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Abstract. The ratio between the volume of the p-centroid body of a convex body
K in Rn and the volume of K attains its minimum value if and only if K is an
origin symmetric ellipsoid. This result, the Lp-Busemann-Petty centroid inequality,
was recently proved by Lutwak, Yang and Zhang. In this paper we show that all
the intrinsic volumes of the p-centroid body of K are convex functions of a time-like
parameter when K is moved by shifting all the chords parallel to a fixed direction.
The Lp-Busemann-Petty centroid inequality is a consequence of this general fact.

1. Introduction.
This article deals with a family of affine isoperimetric inequalities which compare

the volume of a convex (or star-shaped) body in Rn with the one of its p-centroid
body. One of the member of such a family is the classical Busemann-Petty centroid
inequality which plays a central role in the framework of the affine isoperimetric
inequalities (see the survey article by Lutwak [L2]). In order to describe the in-
equalities we are interested in, let us recall the definition of p-centroid body in
terms of its support function. For each convex compact set K in Rn, the support
function hK is the real-valued function defined by

hK(u) = max{〈z, u〉 : z ∈ K} , u ∈ Rn ,

where 〈, 〉 denotes the standard inner product.
Let C be a compact subset of Rn with nonempty interior and denote by V (C)

its n-dimensional volume. According to the definition given by Lutwak and Zhang
[LZ], for each real number p ≥ 1, the p-centroid body of C, ΓpC, is the convex body
(i.e. a compact convex set with nonempty interior) whose support function is

(1) hΓpC(u) =
{

1
cn,pV (C)

∫

C

|〈u, z〉|p dz

} 1
p

, u ∈ Rn ,

where the integration is with respect to Lebesgue measure and

cn,p =
ωn+p

ω2ωnωp−1
,

with
ωk = π

k
2 /Γ(1 +

k

2
) .
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Thus ωn is the n-dimensional volume of the unit ball B of Rn. Notice that Γp(λC) =
λΓp(C), for every λ > 0, and the constant cn,p is chosen so that ΓpB = B, for every
n and p.

For p = 1, (1) defines the body ΓC = Γ1C, known in the literature as the centroid
body of C. Centroid bodies were first defined and investigated by Petty [P1], but
the concept had previously appeared in work of Dupin, in connection with problems
for floating bodies (see the books of Gardner [G], Chapter 9, and Schneider [Sc],
Section 7.4, for references). When C is an origin symmetric body, the boundary of
ΓC is the locus of the centroids of all the halves of C obtained by cutting C with
hyperplanes through the origin.

As limits, in the Hausdorff metric, of Minkowski sums of segments, centroid
bodies belong to the class of zonoids, sets appearing in many different contexts of
convex geometry (see, e.g., Schneider and Weil [SW], for references).

One of the basic results obtained by Petty [P1] is an integral representation of
the volume of ΓC as an average of the volume of all the simplices whose vertices are
at the origin and at n points taken randomly from C. Such a representation and
the Busemann random simplex inequality for convex bodies (see, e.g., [G], Theorem
9.2.6) lead to the well known Busemann-Petty centroid inequality, conjectured by
Blaschke [B1]:

If K is a convex body in Rn, then

(2) V (ΓK) ≥ V (K) ,

where equality holds if and only if K is an origin symmetric ellipsoid.

Petty [P2] proved that the Busemann-Petty centroid inequality implies the Petty
projection inequality:

If K is a convex body in Rn, then

(3) V (K)n−1V (Π∗K) ≤ ωn
n ,

where equality holds if and only if K is an ellipsoid.

Here Π∗K is the polar of the projection body ΠK of K, namely

Π∗K = {z ∈ Rn :
1

2ωn−1

∫

∂K

|〈z, v〉| dv ≤ 1} ,

where the integral is done with respect to (n− 1)-Hausdorff measure.
A shorter way for showing that (2) implies (3) can be found in [L2]. Such a

way employs the class reduction technique introduced by Lutwak in [L1]. By this
technique, affine isoperimetric inequalities proved in a small class of bodies (e.g.
zonoids) can be almost automatically extended to a larger class of bodies (e.g.
star-shaped sets). In [L1] it is proved that, in turn, the Petty projection inequality
(3) implies the Busemann-Petty centroid inequality (2) and that this one can be
extended to all compact star-shaped (about the origin) sets.

For p = 2, the body defined by (1) is also well known. Indeed, up to a constant,
Γ2C is the ellipsoid of inertia (or Legendre ellipsoid) of C, i.e. the ellipsoid having
the same moments of inertia as C about every axis. Many results concerning such a
body, whose concept is basic in classical mechanics, can be found in literature (see,
e.g., Milman and Pajor [MP] and Lindenstrauss and Milman [LM] for references).
We fix our attention on the following fundamental inequality which goes back, at
least, to Blaschke [B2], for n = 3:
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If K is a convex body in Rn, then

(4) V (Γ2K) ≥ V (K) ,

where equality holds if and only if K is an origin symmetric ellipsoid.

For general n, (4) was proved by John [J] (see also [P1]). Another proof of (4)
was recently given by Lutwak, Yang and Zhang [LYZ1].

As conjectured by Lutwak and Zhang [LZ], inequalities (2) and (4) are special
instances of the following Lp-type affine isoperimetric inequality:

Theorem 1.1. If K is a convex body in Rn, then for 1 ≤ p < ∞

(5) V (ΓpK) ≥ V (K) ,

where equality holds if and only if K is an origin symmetric ellipsoid.

A first proof of Theorem 1.1 was recently given by Lutwak, Yang and Zhang
[LYZ2]. A completely different proof of that theorem is the object of the present
paper.

Theorem 1.1 is a further contribution to the Lp-extension of the classical Brunn-
Minkowski theory (as well as of the dual one) for convex bodies. The first step in
this direction is the paper by Lutwak [L3], in which the idea of Firey [F] of the
p-Minkowski addition for sets is widely developed.

The study of affine isoperimetric inequalities in the Lp-setting provides a better
understanding of links and possible hierarchies between such inequalities and makes
easier to see geometric inequalities and analytic inequalities from a common point
of view.

Inequality (5) strengthens the following already strong inequality proved by Lut-
wak and Zhang [LZ]:

If K is a convex body in Rn, then for 1 ≤ p ≤ ∞

(6) V (K)V (Γ∗pK) ≤ ω2
n ,

where equality holds if and only if K is an origin symmetric ellipsoid.

Here Γ∗pK is the polar body of ΓpK of K, i.e. Γ∗pK = {z ∈ Rn : hΓpK(z) ≤ 1}.
If Γ∞K is interpreted as a limit of (1), as p →∞, then Γ∞K = conv(K ∪ (−K)),
where conv stands for the convex hull. Thus, for every origin symmetric convex
body K, the body Γ∗∞K is just K∗, the polar body of K. In this case, for p = ∞,
inequality (6) reduces to the well known Blaschke-Santaló inequality:

(7) V (K)V (K∗) ≤ ω2
n ,

with equality if and only if K is an origin symmetric ellipsoid. On the other hand,
by applying (7) to ΓpK, (5) immediately gives (6).

By using Lutwak’s class reduction technique, inequality (6) can be extended also
to all compact star-shaped (about the origin) subsets of Rn. Such a result is used in
[LZ] to obtain the functional version of (6): For real p ≥ 1 and continuous positive
functions f1, f2 defined on Sn−1 = ∂B,

∫

Sn−1

∫

Sn−1
|〈u, v〉|p f1(u)f2(v) ≥ cn−2,p‖f1‖

L
n

n+p (Sn−1)
‖f2‖

L
n

n+p (Sn−1)
,
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with equality if and only if f1 and f2 are of the form c1|φ(u)|-(n+p) and c2|φ-t(u)|-(n+p)

respectively, being φ ∈ GL(n) and φ−t the inverse of the transpose of φ.
The proof of Theorem 1.1 given in [LYZ2] involves the Lp-analog of the Petty

projection inequality. To state it, one has to introduce the Lp-projection body of
a convex body K, for p > 1. This is done by defining a positive Borel measure
Sp(K, ·) on Sn−1 which is the Lp-analog of the classical surface area measure of K.
The Lp-projection body ΠpK of K is defined as the convex body whose support
function is the spherical Lp-cosine transform of Sp(K, ·). In [LYZ2] the following
inequality is proved:

If K is a convex body in Rn, then for 1 ≤ p < ∞

(8) V (K)
n−p

p V (Π∗pK) ≤ ωn/p
n ,

where equality holds if and only if K is an origin symmetric ellipsoid.

As well as in the case p = 1, by the class reduction technique, it is shown in
[LYZ2] that inequality (8) implies Theorem 1.1 and that (5) is valid also for all
the star-shaped (about the origin) bodies. Conversely, Theorem 1.1 implies the
Lp-Petty projection inequality (8).

In this paper a direct proof of Theorem 1.1 is given. The Lp-Busemann-Petty
centroid inequality is obtained here as a consequence of a general fact concerning
the behaviour of ΓpK under special transformations acting on K. Namely, if each
chord of K parallel to a fixed direction moves with a constant speed, depending
continuously on the chord, then the volume of the corresponding p-centroid bodies
is a convex function of the time-like parameter. This fact, if used in the case of the
Steiner symmetrization, leads to the conclusion.

Notice that (5) is valid also for p = ∞. In this case inequality (5) becomes trivial
and equality holds if and only if K is origin symmetric. Significant results about
the ratio V (Γ∞K)/V (K) were obtained by Fáry and Rédei [FR].

The techniques applied here were already used by the authors and A. Colesanti
[CCG] for Sylvester’s type functionals. They may be developed to obtain inequal-
ities similar to that of Theorem 1.1. These will be the subject of a forthcoming
study.

2. Description of results.
According to the definition of Rogers and Shephard (see [RS] and [Sh]), a shadow

system (or a linear parameter system) along the direction v is a family of convex
bodies Kt ⊂ Rn that can be defined by

(9) Kt = conv{z + α(z)t v : z ∈ A ⊂ Rn} ,

where A is an arbitrary bounded set of points, α is a real bounded function on A,
and the parameter t runs in an interval of the real axis.

Notice that the orthogonal projection Kt|v⊥ of Kt onto v⊥ = {z ∈ Rn : 〈v, z〉 =
0} is independent of t.

As proved by Shephard [Sh], every mixed volume involving n shadow systems
along the same direction is a convex function of the parameter. In particular, the
volume V (Kt) and all quermassintegrals Wi(Kt), i = 1, 2, . . . , n, of a shadow system
are convex functions of t.
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For the sake of completeness, we shall sketch here the elegant proof given in [Sh].
For definitions and properties of mixed volumes, we refer the reader to [Sc].

Define a convex body K̃ in Rn+1 as follows. Let (O; e1, e2, . . . , en+1) be an or-
thonormal system of Rn+1. To every z = (z1, z2, . . . , zn) ∈ A we associate the
point U(z) = (z1, z2, . . . , zn, α(z)) in Rn+1. Set K̃ = conv{U(z) : z ∈ A}. It
is easily verified that Kt, as defined in (9), turns out to be the projection of K̃
onto e⊥n+1 along the direction en+1 − tv. Because of this property we say that
K̃ originates the shadow system {Kt : t ∈ [0, 1]}. Furthermore the volume of
Kt can be expressed as the mixed volume V (K̃, K̃, . . . , K̃, [O, en+1 − tv]), where
[O, en+1 − tv] denotes the segment connecting the origin and en+1 − tv. The mul-
tilinearity and monotonicity of mixed volumes provide the convexity of the volume
of Kt with respect to t. This argument can be extended to every mixed volume
involving n shadow systems. Indeed, one can verify that V (K(1)

t ,K
(2)
t , . . . , K

(n)
t ) =

V (K̃(1), K̃(2), . . . , K̃(n), [O, en+1 − tv]), which implies that all these functionals are
convex in t.

We are also interested in a particular type of shadow system we shall call parallel
chord movements. A parallel chord movement along the direction v is a family of
convex bodies Kt in Rn defined by

(10) Kt = {z + β(x)t v : z ∈ K,x = z − 〈z, v〉v} ,

where K is a convex body in Rn, β is a continuous real function on v⊥ and the
parameter t runs in an interval of the real axis, say t ∈ [0, 1]. In other words, to
each chord of K = K0 parallel to v we assign a speed vector β(x)v, where x is the
projection of the chord onto v⊥; then we let the chords move for a time t and denote
by Kt their union. Such an union has to be convex; this is the only restriction we
have on defining the speed function β.

Notice that if {Kt : t ∈ [0, 1]} is a parallel chord movement, then via Fubini’s
theorem one deduces that the volume of Kt is independent of t.

If the speed function β of the movement is an affine function (that is, β(x) =
〈x, u〉+ k, for some vector u and real constant k), then it is easy to see that Kt is
an affine image of K, for every t in the range of the movement.

Another special instance is the movement related to Steiner symmetrization.
Precisely, fix a direction v and let

K = {x + yv ∈ Rn : x ∈ K|v⊥, y ∈ R, f(x) ≤ y ≤ g(x)} ;

here f and −g are convex functions on K|v⊥. The parallel chord movement with
speed function β(x) = −(f(x)+g(x)) and t ∈ [0, 1] is such that K0 = K, K1 = Kv,
the reflection of K in the hyperplane v⊥, and K1/2 is the Steiner symmetral of K

with respect to v⊥.
Suppose now that a general parallel chord movement is applied to a convex body

K. What happens to the corresponding p-centroid bodies?
The answer to this question is given by the following theorem.

Theorem 2.1. If {Kt : t ∈ [0, 1]} is a parallel chord movement along the direction
v, then ΓpKt is a shadow system along the same direction v.

By the above-mentioned Shephard’s result, Theorem 2.1 implies that the volume
of ΓpKt is a convex function of t. It is easy to verify that Γp(Kv) = (ΓpK)v, for
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every direction v and real p ≥ 1. If {Kt : t ∈ [0, 1]} is the parallel chord movement
related to Steiner symmetrization along v, then

V (ΓpK1/2) ≤
1
2
V (ΓpK0) +

1
2
V (ΓpK1) = V (ΓpK) ,

that is, the volume of the p-centroid body is not increased after a Steiner sym-
metrization. It is well known that every convex body can be transformed into
a ball through a sequence of suitable Steiner symmetrizations. Clearly the ratio
V (ΓpK)/V (K) is continuous in the Hausdorff metric. Therefore it attains its min-
imum value when K is a ball.

The following result allows to characterize all the minimizers.

Theorem 2.2. If {Kt : t ∈ [0, 1]} is a parallel chord movement with speed function
β, then the volume of ΓpKt is a strictly convex function of t unless β is linear, that
is β(x) = 〈x, u〉 for some vector u.

If K is not an origin symmetric ellipsoid, it is well known (see, e.g., Petty
[P3]) that there exists a direction v such that the Steiner symmetral of K along
the direction v is not an image of K under a linear transformation. Therefore,
V (ΓpK)/V (K) attains its minimum value if and only if K is an origin symmetric
ellipsoid (Theorem 1.1).

3. Proofs.
As a first remark, we notice that if {Kt : t ∈ [0, 1]} is a parallel chord movement

along the direction v, then the orthogonal projection of ΓpKt onto v⊥ is independent
of t. Indeed, by (1) and (10),

(11)

hΓpKt(u) =
{

1
cn,pV (Kt)

∫

Kt

|〈u, z〉|p dz

} 1
p

=
{

1
cn,pV (K0)

∫

K0

∣∣〈u, z + β(z|v⊥)tv〉∣∣p dz

} 1
p

=
{

1
cn,pV (K0)

∫

K0

∣∣〈u, z〉+ β(z|v⊥)t〈u, v〉
∣∣p dz

} 1
p

;

thus, for every u ∈ v⊥, hΓpKt(u) = hΓpK0(u).
This fact is not sufficient by itself for concluding that {ΓpKt : t ∈ [0, 1]} is a

shadow system. The following lemma provides necessary and sufficient conditions
in order that a family of convex bodies having constant orthogonal projection onto
a fixed hyperplane is actually a shadow system.

Lemma 3.1. Let {Ht : t ∈ [0, 1]}, be a one-parameter family of convex bodies such
that Ht|v⊥ is independent of t. Assume the bodies Ht are defined by

Ht = {x + yv : x ∈ Ht|v⊥, y ∈ R, ft(x) ≤ y ≤ gt(x)} , ∀t ∈ [0, 1] ,

for suitable functions gt, ft. Then {Ht : t ∈ [0, 1]} is a shadow system along the
direction v if and only if for every x ∈ H0|v⊥,

(i) gt(x) and −ft(x) are convex functions of the parameter t in [0, 1],
6



(ii) fλt1+(1−λ)t2(x) ≤ λgt1(x) + (1 − λ)ft2(x) ≤ gλt1+(1−λ)t2(x), for every
t1, t2, λ ∈ [0, 1].

Proof. Let us first prove that every shadow system {Ht : t ∈ [0, 1]} satisfies con-
ditions (i) and (ii). Following the argument of Shephard, we can regard Ht as the
projection of some convex body H̃ in Rn+1 along en+1 − tv onto e⊥n+1. For a fixed
x ∈ H0|v⊥, the function gt(x) depends only on the points of H̃ contained in the
two-dimensional section by the plane through x and parallel to both v and en+1.
For every point P from this section of H̃, let P ′(t) be its projection along en+1− tv
onto e⊥n+1. The function 〈P ′(t) − O, v〉 is clearly a linear function of t. So gt(x)
is a maximum of linear functions of t and then it is convex. Similarly, ft(x), as a
minimum of linear functions of t, is concave.

The second condition requires that Q = x+λgt1(x)v +(1−λ)ft2(x)v belongs to
Hλt1+(1−λ)t2 , for every t1, t2, λ ∈ [0, 1]. This follows from the convexity of the body
H̃ originating our movement. Indeed, from x+gt1(x)v ∈ Ht1 and x+ft2(x)v ∈ Ht2 ,
we deduce the existence of real numbers y1 and y2 such that P1 = x + gt1(x)v −
y1en+1 + y1t1v ∈ H̃ and P2 = x + ft2(x)v− y2en+1 + y2t2v ∈ H̃. If we consider the
projections of these two points of H̃ onto e⊥n+1 along the directions en+1 − t1v and
en+1 − t2v, then, by definition of the functions ft and gt, we infer

(12)
gt1(x) ≥ ft2(x) + y2(t2 − t1) ,

ft2(x) ≤ gt1(x) + y1(t1 − t2) .

Consider the projections of P1 and P2 onto e⊥n+1 along the direction en+1 − [λt1 +
(1− λ)t2]v; they are the points x + gt1(x)v + (1− λ)y1(t1 − t2)v and x + ft2(x)v +
λy2(t2 − t1)v. In order to verify condition (ii) it is enough to show that Q lies
between such points. This is a straightforward consequence of (12).

We now prove that (i) and (ii) are sufficient conditions. To do this, we consider
our family {Ht : t ∈ [0, 1]} as lying in the hyperplane e⊥n+1 in Rn+1 and we construct
a convex body H̃ so that its projection onto e⊥n+1 along the direction en+1 − tv
coincides with Ht, for every t ∈ [0, 1].

Take a point Q ∈ H0 and suppose that Q = x + yv, where x ∈ H0|v⊥ and
y ∈ [f0(x), g0(x)]. Let

γ(Q) = inf
t∈(0,1]

gt(x)− y

t
,

φ(Q) = sup
t∈(0,1]

ft(x)− y

t
.

From (ii) we can deduce by contradiction that γ(Q) ≥ φ(Q), for every Q ∈ H0.
Indeed, if we assume that γ(Q) < φ(Q), then there exist s1 and s2 in (0, 1] such
that

gs1(x)− y

s1
<

fs2(x)− y

s2
.

Suppose that s1 > s2 = (1− λ)s1, for some λ ∈ [0, 1]; then

(1− λ)gs1(x) + λy < f(1−λ)s1(x)

and, since y ≥ f0(x),

(1− λ)gs1(x) + λf0(x) < f(1−λ)s1(x) ,
7



which contradicts (ii). A similar argument also leads to a contradiction in the case
s2 > s1.

From the convexity of the functions ft(x) and −gt(x) with respect to x, we
deduce that −γ and φ are convex functions of Q. Therefore the set

H̃ = {z + ren+1 : z ∈ H0, r ∈ R, φ(z) ≤ r ≤ γ(z)} ,

is a convex body in Rn+1. In order to complete the proof it is enough to verify
that Ht is just the projection of H̃ onto e⊥n+1 along the direction en+1 − tv. For
simplicity we shall denote by Lt such a projection.

Let z0 + r0en+1, z0 ∈ H0, r0 ∈ R, be a point from H̃; its projection onto e⊥n+1

along the direction en+1− tv is the point z0 + r0tv and it belongs to Ht if and only
if

ft(z0|v⊥) ≤ 〈v, z0 + r0tv〉 ≤ gt(z0|v⊥) ,

or equivalently

ft(z0|v⊥)− 〈v, z0〉
t

≤ r0 ≤ gt(z0|v⊥)− 〈v, z0〉
t

.

The previous inequalities easily follow from φ(z0) ≤ r0 ≤ γ(z0) and then Lt ⊂ Ht.
Conversely, let P be an extreme point of Ht and assume that P can be written

as x0 + gt(x0)v, with x0 ∈ H0|v⊥ (if P = x0 + ft(x0)v, the proof can be trivially
adapted). The convexity of gs(x0) with respect to s ensures the existence of the
left-hand side derivative with respect to s of gs(x0) at t; call ν such a derivative and
consider the point z0 = x0 + (gt(x0) − νt)v. We want to show that z0 belongs to
H0, or equivalently that f0(x0) ≤ gt(x0)−νt ≤ g0(x0). While the second inequality
follows from the convexity of gs(x0) with respect to s, the first one is a consequence
of (ii). Indeed, from g(1−λ)t(x0) ≥ λf0(x0) + (1− λ)gt(x0), we infer

gt(x0)− g(1−λ)t(x0)
λt

≤ −f0(x0) + gt(x0)
t

, ∀λ ∈ (0, 1) ,

which, for λ → 0, reduces to the desired inequality.
From the convexity of gs(x0) with respect to s, we deduce that γ(z0) = ν;

therefore z0 + νen+1 belongs to H̃ and z0 + νtv = P belongs to Lt.
In conclusion, we have showed that Lt contains all the extreme points of Ht and

the lemma is proved. ¤
Proof of Theorem 2.1. Let {Kt : t ∈ [0, 1]}, be a parallel chord movement along
the direction v. By (11)

(13)
hΓpKt(u) =

{
1

cn,pV (K0)

∫

K0

∣∣〈u, z〉+ β(z|v⊥)t〈u, v〉
∣∣p dz

} 1
p

= ‖〈u, ·〉+ β(·|v⊥)t〈u, v〉‖p , u ∈ Rn ,

where, for simplicity, ‖q(·)‖p stands for
{

1
cn,pV (K0)

∫
K0
|q(z)|p dz

} 1
p

. From the
Minkowski inequality for p-norms we deduce that hΓpKt(u) is a convex function of
t, for every u ∈ Rn. Notice also that hΓpKt(u) is a Lipschitz function of t, with
Lipschitz constant ‖β(·|v⊥)‖p, independently of u.
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Since the orthogonal projection of ΓpKt onto v⊥ is independent of t, it is sufficient
to show that the family ΓpKt satisfies conditions (i) and (ii) of Lemma 3.1.

As ΓpKt is an origin symmetric convex body, for every t ∈ [0, 1], it can be
represented by

ΓpKt = {x + yv : x ∈ (ΓpK0)|v⊥,−gt(−x) ≤ y ≤ gt(x)} ,

where gt is a suitable concave function defined on (ΓpK0)|v⊥.
Since z ∈ ΓpKt if and only if 〈z, u〉 ≤ hΓpKt

(u), for every u ∈ Rn, we can write

(14)
gt(x) = sup{λ ∈ R : 〈x + λv, u〉 ≤ hΓpKt

(u), ∀u ∈ Rn}
= sup{λ ∈ R : λ〈v, u〉 ≤ hΓpKt

(u)− 〈x, u〉, ∀u ∈ Rn} ,

for every x ∈ (ΓpK0)|v⊥.
The inner product and support functions are both homogeneous of degree 1.

Thus in (14) we need consider only the vectors u such that |〈u, v〉| = 1. Furthermore,
the vectors u with a non-positive scalar product with v provide no bounds for λ.
Therefore we get

(15)
gt(x) = sup{λ ∈ R : λ ≤ hΓpKt(w + v)− 〈x,w + v〉, ∀w ∈ v⊥}

= inf
w∈v⊥

{hΓpKt(w + v)− 〈x,w〉} .

Notice that gt(x) is in fact the minimum, as w ∈ v⊥, of {hΓpKt(w + v) − 〈x,w〉},
unless x belongs to the boundary of (ΓpK0)|v⊥. The minimum is attained when
w + v is directed as a normal vector to ΓpKt at x + gt(x)v.

As an infimum of equi-Lipschitz functions of t, gt(x) is a Lipschitz function too.
Its convexity will follow from the inequality

2g t1+t2
2

(x) ≤ gt1(x) + gt2(x) .

By (13) and (15) we can write

2g t1+t2
2

(x) = inf
u∈v⊥

{‖〈2u + 2v, ·〉+ β(·|v⊥)(t1 + t2)‖p − 〈x, 2u〉}

= inf
u1,u2∈v⊥

{‖〈u1 + u2 + 2v, ·〉+ β(·|v⊥)(t1 + t2)‖p − 〈x, u1 + u2〉}

≤ inf
u1,u2∈v⊥

{‖〈u1 + v, ·〉+ β(·|v⊥)t1‖p + ‖〈u2 + v, ·〉+ β(·|v⊥)t2‖p−
〈x, u1〉 − 〈x, u2〉}

= inf
u1∈v⊥

{‖〈u1 + v, ·〉+ β(·|v⊥)t1‖p − 〈x, u1〉}

+ inf
u2∈v⊥

{‖〈u2 + v, ·〉+ β(·|v⊥)t2‖p − 〈x, u2〉}
= gt1(x) + gt2(x) ,

where we again used the Minkowski inequality for p-norms. Hence condition (i) is
verified.
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Let us now turn to (ii). It is enough to prove the first inequality; the second will
follow by interchanging t1 with t2 and x with −x. We can write

(1− λ)gt2(x) = inf
u∈v⊥

{‖(1− λ)〈u + v, ·〉+ β(·|v⊥)(1− λ)t2‖p − 〈x, (1− λ)u〉}

= inf
u1,u2∈v⊥

{‖〈u2 − λu1 + v − λv, ·〉+ β(·|v⊥)[(1− λ)t2 + λt1 − λt1]‖p

− 〈x, u2 − λu1〉}
≤ inf

u1,u2∈v⊥
{‖〈u2 + v, ·〉+ β(·|v⊥)[λt1 + (1− λ)t2]‖p +

‖〈−λu1 − λv, ·〉 − β(·|v⊥)λt1‖p − 〈x, u2 − λu1〉}
= inf

u1∈v⊥
{λ‖〈u1 + v, ·〉+ β(·|v⊥)t1‖p + λ〈x, u1〉}+

inf
u2∈v⊥

{‖〈u2 + v, ·〉+ β(·|v⊥)[λt1 + (1− λ)t2]‖p − 〈x, u2〉}
= λgt1(−x) + gλt1+(1−λ)t2(x) .

This concludes the proof. ¤
Proof of Theorem 2.2. By Fubini’s theorem we have

V (ΓpKt) =
∫

(ΓpK0)|v⊥
[gt(x) + gt(−x)] dx = 2

∫

(ΓpK0)|v⊥
gt(x) dx ,

where we integrate with respect to Lebesgue measure. Hence the convexity of the
volume is an easy consequence of that of gt(x) with respect to t.

If 2V (ΓpK t1+t2
2

) = V (ΓpKt1)+V (ΓpKt2), for some t1, t2 ∈ [0, 1], then we deduce
that

(16) 2g t1+t2
2

(x) = gt1(x) + gt2(x) ,

for almost every x ∈ (ΓpK0)|v⊥. In fact, by the continuity of the functions gt’s,
equality (16) holds everywhere. Take a point x from the interior of (ΓpK0)|v⊥. We
recall that in this case gt(x) is a minimum, for every t. Therefore there exist u1,
u2 ∈ v⊥ such that

gt1(x) + gt2(x) = hΓpKt1
(u1 + v)− 〈x, u1〉+ hΓpKt2

(u2 + v)− 〈x, u2〉
= ‖〈u1 + v, ·〉+ β(·|v⊥)t1‖p + ‖〈u2 + v, ·〉+ β(·|v⊥)t2‖p − 〈x, u1〉 − 〈x, u2〉 .

By the Minkowski inequality we get

gt1(x) + gt2(x) ≥ 2‖〈u1 + u2

2
+ v, ·〉+ β(·|v⊥)

t1 + t2
2

‖p − 2〈x,
u1 + u2

2
〉

= 2hΓpK t1+t2
2

(
u1 + u2

2
+ v)− 2〈x,

u1 + u2

2
〉

≥ 2g t1+t2
2

(x) .

Thus, by (16), the equality condition for the Minkowski inequality has to hold.
Namely, there exists a constant c such that

(17) 〈u1 + v, z〉+ β(z|v⊥)t1 = c〈u2 + v, z〉+ cβ(z|v⊥)t2 ,

for every z ∈ K0, owing to the continuity of β. If one sets z = z′ + λv in (17), then
by differentiating with respect to the parameter λ, it turns out that c = 1.

The conclusion is that β is a linear function. ¤
10
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