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Abstract. The volume of the Lp-centroid body of a convex body K ⊂ Rd is a
convex function of a time-like parameter when each chord of K parallel to a fixed
direction moves with constant speed. This fact is used to study extrema of some affine
invariant functionals involving the volume of the Lp-centroid body and related to
classical open problems like the slicing problem. Some variants of the Lp-Busemann-
Petty centroid inequality are established. The reverse form of these inequalities is
proved in the two-dimensional case.

1. Introduction.
This paper deals with some functionals involving the volume of Lp-centroid bod-

ies of d-dimensional convex sets.
Let K be a convex compact set in Rd and let hK be its support function defined

by
hK(u) = max{〈z, u〉 : z ∈ K} , u ∈ Rd ,

where 〈, 〉 denotes the standard inner product.
Assume that K is a convex body in Rd, i.e. a convex compact set with nonempty

interior and denote by V (K) its d-dimensional volume. For each real number p ≥ 1,
let ΓpK be the p-centroid body of K, that is, the convex body whose support
function is

(1) hΓpK(u) =
{

1
cd,pV (K)

∫

K

|〈u, z〉|p dz

} 1
p

, u ∈ Rd ,

where the integration is with respect to Lebesgue measure and

cd,p =
κd+p

κ2κdκp−1
,

with
κr = π

r
2 /Γ(1 +

r

2
) .

Notice that κd is the volume of the unit ball Bd of Rd and the constant cd,p is such
that ΓpB

d = Bd, for every d and p.
The above definition is due to Lutwak and Zhang [LZ] but the concept of Lp-

centroid body, at least for p = 1, 2, goes back to the nineteenth century.
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The set Γ1K, up to the constant cd,1 is known in the literature as the centroid
body ΓK of K (see the books of Gardner [G], Chapter 9, and Schneider [Sc], Section
7.4, for references). If K is an origin symmetric body, it turns out that ΓK is
bounded by the locus of the centroids of all the halves of K obtained by cutting K
with hyperplanes through the origin.

For p = 2, Γ2K is homothetic to the Legendre ellipsoid of K, which arises
in classical mechanics in connection with the moments of inertia of K (see, e.g.,
Milman and Pajor [MP] and Lindenstrauss and Milman [LM] for references).

If Γ∞K is interpreted as a limit of (1), as p →∞, then Γ∞K = conv(K∪(−K)),
where conv stands for the convex hull. Such a body was investigated by Fáry and
Rédei [FR] in the framework of affine inequalities related to the geometry of numbers
(see also Fáry [Fa]).

The notion of Lp-centroid body contributes to the viewpoint whereby the clas-
sical Brunn-Minkowski theory is a special instance of a more general Lp-theory
for convex bodies. This idea is due to Lutwak [L] who developed the definition of
Firey [Fi] of the Lp-Minkowski addition for sets. In the Lp setting new families of
affine inequalities of isoperimetric type can be obtained. As a remarkable example,
Lutwak and Zhang [LZ] proved that, for 1 ≤ p ≤ ∞,

(2) V (K)V (Γ∗pK) ≤ κ2
d ,

where Γ∗pK is the polar body of ΓpK and equality holds if and only if K is an origin
symmetric ellipsoid. For p = ∞ and K origin symmetric (2) reduces to the well
known Blaschke-Santalò inequality

(3) V (K)V (K∗) ≤ κ2
d .

Inequality (2) can be in turn obtained via (3) from the following affine inequality,
which was recently proved by Lutwak, Yang and Zhang [LYZ] and, in a different
way, by the authors [CG]:

(4) V (ΓpK) ≥ V (K) ,

where equality holds if and only if K is an origin symmetric ellipsoid. This inequal-
ity, for p = 1, is the well known Busemann-Petty centroid inequality (see, e.g., [G],
Theorem 9.2.6). For p = 2, inequality (4) was proved by Blaschke [B] for d = 3 and
by John [J1] in higher dimensions (see also Petty [P1]).

The Lp-Busemann-Petty centroid inequality (4) states that the minimum of the
functional F (K) = V (ΓpK)/V (K) is one. Notice that F is invariant under linear
transformations, but it is not translation invariant. In particular, F is unbounded
in the class of convex bodies. Natural restrictions which make F bounded are, for
example, to consider only convex bodies containing the origin or having the origin
as their barycenter. In the present paper we deal with extremal problems for F in
these classes of convex bodies.

Precisely, let us consider the function

(5) φp(K, x) =
V (Γp(K − x))

V (K)
,

which expresses the dependence of the volume of ΓpK on the location of K. For
every K, φp(K,x) is a strictly convex function of x (see Theorem 2.1).
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Inspired by the articles of Rogers and Shephard [RS] and [Sh], the results con-
tained in this paper rely on the convexity of φp(K, ·) with respect to a time-like
parameter under parallel chord movements of K, in which each chord of K parallel
to a fixed direction slides with constant speed (see Section 2). The same approach
was used by Colesanti and the authors in [CCG] for studying functionals of Sylvester
type and in [CG] for proving inequality (4).

In Section 3 we deal with the maximum of φp(K,x) for x ∈ K. Such a functional,
denoted by Mp, is affine invariant in the class of convex bodies. As a maximum of
convex functions, Mp is still convex under parallel chord movements. Consequently
we obtain that ellipsoids are the only minimizers of Mp. Moreover we show that,
for d = 2, the maximum of Mp is attained on triangles. This result is an extension
of the one proved in the cases p = 1, 2 by Bisztriczky and Böröczky in [BB], where
in addition they characterize triangles as unique maximizers. We prove also that
parallelograms provide the maximum of Mp in the class of all origin symmetric
convex figures.

The search of maximizers of Mp in all dimensions is related to classical open
problems, like the slicing problem: Is there a constant c1 independent of d such
that for every origin symmetric convex body K

(6) V (K)
d−1

d ≤ c1 max
u 6=0

V (K ∩ u⊥) ?

Here u⊥ = {z ∈ Rd : 〈u, z〉 = 0}. As noted, for instance, in [BB] and [MP], (6) is
equivalent to the existence of a constant c2, independent of d, such that for every
origin symmetric convex body K

(7) V (ΓK)
1
d < c2V (K)

1
d .

An equivalent formulation involving Γ2K can be found in [MP]. For a general
discussion on the slicing problem and related results see [G], Note 9.6.

Inequality (7) could be interpreted as an estimate from above for the minimum
with respect to x of φ1(K,x), with K origin symmetric. Denoting by mp(K)
the minimum of φp(K, x), a characterization of ellipsoids as minimizers of mp is
provided by inequality (4). The parallel chord movements method cannot be applied
directly to mp, nevertheless we can employ it to obtain the same results as for Mp.
If K is centrally symmetric, then

(8) mp(K) = φp(K, cK) ,

where cK is the barycenter of K. In Section 4 we prove that (8) holds also for an
arbitrary convex body K, when p = 2. Besides we show that the affine invariant
functional Cp(K) = φp(K, cK) is convex under parallel chord movements. We
deduce that, for d = 2, triangles are maximizers of Cp among all convex figures.
Since for a simplex Cp and mp coincide, we conclude that triangles are maximizers
also of mp, for d = 2. In the restricted class of centrally symmetric plane convex
sets, parallelograms are maximizers of Cp. A characterization of parallelograms as
the only maximizers of Cp, for p = 1, 2, is given in [BB].
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2. Preliminary results.
In this paper we shall make use of the following notion of continuous movements

of convex bodies introduced by Rogers and Shephard (see [RS] and [Sh]). A shadow
system along the direction v is a family of convex sets Kt ⊂ Rd that can be defined
by

Kt = conv{x + α(x)t v : x ∈ A ⊂ Rd} ,

where A is an arbitrary bounded set of points, α is a bounded function on A and t
belongs to an interval of the real axis.

As proved by Rogers and Shephard [RS], the volume V (Kt) of a shadow system
is a convex function of the parameter t.

A parallel chord movement along the direction v is a shadow system defined by

(9) Kt = {x + β(x|v⊥)t v : x ∈ K} ,

where K is a convex body in Rd and β is a continuous real function on the projection
K|v⊥ of K onto v⊥. Thus, a parallel chord movement can be constructed by
assigning to each chord of K = K0 parallel to v a speed vector β(z)v, where z is
the projection of the chord onto v⊥. The function β has to be given in such a way
that at time t the union Kt of the moving chords is convex. It is easy to verify
that, if β(z) = 〈z, u〉 + k, for some vector u ∈ v⊥ and real constant k, then Kt is
an affine image of K.

The notion of parallel chord movement is strongly related to Steiner symmetriza-
tion. Fix a direction v and let

(10) K = {x + yv ∈ Rd : x ∈ K|v⊥, y ∈ R, fv(x) ≤ y ≤ gv(x)} ,

where fv and −gv are convex functions on K|v⊥. If one takes β(x) = −(fv(x) +
gv(x)) and t ∈ [0, 1] in (9), then K0 = K, K1 = Kv, the reflection of K in the
hyperplane v⊥, and K1/2 is the Steiner symmetral of K with respect to v⊥.

In [CG] the authors proved that, if {Kt : t ∈ [0, 1]} is a parallel chord movement
along the direction v, then {ΓpKt : t ∈ [0, 1]} is a shadow system along the same
direction. Hence the volume of ΓpKt is a convex function of t. Furthermore,
they proved that the volume of ΓpKt is strictly convex unless β is linear, that is
β(x) = 〈x, u〉 for some vector u ∈ v⊥ and for every x ∈ K0|v⊥.

Let us apply these results to φp(K, x), defined by (5).
First, by definitions (1) and (5), we see easily that φp(K, x), for every fixed x,

is continuous with respect to the Hausdorff metric. Moreover, an easy consequence
of (1) is that

hΓp(LK)(u) = hΓpK(L∗u) ,

for every L ∈ GL(d), where L∗ is the transpose of L. The definition of support
function implies that

hΓpK(L∗u) = hLΓpK(u) ,

hence Γp(LK) = LΓpK. Therefore

(11) φp(LK, Lx) =
V (Γp(LK − Lx))

V (LK)
=

V (L(Γp(K − x))
V (LK)

= φp(K,x) ,

for every L ∈ GL(d). Obviously φp(TK, Tx) = φp(K, x), for every translation T ,
hence (11) holds true for every affine map L.
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Theorem 2.1. If {Kt : t ∈ [0, 1]} is a parallel chord movement along the direction
v with speed function β, then φp(Kt, x) is a convex function of t and a strictly
convex function of x. Moreover, it is strictly convex in t unless β(z) = 〈z − x, u〉
for some u ∈ v⊥.

Proof. By Fubini’s theorem V (Kt) is constant. For every x, {Kt − x : t ∈ [0, 1]} is
a parallel chord movement of K − x, so the convexity of φp(Kt, x) with respect to
t immediately follows and strict convexity holds unless the speed of the movement
{Kt − x : t ∈ [0, 1]} is linear, that is unless β(z + x) = 〈z, u〉, for some u ∈ v⊥.

Let t be fixed and take x1, x2 ∈ Rd. Then {Kt− ((1−λ)x1 +λx2) : λ ∈ [0, 1]} is
a parallel chord movement along x2−x1 with constant speed function. This implies
the strict convexity of φp(Kt, x) with respect to x. ¤

Remark. If β(z) = 〈z−x, u〉 for some u ∈ v⊥, then φp(Kt, x) is constant for every
t ∈ [0, 1]. This follows from (11), by taking Lz = z + 〈z, u〉tv.

3. The functional Mp.
Let

Mp(K) = max
x∈K

φp(K, x) .

From Theorem 2.1 we deduce that

Mp(K) = max
x∈∂K

φp(K,x) ,

where ∂K is the boundary of K.
To prove that Mp is continuous in the Hausdorff metric, take a sequence of

convex bodies {Kn} converging to K and choose yn ∈ ∂Kn such that Mp(Kn) =
φp(Kn, yn). Up to a subsequence we may assume that yn converges to y ∈ K and
then

lim
n→∞

Mp(Kn) = lim
n→∞

φp(Kn − yn, 0) = φp(K − y, 0) ≤ Mp(K) .

On the other hand, let z ∈ ∂K be such that Mp(K) = φp(K, z). Denote by zn

the closest point to z in Kn; clearly the sequence {Kn − zn + z} converges to K.
Therefore

Mp(K) = lim
n→∞

φp(Kn − zn + z, z) = lim
n→∞

φp(Kn, zn) ≤ lim
n→∞

Mp(Kn) .

From (11) it follows that the functional Mp is affine invariant. As a consequence
of this fact, Mp has maximum and minimum in the class of all convex bodies as well
as in the class of all centrally symmetric convex bodies. Indeed, by John’s theorem
([J2], Theorem III), we can restrict ourselves to the class of (symmetric) convex
bodies containing the unit ball Bd and contained in dBd. A standard compactness
argument provides the existence of the extrema of Mp.

A basic tool in looking for such extrema is the following theorem.

Theorem 3.1. If {Kt : t ∈ [0, 1]} is a parallel chord movement with speed function
β, then Mp(Kt) is a convex function of t. Moreover, it is strictly convex unless β
is affine.
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Proof. Let v be the direction of the movement {Kt : t ∈ [0, 1]}. We have

Mp(Kt) = max
y∈Kt

φp(Kt, y)

= max
x∈K0

φp(Kt, x + β(x|v⊥)tv)

= max
x∈K0

φp(Kt − β(x|v⊥)tv, x) .

For every x ∈ K0, {Kt − β(x|v⊥)tv : t ∈ [0, 1]} is still a parallel chord movement
along v. Therefore Theorem 2.1 implies that Mp(Kt), as a maximum of convex
functions, is convex with respect to t. The same theorem provides the conditions
for the strict convexity. Indeed, if Mp(Kt) is not a strictly convex function of t,
then there exist x ∈ K0 and u ∈ v⊥ such that β(z)−β(x|v⊥) = 〈z−x, u〉, for every
z ∈ v⊥. Hence β(z) = 〈z, u〉+ c, for some constant c. ¤

A first consequence of Theorem 3.1 is the following characterization of minimiz-
ers.

Corollary 3.2. The minimum of Mp(K) in the class of all convex bodies is attained
if and only if K is an ellipsoid.

Proof. Let us fix a direction v. We have seen in Section 2 that the Steiner process of
symmetrization of the convex body K with respect to v⊥ is described by a parallel
chord movement whose endpoints are K and Kv. The affine invariant functional
Mp takes the same value at K and Kv. Therefore, Theorem 3.1 implies that Mp

is not increased if one replaces K by its Steiner symmetral and that the value of
Mp does not change after the symmetrization only if the speed of the movement
is an affine function. By the representation (10) of K, the speed of the movement
is −(fv + gv). Hence it is an affine function if and only if all the midpoints of the
chords of K parallel to v lie on a hyperplane.

It is well known (see, e.g., [P2]) that ellipsoids are the only bodies enjoying this
property for every direction v. ¤

Clearly, if B is a ball then φp(B, x) has constant value when x belongs to the
boundary of B and that value is just Mp(B). By the affine invariance of φp, the
same happens for ellipsoids.

Let us turn now to the problem of finding maximizers of the functional Mp. We
solve here the problem for d = 2.

Theorem 3.3. For d = 2, the maximum of Mp(K) in the class of all convex bodies
is attained if K is a triangle.

Proof. By the continuity of Mp, an approximation argument makes it sufficient to
show that triangles give the maximum of Mp in the class of all polygons. Let P be
a polygon with n vertices, n > 3, and assume that v1, v2, v3 are three consecutive
vertices of P . Take a direction u parallel to the line through v1 and v3 and consider
the shadow system {Pt : t ∈ [t0, t1]}, t0 < 0 < t1, along u, with speed 1 at v2 and 0
at the other vertices. If t0 and t1 are sufficiently close to 0, then only the triangle
v1v2v3 moves, while the remaining part of P keeps still. Let us choose [t0, t1] as
the largest interval such that the area of Pt is constant for all t ∈ [t0, t1]. Hence
{Pt : t ∈ [t0, t1]} is just a parallel chord movement and Pt0 and Pt1 have exactly
n− 1 vertices. By Theorem 3.1,

Mp(P ) < max{Mp(Pt0),Mp(Pt1)} ,
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where the inequality is strict because the assumption n > 3 implies that the speed
of the movement is not affine. If n > 4, iterations of this argument lead to the
conclusion. ¤

Theorem 3.3 implies that, if the origin belongs to K, then

V (ΓpK) ≤ V (ΓpT ) ,

where T is a triangle with the same area as K having a vertex at the origin.
In the special cases p = 1 and p = 2, Bisztriczky and Böröczky [BB] proved that

triangles are the only maximizers of Mp.

Theorem 3.4. For d = 2, the maximum of Mp(K) in the class of all centrally
symmetric convex bodies is attained if K is a parallelogram.

Proof. One can easily adapt the proof of Theorem 3.3 to the symmetric case. In
particular, by assuming that the bodies are origin symmetric, the parallel chord
movements employed in this case have an odd function as speed. ¤
Remark. The reason why the method used in proving Theorem 3.3 is successful
only for d = 2 can be explained by introducing the class Pd of all convex bodies K
in Rd with the following property: If {Kt : t ∈ [−1, 1]} is a parallel chord movement
and K = K0, then the speed of the movement is an affine function. The class Pd

is non-empty, for every d. For instance, in [CCG] it is proved that all the simplices
in Rd belong to Pd. From Theorem 3.1 it follows that all the maximizers of Mp are
in Pd. As shown in the proof of Theorem 3.3, triangles are the only polygons in
P2. If d > 2, there are in Pd other polytopes than simplices; for example, a prism
with a triangular base belongs to P3 (see again [CCG]).

As far as the characterization of maximizers is concerned, the method encounters
the obstacle that P2 contains bodies other than triangles. Given a convex set K,
represented as in (10), a parallel chord movement {Kt : t ∈ [−1, 1]} with K = K0

corresponds to a speed function β such that fv ± β and −gv ± β are still convex
functions in K|v⊥. In terms of second derivatives, if we find a non zero measure β′′

such that f ′′v ±β′′ and −g′′v ±β′′ are still positive measures, then K does not belong
to P2. If, for example, f ′′v and −g′′v are Hausdorff measures of different dimensions,
then it is impossible to find such a β′′ and consequently to move K along v. In order
to exhibit an example of a non-triangular set from P2, one can use a measure µ on
the unit circle S1 of the same type as the one obtained by Rogers and Taylor in
[RT] via a suitable modification to the Cantor ternary function. The key property
of such a measure is the following. Let α be a function defined in the support of µ
so that µ, at every point x, is locally comparable with a Hausdorff α(x)-dimensional
measure. If α(x) = α(y), then one of the arcs of S1 joining x and y has µ-measure
zero. By a possible balancing of the measure µ at some point, we can assume that∫

S1 z dµ = 0 and then, by Minkowski’s theorem (see, e. g., [Sc], p. 392), there exists
a convex set K with area measure µ. One can check that, for every direction v, the
measures f ′′v and −g′′v are nowhere comparable each other in K|v⊥. Hence K ∈ P2.

4. The functionals mp and Cp.
Let

mp(K) = min
x∈K

φp(K, x)

and
Cp(K) = φp(K, cK) ,
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where the point cK is the barycenter of the body K. Let us first deal with the
functional Cp.

Since cLK = LcK for every affine map L, by (11) one has that Cp is an affine
invariant functional. Furthermore, the continuity of φp and cK immediately implies
the continuity of Cp with respect to the Hausdorff metric.

For some convex bodies Cp = mp. If K has a symmetry, then the barycenter of
K is a fixed point of the symmetry itself. By Theorem 2.1, the same happens to
the point where the minimum of φp(K,x) is attained. Hence cK is the extremal
point when K is centrally symmetric or the group of symmetries of K has a unique
fixed point.

Even if K has no symmetry, Cp(K) is still the minimum of φp(K,x) when p = 2.
To see this, we recall that the moment of inertia of a body K about the axis through
the origin parallel to the direction u is

JK(u) =
∫

K

(‖x‖2 − 〈x, u〉2) dx

and the polar moment of K is

IK =
∫

K

‖x‖2 dx .

Hence

V (K)
d + 2

h2
Γ2K(u) = IK − JK(u) =

1
d− 1

[JK(u1) + · · ·+ JK(ud−1)− (d− 2)JK(u)] ,

where u1, . . . , ud−1 is an orthonormal basis of u⊥.
Let us assume that cK is at the origin. If Kt = K +tz, then by Steiner’s theorem

(see, e. g., [Se], Section 3.5)

JKt(u) = JK(u) + t2‖z‖2 − t2〈z, u〉2 .

Therefore, simple calculations give

h2
Γ2Kt

(u) = h2
Γ2K(u) +

(d + 2)t2

V (K)
〈z, u〉2 .

The last equality implies that Γ2K is contained in the 2-centroid body of any
translate of K. Thus

C2(K) = m2(K) .

Let us deal now with extrema of Cp. The same argument used in the previous
section ensures that Cp has maximum and minimum in the class of all convex bodies
as well as in the class of the symmetric ones.

Theorem 4.1. If {Kt : t ∈ [0, 1]} is a parallel chord movement with speed function
β, then Cp(Kt) is a convex function of t. Moreover, it is strictly convex unless β
is affine.
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Proof. If v is the direction of the movement {Kt : t ∈ [0, 1]}, then the barycenter
of Kt moves with constant speed along the direction v. Indeed

cKt
=

1
V (Kt)

∫

Kt

x dx =
1

V (K0)

∫

K0

(x + β(x|v⊥)tv) dx

= cK0 +
tv

V (K0)

∫

K0

β(x|v⊥) dx .

Therefore {Kt− cKt
: t ∈ [0, 1]} is still a parallel chord movement. Since Cp(Kt) =

φp(Kt − cKt
, 0), Theorem 2.1 completes the proof. ¤

By the same proof of Corollary 3.2, Theorem 4.1 implies that in the class of all
convex bodies the only minimizers of Cp are ellipsoids. Such a result is already
known as a consequence of the Lp-Busemann-Petty inequality (4). Notice that the
same inequality implies that ellipsoids are the only minimizers of mp too.

Concerning the maximum, from Theorem 4.1 we deduce the following results.

Theorem 4.2. For d = 2, the maximum of Cp(K) in the class of all convex bodies
is attained if K is a triangle.

Proof. It is enough to apply Theorem 4.1, and follow step by step the proof of
Theorem 3.3. ¤

The result just proved for Cp implies the following theorem.

Theorem 4.3. For d = 2, the maximum of mp(K) in the class of all convex bodies
is attained if K is a triangle.

Proof. By (11), mp is affine invariant. If T is a regular triangle, then, owing to the
simmetries of T , mp(T ) = Cp(T ). By the affine invariance of both functionals, the
same equality holds for an arbitrary triangle. Therefore, by Theorem 4.2, for an
arbitrary two-dimensional convex body K, we have that

mp(K) ≤ Cp(K) ≤ Cp(T ) = mp(T ) ,

where T is any triangle. ¤
In [BB] it is shown that parallelograms are the only maximizers of C1 and C2

among all centrally symmetric plane convex figures. For an arbitrary p ≥ 1 the
following holds true.

Theorem 4.4. For d = 2, the maximum of Cp(K) (or mp(K)) in the class of all
centrally symmetric convex bodies is attained if K is a parallelogram.

Proof. One can easily adapt the proof of Theorem 3.3 to the functional Cp. Pre-
cisely, by the continuity of Cp, it is sufficient to show that parallelograms are max-
imizers in the class of all origin symmetric polygons. Let P belong to this class
and assume that P is not a parallelogram. Label three consecutive vertices of P
by v1, v2 and v3. The shadow system {Pt : t ∈ [t0, t1]} along a direction parallel
to v1 − v3, with speed 1 at v2, −1 at −v2 and 0 at the other vertices is a parallel
chord movement for t0, t1 sufficiently close to 0. If [t0, t1] is the largest interval
with such a property, then Pt0 and Pt1 have exactly two vertices less than P and,
by Theorem 4.1,

Cp(P ) < max{Cp(Pt0), Cp(Pt1)} .

Possible iterations of this argument give the conclusion. ¤
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