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Abstract.
The volume of the polar body of a symmetric convex set K of Rd is investigated.

It is shown that its reciprocal is a convex function of the time t along movements, in
which every point of K moves with constant speed parallel to a fixed direction.

This result is applied to find reverse forms of the Lp-Blaschke-Santaló inequality
for two-dimensional convex sets.

1. Introduction.
Let K be a convex body in Rd, that is a d-dimensional compact convex set, and

assume that the origin is an interior point of K.
The support function of the convex body K is defined as

hK(u) = max
x∈K

〈u, x〉, ∀u ∈ Rd ,

where 〈· , ·〉 is the usual scalar product in Rd, and the radial function of K as

ρK(u) = max{r ∈ R : ru ∈ K} , ∀u ∈ Rd .

The d-dimensional volume V (K) of K can be expressed in terms of the radial
function by

V (K) =
1
d

∫

Sd−1
ρd

K(z) dz ,

where Sd−1 is the unit sphere in Rd.
In this paper, we are interested in the volume of the polar body of K and, in

particular, in its behavior under special continuous transformations of K.
The polar body K∗ of K can be defined as

K∗ = {x ∈ Rd|〈x, y〉 ≤ 1, ∀y ∈ K} .

Notice that the polar body of K strongly depends on the location of the origin. It
follows from the definition that (K∗)∗ = K and that

ρK∗(u) =
1

hK(u)
, ∀u ∈ Rd .

If K is an origin symmetric convex body, then the product

V (K)V (K∗)
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is called the volume product of K and it is invariant under linear transformations.
For a general convex body K, the volume product is defined as the minimum, for

x ∈ K, of V (K)V ((K − x)∗). The unique point where such a minimum is attained
is called the Santaló point of K. More precisely, the quantity V ((K−x)∗)−

1
d turns

out to be a strictly concave function of x, as shown by A. D. Aleksandrov in [A2]. In
that paper, the volume product and other averages of powers of support functions
are studied, in connection with estimates of solutions of the Dirichlet problem for
elliptic partial differential equations (see also [A1]). Volume product inequalities
are also used by Talenti [T] for the Monge-Ampére equation.

One of the main questions still open in convex geometry is the problem of finding
a sharp lower estimate for the volume product of a convex body (see the survey
article [L]).

A sharp upper estimate of the volume product is given by the Blaschke-Santaló
inequality: For every convex body K in Rd

(1) V (K)V (K∗) ≤ κ2
d ,

where κd is the volume of the unit ball in Rd. Equality holds if and only if K is an
ellipsoid centered at the origin (see again [L]).

A sharpening of this inequality was proved by Meyer and Pajor [MP]. It says
that for every convex body K and every affine hyperplane H dividing K into K+

and K− (both of non zero volume) there exists a point z from the relative interior
of K ∩H such that

4V (K+)V (K−)V ((K − z)∗)
V (K)

≤ κ2
d .

It was conjectured by Mahler [Ma1] that the minimum of the volume product is
attained when K is a simplex, that is

(2) V (K)V (K∗) ≥ (d + 1)d+1

(d!)2
.

In 1939, Mahler [Ma2] proved that (2) holds if d = 2 and, in 1991, Meyer [Me]
showed that equality occurs only for triangles.

For centrally symmetric convex bodies the inequality

(3) V (K)V (K∗) ≥ 4d

d!

is a conjecture as well, where the value on the right-hand side is the volume
product of a d-parallelotope. It was proved in dimension two by Mahler [Ma2].
Reisner [Re2] showed that parallelograms are the only minimizers, for d = 2. Saint
Raymond [SR], for d > 3, exhibited convex bodies, different than parallelotopes
and their polar bodies, for which (3) is an equality. He also proved, for every d,
that (3) holds true for all the affine images of convex sets symmetric with respect
to the coordinate hyperplanes. Inequality (3) was proved by Reisner [Re1], [Re2]
for all zonoids. Such a class can be defined as the closure, in the Hausdorff metric,
of finite vector sums of segments. A simpler proof of Reisner’s result was given in
[GMR].
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Bourgain and Milman [BM] proved that there exists a constant c, not depending
on the dimension, such that

V (K)V (K∗) ≥ cdκ2
d .

In the present paper we shall consider movements of a given origin symmetric
convex body K, obtained by assigning to each point of K a speed, independent of
the time t, which is parallel to a fixed direction (see Section 2). Denoting by Kt

the convex hull of the resulting points at time t, we shall prove that V −1(K∗
t ) is a

convex function of t (Theorem 1), where K∗
t = (Kt)∗.

The main tool in the proof is the so-called Borell-Brascamp-Lieb inequality,
which deals with the p-means of functions and their integrals. Such an inequality is
an extension of the Prékopa-Leindler inequality and can be considered as an inverse
Hölder inequality. The importance of the Borell-Brascamp-Lieb inequality and its
links with other famous inequalities (e.g., the isoperimetric inequality) is widely
described in the survey article by Gardner [G2].

By using Theorem 1, one can rediscover, for origin symmetric convex bodies, the
Blaschke-Santaló inequality as well as Mahler’s inequality (3) in the two dimensional
case.

In Section 3 we apply Theorem 1 to the study of the functional

(4) V (Γ∗pK)V (K) ,

where ΓpK is the Lp-centroid body of K. We obtain an alternative proof of a result
by Lutwak and Zhang [LZ], stating that, in the class of all convex bodies of Rd,
the quantity (4) attains its maximum when K is an ellipsoid centered at the origin.
Such a result is called the Lp-Blaschke-Santaló inequality. This name comes from
the fact that, when K is origin symmetric and p goes to infinity, (4) tends to the
volume product.

We shall deal with the problem of obtaining reverse form of the Lp-Blaschke-
Santaló inequality and we solve it, for d = 2, by exploiting Theorem 1. Namely,
we are able to show that, among all convex figures containing the origin, (4) is
minimum when K is a triangle with a vertex at the origin (Theorem 3). Triangles
are still minimizers of (4) in the class of all convex bodies with their barycenter
at the origin (Theorem 4). Finally, if one takes the maximum value of (4) with
respect to all possible locations of K in the plane, then such a value is minimum
for triangles (Theorem 5).

The same results can be rephrased for parallelograms, instead of triangles, if we
restrict ourselves to the class of centrally symmetric convex figures.

2. Polar bodies and shadow systems: the main result.
A shadow system along the direction v ∈ Sd−1 is a family of convex sets Kt ⊂ Rd

that can be defined by

Kt = conv{x + α(x)t v : x ∈ A ⊂ Rd} ,

where conv stands for convex hull, A is an arbitrary bounded set of points, α is a
bounded function on A and t belongs to an interval of the real axis. The notion
of shadow system was introduced by Rogers and Shephard ([RS] and [Sh]), who
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proved the basic fact that the volume of Kt is a convex function of t. This result
is a powerful tool for obtaining geometric inequalities of isoperimetric type.

As suggested by Shephard in [Sh], a shadow system can be seen as the family of
projections of a (d + 1)-dimensional convex set. Namely, let e1, e2, . . . , ed+1 be an
orthonormal basis of Rd+1 and let K̃ be the (d + 1)-dimensional convex set defined
by

K̃ = conv{x + α(x)ed+1 : x ∈ A ⊂ e⊥d+1} ,

where e⊥d+1 = {w ∈ Rd+1 : 〈w, ed+1〉 = 0}.
The projections of K̃ onto a hyperplane orthogonal to ed+1 along the directions

ed+1 − t v are just the family Kt. This interpretation permits of finding that not
only the volume but also other geometric quantities are convex functions of the
parameter t of a shadow system. Indeed, projecting all the sets of a shadow system
onto a linear space along a fixed direction produces another shadow system. So,
for example, the brightness function of Kt is a convex function of t. Recall that
the brightness of a convex set, as a function of u ∈ Sd−1 is the (d− 1)-dimensional
volume of its orthogonal projection onto u⊥. Besides, by the Cauchy formula, the
surface area of a convex set is the average of its brightness function (see, for example
[Sc], p. 295). Therefore, the surface area of Kt is still a convex function with respect
to t. Analogously, by taking the projections of Kt onto lower dimensional linear
spaces, it turns out that all the so-called intrinsic volumes of Kt (see [Sc], p. 210)
are convex functions with respect to the parameter t.

The Steiner process of symmetrization can be seen as originated from a particular
shadow system. Indeed, if one moves each chord of K parallel to v so that, at t = 1,
such a chord is in the reflected position with respect to v⊥, then, at t = 1

2 , the
union of all the chords is nothing but the Steiner symmetral of K with respect to
v. Precisely, let K be represented by

K = {x + yv ∈ Rd : x ∈ K|v⊥, y ∈ R, f(x) ≤ y ≤ g(x)} ,

where ·|v⊥ denotes the orthogonal projection onto v⊥ and f and −g are convex
functions on K|v⊥. The shadow system along v, with speed α(x) = −f(x|v⊥) −
g(x|v⊥), is such that K1/2 coincides with the Steiner symmetral of K about v⊥.

A shadow system with a speed function constant on each chord parallel to the
direction of the movement is called a parallel chord movement.

A way of exploiting convexity is the one suggested by the following Shephard’s
argument, contained in [Sh]: If a functional defined in the class of all convex sets
is continuous, invariant under reflections and convex with respect to the parameter
t of any shadow system, then it attains its minimum at the ball among all sets of
given volume. Here the continuity refers to the Hausdorff metric.

This statement follows by the use of Steiner symmetrization. It is worth to
recall that such a symmetrization keeps the volume unchanged and leads, if suitably
repeated, to a ball.

Consequences of this procedure are classical isoperimetric type inequalities for
intrinsic volumes (see [BZ], p. 144, [G1], p. 372). Moreover, it was found out
that other functionals of geometric flavor enjoy the same convexity property under
shadow systems (see, for example, [Sh], [CCG], [CG1]).

Definition 1. Let p 6= 0. A nonnegative function f on Rd is called p-concave on
a convex set A if
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f((1− λ)x + λy) ≥ [(1− λ)f(x)p + λf(y)p]1/p

for all x, y ∈ A and 0 < λ < 1.

Notice that, when p < 0, f is p-concave if and only if fp is convex. The above
definition can be extended to the case p = 0 by continuity (see [G2]).

In what follows, we are interested in the behavior of integrals of a family of
p-concave functions, which can be deduced from the following result.

Borell-Brascamp-Lieb inequality. Let 0 < λ < 1, let −1/d ≤ p ≤ ∞, and let
f , g, and h be nonnegative integrable functions on Rd satisfying

h((1− λ)x + λy) ≥ [(1− λ)f(x)p + λg(y)p]1/p ,

for all x, y ∈ Rd. Then

∫

Rd

h(x) dx ≥
[
[(1− λ)

(∫

Rd

f(x) dx

)p/(dp+1)

+ λ

(∫

Rd

g(x) dx

)p/(dp+1)
](dp+1)/p

.

For an exhaustive description of references about the above result see again [G2].

Corollary. Let F (x, y) be a nonnegative p-concave function on Rn × Rm, p ≥
−1/n. If, for every y in Rm, the integral

∫

Rn

F (x, y) dx

exists, then it is a p
np+1 -concave function of y.

Proof. Take y0, y1 ∈ Rm and fix λ ∈ (0, 1). Let yλ = (1− λ)y0 + λy1, and

f(x) = F (x, y0) , g(x) = F (x, y1) , h(x) = F (x, yλ) .

For every x0, x1 ∈ Rn, we have that

hp((1− λ)x0 + λx1) = F p((1− λ)x0 + λx1, yλ) ≥ (1− λ)fp(x0) + λgp(x1) ,

where we used the p-concavity of F .
Thus the Borell-Brascamp-Lieb inequality leads to the conclusion. ¤
We are now ready to state and prove the following theorem.

Theorem 1. If Kt, t ∈ [0, 1], is a shadow system of origin symmetric convex bodies
in Rd, then V (K∗

t )−1 is a convex function of t.

Proof. Let Kt be a shadow system as in the statement. Therefore, there exists a
bounded function α on K0 such that

Kt = conv{x + α(x)t v : x ∈ K0} .

Let us introduce the (d + 1)-dimensional convex body

K̃ = conv{x + α(x)ed+1 : x ∈ K0} ,
5



so that Kt can be thought of as the projection along the direction ed+1 − tv of K̃
onto e⊥d+1.

There is a connection between the support functions hKt
, t ∈ [0, 1], and the

support function of K̃. Precisely, for u ∈ e⊥d+1,

hKt(u) = max
x∈Kt

〈u, x〉 = max
x∈K0

〈u, x + α(x)tv〉 .

Notice that 〈u, x + α(x)tv〉 = 〈u + t〈u, v〉ed+1, x + α(x)ed+1〉; moreover, as x runs
in K0, x + α(x)tv covers all the extreme points of K̃. Recall that an extreme point
of a convex set is a point which can not be expressed as convex linear combination
of two different points of the set. Hence,

(5) hKt(u) = max
y∈K̃

〈u + t〈u, v〉ed+1, y〉 = hK̃(u + t〈u, v〉ed+1) .

We know that

(6) V (K∗
t ) =

1
d

∫

Sd−1
h−d

Kt
(z) dz .

Let Dd−1 = {x ∈ v⊥ : ‖x‖ ≤ 1}; thus Sd−1
+ = {z ∈ Sd−1 : 〈z, v〉 ≥ 0} can be seen

as the graph of the function
√

1− ‖x‖2, x ∈ Dd−1. Consequently,

(7)
∫

Sd−1
h−d

Kt
(z) dz = 2

∫

Dd−1

h−d
Kt

(x +
√

1− ‖x‖2v)√
1− ‖x‖2 dx ,

where we took into account that Kt is origin symmetric.
By (5),

(8) hKt(x +
√

1− ‖x‖2v) = hK̃(x +
√

1− ‖x‖2v + t
√

1− ‖x‖2ed+1) .

Therefore, from (6), (7) and (8) we obtain that

V (K∗
t ) =

2
d

∫

Dd−1

h−d

K̃
( x√

1−‖x‖2 + v + ted+1)

(1− ‖x‖2) d+1
2

dx ,

where we used also the homogeneity of the support function.
Use the change of variables y = x√

1−‖x‖2 in the latter integral. It is easy to check

that the determinant of the Jacobian matrix of that map is just (1 − ‖x‖2)− d+1
2 .

We conclude that

V (K∗
t ) =

2
d

∫

Rd−1
h−d

K̃
(y + v + ted+1) dy .

The function hK̃ is convex in Rd+1, therefore, by the corollary of the Borell-
Brascamp-Lieb inequality, V (K∗

t ) is p-concave with p = −1/d
1−(d−1)/d = −1. ¤
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3. Consequences.
By Theorem 1, if we apply Shephard’s argument, quoted in the previous section,

to the reciprocal of the volume product, we immediately deduce the Blaschke-
Santaló inequality (1), for origin symmetric convex bodies.

A different argument, that we shall use explicitly in the proof of Theorem 3,
leads to the Mahler’s inequality (3), for plane convex figures.

Both the above results can be seen as special instances of a more general class
of inequalities, which involve the Lp-centroid body of a body K.

For each real number p ≥ 1, the Lp- centroid body ΓpK of K is the convex body
with support function

(9) hΓpK(u) =
{

1
cd,pV (K)

∫

K

|〈u, z〉|p dz

} 1
p

, u ∈ Rd ,

where
cd,p =

κd+p

κ2κdκp−1

and
κr = π

r
2 /Γ(1 +

r

2
) .

Notice that κd is the volume of the unit ball Bd of Rd and the constant cd,p is such
that ΓpB

d = Bd, for every d and p.
This definition is due to Lutwak and Zhang [LZ] and extends to p > 1 the

concept of centroid body, corresponding to p = 1. For p = 2, formula (9) gives, up
to a constant, the Legendre ellipsoid of K. If one defines Γ∞K as the limit of ΓpK
when p →∞, then Γ∞K = conv(K ∪ (−K)).

Inequalities involving the volume of ΓpK can be found in [LZ], [LYZ], [CG1] and
[CG2]. Here we are interested in the functional (4), with p ≥ 1, and we set for
simplicity

Gp(K) = V (Γ∗pK)V (K) .

It is easy to check that Gp is continuous and invariant under reflection about
hyperplanes through the origin. Moreover, for every linear map L, Γp(LK) = LΓpK
(see, e.g., [CG2]).

In [LZ] it is shown that the maximum of Gp(K) is attained if and only if K is an
origin symmetric ellipsoid. For p = ∞, this yields the Blaschke-Santaló inequality
(1) for centrally symmetric convex bodies.

The ”if” part of the Lutwak-Zhang result can be now deduced also from Shep-
hard’s argument and the following theorem.

Theorem 2. If Kt, t ∈ [0, 1] is a parallel chord movement, then V (Γ∗pKt)−1 is a
convex function of t.

Theorem 2 is a consequence of Theorem 1 and the following one, proved in [CG1].

If Kt, t ∈ [0, 1] is a parallel chord movement along the direction v, then ΓpKt is a
shadow system along the same direction v.

Let us deal now with the problem of finding lower bounds for Gp. Clearly, the
functional Gp(K) tends to zero as K moves away from the origin. So, natural ways
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for posing the problem is to restrict ourselves to convex bodies containing the origin
or to bodies with their barycenter at the origin or else to consider the functional

Mp(K) = max
x∈Rd

Gp(K − x) .

Notice that Gp(K − x)−1 is a convex function of x, by Theorem 2.
In all these three cases, the Lutwak-Zhang inequality implies that the maximum

is attained only at ellipsoids centered at the origin.
The search of minimizers, for d = 2, is guided by Theorem 2, through a method

already used by the authors in [CG2].

Theorem 3. For d = 2, the minimum of Gp(K) in the class of all convex bodies
containing the origin is attained if K is a triangle with one vertex at the origin.

Proof. Let P be a polygon with n vertices, n > 3. Since we are interested in
minimizers of Gp, we can assume that the origin is at one of the vertices of P .
Take three consecutive vertices v1, v2, v3, different from the origin. Denote by u a
direction of the line through v1 and v3 and consider the following shadow system.
Assign speed u to v2 and 0 to the other vertices and consider the resulting shadow
system Pt, where t ∈ [t0, t1], which is the largest interval such that the area of Pt is
constant for all t ∈ [t0, t1]. Notice that Pt, t ∈ [t0, t1] is a parallel chord movement
such that only the triangle v1v2v3 moves and then the origin remains in Pt, for all
t. Moreover, P0 = P , and Pt0 and Pt1 have exactly n− 1 vertices.

By Theorem 2,
Gp(P ) ≥ min{Gp(Pt0), Gp(Pt1)} .

If n > 4, iterations of this argument lead to the conclusion that

Gp(P ) ≥ Gp(T ) ,

where T is a triangle with one vertex at the origin. The linear invariance of Gp

ensures that Gp(T ) attains the same value whichever triangle, with a vertex at the
origin, we consider. By the continuity of Gp, an approximation argument ends the
proof. ¤
Theorem 4. For d = 2, the minimum of Gp(K) in the class of all convex bodies
with their barycenter at the origin is attained if K is a triangle.

Proof. We can follow the same outlines of the previous proof. What we need here
to add is that the barycenter of Pt must remain at the origin for every t. The key
property is that, along a parallel chord movement Kt, the barycenter cKt of Kt

moves with constant speed parallel to the direction u of the movement. Indeed,

cKt =
1

V (Kt)

∫

Kt

x dx =
1

V (Kt0)

∫

Kt0

(x + α(x)tu) dx

= cKt0
+

tu

V (Kt0)

∫

Kt0

α(x) dx .

Therefore, the family Pt − cPt , t ∈ [t0, t1] is a parallel chord movement of bodies
with their barycenter at the origin. ¤

8



Theorem 5. For d = 2, the minimum of Mp(K) in the class of all convex bodies
is attained if K is a triangle.

Proof. Clearly, for every convex figure K, Theorem 4 implies that

Mp(K) ≥ Gp(K − cK) ≥ Gp(T − cT ) = Mp(T ) ,

where T is an equilateral triangle and the last equality follows from the symmetry
of T . ¤

As a conclusion we can observe that the same method used in the proofs of
Theorems 3, 4 and 5 can be trivially adapted to the case of centrally symmetric
convex figures and leads to show that parallelograms, instead of triangles, are now
minimizers.

In the same way, the Mahler inequality (3) can be obtained from Theorem 2. On
the other hand, such an inequality can be also deduced from Theorem 3, by taking
p = ∞.
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