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Abstract. If C is a compact subset of Rd and H is a halfspace bounded by a
hyperplane π, the set C̃ obtained by shaking C on π is defined as the set contained
in H, such that for every line ` orthogonal to π, C̃ ∩ ` is a segment of the same
length as C ∩ `, and one of its endpoints is on π. It is shown that there exist d + 1
hyperplanes such that every compact set can be reduced to a simplex, via repeated
shaking processes on these hyperplanes.

MSC 2000: 52A30

Introduction

Symmetrizations and more general rearrangements are a powerful tool used to solve many
problems in mathematics. We mention for instance their employment in the proof of
isoperimetric and functional inequalities (see e.g. [13], [14], [5]). The best known sym-
metrization is the one introduced by Steiner. Given a compact set C ⊂ Rd and a hyperplane
π, the Steiner symmetral C ′ of C with respect to π is obtained as follows: for every line `
orthogonal to π, C ′ ∩ ` is a segment of the same length as C ∩ `, having its midpoint on
π. An essential feature of this process is that every compact set can be reduced to a ball
of the same volume via countably many Steiner symmetrizations (see e.g. [2], [7], [8]).
The aim of the present paper is to establish an analogous result for another type of

rearrangement, namely the shaking process. The set C̃ obtained by shaking C on π is the

10138-4821/93 $ 2.50 c©2001 Heldermann Verlag



124 S. Campi, A. Colesanti, P. Gronchi: Shaking Compact Sets

set, contained in one of the halfspaces bounded by π, such that C̃ ∩ ` is again a segment
of the same length as C ∩ `, having one endpoint on π.
The shaking process (Schüttelung) was introduced by Blaschke in [3] for solving the

Sylvester problem in the plane. Blaschke’s argument relies on the fact that, for every line
`, the set obtained by shaking a triangle T on ` is affinely equivalent to T . This property
characterizes triangles similarly as the affine invariance under Steiner symmetrizations
characterizes ellipses.
In higher dimensions, while the class of ellipsoids is still closed under Steiner sym-

metrizations, it is not true that the shaking process maps simplices into simplices.
For convex bodies both Steiner and shaking processes can be seen as particular instances

of a more general class of transformations which move continuously each chord of a set
parallel to a fixed direction. These transformations were used by the authors to approach
extremal problems of Sylvester’s type (see [6]).
The idea underlying the shaking process can be found in several papers. For instance,

Uhrin [15] used it for strengthening the Brunn-Minkowski-Lusternik inequality, and Kleit-
man [9] introduced a discrete version of this process to obtain discrete isoperimetric in-
equalities (see also Bollobás and Leader [4]).
In [1] Biehl showed that given a convex body K in R2 there exists a sequence of lines πi,

i ∈ N, such that the process of shaking K successively on πi transforms it into a triangle.
Furthermore Biehl suggests that his argument can be extended to arbitrary dimension. In
fact such an extension is performed by Schöpf in [11]. We notice that in the procedure
used by Biehl and Schöpf the choice of πi is recursive, i.e. it depends on the resulting body
at the previous step.
In the present paper we improve this result in two directions: We extend it to the class

of compact sets and we prove that the sequence πi can be chosen independently ofK. More
precisely, we consider the simplex S in Rd whose vertices are at the points (0, 0, . . . , 0),
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) and an arbitrary compact set C. We show
that by shaking repeatedly C on the hyperplanes bounding S we obtain a sequence of sets
converging (up to translations) to a simplex homothetic to S, in the Hausdorff metric.
The simpler case when C is convex, which will be treated in Section 2, plays a key role in
proving the result in its generality (Section 3).
We note that since the sequence of hyperplanes can be chosen independently of the

compact set, we can transform two compact sets into homothetic simplices simultaneously.
This fact can be used to obtain the Brunn-Minkowski-Lusternik inequality (see Remark
3.3).

1. Notations and preliminaries

In the d-dimensional Euclidean space Rd let O denote the origin, e1, e2, . . . , ed the standard
orthonormal basis, and Rd+ = {x ∈ Rd : xi > 0, i = 1, 2, . . . , d}. Furthermore Sd−1 and Bd
stand for the unit sphere and the unit ball of Rd, respectively.
We denote by Cd the family of all compact sets in Rd and by Kd the subset of Cd of all

convex bodies, i.e. all compact convex sets in Rd with non-empty interior. Both Cd and
Kd are endowed with the Hausdorff distance dH and the Minkowski or vector sum (see
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e.g. [10]). If A ∈ Cd, then |A|d stands for its d-dimensional Lebesgue measure, conv(A),
int(A) and ∂A for the convex hull, the interior and the boundary of A, respectively.
Let C ∈ Cd and fix a hyperplane π and a unit vector v orthogonal to π. We define the

set Cπ,v obtained by shaking C on π with respect to v as follows. For every x ∈ π, let
C(x) be the intersection of C with the straight line through x parallel to v. We define

Cπ,v(x) =

{
∅ if C(x) = ∅

conv({x, x+ |C(x)|1 v}) if C(x) 6= ∅

and
Cπ,v =

⋃

x∈π

Cπ,v(x) .

In the following lemma we collect some basic properties of the shaking process. The
proof immediately follows from the definition.

Lemma 1.1.

(i) If C ∈ Cd, then Cπ,v ∈ Cd.
(ii) If C ∈ Kd, then Cπ,v ∈ Kd.
(iii) If C,D ∈ Cd and C ⊂ D, then Cπ,v ⊂ Dπ,v.

Let e0 = −
1√
d

∑d
i=1 ei and π0 = {x ∈ Rd : 〈x, e0〉 =

−1√
d
}, where 〈 , 〉 is the standard scalar

product in Rd. Furthermore let πi = {x ∈ Rd : xi = 0}, i = 1, 2, . . . , d. The hyperplanes
π0, π1, . . . , πd bound a simplex that will be referred to as S0 throughout.
For every i = 0, 1, . . . , d, we define a mapping Ti : Cd → Cd by

Ti(C) = Cπi,ei

and a mapping T : Cd → Cd by

T = Td ◦ Td−1 ◦ · · · ◦ T1 ◦ T0 .

We shall denote by Pd the class of all C ∈ Cd satisfying the following properties:

(i) C ⊂ Rd+ = {x ∈ Rd : xi ≥ 0, i = 1, 2, . . . , d},
(ii) if x = (x1, x2, . . . , xd) ∈ C and y = (y1, y2, . . . , yd) are such that 0 ≤ yi ≤ xi,

i = 1, 2, . . . , d, then y ∈ C.

Clearly Pd is closed with respect to the Hausdorff metric.

Lemma 1.2. If C ∈ Cd then T (C) ∈ Pd.

Proof. The proof can be easily obtained by taking the following facts into account. If
A ∈ Cd and x ∈ Ti(A), i = 1, 2, . . . , d, then the segment joining x and its projection onto
πi is contained in Ti(A). Moreover, this property is preserved by Tj ◦ Ti(A), i < j ≤ d. �



126 S. Campi, A. Colesanti, P. Gronchi: Shaking Compact Sets

It is easy to exhibit examples showing that the shaking process, and a fortiori T , is not
continuous in Cd. Continuity can be recovered if T is restricted to some special subsets of
Cd. For example, T is continuous in Kd. Indeed, if Kn, n ∈ N, is a sequence of convex
bodies converging to K ∈ Kd, then the measure of the symmetric difference |Kn∆K|d
tends to 0 as n → ∞. Clearly |T (Kn)∆T (K)|d ≤ |Kn∆K|d. This implies that T (Kn)
converges to T (K) in the Hausdorff metric (see [12]).
A further example, which is useful for our purposes, is given by the following lemma.

Lemma 1.3. The restriction of the mapping T to Pd is continuous.

Proof. Up to a rescaling, we can restrict ourselves to the elements of Pd contained in S0.
We notice that if C is an element from Pd, then C can be seen as the region enclosed

by the graphs of two Lipschitz functions, f and g, defined on π0, with Lipschitz constant
less than or equal to one. Thus T0(C) is the region bounded by π0 and the graph of f − g.
From this fact the continuity of T0 in Pd easily follows.
Moreover, it follows that there exists in Rd a closed convex cone K with non-empty

interior and vertex at O satisfying the following condition: if C ∈ Pd and x ∈ T0(C) then
(x+K) ∩ Σ ⊆ T0(C), where Σ is the closed half-space bounded by π0 containing O.
Notice that, by the above considerations, |∂T0(C)|d−1 ≤M for every C ∈ Pd, C ⊂ S0,

where M > 0 is independent of C.
Now let us fix x ∈ T1(T0(C)), and let ` be the line through x parallel to e1. Clearly

|` ∩ T0(C)|1 = |` ∩ T1(T0(C))|1 ≥ 〈x, e1〉. The set

V =
⋃

y∈`∩T0(C)

((y +K) ∩ Σ)

is contained in T0(C). By (iii) of Lemma 1.1, T1(V ) ⊆ T1(T0(C)). In particular there
exists a closed convex cone K ′ with non-empty interior and vertex at O such that

(x+K ′) ∩ Rd+ ⊆ T1(T0(C)) .

Furthermore K ′ can be chosen independently of C and x.
The next step is to show that the above property gives the continuity of T1 in T0(Pd).

Owing to the monotonicity of T1 it is sufficient to prove that for every ε > 0 and D ∈
T0(Pd), D ⊂ S0, there exists δ > 0 such that

(1.1) dH (T1(D), T1(Dδ)) < ε ,

where Dδ is the parallel set D + δB
d, and δ depends only on ε. Let K0 = K ∩ Σ, and fix

µ > 0 so that µK0 contains a translate of the unit ball. We have that

(1.2) dH (T1(D), T1(Dδ)) ≤ dH (T1(D), T1(D + δµK0)) .

Recall that |∂D|d−1 ≤M , where M is independent of D. Therefore

(1.3) lim
δ→0+

|D∆(D + δµK0)|d = 0 ,
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uniformly with respect to D.
Let K ′0 = K

′ ∩ {x1 ≥ −1}, and λ be such that

(1.4) |λK ′0|d = 2 |D∆(D + δµK0)|d .

Then, by (1.3), λ tends uniformly to 0 as δ → 0.
We prove that

(1.5) T1(D + δµK0) ⊆ T1(D) + ρB
d ,

where ρ = 2max{δ diam(µK0), λ diam(K ′0)}.
Fix x /∈ T1(D)+ρBd, we have that (x+λK ′0)∩T1(D) = ∅. If we assume that x ∈ T1(D+

δµK0), then (x+λK
′
0)∩{x1 ≥ 0} ⊆ T1(D+δµK0). Thus, by (1.4), ‖x−x

′‖ ≤ λ diam(K ′0),
where x′ is the orthogonal projection of x onto π1. Since dH (x

′, T1(D)) ≤ δ diam(µK0),
we get

dH (x, T1(D)) < ρ ,

i.e. a contradiction.
Finally by (1.2) and (1.5), inequality (1.1) follows.
The same argument used for showing that T1 is continuous in T0(Pd) can be repeated

to prove the continuity of Ti in Ti−1(Ti−2(. . . T0(Pd))), i = 2, 3, . . . , d, and the proof of the
lemma is complete. �

2. The convex case

In this section we prove the following:

Theorem 2.1. Let K ∈ Kd, then the sequence

K0 = K , Ki+1 = T (Ki) , i ∈ N ,

converges to S = ρS0, where ρ > 0 is such that |S|d = |K|d.

Proof. Let us define ϕ : Pd ∩ Kd → R by

ϕ(C) = max{λ ≥ 0 : λS0 ⊆ C} .

We show that ϕ is continuous.

Let C ∈ Pd∩Kd, thus (C+εBd)∩Rd+ = C+ε(Bd∩Rd+). Since Bd∩Rd+ ⊂
√
dS0, we have

that (C+εBd)∩Rd+ ⊂ C+ε
√
dS0. Hence, ϕ((C+εB

d)∩Rd+) ≤ ϕ(C+ε
√
dS0) = ϕ(C)+ε

√
d,

which implies the continuity of ϕ.
As T (λS0) = λS0, for every λ ≥ 0, it follows from the monotonicity of T (see Lemma

1, (iii)), that

(2.1) ϕ(C) ≤ ϕ(T (C)) .
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Let us show that in (2.1) equality holds if and only if

(2.2) C = λ̄S0 , for some λ̄ > 0 .

Assume that C does not satisfy (2.2). Let S′ = λ′S0, with λ
′ = ϕ(C). The orthogonal

projection of the origin onto the facet of S′ parallel to π0 is contained in intC. This implies
that for a suitable t ∈ R, S′ + te0 ⊆ T0(C) and te0 ∈ int T0(C). Hence, for some ε > 0

te0 − εei ∈ T0(C) , i = 1, 2, . . . , d .

It is easy to check that this implies that

(λ′ + ε)S0 = S
′ + εS0 ⊆ T (C) .

Thus ϕ(T (C)) > ϕ(C).

Let Kλi be a subsequence of Ki converging to some K̃ and assume that K̃ is not of the

form λS0. Clearly K̃ ∈ Pd, and therefore

(2.3) ϕ(T (K̃)) > ϕ(K̃) .

On the other hand, by Lemma 1 and the continuity of ϕ,

(2.4) ϕ(T (K̃)) = lim
i→∞

ϕ(T (Kλi)) = lim
i→∞

ϕ(Kλi+1) .

Moreover, by (2.1)

(2.5) ϕ(Kλi+1) ≤ ϕ(Kλi+1) , for all i ∈ N .

From (2.4) and (2.5) we obtain a contradiction to (2.3). Thus we have proved that every
converging subsequence of Ki tends to S. This fact, together with the Blaschke selection
theorem (see e.g. [10], p.50) concludes the proof. �

Remark 2.2. The proof of Theorem 2.1 can be adapted to show the following more
general result. Let S be a simplex in Rd and let ν1, ν2, . . . , νd+1 be the outer unit normals
to its facets. Assume that 〈νi, νj〉 ≤ 0, i, j = 1, 2, . . . , d+ 1, i 6= j, i.e. the angles between
the facets of S are acute. Denote by π̃0, π̃1, . . . , π̃d the hyperplanes bounding S and define
the mapping T as above with πi replaced by π̃i, i = 0,1, . . . , d. Then, for every K ∈ Kd,
the sequence K0 = K, Ki = T (Ki−1), i = 1, 2, . . . , converges to a simplex homothetic to
S, in the Hausdorff metric.

3. The general case

Theorem 3.1. Let C ∈ Cd, then the sequence

C0 = C , Ci+1 = T (Ci) , i ∈ N ,

converges to S = ρS0, where ρ ≥ 0 is such that |S|d = |C|d.

The proof is based on Lemma 3.2 stated below. Let us define ψ : Pd → R by ψ(C) =
min{λ ≥ 0 : C ⊂ λS0}. It is easy to verify that the map ψ is continuous.
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Lemma 3.2. If C ∈ Pd, then

(3.1) ψ(T (C)) ≤ ψ(C) .

Moreover if C is not homothetic to S0, then there exists j ∈ N such that

(3.2) ψ(T j(C)) < ψ(C) .

Proof. The proof of (3.1) follows easily from the monotonicity of the mapping T with
respect to the inclusion.
In order to establish (3.2) we argue by contradiction. Assume that C is not homothetic

to S0. Up to a rescaling we may take ψ(C) = 1. If (3.2) were not true, then

(3.3) ψ(T j(C)) = 1 , for all j ∈ N .

Step 1. Equality (3.3) implies

(3.4) conv(T j(C)) = conv(C) = S0 , for all j ∈ N .

Indeed
conv(T j(C)) ⊆ ψ(T j(C))S0 = S0 .

If, for some j ∈ N, conv(T j(C)) were strictly contained in S0, then by Theorem 2.1 we
would have

lim
i→∞

T i(conv(T j(C))) = λS0

for a certain λ < 1. Therefore for sufficiently large i and a suitable λ′ < 1, we have

T i+j(C) ⊆ T i(conv(T j(C))) ⊂ λ′S0

which contradicts (3.3). Hence (3.3) implies (3.4).

Step 2. Let F be the closed facet of S0, orthogonal to e0 and Ej = T j(C) ∩ F . We prove
that |Ej |d−1, j ∈ N, is a non-increasing sequence.
For i = 1, 2, . . . , d, we denote by Pi the vertex of F lying on the xi-axis. Let Q be the

centroid of F and

Fi = conv{Q,P1, . . . , Pi−1, Pi+1, . . . , Pd} , i = 1, 2, . . . , d .

We have that ∣∣T0(T j(C)) ∩ πi
∣∣
d−1
=
√
d |Fi ∩ Ej |d−1 .

Hence

|Fi ∩ Ej |d−1 =
1
√
d

∣∣Ti−1(Ti−2(. . . T0(T j(C)))) ∩ πi
∣∣
d−1

≥
1

d

∣∣Ti(Ti−1(. . . T0(T j(C)))) ∩ F
∣∣
d−1

≥
1

d
|Ej+1|d−1 .



130 S. Campi, A. Colesanti, P. Gronchi: Shaking Compact Sets

If we sum up these inequalities then we find

(3.5) |Ej+1|d−1 ≤ |Ej |d−1

and equality holds only if

|F1 ∩ Ej |d−1 = |F2 ∩ Ej |d−1 = · · · = |Fd ∩ Ej |d−1 .

Step 3. Let Cλj be any converging subsequence of Cj = T
j(C), j ∈ N, and call C̃ its limit.

By using Lemma 1.3, the continuity of ψ and (3.3) one proves that

(3.6) ψ(T j(C̃)) = ψ(C̃) = 1 , for all j ∈ N .

Furthermore, by (3.4)

(3.7) conv(T j(C̃)) = conv(C) = S0 ,

and we define
Ẽ = F ∩ C̃ , Ẽj = F ∩ T

j(C̃) .

We now prove that

(3.8)
∣∣∣Ẽj+1

∣∣∣
d−1
=
∣∣∣Ẽj
∣∣∣
d−1

, for all j ∈ N .

To do this, a crucial ingredient is the following equality

(3.9)
∣∣∣Ẽ
∣∣∣
d−1
= lim
i→∞

|Ei|d−1 .

Since, by (3.5), |Ei|d−1 is monotone, it suffices to prove that

∣∣∣Ẽ
∣∣∣
d−1
= lim
j→∞

∣∣Eλj
∣∣
d−1

.

For H ∈ Pd, and t > 0, we set
Ht = H ∩ Σt ,

where Σt = {x ∈ Rd+ : 〈x, e0〉 = −t}. Since H is a compact set, |Ht|d−1 is a lower
semicontinuous function of t. If we denote by c(d) the volume of the (d − 1)-dimensional
regular simplex with edge length

√
2d, then |Ht|d−1− c(d)t

d−1 is a non-increasing function
of t. To see this let Σ′ be the orthogonal projection of Σt1 onto Σt2 , for 0 ≤ t1 < t2. Since
H ∈ Pd,

|H ∩ Σ′|d−1 ≤ |Ht1 |d−1 .

Consequently

|Ht2 |d−1 ≤ |H ∩ Σ
′|d−1 + |Σt2 \ Σ

′|d−1 ≤ |Ht1 |d−1 + c(d)(t
d−1
2 − td−11 ) .
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From the lower semicontinuity of |Ht|d−1 and the monotonicity of |Ht|d−1 − c(d)t
d−1,

it follows that

(3.10) lim
t→t−0

|Ht|d−1 = |Ht0 |d−1 , for all t0 > 0 .

For every t > 0, the function

fH(t) =

∫ t

0

|Hs|d−1 ds

admits left-hand side derivative f ′−H (t), since

fH(t)−
c(d)

d
td

is concave for t ≥ 0. Moreover, by (3.10),

(3.11) f ′−H (t) = |Ht|d−1 , for all t > 0 .

Let us reconsider the sequence Cj . We define

fj(t) = fCj (t) , j ∈ N , f̃(t) = fC̃(t) , t > 0 .

Since fj(t) =
∣∣∣Cj ∩ t

√
dS0

∣∣∣
d
, for every t ≥ 0, the monotonicity of T implies

(3.12) fj(t) ≤ fj+1(t) , t ≥ 0 .

Moreover, since 1√
d
is the distance of F from the origin, we have that

(3.13) fj(t) = |C|d , for all j ∈ N, t ≥
1
√
d
.

By (3.12) and (3.13), the sequence fj converges pointwise to a bounded function in [0,+∞).
For every t > 0,

lim
j→∞

fj(t) = lim
j→∞

fλj (t) = lim
j→∞

∣∣∣Cλj ∩ t
√
dS0

∣∣∣
d
.

Since Cλj tends to C̃ and
∣∣∣∂(Cλj ∩ t

√
dS0)

∣∣∣
d
=
∣∣∣∂(C̃ ∩ t

√
dS0)

∣∣∣
d
= 0 , it follows that

lim
j→∞

fj(t) =
∣∣∣C̃ ∩ t

√
dS0

∣∣∣
d
= f̃(t) , t ≥ 0 .

By (3.11), in order to establish (3.9), it is sufficient to prove that

lim
j→∞

f ′−j (
1
√
d
) = f̃ ′−(

1
√
d
) .
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For every j ∈ N, by (3.12) and (3.13), we have that

f̃ ′−(
1
√
d
) = lim

h→0+

fj(
1√
d
)− f̃( 1√

d
− h)

h

≤ lim
h→0+

fj(
1√
d
)− fj(

1√
d
− h)

h
= f ′−j (

1
√
d
) .

On the other hand, if we fix ε > 0, and take h > 0 so that

f̃ ′−(
1
√
d
) ≥

f̃( 1√
d
)− f̃( 1√

d
− h)

h
− ε

and

−
c(d)

d
·

1
dd/2
− ( 1√

d
− h)d

h
+ c(d)

1

d(d−1)/2
< ε ,

then

f̃ ′−(
1
√
d
) ≥ lim

j→∞

fj(
1√
d
)− fj(

1√
d
− h)

h
− ε

≥ lim sup
j→∞

f ′−j (
1
√
d
)− 2ε ,

where in the last inequality we used the concavity of fj(t)−
c(d)
d
td.

Now we can apply the above argument to the sequence Cλj+i converging to T
i(C̃) for

every j ∈ N. In this way we prove that

lim
j→∞

|Ej+i|d−1 =
∣∣∣Ẽi
∣∣∣
d−1

, for all i ∈ N ,

which implies (3.8).

Step 4. We claim that (3.8) implies that either

(3.14)
∣∣∣Ẽj
∣∣∣
d−1
= 0 , for all j ∈ N

or

(3.15)
∣∣∣Ẽj
∣∣∣
d−1
= |F |d−1 , for all j ∈ N .

By the same argument used in Step 2 we obtain

(3.16)
∣∣∣Ẽj ∩ Fi

∣∣∣
d−1
=
1

d

∣∣∣Ẽj
∣∣∣
d−1
=
1

d

∣∣∣Ẽ
∣∣∣
d−1

, j ∈ N, i = 1, 2, . . . , d .
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Let V = S0 ∩ πd, and Q′ its centroid. Set

V1 = conv{Q
′, P1, P2, . . . , Pd−1} , V2 = V \ V1 .

Since V1 is the orthogonal projection of Fd onto πd, we have that

∣∣∣Ẽj+1 ∩ Fd
∣∣∣
d−1
=
∣∣∣Fd ∩ Td(Td−1(. . . (T0(C̃j))))

∣∣∣
d−1

≤
√
d
∣∣∣V1 ∩ Td−1(. . . (T0(C̃j)))

∣∣∣
d−1

.(3.17)

Analogously one obtains

(3.18)
∣∣∣Ẽj+1 \ Fd

∣∣∣
d−1
≤
√
d
∣∣∣V2 ∩ Td−1(. . . (T0(C̃j)))

∣∣∣
d−1

.

On the other hand

∣∣∣V1 ∩ Td−1(. . . (T0(C̃j)))
∣∣∣
d−1
+
∣∣∣V2 ∩ Td−1(. . . (T0(C̃j)))

∣∣∣
d−1

=
∣∣∣V ∩ Td−1(. . . (T0(C̃j)))

∣∣∣
d−1
=
∣∣∣V ∩ T0(C̃j)

∣∣∣
d−1

≤
√
d
∣∣∣Ẽj ∩ Fd

∣∣∣
d−1
=

√
d

d

∣∣∣Ẽj+1 ∩ F
∣∣∣
d−1

.

Hence, equality holds in (3.17), (3.18) and consequently

(3.19)
∣∣∣V1 ∩ Td−1(. . . (T0(C̃j)))

∣∣∣
d−1
=

1

d− 1

∣∣∣V2 ∩ Td−1(. . . (T0(C̃j)))
∣∣∣
d−1

.

Notice that Td−1(. . . (T0(C̃j))) is the resulting set after d− 1 repeated shakings of T0(C̃j)
along e1, e2, . . . , ed−1. Thus V ∩ Td−1(. . . (T0(C̃j))) satisfies the following property (see
Lemma 1.2): if x̄ = (x̄1, x̄2, . . . , x̄d−1, 0) ∈ V ∩ Td−1(. . . (T0(C̃j))) then

(3.20) V ∩ Td−1(. . . (T0(C̃j))) ⊇ P ,

where P = {(x1, x2, . . . , xd−1, 0) ∈ V : 0 ≤ xi ≤ x̄i, i = 1, 2, . . . , d− 1}.
Let r be a line contained in πd and parallel to (1, 1, . . . , 1, 0) and let σr = r ∩ V ∩

Td−1(. . . (T0(C̃j))). By (3.20), if σr 6= ∅, so that it is a segment having an endpoint on πi
for some i ∈ {1, 2, . . . , d− 1}. On the other hand

|r ∩ V1|1 =
1

d− 1
|r ∩ V2|1 ,

thus

|σr ∩ V1|1 ≤
1

d− 1
|r ∩ V2|1 .
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Now, if |σr ∩ V1|1 6= 0 then |r ∩ V2|1 = |σr ∩ V2|1. Therefore

(3.21) |σr ∩ V1|1 ≤
1

d− 1
|σr ∩ V2|1 ,

where equality holds if and only if

|σr|1 = 0 or σr = r ∩ V .

From Fubini’s theorem and (3.19) it follows that equality holds in (3.21) for almost every
line r. By using again (3.20) we conclude that for all r

(3.22) |σr|1 = 0 ,

or

(3.23) σr = r ∩ V .

If (3.22) holds true, then
∣∣∣V ∩ Td−1(. . . (T0(C̃j)))

∣∣∣
d−1
= 0, which implies immediately

∣∣∣T (C̃j) ∩ F
∣∣∣
d−1
=
∣∣∣C̃j+1 ∩ F

∣∣∣
d−1
=
∣∣∣Ẽj+1

∣∣∣
d−1
= 0 .

If (3.23) holds, then

Td−1(. . . (T0(C̃j))) ∩ V = V ,

and
T0(C̃j) ∩ V = V .

This in turn implies that ∣∣∣Ẽj ∩ Fd
∣∣∣
d−1
= |Fd|d−1

and, by (3.16), ∣∣∣C̃j ∩ F
∣∣∣
d−1
=
∣∣∣Ẽj
∣∣∣
d−1
= |F |d−1 .

This concludes Step 4.

Step 5. In this step we show that both (3.14) and (3.15) lead to a contradiction.

If
∣∣∣Ẽj
∣∣∣
d−1
= 0, for all j ∈ N, then

∣∣∣T0(C̃j) ∩ V
∣∣∣
d−1
= 0 .

Consequently

Td−1(. . . (T0(C̃j))) ∩ V ⊆ V ∩

(
d−1⋃

i=1

πi

)

,
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and therefore

C̃j+1 ∩ F ⊆ F ∩

(
d−1⋃

i=1

πi

)

.

Thus Q /∈ Ẽj+1 and (0, 0, . . . , 0) /∈ T0(C̃j+1). This yields

∣∣∣conv(T0(C̃j+1))
∣∣∣
d
< |S0|d .

But ∣∣∣conv(C̃j+2)
∣∣∣
d
≤
∣∣∣conv(T0(C̃j+1))

∣∣∣
d
,

so we have a contradiction to (3.7).

Finally, since C̃j ∈ Pd for every j ∈ N, if
∣∣∣Ẽj
∣∣∣
d−1

= |F |d−1, then C̃ = S0. But
∣∣∣C̃
∣∣∣
d
= |C|d, so we get a contradiction to the assumption that C is not a simplex. �

Proof of Theorem 3.1. Let C̃ be the limit of a converging subsequence Cλi of Ci and

assume that C̃ is not homothetic to S0. Then, by Lemma 3.2, there exists j ∈ N such that

(3.24) ψ(T j(C̃)) < ψ(C̃) .

The sequence Cλi+j , i ∈ N, converges to T j(C̃), by Lemma 1.3. Moreover, by Lemma 3.2,

ψ(C̃λi+j) ≥ ψ(C̃λi+j ) , for all i ∈ N .

As i tends to +∞ in the above inequality, we get

ψ(T j(C̃)) ≥ ψ(C̃) ,

which contradicts (3.24). �

Remark 3.3. We notice that by applying Theorem 3.1 one obtains the Brunn-Minkowski-
Lusternik inequality. Indeed if A and B are two compact sets in Rd then

(A+B)π,v ⊃ Aπ,v +Bπ,v ,

for arbitrary π and v (see [15]). Therefore the volume of A+B does not increase when A
and B are shaken on the same hyperplane. On the other hand, by Theorem 3.1, A and B
can be reduced to homothetic simplices through the same sequence of shaking processes.
Thus

|A+B|1/dd ≥ |A|1/dd + |B|1/dd .
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