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Abstract. The classical Minkowski sum of convex sets is defined by the sum of the corre-
sponding support functions. The Lp-extension of such a definition makes use of the sum of
the p-th power of the support functions. An Lp-zonotope Zp is the p-sum of finitely many
segments and is isometric to the unit ball of a subspace of ℓq, where 1

p
+ 1

q
= 1.

In this paper we give a sharp upper estimate of the volume of Zp in terms of the volume
of Z1, as well as a sharp lower estimate of the volume of the polar of Zp in terms of the same
quantity.

In particular, for p = 1, the latter result provides a new approach to Reisner’s inequality
for the Mahler conjecture in the class of zonoids.

1. Introduction

A zonotope is a convex polytope of R
d defined as the vector sum of a finite number of seg-

ments. The simplest zonotope is a parallelotope, the sum of d affinely independent segments,
that is an affine image of a d-cube. Conversely, by increasing the number of segments, zono-
topes can approximate the unit ball of R

d. A set which is a limit, in the Hausdorff metric, of
a sequence of zonotopes is called a zonoid. Zonoids play a basic role in the Brunn-Minkowski
theory of convex bodies and appear in different contexts of the mathematical literature. We
refer to [20] for an exhaustive review on this topic.

Note that the class of centrally symmetric convex sets and the one of zonoids coincide only
in dimension two.

A well known problem, which is solved in the class of zonoids but not for general convex
bodies, is the Mahler conjecture.

Given a convex body K in R
d, that is a d-dimensional compact convex set, if the origin is

an interior point of K, then the polar body K∗ of K is

K∗ = {x ∈ R
d|〈x, y〉 ≤ 1,∀y ∈ K} ,

where 〈· , ·〉 is the usual scalar product in R
d. Obviously (K∗)∗ = K.

The analytical link between K and K∗ is given by

hK(u) =
1

ρK∗(u)
, ∀u ∈ R

d ,

where
hK(u) = max

x∈K
〈u, x〉, ∀u ∈ R

d

To Rolf, with gratitude.
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is the support function of K and

ρK(u) = max{r ∈ R : ru ∈ K} ,∀u ∈ R
d

is the radial function of K.
If K is an origin-symmetric convex body, then the linear invariant product of volumes

V (K)V (K∗)

is called the volume product of K.
While the Blaschke-Santaló inequality characterizes ellipsoids as the only maximizers, Mahler

[13] conjectured that parallelotopes and their polars are minimizers of the volume product.
The conjecture is proved only for d = 2 (see Mahler [14] and Reisner [17]). Reisner [16],

[17] proved that the conjecture is true in the restricted class of zonoids. For a simpler proof
see the paper by Gordon, Meyer and Reisner [7].

For a general convex body K, the volume product is defined as the minimum, for x ∈ K,
of V (K)V ((K − x)∗). In this case Mahler conjectured that simplices are the only minimizers.
The characterization of simplices, or parallelotopes in the symmetric cases, as extremal bodies
of classic functionals is a central problem in convex geometry.

For more details and results related to Mahler’s problem, see [8], [15], [2], [4], [1].
In this paper we deal with classes of sets which are Lp-extensions of the one of zonotopes.

In recent years, many authors devoted their attention to the Lp-Brunn-Minkowski theory, as
a central part of convexity. For a detailed list of references on this subject, see, for instance,
[10]. On one hand, for many notions, the Lp-setting sounds as the natural one, as in the case
of the Lp-analogs of centroid bodies, projection bodies, and curvatures. On the other hand,
the Lp-theory represents a useful bridge between geometric and analytic inequalities. This is
the case, for example, of affine isoperimetric inequalities and Sobolev type inequalities. At
this regard, see [9], [12].

For p ≥ 1, an Lp-zonotope is the Firey p-sum of a finite number of segments. Precisely, the
function

hp(u) =

[

s
∑

i=1

|〈u, vi〉|
p

]1/p

, for u ∈ R
d

is the support function of a convex set Zp, which is the p-sum of the segments [−vi, vi],
i = 1, 2, . . . , s.

The notion of Lp-zonoid was already introduced in [20] by Schneider and Weil. Note that L2-
zonoids are ellipsoids, which are related to the Legendre ellipsoid of the given set of segments.
Moreover, Lp-zonoids (or Lp-zonotopes) are, up to isometry, unit balls of finite dimensional
subspaces of Lq (or ℓq, respectively), where q = p−1

p
. In [10], Lutwak, Yang and Zhang find

sharp upper and lower estimates for the volume of Zp and Z∗
p , under the assumption that the

set of segments is isotropic, that is Z2 is the unit ball of R
d. Actually, they deal with Lp-

zonoids, defined through integrals with respect to even not necessarily discrete measures, and
prove that extremals occur for the uniformly distributed measure on the unit sphere and for
the atomic measure concentrated on the vectors of an orthonormal basis and their opposite.
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Here, we deal with the same problem under a different constraint. Namely, we consider the
linearly invariant functionals

V (Z1)

V (Zp)
and V (Z∗

p)V (Z1) ,

where V stands for d-dimensional volume, and we prove that their minimum is attained when
Z1 is a parallelotope (Theorems 4.3 and 4.4).

As noted in Section 2, for p > 1, both functionals are not bounded from above. When
p = 1, the second functional is nothing but the volume product, and then Reisner’s theorem
is a special case of Theorem 4.4.

When p tends to infinity, Zp tends to the convex hull of the segments [−vi, vi], and Theorems
4.3 and 4.4 are still valid. Lutwak, Yang and Zhang recently showed in [11] that, in the case
of isotropic measures on the unit sphere with their centroid at the origin, the regular simplex
of R

d minimizes the volume of Z∞ and maximizes the volume of Z∗
∞.

The technique we use for proving our results is based on a method introduced by Rogers
and Shephard in [18]. This method consists in moving each point of a set with a constant in
time speed, parallel to a fixed direction. Here, we are able to find a movement keeping fixed
the volume of Z1. Under such a movement, by using previous results proved by the authors
in [3], [4], it turns out that each functional we are dealing with is the reciprocal of a convex
in time function.

2. Lp-zonotopes and their volume

Given a finite set Λ = {v1, v2, . . . , vs} of vectors spanning R
d and p ≥ 1, the function

(1) hp(u; Λ) =

[

s
∑

i=1

|〈u, vi〉|
p

]1/p

, for u ∈ R
d ,

is the support function of a convex body in R
d, that we shall denote by Zp(Λ) and call the

Lp-zonotope of the given set of vectors.
If p = 1, then (1) defines the support function of the Minkowski sum of the segments

[−vi, vi], a polytope known in the literature as the zonotope generated by those segments (see
for example [19], p. 182). For p > 1, Zp(Λ) is the Firey p-sum of the same segments (see [6]).
We recall that the support function of the Firey p-sum of two convex sets A and B is defined
by

h
p
A+pB(x) = h

p
A(x) + h

p
B(x) .

If p tends to infinity, then Zp(Λ) tends to Z∞(Λ), the convex hull of Λ and its reflection
about the origin. As usual, the distance in the space of convex sets is given by the Hausdorff
metric. To measure the distance between finite sets of vectors, we choose the product of the
standard metric in R

d.
Note that, for any p, the map Λ → Zp(Λ) is continuous. The same map is not injective.

In the sequel we shall consider only sets not containing parallel vectors. When a set contains
two vectors vi, vj = λvi, we replace them with (1 + |λ|)vi. This rule creates discontinuities for
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the map Λ → Zp(Λ), when p 6= 1. Nevertheless, this map is semicontinuous in the following
sense:

lim
n→∞

Zp(Λn) ⊂ Zp( lim
n→∞

Λn) .

If ϕ : R
d → R

d is a one-to-one linear map, then

Zp(ϕΛ) = ϕZp(Λ) .

Indeed,

hp
p(u; ϕΛ) =

s
∑

i=1

|〈u, ϕvi〉|
p =

s
∑

i=1

|〈ϕT u, vi〉|
p = hp

p(ϕ
T u; Λ) ,

where ϕT denotes the transpose of ϕ.
We are interested in the functionals

V (Z1(Λ))

V (Zp(Λ))
and V (Z∗

p(Λ))V (Z1(Λ)) ,

where Z∗
p(Λ) is the polar body of Zp(Λ) and Λ varies in the class of all finite sets of vectors

spanning R
d.

Both functionals are invariant under linear transformations.
Clearly, for p = 1, the first functional is constant, and the second one is the volume product

of Z1.
For p > 1, we observe that both functionals have no maximum. To see this, let us fix

an integer k and consider a set Ω of kd pairwise not parallel vectors wi,j from R
d of the

form wi,j = ei

k
+ εj, where E = {e1, e2, . . . , ed} is an orthonormal basis and ‖εj‖ ≤ 1

k2 , for
j = 1, 2, . . . , k.

Thus,

(2) h1(u; Ω) =
d

∑

i=1

k
∑

j=1

|〈u,wi,j〉| ≥
d

∑

i=1

|〈u, ei〉| −
d

k
‖u‖ = h1(u; E) −

d

k
‖u‖ .

On the other hand,

hp
p(u; Ω) =

d
∑

i=1

k
∑

j=1

|〈u,wi,j〉|
p ≤

d
∑

i=1

2p−1

(

|〈u, ei〉|
p

kp−1
+

‖u‖p

k2p−1

)

(3)

=

(

2

k

)p−1 (

hp
p(u; E) +

d

kp
‖u‖p

)

.

Estimate (2) implies that V (Z1(Ω)) tends to 2d as k tends to infinity, while (3) implies that
V (Zp(Ω)) tends to 0 and V (Z∗

p(Ω)) tends to infinity.
The problem of finding the minimum of each functional is studied in Section 4.
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3. Reduction of zonotopes

In this section we present special continuous transformations of zonotopes, that keep un-
changed the volume and simplify the structure. In such a reduction process, each point moves
with constant speed, parallel to a fixed direction. Thus, according to a definition by Rogers
and Shephard [18], [21], we are using a shadow system, and we can profit of the relevant
properties.

Precisely, a shadow system Xt of points (vectors) from R
d is a family of sets, which can be

represented as follows:

Xt = {xi + taiv}i∈I ,

where t ∈ [t0, t1], xi, v ∈ R
d, ai ∈ R, and I is an arbitrary set of indices. Here, t can be seen

as a time-like parameter and, consequently, the number ai as the speed of the point xi along
the direction v. By definition, shadow systems of convex bodies are convex hulls of shadow
systems of points.

Let Λ = {v1, v2, . . . , vs} be a finite set of vectors spanning R
d, with s > d. Assume that

v2, v3, . . . , vs span R
d and define Λt = {w1, w2, . . . , ws}, where

(4)

{

w1 = (1 + at)v1

wi = vi − tv1
〈v1,vi〉
‖v1‖2 .

Here, a is a positive parameter to be chosen later and t varies in [− 1
a
, 1]. Clearly Λ0 = Λ.

First, we note that Z1(Λt) is a shadow system of convex sets. Indeed, Z1(Λt) is the
Minkowski sum of segments and each of them is a shadow system (see [5], Lemma 1).

At the endpoints of the movement, the zonotope Z1(Λ− 1

a
) is the sum of s − 1 segments,

while Z1(Λ1) is a cylinder, the sum of s− 1 segments orthogonal to v1 and a segment parallel
to v1. Recall that, in case Λ1 contains parallel vectors, we replace them with a parallel vector
whose length is the sum of their lengths. We continue to denote by Λ1 this possible new set.

Let us consider now the volume of Z1(Λt). The formula for the volume of a zonotope (see
[19], p.297) yields

(5) V (Z1(Λt)) = 2d
∑

1≤i1<···<id≤s

|[wi1 , wi2 , . . . , wid ]| ,

where [wi1 , wi2 , . . . , wid ] denotes the determinant of the matrix whose rows are wi1 , wi2 , . . . ,
wid . Therefore, by (4), the volume of Z1(Λt) is a second degree polynomial in t. Actually, the
coefficient of t2 vanishes, since each determinant containing t2 comes from a matrix with two
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rows multiple of v1. So we have,

2−dV (Z1(Λt)) =
∑

2≤i2<···<id≤s

|[w1, wi2 , . . . , wid ]| +
∑

2≤i1<···<id≤s

|[wi1 , wi2 , . . . , wid ]|

= |1 + at|
∑

2≤i2<···<id≤s

|[v1, vi2 , . . . , vid ]| +

+
∑

2≤i1<···<id≤s

|[vi1 , vi2 , . . . , vid ] −
t

‖v1‖2

d
∑

j=1

〈v1, vij〉[vi1 , . . . , vij−1
, v1, vij+1

, . . . , vid ]| .

Let us focus our attention on the last term. Linear algebra gives

d
∑

j=1

〈v1, vij〉[vi1 , . . . , vij−1
, v1, vij+1

, . . . , vid ] = 〈v1,

d
∑

j=1

vij [vi1 , . . . , vij−1
, v1, vij+1

, . . . , vid ]〉

= 〈v1, v1[vi1 , vi2 , . . . , vid ]〉 .

Therefore,

2−dV (Z1(Λt)) = |1 + at|
∑

2≤i2<···<id≤s

|[v1, vi2 , . . . , vid ]| + |1 − t|
∑

2≤i1<···<id≤s

|[vi1 , vi2 , . . . , vid ]| .

Now, let us choose

a =

∑

2≤i1<···<id≤s

|[vi1 , vi2 , . . . , vid ]|

∑

2≤i2<···<id≤s

|[v1, vi2 , . . . , vid ]|
.

It follows that

V (Z1(Λt)) = V (Z1(Λ)) , for every t ∈ [−
1

a
, 1] .

Our choice of the parameter a has a geometric meaning. Namely, one can check that

a + 1 =
V (Z1(Λ))

‖v1‖V (Z1(Λ)|v⊥
1 )

,

where V (Z1(Λ)|v⊥
1 ) denotes the (d − 1)-volume of the orthogonal projection of Z1(Λ) onto a

hyperplane orthogonal to v1.
The above process can be applied to every zonotope which is not an affine image of a d-cube.

By performing finitely many times the process to each of the zonotopes corresponding to the
endpoints of the movement, we arrive at an affine image of a d-cube. Actually, Λ1 may have
the same number of vectors as Λ. Nevertheless, after at most d steps, the number of vectors
is surely reduced.
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4. Main results

We have already seen that, if Λt is a shadow system of vectors, then Z1(Λt) is a shadow
system of convex sets. We want to show that the same holds for Zp(Λt), p > 1.

To do this we need a characterization of shadow systems proved in [3] (Lemma 3.1), that
we restate here for completeness.

Proposition 4.1. Let Ht, t ∈ [t0, t1], be a one-parameter family of convex bodies such that
Ht|v

⊥ is independent of t. Assume the bodies Ht are defined by

Ht = {x + yv : x ∈ Ht|v
⊥, y ∈ R, ft(x) ≤ y ≤ gt(x)} , ∀t ∈ [t0, t1] ,

for suitable functions gt, ft. Then Ht, t ∈ [t0, t1], is a shadow system of convex sets along the
direction v if and only if for every x ∈ Ht|v

⊥,
(i) gt(x) and −ft(x) are convex functions of the parameter t in [t0, t1],
(ii) fλr+(1−λ)s(x) ≤ λgr(x) + (1 − λ)fs(x) ≤ gλr+(1−λ)s(x), for every r, s ∈ [t0, t1], λ ∈ [0, 1].

The following theorem is a discrete version of Theorem 2.1 in [3].

Theorem 4.2. If Λt, t ∈ [t0, t1], is a shadow system of vectors along the direction v and
1 ≤ p ≤ ∞, then Zp(Λt) is a shadow system of convex bodies along the same direction.

Proof. Each vector of Λt has constant speed. Let ai be the speed of vi. By (1), for every
u ∈ R

d, we have

(6) hp(u; Λt) =

[

s
∑

i=1

|〈u, vi + taiv〉|
p

]1/p

= ‖〈u, vi〉 + tai〈u, v〉‖p ,

where we used the usual shortening for ℓp norms. The Minkowski inequality for p-norms yields
that hp(u; Λt), as a function of t, is convex, for every u ∈ R

d. Moreover, hp(u; Λt) is a Lipschitz
function of t, with Lipschitz constant ‖〈u, v〉ai‖p, for every u ∈ R

d.
Since the orthogonal projection of Zp(Λt) onto v⊥ is independent of t, it is sufficient to show

that the family Zp(Λt) satisfies conditions (i) and (ii) of Proposition 4.1.
As Zp(Λt) is origin symmetric, for every t ∈ [t0, t1], it can be represented by

Zp(Λt) = {x + yv : x ∈ (Zp(Λt0))|v
⊥,−gt(−x) ≤ y ≤ gt(x)} ,

where gt is a suitable concave function defined on (Zp(Λt0))|v
⊥.

Since z ∈ Zp(Λt) if and only if 〈z, u〉 ≤ hp(u; Λt), for every u ∈ R
d, we can write

gt(x) = sup{λ ∈ R : 〈x + λv, u〉 ≤ hp(u; Λt), ∀u ∈ R
d}(7)

= sup{λ ∈ R : λ〈v, u〉 ≤ hp(u; Λt) − 〈x, u〉, ∀u ∈ R
d} ,

for every x ∈ (Zp(Λt0))|v
⊥.

Scalar products and support functions are homogeneous functions of degree 1. Thus in (7)
we have to consider only the vectors u such that |〈u, v〉| = 1. Furthermore, the vectors u with



8 STEFANO CAMPI AND PAOLO GRONCHI

a non-positive scalar product with v provide no bounds for λ. Therefore we get

gt(x) = sup{λ ∈ R : λ ≤ hp(w + v; Λt) − 〈x,w + v〉 , ∀w ∈ v⊥}(8)

= inf
w∈v⊥

{hp(w + v; Λt) − 〈x,w〉} .

Notice that gt(x) is in fact the minimum, as w ∈ v⊥, of {hp(w + v; Λt) − 〈x,w〉}, unless x

belongs to the boundary of (Zp(Λt0))|v
⊥. The minimum is attained when w + v is directed as

a normal vector to Zp(Λt) at x + gt(x)v.
As an infimum of equi-Lipschitz functions of t, gt(x) is a Lipschitz function of t, and it is

convex if

2g t1+t2
2

(x) ≤ gt1(x) + gt2(x)

holds for every t1, t2 in its range. By (8) we can write

2g t1+t2
2

(x) = inf
u∈v⊥

{‖〈2u + 2v, vi〉 + ai(t1 + t2)‖p − 〈x, 2u〉}

= inf
u1,u2∈v⊥

{‖〈u1 + u2 + 2v, vi〉 + ai(t1 + t2)‖p − 〈x, u1 + u2〉}

≤ inf
u1,u2∈v⊥

{‖〈u1 + v, vi〉 + ait1‖p + ‖〈u2 + v, vi〉 + ait2‖p − 〈x, u1〉 − 〈x, u2〉}

= inf
u1∈v⊥

{‖〈u1 + v, vi〉 + ait1‖p − 〈x, u1〉} + inf
u2∈v⊥

{‖〈u2 + v, vi〉 + ait2‖p − 〈x, u2〉}

= gt1(x) + gt2(x) ,

where we again used the Minkowski inequality for p-norms. Hence condition (i) is verified.
Let us now turn to (ii). It is enough to prove the first inequality; the second will follow by

interchanging r with s, λ with 1 − λ, and x with −x. We can write

(1 − λ)gs(x) = inf
u∈v⊥

{‖(1 − λ)〈u + v, vi〉 + ai(1 − λ)s‖p − 〈x, (1 − λ)u〉}

= inf
u1,u2∈v⊥

{‖〈u2 − λu1 + v − λv, vi〉 + ai[(1 − λ)s + λr − λr]‖p

−〈x, u2 − λu1〉}

≤ inf
u1,u2∈v⊥

{‖〈u2 + v, vi〉 + ai[λr + (1 − λ)s]‖p +

‖〈−λu1 − λv, vi〉 − aiλr‖p − 〈x, u2 − λu1〉}

= inf
u1∈v⊥

{λ‖〈u1 + v, vi〉 + air‖p + λ〈x, u1〉} +

inf
u2∈v⊥

{‖〈u2 + v, vi〉 + ai[λr + (1 − λ)s]‖p − 〈x, u2〉}

= λgr(−x) + gλr+(1−λ)s(x) .

This concludes the proof. Note that the case p = ∞ is trivial, according to the definition of
shadow system of convex bodies. �

We are able now to prove the following theorem.
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Theorem 4.3. Let 1 < p ≤ ∞. For every finite set Λ of vectors spanning R
d,

V (Z1(Λ))

V (Zp(Λ))
≥

V (Z1(E))

V (Zp(E))
,

where E is an orthonormal basis of R
d.

Proof. Let Λ = {v1, v2, . . . , vs} be a finite set of vectors spanning R
d with s > d. Assume that

v2, v3, . . . , vs span R
d and define the shadow system Λt as in (4). By Theorem 4.2, Zp(Λt) is

a shadow system. Rogers and Shephard proved in [18] that the volume of a shadow system
of convex sets is a convex function of t. Therefore, since the volume of Z1(Λt) is constant

along the process, the function V (Z1(Λt))
V (Zp(Λt))

attains in [− 1
a
, 1] its minimum value at one of the

endpoints.
As shown in Section 3, such a procedure can be iterated finitely many times up to obtaining

a parallelotope. �

Theorem 4.4. Let 1 ≤ p ≤ ∞. For every finite set Λ of vectors spanning R
d,

V (Z1(Λ))V (Z∗
p(Λ)) ≥ V (Z1(E))V (Z∗

p(E)) ,

where E is an orthonormal basis of R
d.

Proof. Let us consider Λ and Λt as in the previous proof. As shown by the authors in [4]
(Theorem 1), if Kt is a shadow system of origin symmetric convex bodies, then the volume
of (Kt)

∗ is the reciprocal of a convex function of t. Therefore, it turns out that the function
[V (Z1(Λt))V (Z∗

p(Λt))]
−1 is a convex function, too. The same argument as in the previous

theorem concludes the proof. �

References

[1] K. Ball, Mahler’s conjecture and wavelets, Discrete Comput. Geom. 13, 3-4 (1995), 271–277.
[2] J. Bourgain and V. Milman, New volume ratio properties for convex symmetric bodies in R

n, Invent.
Math. 88 (1987), 319–340.

[3] S. Campi and P. Gronchi, The Lp-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), 128–141.
[4] S. Campi and P. Gronchi, On volume product inequalities for convex sets, to appear on Proceedings of

the AMS.
[5] S. Campi and P. Gronchi, Extremal convex sets for Sylvester-Busemann type functionals, Appl. Anal.

85 (2006), 129–141.
[6] W. J. Firey, p-means of convex bodies, Math. Scand. 10 (1962), 17–24.
[7] Y. Gordon, M. Meyer and S. Reisner, Zonoids with minimal volume-product – A new proof, Proc. AMS

104 (1988), 273–276.
[8] E. Lutwak, Selected affine isoperimetric inequalities, in Handbook of Convex Geometry (eds. P. M. Gruber

and J. M. Wills), North-Holland, Amsterdam, 1993, 151–176.
[9] E. Lutwak, D. Yang and G. Zhang, Lp affine isoperimetric inequalities, J. Differential Geom. 56 (2000),

111–132.
[10] E. Lutwak, D. Yang and G. Zhang, Volume inequalities for subspaces of Lp, J. Differential Geom. 68

(2004), 159–184.
[11] E. Lutwak, D. Yang and G. Zhang, Volume inequalities for isotropic measures, preprint (2005).



10 STEFANO CAMPI AND PAOLO GRONCHI

[12] E. Lutwak, D. Yang and G. Zhang, Optimal Sobolev norms and the Lp-Minkowski problem, preprint
(2005).
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