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Abstract. This paper deals with inequalities for the volume of a convex body and the
volume of the projection body, the Lp-centroid body, and their polars. Examples are the
Blaschke-Santaló inequality, the Petty and Zhang projection inequalities, the Busemann-Petty
inequality. Other inequalities of the same type are still at the stage of conjectures.

The use of special continuous movements of convex bodies provides a general approach to
this subject. A family of inequalities, depending on a parameter p ≥ 1 and proved by Lutwak
for p = 1 and p = 2, is obtained.

1. Introduction and preliminaries

This paper is devoted to some classical inequalities of Convex Geometry involving the
volume of an n-dimensional convex body and the volume of a further body associated to the
given one. More precisely, our attention is focused on the projection body, the Lp-centroid
body and their polar bodies.

Our approach comes from the idea that the most part of results connected with these
inequalities can be deduced by the same general method, which is based on the use of special
continuous movements of the bodies we are dealing with.

Let K be a convex body in Rn, that is a n-dimensional compact convex set, and assume
that the origin is an interior point of K.

The support function of the convex body K is defined as

hK(u) = max
x∈K

〈u, x〉, for u ∈ Rn ,

where 〈· , ·〉 is the usual scalar product in Rn, and the radial function of K as

ρK(u) = max{r ∈ R : ru ∈ K} , for u ∈ Rn .

The n-dimensional volume V (K) of K can be expressed in terms of the radial function by

V (K) =
1

n

∫
Sn−1

ρn
K(z) dz ,

where Sn−1 is the unit sphere in Rn.
The polar body K∗ of K can be defined as

K∗ = {x ∈ Rn|〈x, y〉 ≤ 1,∀y ∈ K} .
1
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The polar body of K depends on the location of the origin. It is easy to see that (K∗)∗ = K
and that

ρK∗(u) =
1

hK(u)
, for u ∈ Rn .

The projection body of K is the convex body ΠK such that

hΠK(u) =
1

2

∫
∂K

|〈u, v〉| dv, for u ∈ Rn ,

where dv denotes the area element at the point on ∂K whose outer unit normal is v. It is
clear from the definition that hΠK(u) is the (n − 1)-dimensional volume of the projection of
K orthogonal to u.

For every Borel subset ω of Sn−1, we define the area measure σK(ω) of K as the (n − 1)-
dimensional Hausdorff measure of the reverse image of ω through the Gauss map. Recall that
the Gauss map sends each point on ∂K to the set of outward unit normal vectors to ∂K at
that point. Therefore, the support function of ΠK can be rewritten as

hΠK(u) =
1

2

∫
Sn−1

|〈u, v〉| dσK(v), for u ∈ Rn .

If ∂K is sufficiently smooth and its Gauss curvature is strictly positive, then

hΠK(u) =
1

2

∫
Sn−1

|〈u, v〉|
γK(v)

dv, for u ∈ Rn ,

being γK(v) the Gauss curvature of ∂K at the point where the outward unit normal vector is
v. Such a representation shows that hΠK is the cosine transform of 1

γK
.

Each projection body is a zonoid, namely it is the limit, in the Hausdorff metric, of a sum
of segments. Here by sum it is meant the Minkowski addition of subsets of Rn

A + B = {x ∈ Rn : x = a + b, a ∈ A, b ∈ B} .

Zonoids play an important role in Convex Geometry, as well as in different areas of Mathe-
matics. In particular, every full-dimensional zonoid turns out to be the projection body of a
convex body.

Given a convex body K, for each real number p ≥ 1, the Lp-centroid body ΓpK of K is the
convex body whose support function is

hΓpK(u) =

{
1

cn,pV (K)

∫
K

|〈u, z〉|p dz

} 1
p

, for u ∈ Rn ,

where
cn,p =

κn+p

πκnκp−1

,

and
κr = π

r
2 /Γ(1 +

r

2
) .

Notice that κn is the volume of the unit ball Bn of Rn and the constant cn,p is such that
ΓpB

n = Bn.
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The above definition can be extended to compact bodies in Rn.
Up to constants, Γ1K is known in the literature as the centroid body ΓK of K and Γ2K as

the Legendre ellipsoid of K. If K is an origin-symmetric convex body, it turns out that the
boundary of ΓK is the locus of the centroids of all the halves of K obtained by cutting K
with hyperplanes through the origin.

By using polar coordinates in integration, one has that

hΓK(u) =
1

ncn,1V (K)

∫
Sn−1

|〈u, z〉|ρn+1
K (z) dz ,

which shows that the centroid body ΓK is, up to a constant, the projection body of ΛK, the
curvature image of K, i.e. the convex body such that γΛK(z) = ρ−n−1

K (z), for every z ∈ Sn−1.
The Minkowski Theorem guarantees the existence of such a body (see, for example, [32], Ch.
7.1 ).

If Γ∞K is interpreted as a limit of (1), as p →∞, then

Γ∞K = conv(K ∪ (−K)) ,

where conv stands for the convex hull.
For further details related to the content of this preliminary section, we refer to the books

of Gardner [11] and Schneider [32] and to the articles by Goodey and Weil [12], Lutwak [17],
Lutwak and Zhang [19], Milman and Pajor [23].

As a final remark, we notice that there are other bodies that can be associated to a given
one: the intersection body, the cross-section body, the Blaschke body, etc.. As Richard Gardner
writes in the Introduction of his book [11], geometric tomography houses a zoo of strange
geometric bodies, powerful integral transforms, and exotic but highly effective inequalities.

2. Main volume inequalities

In this section we list the main inequalities which involve the volume of the bodies introduced
in Section 1. At present, some of them are still conjectures. Further information and details
on inequalities of this type can be found in [17].

2.1. The Blaschke-Santaló inequality. For every convex body K, assume that the origin
is chosen so that V (K∗) is minimum. The Blaschke-Santaló inequality states that

(1) V (K)V (K∗) ≤ κ2
n ,

where equality holds if and only if K is an origin-symmetric ellipsoid. The quantity on the
left-hand side of (1) is called volume product of K. Inequality (1) was proved for n ≤ 3 by
Blaschke [1], [2] and for all n by Santaló [31]. The equality conditions were proved by Saint
Raymond [30] in the symmetric case and by Petty [26] in the general case.
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2.2. Mahler’s conjecture. It was conjectured by Mahler [20] that the minimum of the
volume product is attained when K is a simplex, that is

(2) V (K)V (K∗) ≥ (n + 1)n+1

(n!)2
.

Mahler [21] proved that (2) holds if n = 2 and Meyer [22] that in this case equality occurs
only for triangles.

For origin-symmetric convex bodies it has been conjectured that n-parallelotopes (and their
polars, i.e. cross-polytopes) minimize the volume product, hence

(3) V (K)V (K∗) ≥ 4n

n!
.

For n = 2, inequality (3) was proved by Mahler [21] and Reisner [28] showed that parallelo-
grams are the only minimizers. For n > 3 there are bodies, different than parallelotopes and
their polars, for which (3) is an equality, as shown by Saint Raymond [30]. Reisner [27], [28]
and Saint Raymond [30] proved (3) for special classes of convex bodies, namely for zonoids
and for the affine images of convex sets symmetric with respect to the coordinate hyperplanes.
A simpler proof of Reisner’s result was given in [13].

Bourgain and Milman [4] proved that there exists a constant c, not depending on the
dimension, such that

V (K)V (K∗) ≥ cnκ2
n .

2.3. The projection body conjectures. The problem of finding minimizers and maximizers
of the functional V (K)1−nV (ΠK) in the class of all convex bodies is open.

In 1972 Petty [25] conjectured that ellipsoids are the only minimizers.
As far as the maximum of V (K)1−nV (ΠK) is concerned, Brannen [5] conjectured that, in

the class of all convex bodies, simplices are maximizers. The same author conjectured that the
largest centrally symmetric subset of a simplex gives a sharp upper bound of the functional
in the class of centrally symmetric convex bodies.

2.4. The Petty projection inequality. Petty [25] proved that

(4) V (K)n−1V (Π∗K) ≤
(

κn

κn−1

)n

,

with equality if and only if K is an ellipsoid. Notice that Petty’s conjecture in 2.3 and the
Blaschke-Santaló inequality (1) imply (4).

2.5. The Zhang projection inequality. The reverse inequality of (4) is due to Zhang [34]:

(5) V (K)n−1V (Π∗K) ≥
(

2n
n

)
n−n ,

with equality if and only if K is a simplex.
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2.6. The Lp-Busemann-Petty inequality. Let p ≥ 1. Then

(6) V (ΓpK)V (K)−1 ≥ 1 ,

with equality if and only if K is an origin-symmetric ellipsoid. For p = 1, inequality (6) was
proved by Petty [24] via the Busemann random simplex inequality (see [11], Theorem 9.2.6).
For p = 2, Blaschke [3] proved (6) when n = 3. For p = 2 and general n, (6) was proved by
John [14]. For general p, inequality (6) was proved by Lutwak, Yang and Zhang [18] and, in
a different way, by Campi and Gronchi [8].

Concerning a reverse version of (6), let us notice that the functional we are considering is
not bounded from above in the class of all convex bodies. A natural assumption is to restrict
ourselves to the bodies containing the origin. It has been conjectured that in such a class
simplices with one vertex at the origin provide the maximum. In [9] this conjecture is proved
for n = 2 (see also Section 4).

2.7. The Lp-Blaschke-Santaló inequality. Let p ≥ 1. Then

(7) V (Γ∗pK)V (K) ≤ κ2
n ,

with equality if and only if K is an origin-symmetric ellipsoid, as proved by Lutwak and Zhang
in [19]. The name of this inequality comes from the fact that if K is origin-symmetric and p
tends to infinity, then (7) gives (1).

Even in this case, it has been conjectured that suitable simplices are minimizers of the
left-hand side of (7) in the class of all convex bodies containing the origin. A result in the
two-dimensional case is contained in Subsection 4.3.

3. The Rogers and Shephard method

Most of the results described in the previous section can be obtained by the use of shadow
systems, which were introduced by Rogers and Shephard in [29] and [33].

A shadow system along the direction v is a family of convex bodies Kt ⊂ Rn that can be
defined by

(8) Kt = conv{z + α(z)t v : z ∈ A ⊂ Rn} ,

where A is an arbitrary bounded set of points in Rn, α is a real bounded function on A, and
t runs in an interval of the real axis. The function α in (8) is called the speed function of the
shadow system.

As proved in [29], the volume of Kt is a convex function of t. The proof is based on the fact
that the length of each chord of Kt parallel to v turns out to be a convex function of t. This
convexity result was extended by Shephard [33] to mixed volumes of shadow systems along
the same direction v.

We recall that the mixed volume of the convex bodies K1, K2, . . . , Kn can be defined by

(9) V (K1, K2, . . . , Kn) =
1

n!

n∑
j=1

(−1)n+j
∑

i1<···<ij

V (Ki1 + Ki2 + · · ·+ Kij) .
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As proved by Minkowski (see [32], Ch. 5), mixed volumes are the coefficients of the homo-
geneous polynomial V (t1K1 + · · · + tnKn) of degree n in the variables t1, t2, . . . , tn. Special
instances of mixed volumes are the quermassintegrals Wi(K) of a convex set K, which are
defined by (9), for i = 0, 1, . . . , n, by taking (n− i) copies of K and i copies of the unit ball
Bn. Notice that every mixed volume can be expressed by an integral. An example that we
shall use later is given by

(10) V (K, . . . , K, L) = V1(K, L) =
1

n

∫
Sn−1

hL(v) dσK(v).

Shephard’s proof of the convexity of mixed volumes under shadow systems is based on
the remark that every shadow system Kt along v can be seen as the projection of an (n + 1)-
dimensional convex body onto a fixed hyperplane orthogonal to w with respect to the direction
w − tv.

A special type of shadow system is naturally related to the well known Steiner process of
symmetrization. Precisely, fix a direction v and let

K = {x + yv ∈ Rn : x ∈ K|v⊥, y ∈ R, f(x) ≤ y ≤ g(x)} ;

here K|v⊥ denotes the orthogonal projection of K onto the hyperplane v⊥ through the origin,
orthogonal to v, and f and −g are convex functions on K|v⊥. The shadow system with speed
function α(x) = −(f(x)+ g(x)) and t ∈ [0, 1] is such that K0 = K, K1 = Kv, the reflection of
K in the hyperplane v⊥, and K1/2 is the Steiner symmetral of K with respect to v⊥. In this
process, the volume is trivially constant, while the behavior of the other quermassintegrals is
described by Shephard’s result on mixed volumes.

Thus the Steiner symmetral of a convex body K can be obtained through a shadow system
along a direction v in which the speed function is constant on each chord parallel to v. Shadow
systems of this type are called parallel chord movements. So, a parallel chord movement along
the direction v is a family of convex bodies Kt in Rn defined by

Kt = {z + α(x)t v : z ∈ K, x = z − 〈z, v〉v} ,

where α is a continuous real function on v⊥. Notice that the above definition requires that α
must be chosen so that, for every t, the set Kt is convex.

If the speed function α is an affine function (that is, α(x) = 〈x, u〉 + k, for some vector u
and real constant k), then it is easy to see that Kt is an affine image of K, for every t in the
range of the movement.

Shadow systems can be applied successfully according to the following Shephard argument
(see [33]): If a functional defined in the class of all convex sets is continuous, invariant under
reflections and convex with respect to the parameter t of any parallel chord movement, then it
attains its minimum at the ball among all sets of given volume. Here the continuity refers to
the Hausdorff metric.

This statement follows from the well-known property of the Steiner symmetrization, that,
if suitably repeated, changes every convex set in a ball.
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Consequences of this procedure are, for example, classical isoperimetric type inequalities for
quermassintegrals (see [6], p. 144, [11], p. 372). Other geometric functionals have the same
convex behavior under shadow systems; see, for example, [33], [7] and the next section.

A question is whether the same convexity property of the functionals can help in finding
reverse inequalities.

We are able to give a positive answer only in the case n = 2. In order to do this, it is
convenient to introduce the class Ωn of n-dimensional convex bodies K with the following
property: If Kt is a parallel chord movement, t ∈ [−1, 1], and K = K0, then the speed of the
movement is an affine function.

Assume now that F (K) is a functional defined in the class of all n-dimensional convex
bodies and suppose F has a maximum in that class. If F is convex under parallel chord
movements, then a maximizer of F must belong to Ωn. Notice that, if F is bounded from
above and convex under parallel chord movements, then F must be invariant under affine
transformations. Moreover, if F is strictly convex, i.e. F (Kt) is strictly convex unless the
speed of Kt is affine, then all maximizers of F belong to Ωn. As shown in [7], all simplices
are in Ωn, triangles are the only polygons in Ω2, and, for n ≥ 2, in Ωn there are other bodies
than simplices. For n = 2, by an approximation argument, we can conclude that triangles are
maximizers of all continuous functionals which are convex under parallel chord movements
(provided the maximum exists).

For n = 2, if one considers only centrally symmetric convex sets, then parallelograms play
the same role as triangles in the general case.

The same method can be applied also to linear invariant functionals which are not bounded
from above. Since these are the cases we shall deal with in the next section, we give here all
the details.

A linear invariant continuous functional is bounded in the class of bodies containing the
origin. Indeed, by John’s theorem ([15], Theorem III), we can restrict ourselves to bodies
containing a ball of radius one and contained in a ball of radius n, with the same center.

If F is a convex functional under parallel chord movements, then it is convex under trans-
lations, hence every maximizer of F has the origin as an extreme point. In particular, if P
is a polytope, we can assume, without decreasing the value of F , that the origin is one of its
vertices.

Let F be a functional defined in the class of all convex bodies containing the origin, which
is continuous with respect to the Hausdorff metric, linear invariant and convex under parallel
chord movements. Let P be a polygon and let 0, v1, v2, . . . , vm be its vertices clockwise
ordered.

Let us consider the shadow system {Pt : t ∈ [t0, t1]}, t0 < 0 < t1, along v2, with speed 1 at
v1 and 0 at the other vertices. If t0 and t1 are sufficiently close to 0, then only the triangle
0v1v2 moves, while the remaining part of P keeps still. Let us choose [t0, t1] as the largest
interval such that the area of Pt is constant for all t ∈ [t0, t1]. Hence, {Pt : t ∈ [t0, t1]} is just a
parallel chord movement and Pt0 and Pt1 have exactly m− 1 vertices. By the convexity of F ,

F (P ) ≤ max{F (Pt0), F (Pt1)} .
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If m > 4, iterations of this argument lead to the conclusion that F (P ) ≤ F (T ), where T is a
triangle with a vertex at the origin. The continuity of F implies that T is a maximizer in the
whole class of plane convex figures containing the origin.

4. Applications

This section contains some applications of two results involving shadow systems and related
ideas.

For v ∈ Sn−1, let H+
v be the halfspace bounded by v⊥ and containing v.

Theorem 4.1. If Kt, 0 ≤ t ≤ 1, is a shadow system along the direction v, then V (K∗
t ∩H+

v )−1

is a convex function of t.

The proof (see [10]) is based on a generalized form of the Prekopa-Leindler inequality.
Notice that the theorem deals only with one of the halves of K∗ cut off by v⊥. Clearly, if Kt

is a family of origin-symmetric convex bodies, then V (K∗
t )−1 is a convex function of t.

Theorem 4.2. If Kt, 0 ≤ t ≤ 1, is a parallel chord movement along the direction v, then
ΓpKt, for p ≥ 1, is a shadow system along v. Hence, V (ΓpK) is convex under parallel chord
movement. Moreover, it is strictly convex unless the speed function is linear.

For the proof of Theorem 4.2 see [8].

4.1. By applying Theorem 4.1 to the reciprocal of the volume product V (K)V (K∗), we
obtain the Blaschke-Santaló inequality (1) for origin-symmetric convex bodies (without the
characterization of ellipsoids as unique maximizers).

For n = 2, we get the Mahler inequality (3) (again without characterization).

4.2. Theorem 4.2 immediately gives the Lp-Busemann-Petty centroid inequality (6), with
the characterization of minimizers.

The same theorem, for n = 2, implies also a reverse form of the inequality.
Namely, all triangles with a vertex at the origin maximize V (ΓpK)V (K)−1 in the class of

all plane convex bodies containing the origin.

4.3. Combining Theorem 4.1 with Theorem 4.2 provides the Lp-Blaschke-Santaló inequality
(7) (without characterization) and the following reverse form for n = 2:

In the class of all plane convex bodies K containing the origin, triangles with a vertex at
the origin are minimizers of V (Γ∗pK)V (K).

If one deals with plane origin-symmetric convex bodies, then centered parallelograms are
maximizers and minimizers for the functionals in 4.2 and 4.3, respectively.

4.4. Double entry functionals. In this subsection we consider geometric functionals de-
pending on two different convex bodies. We already noticed in Section 3 that mixed volumes
are convex along shadow systems; for example, if Kt and Lt, 0 ≤ t ≤ 1, are shadow systems
along the same direction v, then V1(Kt, Lt) is a convex function of t.
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Let us consider now the functional

(11) Gp(K, L) =
V1(K, ΓpL)

V (K)
n−1

n V (L)
1
n

,

where p ≥ 1.

Theorem 4.3. If Kt and Lt, 0 ≤ t ≤ 1, are parallel chord movements along the same direction
v, then Gp(Kt, Lt), for p ≥ 1, is a convex function of t.

The theorem follows from Theorem 4.2 and from the above mentioned property of mixed
volumes.

Theorem 4.4. For every pair of convex bodies K and L,

(12) Gp(K, L) ≥ 1 ,

where equality holds if and only if K and L are homothetic ellipsoids, with L origin-symmetric.

Proof. The theorem is a consequence of the Minkowski inequality (see [32], p. 317) and the
Lp-Busemann-Petty centroid inequality (6). The equality conditions for these two inequalities
imply the second part of the statement. �

The functional Gp(K, L) is not bounded from above. Indeed, if L is moved far from the
origin, then ΓpL becomes larger and larger. Moreover, if K and L approach to a couple of
(n− 1)-dimensional sets lying on non parallel hyperplanes, then the volumes of K and L tend
to zero, while V1(K, L) tends to a positive number. Nevertheless, Theorem 4.3 provides a
two-dimensional reverse form of inequality (12) when K = L.

Theorem 4.5. For n = 2, if K contains the origin, then Gp(K, K) attains its maximum when
K is a triangle with a vertex at the origin.

Let us show that inequality (12), for p = 1, implies the Petty projection inequality (4). We
have

1 ≤ min
L

G1(K, L) = min
L

(n + 1)κn

∫
Sn−1

∫
L
|〈x, u〉| dxdσK(u)

2nκn−1V (K)
n−1

n V (L)
n+1

n

= min
L

(n + 1)κn

∫
L

∫
Sn−1 |〈x, u〉| dσK(u)dx

2nκn−1V (K)
n−1

n V (L)
n+1

n

= min
L

(n + 1)κn

∫
L

hΠK(x) dx

nκn−1V (K)
n−1

n V (L)
n+1

n

=
(n + 1)κn

∫
Π∗K

hΠK(x) dx

nκn−1V (K)
n−1

n V (Π∗K)
n+1

n

=
κn

κn−1V (K)
n−1

n V (Π∗K)
1
n

,

where we used the fact that the integral of a support function hM on a set L of given volume
is minimum when L is just a level set of hM , that is, when L is homothetic to M∗.
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Notice that G1(K, L) can be expressed as

G1(K, L) =
(n + 1)κn

∫
∂K

∫
L
|〈x, u〉| dxdu

2nκn−1V (K)
n−1

n V (L)
n+1

n

.

The last expression reminds some functionals studied by Lutwak in [16]. Precisely, he showed
that Petty’s projection body conjecture (see Subsection 2.3) is equivalent to say that the
functional ∫

∂K

∫
∂L
|〈x, u〉| dxdu

V (K)
n−1

n V (L)
n−1

n

attains its minimum, in the class of all pairs of convex bodies, if and only if K and L are
homothetic to origin-symmetric polar reciprocal ellipsoids.

In the same paper Lutwak proved also that, for p = 1 and p = 2, the functional∫
K

∫
L
|〈x, u〉|p dxdu

V (K)
n+p

n V (L)
n+p

n

attains its minimum if and only if K and L are homothetic to origin-symmetric polar reciprocal
ellipsoids.

We are able to extend such a result to the case of an arbitrary p ≥ 1.

Theorem 4.6. Let p ≥ 1, then∫
K

∫
L

|〈x, u〉|p dxdu ≥ nκn+p

π(n + p)κp−1κ
n+2p

n
n

V (K)
n+p

n V (L)
n+p

n ,

with equality if and only if K and L are homothetic to origin-symmetric polar reciprocal
ellipsoids.

Proof. By the definition of Lp-centroid body, we have that∫
K

∫
L
|〈x, u〉|p dxdu

V (K)
n+p

n V (L)
n+p

n

=
cn,pV (L)

V (K)
n+p

n V (L)
n+p

n

∫
K

hp
ΓpL(v) dv .

Therefore, for any fixed L, the minimum of the functional we are dealing with is attained if
and only if K is homothetic to a level set of hΓpL. Since the functional is invariant under
rescaling, the minimum is attained when K = Γ∗pL. Thus,∫

K

∫
L
|〈x, u〉|p dxdu

V (K)
n+p

n V (L)
n+p

n

≥ ncn,p

n + p
[V (L)V (Γ∗pL)]−

p
n ≥ nκn+p

π(n + p)κp−1κ
n+2p

n
n

,

where we used the Lp-Blaschke-Santaló inequality (7).
The above argument provides also the equality conditions. �
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