
ON PROJECTION BODIES OF ORDER ONE

STEFANO CAMPI AND PAOLO GRONCHI

Abstract. The projection body of order one Π1K of a convex body K in Rn is the body
whose support function is, up to a constant, the average mean width of the orthogonal pro-
jections of K onto hyperplanes through the origin.

The paper contains an inequality for the support function of Π1K, which implies in partic-
ular that such a function is strictly convex, unless K is one or two dimensional. Furthermore,
an existence problem related to the reconstruction of a convex body is discussed to highlight
the different behavior of the area measures of order one and of order n− 1.

1. Introduction

This paper investigates some properties of projection bodies of order one. Projection bodies
are special sets which play an important role in convex geometry. We refer to Schneider’s
treatise [11] for information about this area.

By a convex body we mean here a compact convex subset of Rn. The support function of
a convex body K is defined by

hK(x) = max
y∈K

〈x, y〉 , for x ∈ Rn ,

where 〈·, ·〉 denotes the standard scalar product in Rn. Note that hK is positively homogeneous
and so it is determined everywhere by its values on the unit sphere Sn−1 of Rn.

By definition, the Minkowski sum of two convex bodies K and L is the convex body K + L
such that

hK+L(x) = hK(x) + hL(x) .

In particular, the difference body DK of K is the Minkowski sum of K and its reflection
−K in the origin. Clearly DK is origin symmetric.

The intrinsic volumes are quantities naturally associated to a given convex body which can
be introduced in different ways. For instance (see [11], p. 210 and p. 295), the ith intrinsic
volume of K in Rn, 0 ≤ i ≤ n, is defined by

Vi(K) =

(
n

i

)
κn

κiκn−i

∫

G(n,i)

λi(K|S) dS ,

where κi denotes the volume of the unit ball in Ri, λi the i-dimensional Lebesgue measure
in Ri, G(n, i) the Grassmann manifold of i-dimensional subspaces of Rn, K|S the orthogonal
projection of K onto S and integration is with respect to the Haar probability measure.
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Special cases are Vn, which is the standard volume, Vn−1, one half of the surface area, and V1,
the mean width, up to the constant nκn/2κn−1.

For every convex body K the ith intrinsic volume of the projection of K in the direction u
turns out to be the support function of a convex body. The projection body ΠiK of order i
of K is just the body defined by

(1) hΠiK(x) =
‖x‖κn−1−i(

n− 1
i

) Vi(K|x⊥) ,

where ‖ ·‖ denotes the usual norm in Rn and x⊥ the hyperplane through the origin orthogonal
to x. For fixed i, to every convex body K is associated a Borel measure Si(K; ·) on Sn−1, the
ith order area measure of K, such that, for x ∈ Sn−1,

(2) Vi(K|x⊥) =

(
n−1

i

)

2κn−1−i

∫

Sn−1

|〈x, z〉| dSi(K; z)

(see [11], p. 210 and p. 421). In the case of a smooth convex body K, the measure Si(K; ·) is
absolutely continuous with respect to Hausdorff measure and its density is the ith normalized
elementary symmetric function of the radii of curvature of ∂K (see [11], Sect. 5.3).

Combining (1) and (2) yields

(3) hΠiK(x) =
1

2

∫

Sn−1

|〈x, z〉| dSi(K; z) ,

which says that hΠiK is the cosine transform of the measure Si(K; ·) (see, for instance, [8],
p. 97 and [11], p. 421).

The class of projection bodies of order n− 1 has been widely investigated and it is closely
related to the class of zonoids, which are limits, in the Hausdorff metric, of sequences of
zonotopes, i.e. of finite Minkowski sums of segments (for a survey on this topic we refer to
[12]). Precisely, every projection body of order n − 1 is a zonoid. The converse is true when
the zonoid is full dimensional.

Every projection body of order i is a zonoid, but nontrivial characterizations are not avail-
able when i < n− 1.

The interest in projection bodies was renewed by recent applications in Geometric Tomog-
raphy. For exhaustive and updated information on this subject, see Gardner’s book [6].

In this paper (Theorem 2.1) we provide a necessary condition for a function to be the
support function of a projection body of order one.

By definition of V1 and (1), the support function of Π1K can be expressed as

(4) hΠ1K(x) =
‖x‖

(n− 1)

∫

Sn−1∩x⊥

hK(z) dz ,
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which implies the following linearity property:

(5) Π1(K + L) = Π1K + Π1L .

By (4), hΠ1K can be seen as the spherical Radon transform of hK (see, for instance, [8]
p. 98). Since Π1K = Π1(−K), equality (5) implies that 2Π1K = Π1(DK). Therefore, every
projection body of order one comes from an origin-symmetric convex body. In what follows
we shall restrict the discussion to the class of origin-symmetric bodies.

For n = 2, Π1K is nothing but a rotated copy of the difference body DK and we shall not
deal with this case.

For n = 3, the integral in (4) is just the perimeter of the projection of K onto x⊥.
When K is a segment of Rn with length `, the corresponding Π1K is an (n−1)-dimensional

ball centered at the origin, with radius `κn−2/(n− 1), lying on the hyperplane orthogonal to
K. Indeed, Π1K inherits all symmetries of K and one projection of K reduces to a point,
whose first intrinsic volume trivially vanishes.

When K is a zonotope, by the linearity property (5), Π1K is a sum of (n− 1)-dimensional
balls.

This case provides a lot of examples of projection bodies of order one and suggests that in
general ∂Π1K has no singular points, and hence that the support function of Π1K is more
regular than that of an arbitrary zonoid.

This is just what we prove in Section 2, where we show that the support function of Π1K is
strictly convex (unless K is one or two dimensional). This result is achieved by an inequality
which in turn implies an estimate from below of quantities related to the radii of curvature of
∂Π1K in terms of some particular values of hK .

Section 3 is devoted to comparing the class of projection bodies of first order with that
of order n − 1, through the study of the existence of special convex bodies whose projection
bodies satisfy given conditions. To this end, let us consider the following general problem:
Problem 1.1. Find an origin-symmetric convex body K (or possibly an approximation of
K), given the ith intrinsic volumes of the orthogonal projections of K onto all (or possibly
some, respectively) hyperplanes.

First, let us assume that the data are available for all projections. Then, by (3), the even
part of the ith area measure can be recovered (see [8], Sect. 3.4).

The problem of existence and uniqueness of a convex body having a given ith area measure
is called the Minkowski problem of order i, for i 6= 1, and the Christoffel problem, for i = 1.
It is well known (see for instance [11], Corollary 7.2.5) that for every i, 1 ≤ i ≤ n − 1, the
solution is unique. As far as the existence is concerned, a necessary condition for a measure
µ to be the ith area measure of a convex body is

∫

Sn−1

z dµ(z) = 0 .

Such a condition is also sufficient only for i = n−1. In the case i = 1, necessary and sufficient
conditions were found by Firey [5] and Berg [1] (see also [11], Th. 4.3.4). Recently, Guan and
Ma [9] found sufficient conditions easy to handle for the area measure of every order.
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Let us assume now that the data are given only for finitely many hyperplanes, orthogonal to
the directions u1, u2, . . . , us, and consider the case of the brightness, i.e. of the (n− 1)-volume
of the projections. In [3] it is shown that among all convex bodies with the same brightness
as K along u1, u2, . . . , us, the element of maximal volume is a polytope. Furthermore, its area
measure is concentrated on the nodes of the given directions, where by node we mean here a
direction orthogonal to n− 1 of the uj’s.

The existence of such a polytope was used by Gardner and Milanfar [7] to develop an
algorithm for reconstructing arbitrarily close approximations to an origin-symmetric convex
body from finitely many (even noisy) values of its brightness function, thus solving completely
Problem 1.1 when i = n− 1.

We prove here that even in R3 the existence of a polytope P whose area measure is concen-
trated on the nodes of the uj’s and such that V1(P |u⊥j ) = V1(K|u⊥j ), for all j, is not guaranteed
for every K. This is done by a suitable choice of the set of directions, which leads to rephrasing
the existence problem in terms of an inequality for the support function of Π1K. It is worth
noting that such an inequality is of the same kind as that proved in Theorem 2.1, but it does
not hold for every K.

2. Strict convexity of hΠ1K

This section is devoted to showing that for every convex body K, the support function of the
projection body of the first order of K is strictly convex, unless K is one or two dimensional.

Theorem 2.1. Let K be a convex body in Rn, and let u1, u2 ∈ Sn−1, u1 6= u2. Then

(6) hΠ1K(u1) + hΠ1K(u2)− hΠ1K(u1 + u2) ≥ 2(2− ‖u1 + u2‖)(n− 3)!!

(n− 1)(n− 2)!!
I(K; u1, u2) ,

where

I(K; u1, u2) =

∫

Sn−1∩u⊥1 ∩u⊥2

hK(z)2

hK(v) +
√

hK(v)2 + hK(z)2
dz , v =

u1 − u2

‖u1 − u2‖ .

Proof. The proof is based on formula (4). By taking into account the homogeneity of hK ,
the integration is performed on a suitable linear subspace and the result follows using the
convexity of hK .

Choose a Cartesian coordinate system so that u1 = (cos θ, sin θ, 0, . . . , 0) and u2 = (cos θ,− sin θ, 0, . . . , 0),
θ ∈ (0, π/2). We introduce suitable polar coordinates ϕ1 ∈ [0, 2π), ϕ2, ϕ3, . . . , ϕn−1 ∈
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[−π/2, π/2], so that

(7)





x1 = cos ϕn−1 cos ϕn−2 · · · cos ϕ2 cos ϕ1

x2 = cos ϕn−1 cos ϕn−2 · · · cos ϕ2 sin ϕ1

x3 = cos ϕn−1 cos ϕn−2 · · · cos ϕ3 sin ϕ2
...

...
xk = cos ϕn−1 · · · cos ϕk sin ϕk−1
...

...
xn = sin ϕn−1

and new variables y2, y3, . . . , yn−1 defined by

(8)





y2 = tan ϕ2

cos θ

y3 = tan ϕ3

cos θ cos ϕ2

y4 = tan ϕ4

cos θ cos ϕ2 cos ϕ3

...
...

yn−1 = tan ϕn−1

cos θ cos ϕ2··· cos ϕn−2

.

If we denote by
∣∣∣ ∂xi

∂ϕj

∣∣∣ and
∣∣∣∂ϕi

∂yj

∣∣∣ the determinant, in absolute value, of the Jacobian matrix of

the above changes of variables, respectively, then we can write

hΠ1K(u1) =
2

n− 1

∫

[−π
2
, π
2
]n−2

hK

(
x(θ +

π

2
, ϕ2, . . . , ϕn−1)

) ∣∣∣∣
∂xi

∂ϕj

∣∣∣∣ dϕ2 · · · dϕn−1

=
2

n− 1

∫

Rn−2

hK (− tan θ, 1, y2, y3, . . . , yn−1) cos θ cos ϕ2 · · · cos ϕn−1

∣∣∣∣
∂xi

∂ϕj

∣∣∣∣
∣∣∣∣
∂ϕi

∂yj

∣∣∣∣ dy2 · · · dyn−1

=
2

n− 1

∫

Rn−2

hK (− tan θ, 1, y2, y3, . . . , yn−1)
cosn−1 θ

[
1 + cos2 θ

n−1∑
k=2

y2
k

]n
2

dy2 · · · dyn−1 ,

where x = (x1, x2, . . . , xn) and we make use of (7), (8), as well as the homogeneity of hK and
the assumption hK(z) = hK(−z).
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An analogous expression holds for hΠ1K(u2). For hΠ1K(u1 + u2), by (4) again, we get

hΠ1K(u1 + u2) =
2‖u1 + u2‖

n− 1

∫

[−π
2
, π
2
]n−2

hK

(
x(

π

2
, ϕ2, . . . , ϕn−1)

) ∣∣∣∣
∂xi

∂ϕi

∣∣∣∣ dϕ2 · · · dϕn−1

=
4 cos θ

n− 1

∫

Rn−2

hK

(
0,

1

cos θ
, y2, y3, . . . , yn−1

)
cos θ cos ϕ2 · · · cos ϕn−1

∣∣∣∣
∂xi

∂ϕi

∣∣∣∣
∣∣∣∣
∂ϕi

∂yi

∣∣∣∣ dy2 · · · dyn−1

=
4

n− 1

∫

Rn−2

hK (0, 1, ȳ2, ȳ3, . . . , ȳn−1)
cos θ

[
1 +

n−1∑
k=2

ȳ2
k

]n
2

dȳ2 · · · dȳn−1 ,

where we performed the substitutions ȳi = yi cos θ, for i = 2, 3, . . . , n− 1.
The sublinearity of hK implies that

hK (− tan θ, 1, y2, y3, . . . , yn−1) + hK (tan θ, 1, y2, y3, . . . , yn−1) ≥ 2hK (0, 1, y2, y3, . . . , yn−1)

and so we obtain the inequality

hΠ1K(u1) + hΠ1K(u2)− hΠ1K(u1 + u2) ≥

4

n− 1

∫

Rn−2

hK (0, 1, y2, y3, . . . , yn−1)


 cosn−1 θ�

1+cos2 θ
n−1P
k=2

y2
k

�n
2
− cos θ�

1+
n−1P
k=2

y2
k

�n
2


 dy2 · · · dyn−1 .

Now, we introduce polar coordinates r ∈ R and z ∈ Sn−3 in the (n− 2)-dimensional subspace
where the integration is made and denote hK(0, 1, y2(r, z), . . . , yn−1(r, z)) by HK(r, z) so that
the last inequality can be rewritten as

hΠ1K(u1) + hΠ1K(u2)− hΠ1K(u1 + u2) ≥
4 cos θ

n− 1

∫

Sn−3

∞∫

0

HK(r, z)
(

cosn−2 θ

[1+r2 cos2 θ]
n
2
− 1

[1+r2]
n
2

)
rn−3 dr dz .

As a convex function of r, for every z ∈ Sn−3, ∂HK(r,z)
∂r

exists almost everywhere. Since

d
dr

(
rn−2

(n−2)(1+r2)
n−2

2

)
= rn−3

(1+r2)
n
2

and d
dr

(
rn−2

(n−2)(1+r2 cos2 θ)
n−2

2

)
= rn−3

(1+r2 cos2 θ)
n
2
, integration by parts

yields

hΠ1K(u1) + hΠ1K(u2)− hΠ1K(u1 + u2) ≥
4 cos θ

n− 1

∫

Sn−3

[
HK(r, z)

rn−2

n− 2

(
cosn−2 θ

[1+r2 cos2 θ]
n−2

2
− 1

[1+r2]
n−2

2

)]∞

0

dz

−4 cos θ

n− 1

∫

Sn−3

∞∫

0

∂ HK(r, z)

∂r

rn−2

n− 2

(
cosn−2 θ

[1+r2 cos2 θ]
n−2

2
− 1

[1+r2]
n−2

2

)
dr dz .
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Note that HK(r, z)/
√

1 + r2 is the value of the support function hK at a point of the unit
sphere and so the first integral in the above formula vanishes, since

lim
r→+∞

rn−2 cosn−2 θ
√

1 + r2

[1 + r2 cos2 θ]
n−2

2

− rn−2

[1 + r2]
n−3

2

= 0 .

In order to estimate the second integral we first note that the integrand is nonnegative. By the

definition of HK , ∂ HK(r,z)
∂r

is the derivative of hK at the point x = (0, 1, y2(r, z), . . . , yn−1(r, z))
in the direction z and then (see [11], Th. 1.7.2) it is the value of the support function at z of
the support set of K with exterior normal vector x/‖x‖. Hence, by considering the projection
of K onto the two dimensional plane spanned by z and v = u1−u2

‖u1−u2‖ = (0, 1, 0, . . . , 0), we obtain

(9)
∂ HK(r, z)

∂r
≥ hK(z)− hK(v)

r
,

for all r ≥ r0(z) = hK(v)
hK(z)

, where, for simplicity, by identifying Sn−3 with Sn−1 ∩ u⊥1 ∩ u⊥2 , we

wrote z instead of (0, 0, y2(1, z), . . . , yn−1(1, z)).
By (9) we obtain

hΠ1K(u1) + hΠ1K(u2)− hΠ1K(u1 + u2) ≥
4 cos θ

(n− 1)(n− 2)

∫

Sn−3

HK(1, z)

∞∫

r0(z)

(1− r0(z)

r
)

((
r√

1+r2

)n−2

−
(

r cos θ√
1+r2 cos2 θ

)n−2
)

dr dz .

It is not difficult to verify that

∫
rn−3

(1 + r2)
n−2

2

dr =





ln(r +
√

1 + r2)−
n−5

2∑
k=0

r2k+1

(2k+1)(1+r2)
2k+1

2
for n odd

ln(
√

1 + r2)−
n−4

2∑
k=1

r2k

2k(1+r2)k for n even

∫
rn−2

(1 + r2)
n−2

2

dr =





(n−3)!!
(n−4)!!

√
1 + r2 − 1

n−1

n−3
2∑

k=1

(n−1)(n−3)...(2k+2) r2k

(n−4)(n−6)...(2k−1)(1+r2)
2k−1

2
for n odd

(n−3)!!
(n−4)!!

(r − arctan r)− 1
n−1

n−4
2∑

k=1

(n−1)(n−3)...(2k+3) r2k+1

(n−4)(n−6)...2k (1+r2)k for n even .

These formulas allow to rewrite the above inequality as follows:

hΠ1K(u1) + hΠ1K(u2)− hΠ1K(u1 + u2) ≥
4 cos θ

(n− 1)(n− 2)

∫

Sn−3

HK(1, z)
[
F ( 1

cos θ
)− F (1)

]
dz ,
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where

F (x) =
(n− 3)!!

(n− 4)!!

√
x2 + r0(z)2−r0(z) ln(r0(z)+

√
x2 + r0(z)2)+

n−5
2∑

k=1

(1− λk)r0(z)2k

(2k − 1)(x2 + r0(z)2)
2k−1

2

,

for n odd, with λk = (n−3)(n−5)...(2k+2)
(n−4)(n−6)...(2k+1)

and

F (x) =
(n− 3)!!

(n− 4)!!

[
π

2
x− x arctan

r0(z)

x

]
− r0(z)

2
ln(x2 + r0(z)2) +

n−6
2∑

k=1

(1− µk)r0(z)2k+1

2k(x2 + r0(z)2)k
,

for n even, with µk = (n−3)(n−5)...(2k+3)
(n−4)(n−6)...(2k+2)

.

Note that λk and µk are not smaller than 1, for every k.
If n is odd, then simple computations give

F ′(x) ≥ x√
x2 + r0(z)2

[
(n− 3)!!

(n− 4)!!
− r0(z)

r0(z) +
√

x2 + r0(z)2

]
.

Since the right-hand side above is an increasing function with respect to x, by the mean value
theorem, we have that

hΠ1K(u1) + hΠ1K(u2)− hΠ1K(u1 + u2) ≥
4(n− 3)!!

(n− 1)(n− 2)!!
(1− cos θ)

∫

Sn−3

hK(z)2

hK(v)+
√

hK(v)2+hK(z)2
dz ,

which is nothing but inequality (6).
If n is even, then, for x ≥ 1,

F ′(x) ≥ (n− 3)!!

(n− 4)!!
(
π

2
− arctan r0(z)) ≥ (n− 3)!!

(n− 4)!!

1

r0(z) +
√

1 + r0(z)2
,

where we used inequalities arctan 1
x
≥ 1√

1+x2 ≥ 1
x+
√

1+x2 . Hence, (6) holds in the even case,

too. ¤

Corollary 2.2. If dim K > 2, then the body Π1K has no singular points.

We recall that a singular point of a convex body is a boundary point where the normal cone
has dimension greater than one (see [11], p. 73).

Proof. Assume that Π1K has a singular point p and let u1, u2 be two distinct directions
belonging to the normal cone of Π1K at p. This implies that the left-hand side in (6) vanishes
and consequently the same happens for I(K; u1, u2). By the continuity of hK we deduce that
such a function must vanish everywhere in u⊥1 ∩ u⊥2 .

Hence, K lies in the plane spanned by u1 and u2. ¤
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Recall that the projection body of order one of a segment is an (n − 1)-dimensional ball
centered at the origin.

If K is two dimensional, then DK is a zonoid and Π1K is a sum (or a limit of sums) of
(n − 1)-dimensional balls. Furthermore, the section of Π1K with the two dimensional plane
containing DK is similar to DK.

In particular, by Corollary 2.2 and the above remarks about special cases, we conclude
that Π1K has no point with an n-dimensional normal cone, shortly, has no vertex. As Rolf
Schneider pointed out to the authors, the same conclusion can be obtained by the following
alternative argument. If Π1K has a vertex, then the first order area measure of K vanishes
on a neighborhood of some equator (see [10], Lemma 6.1). This contradicts the result proved
by Fedotov [4], stating that the support of the first order area measure of an n-dimensional
convex body is arcwise connected if n > 2 (see also [11], Note 7.1.6).

Fix a point p on the boundary of Π1K and denote by n(p) the outward unit normal vector
to ∂Π1K at p. For any v orthogonal to n(p), we denote by α(p; v) the two dimensional plane
through p spanned by n(p) and v. We define r(p; v) as the radius of curvature of the projection
of Π1K onto α(p; v) at p, if it exists.

Corollary 2.3. If dim K > 2, then

r(p; v) ≥ 2(n− 3)!!

(n− 1)(n− 2)!!

∫

Sn−1∩n(p)⊥∩v⊥

hK(z)2

hK(n(p)) +
√

hK(n(p))2 + hK(z)2
dz .

Proof. The statement is a straightforward consequence of (6), by taking into account that

r(p; v) = lim
ε→0

hΠ1K(n(p) + εv) + hΠ1K(n(p)− εv)− 2hΠ1K(n(p))

ε2
,

which can be deduced, for example, from formula (2), p. 71, in [2]. ¤

Note that if dim K > 2, then the support of the area measure S1(Π1K; ·) coincides with
Sn−1. Indeed, if Π1K is C2

+, then, for every open subset ω of Sn−1, S1(Π1K; ω) is the integral
over ω of the arithmetic mean of the principal radii of curvature (see formula (4.2.20) in [11]).
Hence, S1(Π1K; ω) = 0 implies that every radius of curvature at every point with normal in
ω is zero. This contradicts Corollary 2.3. If Π1K is not C2

+, then an approximation argument
based on Weil’s result in [13] (see also [11], p. 119) leads to the same conclusion.

3. An existence problem

In this section we deal with a version of Problem 1.1 when the data are available only for
finitely many hyperplanes. The aim is to show that some existence results obtained in [3] for
the (n− 1)th area measure are not reproducible for the one of the first order.

In particular, the results contained in [3] imply that, for arbitrary fixed directions u1,
u2, . . . , us, v ∈ S2, with uj ∈ v⊥, j = 1, 2, . . . , s, and convex body K ⊂ R3, there exists
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a convex origin-symmetric prism P , such that each facet is parallel to two directions from
u1, u2, . . . us, v, and

V2(P |v⊥) = V2(K|v⊥) ,

V2(P |u⊥j ) = V2(K|u⊥j ) , for j = 1, 2, . . . , s .

By a limit process we obtain that, for every convex body K and direction v, there exists a
convex origin-symmetric cylinder C, with axis parallel to v, such that

V2(C|v⊥) = V2(K|v⊥) ,

V2(C|u⊥) = V2(K|u⊥) , for every u ∈ v⊥ .

We now consider the case i = 1 and show that, for n = 3, the existence of a convex
origin-symmetric cylinder C, whose axis is parallel to v, such that

V1(C|v⊥) = V1(K|v⊥) ,(10)

V1(C|u⊥) = V1(K|u⊥) , for every u ∈ v⊥ ,(11)

is not guaranteed, i.e. may depend on K and v.
Assume C = av + L, where a is a positive number and L is a two dimensional origin-

symmetric convex body contained in v⊥. Conditions (10) and (11) can be written as

(12)
1

2

∫

S2∩v⊥

hL(u) du = hΠ1K(v)

and

(13) a + 2hL(u) = hΠ1K(u× v) ,

for every u ∈ S2 ∩ v⊥, where × stands for the standard cross product. By integrating (13)
with respect to u and using (12) we obtain

(14) a =
1

2π

∫

S2∩v⊥

hΠ1K(u) du− 2

π
hΠ1K(v)

and

(15) hL(u) =
1

2
hΠ1K(u× v)− 1

4π

∫

S2∩v⊥

hΠ1K(z) dz +
1

π
hΠ1K(v) .

Note that for every convex body K, the right-hand side in (14) is nonnegative. Indeed,
K|u⊥ is inscribed in a rectangle with edge lengths 2hK(v) and 2hK(u×v) and so its perimeter
is not less than twice the length of one of the edges. Therefore,

∫

S2∩v⊥

hΠ1K(u) du ≥ 2

∫

S2∩v⊥

hK(u× v) du = 4hΠ1K(v) .



ON PROJECTION BODIES OF ORDER ONE 11

On the other hand, the perimeter of K|u⊥ does not exceed that of the rectangle. Consequently,
the right-hand side in (15) is nonnegative too. Indeed,∫

S2∩v⊥

hΠ1K(u) du ≤ 2

∫

S2∩v⊥

hK(u× v) du + 4πhK(v) ≤ 4hΠ1K(v) + 2πhΠ1K(u× v) .

Nevertheless, it turns out that there are convex bodies K for which the function hL in (15),
extended everywhere in Rn−1 as a positively homogeneous function, is not a support function.
To see this, we take the segment K whose endpoints are −w and w, where w = (0, cos ϕ, sin ϕ),
and show that hL is not convex for suitable ϕ ∈ [0, π/2]. Indeed the quantity

(16) hL(1/
√

2, 1/
√

2, 0) + hL(1/
√

2,−1/
√

2, 0)− 2hL(1/
√

2, 0, 0)

assumes negative values for ϕ close to 0. Since hΠ1K(x) = 2‖x×w‖, by (15) the quantity (16)
can be explicitly written as

F (ϕ) =
√

2

[√
2− cos2 ϕ− 1−

√
2− 1

2π

(∫ 2π

0

√
1− cos2 ϕ sin2 θ dθ − 4 cos ϕ

)]

and it is easy to verify that F (0) = 0 and F ′(ϕ) is negative for sufficiently small positive
values of ϕ.

The freedom in the choice of ϕ provides many different segments such that F is negative
and so the corresponding function hL is not convex. The linearity of Π1 with respect to
Minkowski addition implies that sums of such segments give rise to a function hL such that
(16) is negative. In other words, one can construct zonotopes for which no cylinder satisfying
(10) and (11) exists.

This conclusion implies also that there are directions u1, u2, . . . us, v, with uj ∈ v⊥, j =
1, 2, . . . , s, and convex bodies K such that no convex origin-symmetric prism P exists, with
each facet parallel to two of the chosen directions, satisfying

V1(P |u⊥) = V1(K|u⊥) , for every u ∈ {u1, u2, . . . , us, v} .

As a final remark, we want to emphasize that the convexity of hL in (15) is equivalent to
the following inequality:

(17)
hΠ1K(u1) + hΠ1K(u2)− hΠ1K(u1 + u2)

2− ‖u1 + u2‖ ≥ 1

2π

∫

S2∩v⊥

hΠ1K(z) dz − 2

π
hΠ1K(v) ,

for every u1, u2 ∈ S2 ∩ v⊥, u1 6= u2. Inequality (17) is of the same kind as (6), which turns
out to hold for every convex body.
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