vj−1vjvj+1. Identity (61) yields

(65) ρj+1(1− ρj)|Uj| = ρj(1− ρj−1)|Uj−1|.
Equations (63) and (64) become

(66) (1 + µj−1)(1− ρj−1)(vj−2 − vj−1) + (1 + µj)ρj+1(vj − vj+1) + (vj−1 − vj)(1− νj) = 0

(67) 0 = (vj − vj−1)(ρj(µj + νj)− µj) + (vj+1 − vj)(−ρj+1(µj + νj+1) + νj+1).

Since (vj − vj−1) and (vj+1 − vj) are linearly independent, we obtain

(68) µj(1− ρj) = ρjνj,
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(69) µjρj+1 = (1− ρj+1)νj+1.

Taking the cross product of (66) with the vector (vj − vj−1) yields

(1 + µj−1)(1− ρj−1)Uj−1 − (1 + µj)ρj+1Uj = 0 .

By means of (65) the latter reduces to

(70) (1 + µj)ρj = (1 + µj−1)(1− ρj).

The systems (68), (69), (70) are 3n real equations in 3n real unknowns µj, ρj, νj. From the
first two equations we get

(71) µj(1− ρj)
2 = µj−1ρ

2
j .

A comparison with (70) implies

(72) (1 + µj)
2µj = (1 + µj−1)

2µj−1 .

Since the function y = (1 + x)2x is injective for y > 0, inequality (62) implies that µj = µ,
for all j.

From (70) we deduce ρj = 1/2 and then, from (68), that νj = µ, for all j. Hence, equation
(66) gives

(1 + µ)vj−2 − 2µvj−1 + 2µvj − (1 + µ)vj+1 = 0 ,

which implies that vj−2vj+1 is parallel to vj−1vj and their ratio is independent of j.
As in the proof of Theorem 1.6(see (51)), we deduce that S is affinely regular. ¤
Given a planar convex body K and a natural number n ≥ 3, we denote by P i

n(K) and
Pc

n(K) the class of n-gons inscribed in K or containing K, respectively. For any n distinct
points zi ∈ ∂K we consider the polygon P = conv{z1, . . . , zn} ∈ P i

n(K) and lines si supporting
K at the vertices zi of P . Let Si(K) be the triangle bounded by the lines si−1, si and the
side at zi−1zi, and S be the polygon bounded by the lines si. Hence, S is a n-gon in Pc

n(K).
This is equivalent to choosing two n-gons P , S, with P ∈ P i

n(K), S ∈ Pc
n(K)∩Pc

n(P ). In this
case, for brevity, we say that the pair (P, S) belongs to P i,c

n (K). Define

ALn(K) = 2n max{ min
j=1,...,n

|Sj(K)| 13 : (P, S) ∈ P i,c
n (K)} .

Since n ≥ 3, ALn(K) is finite for every K. The symbol we chose to denote these functionals
is justified by some properties listed below, which present ALn as a discretization of the affine
length of the boundary of K. Recalling the functional Hn(P, S) introduced above, we have

ALn(K) = 2n max{Hn(P, S)
1
3 : (P, S) ∈ P i,c

n (K)} .

As in the proof of Theorem 5.3 it turns out that the previous maximum is attained when
all the Si(K) have the same area. In the sequel we denote by En the class of pairs of n-gons
with the property that all the Si(K) have equal area.

Proposition 5.4. For every planar convex body K and n ≥ 3,

ALn(K) = 2n max{Hn(P, S)
1
3 : (P, S) ∈ P i,c

n (K) ∩ En} .



AFFINELY REGULAR POLYGONS AS EXTREMALS OF AREA FUNCTIONALS 21

Proof. Clearly, |Sj(K)| is a continuous function of zi and si for all i and j. If zi moves towards
zi+1, then |Si+1(P )| decreases and |Si(P )| increases, unless one or both of them remain equal
to zero. Furthermore, if si rotates around zi counterclockwise, then |Si+1(P )| decreases and
|Si(P )| increases. These facts easily imply that, if (P, S) does not belong to En, then we can
move the supporting lines si together with the points zi increasing all |Sj(K)|. ¤

By Proposition 5.4 the functional ALn is then related to the arithmetic average of the cubic
root of |Sj(K)|, i.e.,

ALn(K) = 2 max
(P,S)∈Pi,c

n (K)∩En

n∑
j=1

|Sj(K)| 13 .

This further clarifies the connection with the affine length of K, Ω1(K), as defined, for
example, by Ludwig in [17, Section 3]. There Ludwig proved that all upper (or lower) semi-
continuous and equi-affine invariant valuations on the space of planar compact convex sets
(endowed with the Hausdorff metric) are linear combinations of three basic valuations: the
Euler characteristic, the area, and the affine length.

Such a characterization is the main ingredient in the proof of the following.

Proposition 5.5. If K is a planar convex body, then

inf
n∈N

ALn(K) = Ω1(K) .

We notice that ALn(K) = 0 when K is a polygon with less than n vertices. Moreover, these
are the only convex sets where ALn vanishes.

Proof. Set AL(K) = infn ALn(K). Since the functionals ALn are continuous and equi-affine
invariant, it is easy to verify that AL is equi-affine invariant and upper semicontinuous. Fol-
lowing the arguments used by Ludwig in [17, Theorem 2], it can be proved that AL is a
valuation, i.e.,

AL(H ∪K) + AL(H ∩K) = AL(H) + AL(K) ,

for every pair of convex bodies such that H ∪K is convex. By [17, Theorem 1], it follows that
AL is a linear combination of the affine length, the area, and the Euler characteristic. Since
ALn(P ) vanishes when P is a polygon with less than n vertices, AL has to be a multiple of
the affine length. A simple calculation of AL at the unit disc yields the result. ¤

We present now some straightforward consequences of Theorem 5.3.

Theorem 5.6. If K is a planar convex body and n ≥ 3, then

ALn(K) ≤ 2
(
n tan

π

n

) 2
3

max
P∈Pi

n(K)
|P | 13 ,

and equality holds if and only if exists an affinely regular n-gon of maximal area in P i
n(K).

Corollary 5.7. If K is a planar convex body and n ≥ 3, then

ALn(K) ≤ 2
(
n tan

π

n

) 2
3 |K| 13 ,
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and equality holds if and only if K is an affinely regular n-gon.

Corollary 5.7 and Proposition 5.5 yield the affine isoperimetric inequality

Ω1(K) ≤ 2π
2
3 |K| 13 ,

without the equality conditions, which are known to characterize ellipses. Notice that equal-
ity in the formula of Theorem 5.6 implies that K has at least n points of intersection with a
suitable ellipse, and so its Hausdorff distance from that ellipse decreases as n increases.

It is well known that the affine length of a planar convex body K is strictly related to the
approximation of K by polygons. We refer the interested reader to [8] for an extensive review.
Theorems 5.6 implies that, for any planar convex body K and n ≥ 3, there exists a polygon
P ∈ P i

n(K) such that

|P | ≥ ALn(K)3

8n2 tan2(π
n
)
.

Proposition 5.5 permits to replace ALn(K) with Ω1(K) in the previous inequality. This yields
a sharp lower bound for the approximation of K with polygons from P i

n(K), which follows
also from the affine isoperimetric inequality and a result of Blaschke (see [8, Section 4]).

6. Applications to tomography

The following basic example is shown in [7]. Consider a regular n-gon Q centered at a fixed
point o, and its rotation Q′ by π/n about o. The convex hull of Q and Q′ is a 2n-gon; let θ be
a direction parallel to one of its edges. It is easy to see that Q and Q′ have the same parallel
X-rays in the direction θ, i.e., any line lθ parallel to θ intersects Q in a segment (possibly
empty), which has the same length as the intersection of lθ with Q′. Note that this property
is affinely invariant. This example arises in many papers, mainly related to Geometric and
Discrete Tomography. We refer the interested reader to [6] and [12].

To clarify the connection of the previous sections with tomography we need to give a more
precise definition of an X-ray.

Given a direction θ, the line through o orthogonal to θ is denoted by θ⊥. Given a convex
body H consider the intersection of H with any line lθ parallel to θ through a point p on
θ⊥. The one-dimensional measure of this intersection, as a function of p, is called the parallel
X-ray of H in the direction θ.

The above example of Q and Q′ can be interpreted in the following way: There exist two
convex bodies having the same X-rays in n mutually non-parallel directions, namely with
respect to directions parallel to n consecutive edges of the convex hull of Q and Q′. Since this
is invariant under affine transformations, a more general family of such situations can occur.
Gardner and McMullen [5] prove that convex bodies are determined by X-rays taken in any set
of directions that is not a subset of the directions of the edges of an affinely regular polygon.
This result gives a solution to the problem of the unique determination for the X-ray problem
proposed by Hammer [9]: How many parallel X-ray pictures of a convex body must be taken
in order to permit its exact reconstruction?.
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In fact, for example, any set of four directions whose slopes have a transcendental cross ratio
solves Hammer’s problem. Hammer’s problem can be seen as a particular case of the more
general inverse problem of reconstruction of a homogeneous planar body from tomographic
data. Volčič shows in [19] that the reconstruction of H is well posed when the set of directions
guarantees uniqueness. Roughly speaking, if we know all the X-rays of H in such directions,
and these X-rays contain errors ε as small as we want, then the corresponding reconstructions
Hε converge to H when ε goes to zero. Consider the case when a finite number n of X-rays
of H are exactly known, but the directions are determined up to an error δ. The error δ has
to be small enough to distinguish the given n directions among them. For any positive δ, we
cannot distinguish the set S of the given directions from the sets of non-uniqueness in the
Gardner-McMullen theorem. Therefore, the results of well-posedness proved by Volčič [19]
can not be used. However, in [13] the following result is proved:

(73) |K 4K ′| ≤ l2(8n)−1 tan
π

n
,

where l is the length of the boundary of K ∩ K ′ and K 4 K ′ is the symmetric difference.
Inequality (73) can be seen as a stability result and is optimal not only in the order but also
in the constant, since equality holds if and only if the n directions, K and K ′ are chosen as
in the example at the beginning of this section. Inequality (73) is not affine invariant, while
Hammer’s problem is. An affine-invariant inequality in which l2 is replaced by |K ∩ K ′| is
proved in [14] for sets of three directions. The idea of the proof of (73) and in [14] is the
following:

Let R be a connected component of K4K ′. For every direction θ ∈ S, let θR be the
connected component of K4K ′ different from R with the same X-ray of R in the direction θ.
Let

W (R) =
⋃

h∈N, θij
∈S

θih · · · θi1R ,

be the system of components associated to R. In [13, Proposition 2] (see also [6, Lemma 1.2.6])
it is proved that W (R) consists of a finite number h of components and they are at least 2n.

Suppose that K4K ′ = W (R). Since all components in W (R) have the same area, Corollary
5.2 yields

|W (R)|
|K ∩K ′| ≤ h · max

P∈Ph

G(P ) .

From (54) we obtain the explicit bound 2 sin2(π/h)/cos(2π/h), a decreasing function of h.
Since h ≥ 2n we get the following result.

Theorem 6.1. If K and K ′ are two planar convex bodies with the same X-rays in n different
directions (n ≥ 3), and such that

i) K4K ′ consists of a finite number of connected components of equal area, then

(74) |K 4K ′| ≤ |K ∩K ′|1− cos(π/n)

cos(π/n)
.
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Equality holds if and only if, up to an affine transformation, the directions are equally spaced,
K and K ′ are congruent regular n-gons, and K ′ is K rotated by π/n about its center.

We remark that (74) is stronger than (73), via the classical isoperimetric inequality for
n-gons.

The stability estimate can also be improved using more information about the set of direc-
tions, in case the error δ on the directions θi is small enough. This result and the extension
to the general case, without assumption i) will be presented in a forthcoming paper by Dulio,
Longinetti and Peri.
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