
STEINER SYMMETRALS AND

THEIR DISTANCE FROM A BALL

Gabriele BIANCHI and Paolo GRONCHI

Abstract. It is known that given any convex body K ∈ Rn there is a sequence
of suitable iterated Steiner symmetrizations of K that converges, in the Hausdorff
metric, to a ball of the same volume. Hadwiger and, more recently, Bourgain, Linden-
strauss and Milman have given estimates from above of the number N of symmetriza-
tions necessary to transform K into a body whose distance from the equivalent ball
is less than an arbitrary positive constant.

In this paper we will exhibit some examples of convex bodies which are “hard to
make spherical”. For instance, for any choice of positive integers n ≥ 2 and m, we
construct an n-dimensional convex body with the property that any sequence of m
symmetrizations does not decrease its distance from the ball. A consequence of these
constructions are some lower bounds on the number N .

1. Introduction.
Let K be an n-dimensional convex body. It is known ([H1]) that there is a

sequence of suitable iterated Steiner symmetrizations of K that converges, in the
Hausdorff metric, to a ball of the same volume.

In this paper we will study quantitative information on this convergence.
Let K1 denote the class of n-dimensional convex bodies whose volume equals κn,

the volume of the unit ball Bn. For any ε > 0 we denote by N(n, ε) the minimum
number of successive Steiner symmetrizations needed to transform any body in
K1 into one whose Hausdorff distance from Bn is ≤ ε (see the next section for
definitions).

Hadwiger [H2] obtained an upper bound for N(n, ε): in the subclass of K1 of the
bodies contained in a ball of radius R,

(1.1) N(n, ε) ≤ (4R
√

n + 2ε)nε−2n .

In the proof he uses some estimates of the number of small balls needed to cover
a given cube; substituting them with better estimates available in the literature
([FTK]) one can improve the previous bound to N(n, ε) ≤ (4R)n(n log n+n log log n+
4n)ε−2n.

More recently, Bourgain, Lindenstrauss and Milman [BLM] have shown that
there exist universal constants a and c such that

(1.2) N(n, a) ≤ cn log n .
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Regarding N(n, ε) for ε small they prove that

(1.3) Svm . . . Sv1(K) ⊂ (1 + ε)Bn ,

with m ≤ cn log n + f(ε)n, for some function f of ε (Svi
denote suitable Steiner

symmetrizations), where n is larger than a given function of ε that grows unbound-
edly as ε → 0. The asymptotic behaviour of f(ε) as ε → 0 is f(ε) ≈ e| log ε|/ε2

.
Their paper does not contain results regarding the other inclusion, that of (1−ε)Bn

in Svm
. . . Sv1(K).

Finally, we mention that Tsolomitis [T] has studied similar problems for some
generalizations of the Steiner symmetrization.

In this paper we seek lower bounds on the function N(n, ε). These bounds will
be consequences of the existence of some convex bodies which are “hard to make
spherical”.

Theorem 1. Let n ≥ 2. Given any positive integer m, there exists a non-spherical
origin-symmetric convex body H in Rn such that for any choice of m directions v1,
v2, . . . , vm the body Svm . . . Sv1(H) has the same inner and outer radius as H.

We recall that the inner radius r and outer radius R of a convex body H are
respectively the largest radius of a ball contained in H and the smallest radius of a
ball containing H. When the body is origin symmetric these balls are centered at
the origin and the Hausdorff distance from H to Bn is max{1− r,R− 1}.

An immediate consequence of Theorem 1 is that it is not possible to reduce
the Hausdorff distance of H from the ball of the same volume using at most m
symmetrizations.

Corollary 2. Let n ≥ 2. Given any positive integer m there exists a non-spherical
origin-symmetric body H in Rn of volume κn such that for any choice of m direc-
tions v1, v2, . . . , vm the body Svm . . . Sv1(H) has the same Hausdorff distance from
Bn as H.

Estimates of the distance from Bn of these, or similar, bodies give estimates of
N(n, ε) from below.

Theorem 3. Let N(n, ε) be the function defined in (2.1) and let n ≥ 2. Then

(1.4) N(n, ε) ≥ log(log(1/ε))
log 2

(1 + o(1)) as ε → 0 .

When n is large compared to m, bodies like those in Corollary 2 can be easily
constructed. Let n ≥ m + 2 and let Bn−1 be the intersection of the unit ball
Bn with a hyperplane through the origin. Let R > 2 be arbitrary and let H be
the convex hull of R Bn−1 and r Bn, with 0 < r < R such that vol(H) = κn.
The Hausdorff distance of H from Bn is not reduced by any m symmetrizations
(since symmetrizations with respect to directions v1, . . . , vm leave the points in
RBn−1 ∩ v⊥1 ∩ · · · ∩ v⊥m unchanged, where v⊥ = {x ∈ Rn : 〈x, v〉 = 0} ). This
distance is R− 1 and so it can be made arbitrarily large. Therefore

(1.5) N(n, ε) ≥ n− 1 ∀ε > 0 .

Finally, we would like to mention a technical result which might be of interest in
itself. Proposition 4, in a particular case, implies the following statement. Given
v ∈ Sn−1 we denote by πv the reflection with respect to v⊥.
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Proposition 4 (in the case of two directions). Let n ≥ 2. There exist ar-
bitrarily small subsets A of Sn−1 such that for any choice of the directions v1,
v2 ∈ Sn−1,

(A ∩ πv1(A)) ∩ πv2 (A ∩ πv1(A)) 6= ∅

This result is related to various problems, for instance to additive properties of
sequences of integers studied by P. Erdös (see [HR], Ch. 3).

2. Preliminaries.
Given a direction v ∈ Sn−1 = {x ∈ Rn : ‖x‖ = 1}, Steiner symmetrization along

v is the mapping that associates to each convex body K ⊂ Rn the unique convex
body S(K) with the following two properties:

(1) given any line l parallel to v, K ∩ l and S(K) ∩ l are either both empty or
are segments of the same length;

(2) given any line l parallel to v, S(K) ∩ l is symmetric with respect to v⊥.
This mapping is denoted by Sv and the image Sv(K) of K is called the Steiner
symmetral of K along v.

Let dH(·, ·) denote the Hausdorff distance. We define
(2.1)
N(n, ε) = sup

K∈K1

inf{m ∈ N : ∃v1, . . . , vm ∈ Sn−1 with dH(Bn, Svm . . . Sv1(K)) ≤ ε} .

We now describe the ideas behind the construction of the body H in Theorem
1 in the simple case of an origin-symmetric convex body K such that any single
symmetrization does not decrease its outer radius.

For any z ∈ Rn and for any direction v ∈ Sn−1, let πv(z) = z − 2〈z, v〉v. We call
πv(z) the point corresponding to z along the direction v. Note that πv(z) and z
have the same distance from the origin. Moreover, if R denotes the outer radius of
K,

(2.2) z ∈ Sv(K) ∩RSn−1 if and only if z, πv(z) ∈ K ∩RSn−1 .

Clearly, the compact set K has the property that no symmetrization decreases
its outer radius if and only if Sv(K)∩RSn−1 6= ∅ for any direction v; this fact, due
to (2.2), holds if and only if for any direction v there exists z ∈ K ∩ RSn−1 such
that πv(z) ∈ K ∩ RSn−1. Thus the required property can be rephrased in terms
which involve only the intersection of K with the sphere with equal outer radius.
Let A be an origin-symmetric subset of Sn−1 such that

(2.3) for any direction v there exists z ∈ A such that πv(z) ∈ A.

Then its convex hull is such that no symmetrization decreases its outer radius. To
construct a convex body whose outer and inner radius remain unchanged it suffices
to construct two closed disjoint subsets A and B of Sn−1 that satisfy (2.3) and to
consider the convex hull of r Sn−1 and R B for some 0 < r < R, with R/r so close
to 1 that the boundary of this convex set contains r A.

If its (n− 1)-dimensional Hausdorff measure is large enough, any subset of Sn−1

satisfies (2.3), but we are interested mainly in subsets whose measure is small.
Fig. 1 shows some subsets of S1 that satisfy (2.3).
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Fig.1

The set A is [0, π/2] ∪ [π, 3π/2]; the set B is obtained by removing the middle
third of each interval of A, as in a Cantor set construction. Note that one can
iterate this procedure and obtain sets of arbitrarily small measure that still satisfy
(2.3). Furthermore this property also passes to the limit, providing us with an
example of set of zero measure which determines all possible directions. Using
polar coordinates one can easily check the latter statement. Everything can be
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deduced from the following well-known property of the Cantor set E. Every point
in [0, 1] is the midpoint of a segment with endpoints in E, that is E+E = [0, 2]. The
set C in Fig. 1 is defined by C = {π/4, 5/4π} ∪ [7/12π, 11/12π]∪ [19/12π, 23/12π].
Note that B and C are disjoint.

Given an ordered set V of m directions v1, v2, . . . , vm in Sn−1, for any x ∈ Rn

we call the orbit of x the set OV (x) defined by

OV (x) = {x, πvjs
(πvjs−1

(. . . πvj1
(x))) , for any 1 ≤ j1 < j2 < · · · < js ≤ m} .

All these points have the same distance from the origin. It is straightforward
to check that if r and R are respectively the inner and outer radius of the origin-
symmetric convex body K then

z ∈ Sm . . . S1(K) ∩RSn−1 if and only if OV (z) ⊂ K ∩RSn−1

and

z ∈ ∂(Sm . . . S1(K)) ∩ rSn−1 if and only if OV (z) ⊂ ∂K ∩ rSn−1 .

To construct the set H of Theorem 1 we will construct subsets A of Sn−1 with the
property that

(2.4)
for any choice of the sequence V of m directions v1, v2, . . . , vm

there exists x ∈ A such that OV (x) ⊂ A .

We call this property the m-orbit property. Condition (2.3) expresses the 1-orbit
property.

Proposition 4. For any positive integers n ≥ 2 and m there exist subsets of Sn−1

of arbitrarily small Hn−1-measure which satisfy the m-orbit property.

Here Hn−1 stands for (n− 1)-dimensional Hausdorff measure.

3. A discretization of the problem.
In order to construct the sets K ∩ rSn−1 and K ∩ RSn−1, we solve a similar

problem in the discrete case. We use an argument introduced by Erdös in the
study of additive properties of sequences (see [HR], Ch. 3). In the planar case,
expressing the set A in terms of polar coordinates, one has the following discretized
version of the 1-orbit property: given a positive integer M , A+A = {0, . . . , M −1}
mod M . Erdös studied the problem of finding “small” increasing subsequences A
of N such that A + A = N and gave a probabilistic proof of the existence of such
subsequences.

If x, y ∈ Sn−1 we denote by d(x, y) their geodesic distance. As usual, we write
d(x,A) for infa∈A d(x, a). Given δ > 0, consider a finite subset T of Sn−1 with the
following properties:

(3.1) inf
x∈T

d(x, T \ {x}) ≥ 2δ , sup
y∈Sn−1

d(y, T ) < 2δ .

T is called a δ-net and it will play the role of a discretization of the sphere. For
instance, the set of the centers of a densest packing of Sn−1 with spherical caps
having radius δ is a δ-net.
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Let t = |T |; about the relation between t and δ one can observe the following.
(3.1) implies that the union of the spherical caps centered in T and with radius δ
constitute a packing of Sn−1, while the union of those with radius 2δ constitute
a covering. Let σn−1(φ) denote the (n − 1)-dimensional Hausdorff measure of the
spherical cap in Sn−1 with radius φ. Since

(3.2) σn−1(φ) = (sin φ)n−1(n− 1)κn−1

∫ 1

0

tn−2

√
1− t2 sin2 φ

dt ,

we have

(3.3)
t ≤ t(δ) := c(n) sin1−n δ and

t ≥ t(δ) := c(n) sin1−n 2δ cos 2δ

where c(n) = nκn/κn−1. The relation between t and δ in the case of the densest
packing has been studied thoroughly; see [FTK, p. 824] for better bounds on t.

For each v ∈ T we define a map πv
′ : T → T , the map which corresponds in this

setting to the reflection with respect to v⊥, as follows. To every z ∈ T we associate a
point w of T that minimizes the distance of πv(z) from T , with d(zv, w) = d(zv, T ).
From (3.1), we have d(πv

′(z), πv(z)) < 2δ.
The map πv

′ is not necessarily injective, but an upper bound for the cardinality
of π′−1

v (x) can be easily computed. This follows from the observation that if z1,
z2, . . . , zb have the same image w then the b spherical caps centered at the points
πv(zi) and with radius δ are disjoint and all contained in the spherical cap centered
at w and of radius 3δ. The measure of these balls implies that bσn−1(δ) ≤ σn−1(3δ)
and thus

(3.4) b <

(
sin 3δ

sin δ

)n−1 1
cos 3δ

.

Fix m ∈ N. For every sequence W = w1, w2, . . . , wm of m directions in T we define
the discretized W -orbit of a point x ∈ T as follows:

O′
W (x) =

{
x , πwjs

′(πwjs−1

′(. . . πwj1

′(x))) , with 1 ≤ j1 < j2 < · · · < js ≤ m
}

.

Thus O′W (x) is the subset of T consisting of x, πw1
′(x), πw2

′(x), πw2
′(πw1

′(x)), and
so on. Notice that |O′

W (x)| ≤ 2m.

Lemma 5. Suppose that for any choice of v, z ∈ T the set π′−1
v (z) contains at

most b(n) elements. Then, for every W ∈ Tm, there exist at least [t/(2b(n) + 2)m]
disjoint discretized W -orbits.

Proof. For every x ∈ T , consider the sets

D(x) = {y ∈ T : x ∈ O′W (y)}

and
E(x) =

⋃

z∈O′W (x)

D(z) .
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Let us estimate the cardinality of E(x). An element y belongs to E(x) if and only
if there are indices 1 ≤ i1 < i2 < · · · < iq ≤ m, 1 ≤ j1 < j2 < · · · < js ≤ m such
that

y ∈ π′−1
wi1

(π′−1
wi2

(. . . π′−1
wiq

(πwjs

′(πwjs−1

′(. . . πwj1

′(x)))))) .

Thus |E(x)| ≤ (2b(n) + 2)m. Choose any x1 and any x2 /∈ E(x1); by definition
O′W (x1) ∩ O′

W (x2) = ∅. Choosing x3 /∈ E(x1) ∪ E(x2) we have that O′W (x1) ∩
O′W (x2)∩O′W (x3) = ∅. One can repeat this argument choosing x1, x2, . . . , xq until
the set

⋃q
i=1 E(xi) coincides with T . Since the cardinality of this union is at most

q(2b(n) + 2)m this may happen only when q > t/(2b(n) + 2)m. This concludes the
proof. ¤

Now our aim is to construct a small subset of T such that, for every W ∈ Tm, it
contains a W -orbit. We shall use a probabilistic argument.

Let p1, p2, . . . , pt denote the points of T .
Fix α ∈ (0, 1) and let Γ be the set of the subsets of T . We define a probability

measure P on Γ by P(A) = α|A|(1− α)t−|A| for A ∈ Γ.
If we identify the set A with the element (a1, a2, . . . , at) ∈ Ω = {0, 1}t such

that ai = 1 if pi ∈ A and ai = 0 otherwise, then (Ω,G,P), where G is the set of
subsets of Ω, is the Bernoulli probability with parameter α. Let us now evaluate
the probability that a random subset A of T contains a fixed B ∈ Γ. We can write

P(A ∈ Γ : A ⊃ B) =
∑

A⊃B

P(A) =
t∑

k=|B|

∑

A⊃B,|A|=k

αk(1− α)t−k

=
t∑

k=|B|

(
t− |B|
k − |B|

)
αk(1− α)t−k

= α|B|
t−|B|∑

k=0

(
t− |B|

k

)
αk(1− α)t−|B|−k = α|B| .

As a consequence, if B1, B2, . . . , Bk are disjoint subsets of T , then all the events
{A ∈ Γ : A ⊃ Bk} are independent. Indeed, for every i1, i2, . . . , is ∈ {1, 2, . . . , k},
we have

P({A : A ⊃ Bi1} ∩ · · · ∩ {A : A ⊃ Bis}) = P
(
{A : A ⊃

s⋃
r=1

Bir}
)

= α

∣∣∣∣
s⋃

r=1
Bir

∣∣∣∣ = α

s∑
r=1

|Bir |
=

s∏
r=1

P({A : A ⊃ Bir}) .

Thus, given W ∈ Tm and x ∈ T , the probability that A contains the W -orbit of
x is

P(A ∈ Γ : A ⊃ O′W (x)) = α|O
′
W (x)| ≥ α2m

.

By Lemma 5, there exist x1, x2, . . . , xk such that O′
W (xi)∩O′

W (xj) = ∅, for i 6= j,
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and k ≥ [t/(2b(n) + 2)m]. Hence, for a fixed W , we can write

(3.5)

P(∪x∈T {A : A ⊃ O′
W (x)}) ≥ P(∪k

i=1{A : A ⊃ O′
W (xi)})

= 1−P(∩k
i=1{A : A + O′

W (xi)})

= 1−
k∏

i=1

P({A : A + O′W (xi)})

≥ 1−
k∏

i=1

(1− α2m

)

≥ 1− (1− α2m

)[t/(2b(n)+2)m] ,

where we have used the fact that all the events {A ∈ Γ : A ⊃ O′
W (xi)} are

independent since the orbits O′W (xi) are disjoint, and so are their complementary
sets.

Lemma 6. Let T be a δ-net and let t = |T |. Let f be an integer in [1, t]. The
P-probability that a subset A of T has |A| < f and contains a W -orbit for every
W ∈ Tm is greater than or equal to

(3.6) 1− tm(1− α2m

)[t/(2b(n)+2)m] −
t∑

i=f

(
t

i

)
αi(1− α)t−i .

If this number is positive then there exists such a set A.

Proof. Passing to the complementary sets let us estimate

(3.7) P
( ⋃

W∈T m

{A : A + O′
W (x)∀x ∈ T} ∪ {A : |A| ≥ f}

)
.

The inequality (3.5) implies that for each W ∈ Tm,

P({A : A + O′
W (x)∀x ∈ T}) ≤ (1− α2m

)[t/(2b(n)+2)m] .

Thus the quantity in (3.7) is less than or equal to

P({A : |A| ≥ f}) +
∑

W∈T m

(1− α2m

)[t/(2b(n)+2)m].

The fact that Tm contains tm elements and standard formulas for the binomial
distribution conclude the proof. ¤

Let us choose in (3.6) f = αt, the expected value of the cardinality of a set in T . If
α and m are fixed and δ → 0 then the expression in (3.6) becomes positive. Indeed
the second term tends to 0 while the third one tends to 1/2, as the approximation
of the binomial distribution with a normal one shows. The expression in (3.6) also
becomes positive as δ → 0 if we choose α = t−β for 0 < β < 1/2m. Indeed the
second term again converges to 0 and the third to 1/2. Note that the approximation
of the binomial with a normal distribution is still valid since α(1− α)t →∞.
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4. Existence results.
Given a subset A ⊂ Sn−1 and a positive constant a we denote by (A)a = {x ∈

Sn−1 : d(x,A) < a} the open a-neighborhood of A.

Lemma 7. Let T be a δ-net for some δ > 0, and let A be a subset of T that
contains a discretized W -orbit for any W ∈ Tm. Then the subset (A)6mδ of Sn−1

satisfies the m-orbit property.

Proof. Let V = v1, v2, . . . , vm be any sequence of m directions in Sn−1, for each i
let wi ∈ T be such that d(vi, wi) < 2δ and let W = {w1, w2, . . . , wm}. Then for any
y ∈ T we have d(πvi

(y), πwi
′(y)) < 6δ. There exists x ∈ A such that O′W (x) ⊂ A;

it is straightforward to check that OV (x) ⊂ (A)6mδ. ¤
Lemma 8. Let A ⊂ Sn−1 be such that Hn−1(Sn−1 \ A) < nκn/2m. Then A
satisfies the m-orbit property.

Proof. Let B = Sn−1 \A and let
←−
V = vm, vm−1, . . . , v1 be V in the opposite order.

The set O←−
V

(B) =
⋃

y∈B O←−
V

(y) is the union of at most 2m sets obtained from B
through a finite number of reflections and thus of sets which have the same measure
as B. This implies that Hn−1(O←−V (B)) < nκn and thus that Sn−1 \ O←−

V
(B) 6= ∅.

If x ∈ Sn−1 \O←−
V

(B) then OV (x) ⊂ Sn−1 \B = A. ¤
Proof of Proposition 4. Let T ⊂ Sn−1 be a δ-net for a given δ > 0 and let t = |T |.

Let α = t−β , for some 0 < β < 1/2m and f = αt. As observed after the proof of
Lemma 6, if t is large enough then the probability in (3.6) is positive. Therefore, by
Lemma 6, there exists a subset A′ of T which contains a W -orbit for each W ⊂ Tm.
Let A = (A′)6mδ; by Lemma 7 it satisfies the m-orbit property.

Let us estimateHn−1(A). We have thatHn−1(A) ≤ |A′|σn−1(6mδ) ≤ t1−βσn−1(6mδ)
which, due to (3.2) and (3.3), becomes arbitrarily small as δ → 0. ¤
Proof of Theorem 1. Let A be a subset of Sn−1 with the m-orbit property and
Hn−1(A) ≤ nκn/2m+1. Without loss of generality we may assume that A is origin
symmetric. By continuity it is possible to choose a positive number a such that

(4.1) Hn−1 ((A)a) ≤ nκn

2m
.

We claim that if the two positive numbers r, R are such that r/R < cos a then,
defining H as the convex hull of r Sn−1 and of R A′, we have that H is origin
symmetric, that its inner and outer radius are respectively r and R, that H ∩
RSn−1 = R A′ and ∂H ⊃ r B. The only assertion that needs to be proved is
that ∂H ⊃ r B. Let x ∈ r B and let π be a hyperplane supporting r Sn−1 at
x. The intersection of this hyperplane with R Sn−1 is a spherical cap with radius
arccos(r/R). Therefore, for our choice of r and R, the spherical cap cut by π on
R Sn−1 does not contain points of A′. This implies that π supports R A′ and thus
also H.

As observed in Section 2 the set H satisfies the claim of Theorem 1 if and only
if both the intersections of ∂H with the boundary of the outer and inner spheres
satisfy the m-orbit property. This is true for the outer sphere by construction,
while for the inner sphere it follows from Lemma 8 and (4.1). ¤
Remark. As it is clear from the previous proof, a is a “measure”of the distance of
H from the equivalent sphere. This constant depends on n and m. In the next
section we try to maximize this distance for bodies similar to H.
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5. Lower bounds.
If ε(n,m) denotes the Hausdorff distance from Bn of the body H ∈ K1 con-

structed in the proof of Theorem 1, then N(n, ε(n,m)) > m. Thus, estimates
of ε(n,m) provide a lower bound for N(n, ε). However we can get some better
estimates if we relax the hypothesis that both the outer and inner radii remain
unchanged. We shall construct convex bodies in K1 so that m arbitrary Steiner
symmetrizations do not reduce their outer radii and furthermore their Hausdorff
distance from Bn is attained by the outer ball. In order to do this we need the
following lemma.

Lemma 9. Suppose that r Bn ⊂ K ⊂ R Bn. If Hn−1(K ∩ s Sn−1) ≤ nκnsn−1/2
for every s ∈ (r,R] and vol(cBn) = vol(K), then c ≤ (r + R)/2.

Proof. Consider the radial function ρK of K, defined by

ρK(u) = max{λ ∈ R : λu ∈ K} .

Taking into account the convexity of K and the assumption rBn ⊂ K, it is easy
to see that ρK is a Lipschitz function.

Now fix w ∈ Sn−1 and consider the function τ : Sn−1 → R defined by

τ(z) =
{

r if 〈z, w〉 ≤ 0

min{R,
√

r2 + 〈z, w〉2} if 〈z, w〉 ≥ 0 .

Notice that τ is the radial function of a convex body C of revolution, that can be
decomposed into half a ball of radius r, a cylinder and a cap of radius R.

Let

Ms = {z ∈ Sn−1 : ρK(z) > s} , ∀s ∈ [0, R] ,

Ls = {z ∈ Sn−1 : τ(z) > s} , ∀s ∈ [0, R] ,

m(s) = Hn−1(Ms) ,

and
l(s) = Hn−1(Ls) .

We want to prove that

(5.1) m(s) ≤ l(s) , ∀ 0 ≤ s ≤ R .

By our assumptions, (5.1) is true for 0 ≤ s ≤ r. For larger values of s, (5.1) can be
proved by means of the isoperimetric inequality.

Assume ρK(z′) = s′ > r. By the convexity of K it follows that ρK(z) > r for
every z such that d(z′, z) < arccos(r/s′). Therefore

(5.2) Mr ⊃ (Ms′)arccos(r/s′) , ∀s′ ≥ r .

Define r(A) by
Hn−1(A) = σn−1(r(A)) .

The Brunn-Minkowski inequality on the sphere (see for instance [BZ], Theorem
9.1.1) asserts that

r((A)ε) ≥ r(A) + ε .
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Assume that m(s1) = l(s2). Then

nκn

2
≥ m(r)

≥ Hn−1((Ms1)arccos r
s1

)

≥ Hn−1((Ls2)arccos r
s1

) .

On the other hand nκn/2 = l(r) = Hn−1((Ls2)arccos r
s2

) and thus arccos r
s1

≤
arccos r

s2
, that is s1 ≤ s2.

Therefore m(s) ≤ l(s) everywhere and then vol(K) ≤ vol(C). Hence, in order
to conclude the proof, it is enough to show that vol(C) ≤ vol(((R + r)/2)Bn). By
Fubini’s Theorem, we can write

vol(C) =
∫

rBn∩w⊥

(√
R2 − |y|2 +

√
r2 − |y|2

)
d y

= (n− 1)κn−1

∫ r

0

sn−2
(√

R2 − s2 +
√

r2 − s2
)

d s

≤ (n− 1)κn−1

∫ r

0

sn−22

√(
R + r

2

)2

− s2 d s

≤ (n− 1)κn−1

∫ R+r
2

0

sn−22

√(
R + r

2

)2

− s2 d s

= vol

(
R + r

2
Bn

)
,

where we have used the concavity of
√

x2 − s2 as a function of x. ¤
Let T be a δ-net for some δ > 0 and let t = |T |. Let α ∈ (0, 1), δ > 0, t,

f ∈ [0, t] ∩ N and a > 0 be so that

(5.3) 1− tm(1− α2m

)[t/(2b(n)+2)m] −
t∑

i=f

(
t

i

)
αi(1− α)t−i > 0

and

(5.4) fσn−1(6δm + a) ≤ nκn

2
.

As will be clear in the proof of Theorem 3, we are interested in choosing the
parameters which (asymptotically in m) maximize a under the constraints (5.3)
and (5.4).

Lemma 10. Let n be fixed. For any β > 0 it is possible to choose parameters
α, δ, f and a that satisfy (5.3) and (5.4) and with

a ≥ 1
m2m(1+β)

,

as m →∞.
11



Proof. Let f = αt. In order to maximize a it is not convenient to let α → 1; thus
in what follows we suppose α < 1/2. Let φ denote 1−∑t

i=αt

(
t
i

)
αi(1−α)t−i. Then

(5.3) is equivalent to

t

log t
>

m(2b(n) + 2)m

− log(1− α2m)

(
1− log φ

m log t

)
.

This formula shows that in order to satisfy (5.3), not only t but also (multiply both
sides by α) αt has to tend to infinity as m →∞. Therefore φ, the probability that
an α-Bernoulli random variable is less than or equal to its average, tends to 1/2.
We can thus conclude that defining a function t̃(α, n,m) by

(5.5) t̃(α, n, m) =
(

2m(2b(n) + 2)m

− log(1− α2m)

)1+β/2

,

inequality (5.3), with f = αt, is satisfied for any t > t̃(α, n,m).
We recall that, for any δ, t is bounded from above and from below respectively by

the functions t(δ) and t(δ) defined in (3.3). In the rest of the proof let δ = δ(α, n,m)
be defined implicitly by the relation t(δ) = t̃(α, n,m). With this choice of δ, (5.3)
is satisfied.

Since f = αt →∞ as m →∞, (5.4) holds only if 6mδ + a → 0. For small values
of 6mδ + a it is (see (3.2))

σn−1(6mδ + a) ≤ 2 sinn−1(6mδ + a)κn−1 .

Therefore choosing

(5.6) a = arcsin

((
c(n)

4αt(δ)

) 1
n−1

)
− 6mδ ,

both (5.3) and (5.4) are satisfied. We recall that c(n) = nκn/κn−1. The only
parameter that is left to choose is α; we choose α = α(m, n) = 1/4

(
2m−1
6m2m

)n−1
.

This choice maximizes (5.6) asymptotically in m.
Let us now study the asymptotic behaviour of a as m → ∞. It is convenient to

express the dependence of δ(α) and t(δ(α)) on α. We have

δ(α) =
1
2

arcsin

((
c(n) cos(2δ)

t̃(α)

) 1
n−1

)

and

t(δ(α)) =
t̃(α)2n−1

cos(2δ)
(1− o1(α)) ,

where o1(α) = n−1
8

(
c(n) cos(2δ)

t̃(α)

) 2
n−1

(1 + o(1)). Thus as m →∞ we have

a = arcsin

(
3m

2m

2m − 1

(
c(n) cos(2δ)

t̃(α)(1 + o1(α))

) 1
n−1

)

− 3m arcsin

((
c(n) cos(2δ)

t̃(α)

) 1
n−1

)

=
3m

2m − 1

(
c(n)
t̃(α)

) 1
n−1

(1 + o(1)) .

12



We now substitute the expression of t̃(α) that comes from (5.5), the expression of
b(n) that comes from (3.4) and the known estimate c(n) =

√
2πn(1 + o(1)). We

obtain

a ≥ 3m




( √
2πn

m2m+1 42m

) 1
n−1 1

e6m

1
(6m)2m




1+β/2

(1 + o(1)) .

Clearly this implies the statement of the lemma. ¤
Proof of Theorem 3. Let T be a δ-net and t = |T |. Let α ∈ (0, 1), δ > 0, t,
f ∈ [0, t] ∩ N and a > 0 be parameters that satisfy (5.3) and (5.4). By Lemma 6
and Lemma 7, there exists a subset A′ of T such that (A′)6mδ satisfies the m-orbit
property. Let Hm be defined as the convex hull of r Sn−1 and of R (A′)6mδ, with
r > 0 and R > 0 chosen so that r/R = cos a and moreover vol(Hm) = κn. By
construction the outer radius of Hm is not decreased by any m symmetrizations.

We claim that Hn−1(Hm∩s Sn−1) ≤ nκnsn−1/2 for every s ∈ (r,R]. By the rela-
tion r/R = cos a and (5.2) it follows easily that every point of r Sn−1 \ r (A′)6mδ+a

is contained in the boundary of Hm. Hence by (5.4) we deduce

Hn−1(Hm ∩ s Sn−1)
sn−1

≤ Hn−1(
◦
Hm ∩ r Sn−1)
rn−1

≤ Hn−1((A′)6mδ+a) ≤ |A′|σn−1(6mδ + a)

≤ fσn−1(6mδ + a) ≤ nκn/2 , ∀s ∈ (r,R] ,

where
◦
Hm denotes the interior of Hm.

We can now apply Lemma 9 to conclude that the Hausdorff distance from Hm

to Bn is attained by the outer sphere.
This distance is

dH(Hm, Bn) ≥ R− r

2
=

R

2
(1− r

R
) =

R

2
(1− cos a) ≥ a2

6

as m →∞. One can use Lemma 10 to estimate a; certainly

a ≥ 1
m2m(1+β)

.

Thus
dH(Hm, Bn) ≥ 1

6m2 2m(1+β)
.

Let us denote dH(Hm, Bn) by ε(n,m). By definition of N(n, ε), it is certainly true
that N(n, ε(n,m)) ≥ m. Expressing m in terms of ε(n,m) one gets that as m →∞

N(n, ε(n,m)) ≥
log(log( 1

ε(n,m) ))

log(2)
(1 + o(1)) .

Since N is monotone, this concludes the proof. ¤
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