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Chapter 1

Introduction

In this thesis we address the numerical solution of two types of problems which are closely
related: bound-constrained nonlinear least-squares problems and nonlinear feasibility
problems.

This chapter is devoted to an introduction to the problems of interest and to the vari-
ous questions that arise in the computation of their solutions. We present the problems
under study and discuss characterizations of nonlinear feasibility problems via nonlinear
constrained or unconstrained optimization problems. Also, we give an overview of the
methods proposed in literature in recent years. We close the chapter summarizing the
contents of the thesis.

1.1 Problem overview

We shall be concerned with two classes of problems with smooth functions. The first
problem of interest is the bound-constrained nonlinear least-squares problem given by

min
x∈Ω

θ(x) =
1

2
‖Θ(x)‖2

2, (BCLS)

where θ : IRn → IR, Θ : IRn → IRm is a given continuously differentiable mapping and Ω
is the n-dimensional box

Ω = {x ∈ IRn | l ≤ x ≤ u}, (1.1)

with l ∈ (IR ∪ −∞)n, u ∈ (IR ∪ ∞)n, l < u. The constraints (1.1) are called box
constraints, simple bounds or bounds.

Provided that problem (BCLS) has a solution at which Θ is null, then such solution
solves the nonlinear system of equations Θ(x) = 0, x ∈ Ω. Vice versa, the bound-
constrained and possibly nonsquare system of nonlinear equations

F (x) = 0, x ∈ Ω, (NE)

with F : IRn → IRm, can be transformed into problem (BCLS) letting Θ = F .

The second problem considered is the nonlinear feasibility problem stated as a system
of nonlinear equalities and inequalities of the form

1



2 CHAPTER 1. INTRODUCTION

CE(v) = 0,
CI(v) ≤ 0,
vl ≤ v ≤ vu,

(FP)

where the vector functions CE : IRp → IRmE and CI : IRp → IRmI are continuously
differentiable, vl ∈ (IR ∪−∞)p, vu ∈ (IR ∪∞)p. If mI = 0, the problem (FP) reduces to
a bound-constrained system of nonlinear equations.

These problems appear frequently in practice. They occur in many contexts such
as model formulation design, parameter identification problems, statement of Karush-
Kuhn-Tucker conditions and detection of approximately feasible points in nonlinear pro-
gramming in which the constraints are a mixture of general and box constraints, see
e.g. [5, 16, 24, 25, 33, 41]. Problem (FP) may also occur as a subproblem in the
“restoration” phase arising in filter methods for nonlinear programming problems, see
e.g. [21, 34, 65, 67].

Taking into account the variety of applications yielding the problems considered, we
allow any relationship between the dimensions m and n in (BCLS) and (NE) and the
dimensions mE , mI and p in (FP).

We assume the presence of simple bounds in (BCLS), (NE) and (FP) as it is fairly
common to have restrictions on the expected size of each variable, [24, 29]. In some
situations, the presence of box constraints can specify either the domain of the mappings
or prevent the computation of solutions which have no physical meaning. As an example,
chemical equilibrium problems are modelled as problems (NE) and the concentrations of
chemical species must be nonnegative, [64]. Furthermore, it is often helpful to introduce
unnecessary but reasonable bounds on the variables when there is a good guess of the
area where solutions are expected.

Solving problem (FP) consists in finding a vector v ∈ IRp which satisfies its equalities
and inequalities. If such a point cannot be found, the goal is to minimize the sum of
the constraint violations in (FP). Therefore, the solution of problem (FP) is typically
attempted formulating it as a nonlinear least-squares problem.

The formulations proposed vary in the properties of the objective functions and
in the possible presence of bounds on the variables. Specifically, one approach is to
include all the equalities and inequalities in (FP) into the objective function and form
the unconstrained least-squares problem

min
v∈IRp

1

2
‖Φ(v)‖2

2, (1.2)

where Φ : IRp → IRmE+mI+r and r, 0 < r ≤ 2p is a scalar that depends on the number
of finite simple bounds, [16, 29, 34].

Alternatively, the original problem can be transformed into the bound-constrained
nonlinear least-squares problem (BCLS) including the general inequalities CI(v) ≤ 0
into the objective function and leaving the bounds in (1.1) unchanged; in this case the
dimension n in (BCLS) is such that n ≥ p while m = mE + mI . Unlike problem
(1.2), problem (BCLS) can be solved by means of bound-constrained algorithms where
it is relatively straightforward to ensure that the objective function is computed at
feasible iterates only. This may be considered a good feature of the reformulation as may
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serve as a check on the problem formulation and prevent evaluations at unreasonable or
nonsensical points during the iterations.

1.2 Numerical methods

In this section we review the existing methods for solving bound-constrained nonlinear
least-squares problems (BCLS), bound-constrained nonlinear systems (NE) and nonlin-
ear feasibility problems (FP).

1.2.1 Bound-constrained least-squares problems and nonlinear systems

The major algorithms for solving bound-constrained nonlinear systems (NE) aim to solve
them in a least-squares sense. Due to the close relation between these problems, numer-
ical methods for (BCLS) have been proposed in the context of solving nonlinear and
nonsquare systems (NE). In this section we describe procedures for problems (BCLS)
and (NE) and pay particular attention to those that allow any relationship between the
dimensions m and n of the mapping Θ and F .

The solution of an unconstrained square system of nonlinear equations, i.e. Ω = IRn

and m = n in (NE), is a classical problem in mathematics for which many well-known
solution techniques are available, see e.g. [17, 59]. On the other hand, the solution of
constrained square systems of equations has not been the subject of intense research
and we are currently aware of few papers that deal with such problems. Most of these
papers appeared during the last few years; in particular the methods in [1, 2, 3, 4, 43,
44, 46, 50, 63, 71] handle box constraints while the methods given in [26, 55, 69] handle
convex feasible sets. Note that papers [26, 46, 63, 71] consider nonsmooth, typically
semismooth, equations.

In the remaining of the section, we focus on the papers for constrained nonsquare
problems (NE) which are, as far as to our knowledge, [25, 47, 48, 73]. A common feature
of these methods is that they attempt to solve (NE) by solving the optimization problem
(BCLS). It follows the main characteristics of these methods.

Francisco et al. [25] designed a trust-region interior point method which adapts
the method [1] for square systems to underdetermined nonlinear systems. The core of
the method is the normal flow method for unconstrained underdetermined systems [70]
which uses a Gauss-Newton model and the minimum norm step to generate a trial point.
Such method is embedded into a trust-region strategy and the bounds are handled by
using the Coleman-Li affine scaling matrix and a proper stepsize chopping rule [11].
Under full rank assumptions on the Jacobian matrix of F , local quadratic convergence
is proved to interior points, i.e. points x∗ such that l < x∗ < u.

Kanzow et al. [48], Kanzow and Petra [47] and Zhu [73] proposed global Levenberg-
Marquardt methods. In particular, the numerical solution of general nonsquare systems
of nonlinear equations was addressed in [48, 73] while the paper [47] is focused on overde-
termined nonsmooth systems of equations arising from a suitable reformulation of mixed
complementarity problems. In [48] two Levenberg-Marquardt-type algorithms for non-
linear systems with convex constraints are presented. They differ in the way to compute
the search directions: the first method solves a strictly convex minimization problem
at each iteration, whereas the second one solves only one system of linear equations in
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each step. Both methods are shown to converge locally quadratically under an error
bound assumption that is much weaker than the standard nonsingularity condition of
the Jacobian matrix. A simple globalization strategy based on the projected gradient
is employed. In [47] the Levenberg-Marquardt method is globalized by an affine trust-
region procedure. The search direction is computed solving a trust-region subproblem
where the constraint set is the box resulting from the intersection of the simple bounds
and the current trust-region defined using the ∞-norm. Therefore, at each iteration
a bound-constrained quadratic program is solved and the feasibility of the iterate is
preserved. A variant of the Coleman-Li scaling matrix proposed in [71] is used in the
globalization strategy. Moreover, a multidimensional filter technique is incorporated into
the trust-region strategy to accept a full step more frequently. Global convergence is
shown and local convergence is proved under an error bound assumption.

Finally, in [73] the Levenberg-Marquardt method is employed in association with
the Coleman-Li scaling matrix [11] and a nonmonotone interior backtracking line search
technique. A global convergence result is proved assuming that the function F in (NE)
is semismooth and, under a local error bound condition, local fast convergence to non-
degenerate solutions is achieved.

1.2.2 Nonlinear feasibility problems

The solution of systems of nonlinear equalities and inequalities (FP) was explicitly ad-
dressed in the papers [9, 13, 16, 21, 27, 34, 52, 53, 58]. In this section we discuss the
methods proposed and give an insight into those based on trust-region strategies.

A Newton-type method for systems of mixed equalities and inequalities was given in
[13], while global quadratic algorithms based on backtracking line search, were proposed
in [9, 27]. The most recent methods are trust-region approaches [16, 21, 34, 52, 53, 58].
They are based on suitable transformations of the problem (FP) and vary widely from
a computational point of view.

Fletcher and Leyffer [21] suggest to state the problem (FP) as a system of all inequal-
ities by expressing the equalities CE(v) = 0 as two separate inequalities CE(v) ≤ 0 and
−CE(v) ≤ 0. Then they transformed the resulting problem into a bi-objective nonlinear
programming problem. In particular, the inequalities are divided into two sets: the first
set J⊥ represents the inequalities which are close to being satisfied or for which the
linearized inequality provides a good local model, the second set J is the complement
of J⊥. The nonlinear feasibility problem consists in the minimization of the constraint
violations in the set J subject to the constraints in the set J⊥. The problem obtained
is solved by a filter trust-region SQP algorithm and the definition of the bi-objective
problems is changed adaptively as the algorithm proceeds. The algorithm uses second
order information and this fact yields fast local convergence and an efficient solution of
locally infeasible problems. A proof of global convergence is provided.

Alternatively, all the inequalities in (FP) can be replaced by equalities and the prob-
lem takes the form of the least-squares problem (1.2) where the Euclidean norm of the
constraint violations is minimized. In practice, the function Φ : IRp → IRmE+mI+2p is
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given by

Φ(v) =









CE(v)
max{CI(v), 0}
max{vl − v, 0}
max{v − vu, 0}









,

where the maximum is taken componentwise; actually, note that some components of
max{vl−v, 0} and max{v−vu, 0} can be eliminated if vl = −∞ or vu = ∞. The mapping
Φ is continuous but not continuously differentiable. This formulation of problem (FP)
was adopted by Dennis et al. [16] and Gould and Toint [34].

In particular Dennis et al. [16] proposed two new trust-region algorithms: the first is
a single model method, while the second is a multimodel algorithm where the Cauchy-
point computation is a model selection procedure. A key ingredient of the methods
is the use of an indicator matrix such that the problem can be transformed into one
that possesses sufficient smoothness. This allows to develop algorithms that require
differentiability. In practice the use of the indicator matrix gives rise to active-set type
methods that try to identify the inequalities likely to be violated at a solution of (1.2).
Global convergence for the two algorithms is proved.

Gould and Toint [34] considered the formulation (1.2) and proposed a filter trust-
region method for finding a local minimizer of the problem. The procedure proposed
is based on the algorithm given in [31] for nonlinear least-squares problems; such algo-
rithm combines the efficiency of filter techniques and the robustness of the trust-region
methods. In the trust-region strategy presented in [34] an adaptive model choice is used
so that both the Gauss-Newton and the Full-Newton model are considered. Then the
solution of the trust-region problem is computed approximately by using the General-
ized Lanczos Trust-Region (GLTR) method [32] and results to be efficient independently
of the dimension of the problem. The combination of the trust-region strategy and the
filter strategy produces significant gains in reliability and efficiency compared to the stan-
dard trust-region approach. A Fortran 95 implementation of the proposed procedure is
developed in the FILTRANE package.

Summarizing the properties of the methods given in [16, 21, 34], we point out that
the methods in [16, 21] are globally convergent under appropriate assumptions while the
technique used in [34] to handle the inequality constraints is heuristic and no theoretical
guarantee of convergence can be provided for problems involving inequality constraints.
None of these methods are supported by local convergence analysis.

Our contributions in solving problems (BCLS) and (FP) presented in this thesis are
partly published in the papers [52, 53, 58].

1.3 Contents of the thesis

In this thesis we adopt problem (BCLS) as a unifying formulation for the problems
under study. Therefore we develop and analyze trust-region methods with quadratic
local convergence properties for solving the bound-constrained least-squares problem
(BCLS). One of the algorithms proposed is implemented in a Matlab solver called
TRESNEI that is robust and easy to use.
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We adopt formulations of (FP) alternative to those proposed in the papers [16, 21, 34]
discussed in Section 1.2.2. To transform the problem into a bound-constrained least-
squares problem, we distinguish between the general inequalities CI(v) ≤ 0 and the
simple bounds and replace the general inequalities by equalities. The resulting problem
takes the form (BCLS) with a continuously differentiable function Θ.

The two new trust-region methods proposed offer global convergence properties com-
bined with potentially fast local convergence. The procedures employ the Coleman-Li
scaling matrix and differ in the quadratic model used during the iterations; one method
employs a Gauss-Newton model while the other employs a regularized Gauss-Newton
model. The implementations of the trust-region strategy involve a linear algebra phase;
we discuss the use of matrix factorizations and CG-like methods for such phase.

From a computational point of view, the Gauss-Newton trust-region method resulted
the most promising procedure. For this reason, it is coded into the Matlab implementa-
tion TRESNEI. The structure of TRESNEI handles the general statement of the nonlinear
feasibility problem (FP) adopted in the CUTEr collection [33] and offers flexibility in
the reformulation of problem (FP) as a bound-constrained least-squares problem.

The thesis is organized as follows. In Chapter 2 we give an overview on nonlinear
least-squares problems. In Chapter 3 we present our statement of (FP) and introduce
the new trust-region methods. Assuming that direct methods are used in the linear alge-
bra phase, the trust-region methods are analyzed from both a theoretical and practical
perspective; global and fast local convergence theory are provided and numerical perfor-
mance is assessed. In Chapter 4 we provide a careful description of the solver TRESNEI

and the results of the benchmarking process with functions from the Matlab Optimiza-
tion Toolbox. In Chapter 5 an inexact paradigm for the Gauss-Newton trust-region
method is proposed and its theoretical analysis is conducted. Finally, an Appendix is
given where prerequisites to our study are summarized.
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Notation

Throughout the thesis we use the following notation.

For a vector x ∈ IRn we denote by (x)i or xi its i-th component and for any set of indices
I, [x]I will denote the subvector of x with components xi, i ∈ I. Similarly, the (i, j)-th
element of a matrix A ∈ IRm×n will be written as (A)ij .

Given two vectors x, y ∈ IRn the inequalities x ≤ y and equalities x = y are meant
componentwise. Analogously, the vector max{x, y} is simply that whose i-th component
is max{xi, yi}.

Unless explicitly stated, ‖ · ‖ denotes the 2-norm and Bρ(y) = {x : ‖x− y‖ < ρ} denotes
the open Euclidean ball of radius ρ around point y ∈ IRn.

The symbols Ip represents the identity matrix of dimension p. A+ denotes the Moore-
Penrose pseudoinverse of the matrix A.

Given a sequence of vectors {xk}, for any function f we let fk = f(xk).

Given Ω = {x ∈ IRn | l ≤ x ≤ u} we let PΩ(x) be the projection of x onto Ω, i.e.
(PΩ(x))i = max{li, min{xi, ui}}, i = 1, . . . , n.

We make frequent use of the Landau symbol O(·) which is defined as follows: given two
sequences {αk} and {βk} converging to zero as k tends to ∞, we write αk = O(βk) if
limsupk→∞αk/βk <∞.





Chapter 2

Nonlinear least-squares problems

In this chapter we review the main properties of nonlinear least-squares problems and
discuss their numerical solution. The properties and algorithms presented will be the
basis of the strategies proposed in this thesis for solving problems (BCLS) and (FP).

2.1 The unconstrained problem

Nonlinear least-squares problems belong to a special class of minimization problems
where the function is a sum of squares of nonlinear functions

min
x∈IRn

θ(x) =
1

2
‖Θ(x)‖2, (LS)

with θ : IRn → IR and Θ : IRn → IRm. We will refer to θ as the objective function and to
Θ as the residual function. The vector function Θ is defined by

Θ(x) = (Θ1(x),Θ2(x), . . . ,Θm(x))T ,

where the component functions Θi, i = 1, . . . ,m, are nonlinear real valued functions from
IRn to IR. If m > n we say the problem is overdetermined. If m = n we have a square
problem; if m < n the problem is underdetermined.

We say that problem (LS) is unconstrained because no conditions are imposed on
the variable x.

Let each Θi, i = 1, . . . ,m, be a smooth function. The Jacobian J(x) ∈ IRm×n of the
residual function Θ(x) is given by

(J(x))ij =
∂Θi(x)

∂xj
i = 1, . . . ,m, j = 1, . . . , n,

and the Hessian ∇2Θi(x) ∈ IRn×n of Θi is given by

(

∇2Θi(x)
)

jl
=
∂2Θi(x)

∂xj∂xl
, j, l = 1, . . . , n.

Then, the gradient and the Hessian of θ can be written as

∇θ(x) = J(x)TΘ(x), (2.1)

∇2θ(x) = J(x)TJ(x) + S(x), S(x) =

m
∑

i=1

Θi(x)∇2Θi(x). (2.2)

9
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Solving problem (LS) means to find a local minimizer of θ, that is, a point x∗ such
that there exists a neighborhood N of x∗ where θ(x∗) ≤ θ(x) for all x ∈ N . Moreover, a
point x∗ is a strict local minimizer of θ if there exists a neighborhood N of x∗ such that
θ(x∗) < θ(x) for all x ∈ N with x 6= x∗. In general local minimizers differ from global
minimizers of θ, that is points where the function θ attains its least value over IRn.

A local minimizer x∗ for problem (LS) such that θ(x∗) = 0 is a global minimizer of θ
since θ(x) ≥ 0 for all x ∈ IRn. It is denoted as a zero-residual solution and the problem
(LS) is called a zero-residual problem. In this case, solving problem (LS) is equivalent
to finding a solution of the nonlinear system Θ(x) = 0. If θ(x∗) is small, the problem is
called a small-residual problem. Otherwise one has a large-residual problem.

The following optimality conditions are the tools to recognize local minima.

Theorem 2.1 (First-Order Necessary Conditions) ([59]) If x∗ is a local minimizer
of θ and θ is continuously differentiable in an open neighborhood of x∗, then

∇θ(x∗) = J(x∗)TΘ(x∗) = 0. (2.3)

We call x∗ a stationary point for problem (LS) if it satisfies the equation (2.3). From
Theorem 2.1, we have that a local minimizer must be a stationary point; vice versa, the
converse is not true in general. To obtain further conditions for a local minimizer, we
need stronger assumptions on the function θ.

Theorem 2.2 (Second-Order Necessary Conditions) ([59]) If x∗ is a local mini-
mizer of θ and ∇2θ is continuous in an open neighborhood of x∗, then x∗ satisfies the
equation (2.3) and ∇2θ(x∗) is positive semidefinite.

It follows the sufficient conditions which guarantee that x∗ is a local minimizer of θ.

Theorem 2.3 (Second-Order Sufficient Conditions) ([59]) Suppose that ∇2θ is con-
tinuous in an open neighborhood of x∗, x∗ satisfies the equation (2.3) and ∇2θ(x∗) is
positive definite. Then x∗ is a strict local minimizer of θ.

The optimality conditions suggest to find a local minimizer by finding a zero of
equation (2.3).

2.2 Solving the problem

Numerical methods for solving nonlinear least-squares problems are iterative, i.e. they
seek to find a sequence of iterates {xk} whose limit is a solution to (LS). By a local
convergence method we mean one that requires that the initial iterate x0 is close to
a local minimizer x∗. On the contrary, by a global convergence method we mean a
method with the property that for any initial iterate x0, it converges to a solution or
fails to do so in one of a small number of ways. In this section, first we will review the
main features of locally convergent methods for (LS); second, we will concentrate on
trust-region methods.
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2.2.1 Local convergence methods

The Gauss-Newton method, the Full-Newton method and the Levenberg-Marquardt
method are locally convergent procedures that form the basis of many important and
successful methods for solving nonlinear least-squares problems (LS).

The basic idea of these methods is to use the Taylor’s Theorem A.1 (see Appendix)
to approximate the objective function θ around xk by a quadratic model of the form

mk(p) =
1

2
‖Θk‖2 + pTJTk Θk +

1

2
pTBkp, (2.4)

where Bk is a symmetric approximation of the Hessian ∇2θk and use the minimizer pk
of mk to modify xk, i.e.

xk+1 = xk + pk, pk = argmin
p∈IRn

mk(p).

If Bk is the Hessian matrix ∇2θk in (2.2), the model (2.4) is called Full-Newton
model and the resulting method is called Full-Newton method. In fact, it is the Newton’s
method applied to the nonlinear system (2.3) and the step pk satisfies

(JTk Jk + Sk) pk = −JTk Θk.

Due to well-known local convergence properties of the Newton method [17, 59], this
procedure is quadratically convergent to a solution x∗ of (LS) as long as ∇2θ(x) is
Lipschitz continuous around x∗ and ∇2θ(x∗) is positive definite, see e.g. [17, §10.3]. On
the other hand, a disadvantage of this method is that Sk is rarely available analytically
at reasonable cost and it is very expensive to approximate by finite differences.

An alternative approach is the so-called Gauss-Newton method that consists in letting
Bk = JTk Jk in (2.4). This way the quadratic model (2.4) has the following special
structure

mGN
k (p) =

1

2
‖Jk p+ Θk‖2, (2.5)

and it is named Gauss-Newton model. In fact, the Gauss-Newton model is a linearization
for the residual function. The step pk satisfies

JTk Jk pk = −JTk Θk, (2.6)

and the Gauss-Newton iteration

xk+1 = xk − (JTk Jk)
−1JTk Θk, (2.7)

is well-defined if Jk has full column rank. This is the case when m ≥ n and Jk is full
rank. Observe that if m = n, trivially the step pk is the Newton step at xk for the
problem Θ(x) = 0.

If JTk Jk is singular, equation (2.6) has an infinite number of solutions and therefore an
additional constraint must be imposed so that a unique step can be computed, [28]. One
can choose the solution of (2.6) with minimum Euclidean norm, i.e. the step (−Jk+ Θk)
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where Jk
+ denotes the pseudoinverse of Jk, see Appendix A.4. Such a step will be called

the minimum norm step and the iteration takes the form

xk+1 = xk − J+
k Θk. (2.8)

If problem (LS) states an underdetermined system of equations, the resulting method is
known as the normal flow method [70].

Regarding the local convergence properties of the Gauss-Newton approach, there
are many situations in which the term J(x∗)TJ(x∗) is much more significant than the
term S(x∗) in (2.2) and the Gauss-Newton method performs as well as the Full-Newton
method. This happens, for instance, when x∗ is a zero or small-residual solution. Let us
consider assumptions on Θ which are standard in the analysis of the Newton method.
Let assume that J(x∗) is full column rank. Theorem A.3 states that the Gauss-Newton
method is q-quadratically convergent if S(x∗) = 0, and that it is locally q-linearly
convergent if S(x∗) is small relative to J(x∗)TJ(x∗). If S(x∗) is too large, the Gauss-
Newton method may not converge. On the other side, in underdetermined problems
J(x∗)TJ(x∗) is not full rank but Theorem A.4 establishes that the normal flow method
locally converges q-quadratically to zero-residual solutions. To sum up, provided a good
initial guess, the Gauss-Newton and the normal flow methods are especially suitable for
zero and small-residual problems.

Finally, the Levenberg-Marquardt method is a further alternative approach for solving
problem (LS). Given a positive parameter µk, the quadratic model considered is the sum
of squares

mLM
k (p) =

1

2
‖Jk p+ Θk‖2 +

1

2
µk‖p‖2,

and it corresponds to (2.4) letting Bk = JTk Jk + µkIn. The minimizer pk of mLM
k solves

the linear system
(JTk Jk + µkIn) pk = −JTk Θk. (2.9)

Since µk is strictly positive, JTk Jk + µkIn is a positive definite matrix and the system
(2.9) has a unique solution. Therefore, the Levenberg-Marquardt method is well-defined
even when Jk is not full column rank.

The local convergence properties of the Levenberg-Marquardt method are similar to
those of the Gauss-Newton method if J(x∗) is full column rank and µk is updated by an
appropriate rule, see Theorem A.5. On the other hand, recently Levenberg-Marquardt
methods that enjoy strong convergence properties to zero-residual solutions x∗ with a
weaker condition than the full column rank assumption of J(x∗) have been proposed
[14, 20, 48, 51, 52, 72, 73]. Such methods retain the fast local convergence properties
in case J(x∗)TJ(x∗) is singular, assuming that ‖Θ(x)‖ provides a local error bound for
problem (LS) near x∗ and the parameter µk is chosen as µk = O(‖Θk‖δ), δ ∈ [1, 2].
We will give details on such methods in Chapter 3 where we will develop a Levenberg-
Marquardt method with strong local convergence properties for bound-constrained least-
squares problems.

2.2.2 Trust-region methods

The locally convergent algorithms discussed in the previous section can and do fail
when the initial iterate is not near to a solution. Globalization techniques improve the
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likelihood of convergence from initial approximations that may not be near to a solution.
In this section we present the main features of a class of globalization algorithms known
as trust-region methods. An exhaustive description and analysis of trust-region methods
can be found in the book [12] by Conn, Gould and Toint.

The basic idea of a trust-region method is, at iteration k, defining around the current
iterate xk, a quadratic model for θ and a region within which the model is trusted to
be an adequate representation of θ. The trial step is then computed, nearly exactly
or approximately, minimizing this quadratic model inside the trust-region. Throughout
the section, trust-region methods for problem (LS) will be discussed considering the
Gauss-Newton model mGN

k in (2.5).

At each iteration k, we let ∆k > 0 be the radius of the ball centered at xk

{x ∈ IRn : x = xk + p, ‖p‖ ≤ ∆k}, (2.10)

in which the quadratic model mGN
k is trusted to accurately represent the objective

function θ in (LS). The scalar ∆k is called the trust-region radius and the set (2.10)
is called the trust-region. Then to obtain the trial step, we seek a solution ptr of the
trust-region problem

min {mGN
k (p) =

1

2
‖Jk p+ Θk‖2 : ‖p‖ ≤ ∆k}. (2.11)

A solution of (2.11) is fully characterized by the following theorem.

Theorem 2.4 ([56]) The problem (2.11) is solved by ptr = p(λ) where

p(λ) = −(JTk Jk + λIn)
−1∇θk, (2.12)

for some λ ≥ 0, such that λ (‖p(λ)‖ − ∆k) = 0. In case Jk is not full column rank, p(0)
is defined by the limiting process

p(0) = lim
λ→0+

p(λ) = −J+
k Θk.

Therefore, there are two possibilities: either λ = 0 and ‖p(0)‖ ≤ ∆k, in which case
ptr = −J+

k Θk is the solution for which ‖ptr‖ is least, or λ > 0 and ‖p(λ)‖ = ∆k, and
then p(λ) is the unique solution ptr to problem (2.11).

Having solved problem (2.11), one must decide whether to accept the trial step or
to change the trust-region radius. Usually, the trust-region radius and the new point
xk + ptr are tested simultaneously and this test is centered on how well the quadratic
model approximates the objective function inside the trust-region. We measure this
using the ratio ρθ of the actual to the predicted reduction defined as

ρθ(ptr) =
θ(xk) − θ(xk + ptr)

mGN
k (0) −mGN

k (ptr)
. (2.13)

Note that since the step ptr is obtained by minimizing the model mGN
k over a region

that includes the step p = 0, the predicted reduction (mGN
k (0) −mGN

k (ptr)) will always
be nonnegative.
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In practice, if ρθ(ptr) is close to 1, there is good agreement between the model mGN
k

and the function θ over this step, so xk + ptr is accepted as the new iterate and it is
safe to expand the trust region for the next iteration. If ρθ(ptr) is positive but not close
to 1, xk+1 = xk + ptr but the trust region is not altered. If ρθ(ptr) is close to zero or
negative, the step ptr is rejected and the trust region is shrunk. Algorithm 2.1 describes
the process.

Algorithm 2.1 trust-region : k-th iteration

Input: 0 < ∆k, 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2.

1. Compute ptr by solving (2.11);
2. Evaluate ρθ(ptr) from (2.13);
3. If ρθ(ptr) ≥ η1, then set xk+1 = xk + ptr;

Else set ∆k = γ1∆k; go to Step 1.
4. If ρθ(ptr) ≥ η2, then set ∆k+1 = γ2∆k;

Else set ∆k+1 = ∆k.

Now we focus on Step 1 of Algorithm 2.1, i.e. on solving the trust-region problem (2.11).
Two different approaches may be considered. The former is based on the characteriza-
tion in Theorem 2.4 and attempts to find a nearly exact solution of the trust-region
problem; the latter seeks an approximate solution.

The method proposed by Moré and Sorensen in [57] follows the former approach.
Suppose Jk is full column rank. If ‖(JTk Jk)−1∇θk‖ ≤ ∆k, then the solution taken is
ptr = (JTk Jk)

−1∇θk, otherwise ptr = p(λ) where p(λ) is given in (2.12) and the value
λ > 0 is sought so that

‖p(λ)‖ = ∆k. (2.14)

Problem (2.14) is a one-dimensional root-finding problem in the variable λ and can
be solved by an efficient implementation of the Newton’s method where the Cholesky
factorization of JTk Jk + λIn is performed at each iteration.

On the other side, if Jk is not full column rank the special structure of problem (LS)
implies that the gradient ∇θk is orthogonal to the eigenspace Smin associated to the
smallest eigenvalue λmin = 0 of JTk Jk. In fact, letting Smin = {z ∈ IRn : JTk Jkz =
0, z 6= 0}, then for all z ∈ Smin we have ‖Jkz‖2 = zTJTk Jkz = 0 and then

∇θTk z = ΘT
k Jkz = 0.

This case is known as the hard case. In the hard case, the Moré and Sorensen pro-
cedure computes a step ptr associated with λ = 0 and such that ‖ptr‖ = ∆k. From
a computational point of view, the algorithm finds an accurate approximation to the
vector

ptr = −J+
k Θk + τz, (2.15)
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where z ∈ Smin and τ is chosen so that ‖ − J+
k Θk + τz, ‖ = ∆k, without the actual

computation of the components indicated in (2.15), [57, §3]. It is important to point
out that this approach steps to the boundary even if ‖J+

k Θk‖ < ∆k, i.e. the minimum
norm solution of problem (2.11) is in the interior of the trust-region. Global convergence
properties for the resulting trust-region algorithm are proved in [57].

In this thesis we will use methods that solve the trust-region problem approximately.
For global convergence purpose, it is enough to find an approximate solution ptr that lies
within the trust-region and gives a sufficient reduction in the model mGN

k . The sufficient
reduction can be quantified in term of the Cauchy point which is the minimizer of the
model mGN

k along the steepest descent direction (−∇θk) within the trust-region, i.e.

pck = argmin {mGN
k (p) : p = −τ∇θk, τ > 0, ‖p‖ ≤ ∆k}. (2.16)

It is easy to see that the Cauchy point has a closed-form that is inexpensive to calculate
[59, §4.1].

The Cauchy point is of crucial importance in deciding if an approximate solution of
the trust-region subproblem is acceptable; specifically, a trust-region method is globally
convergent if, at each iteration, the step ptr taken attains a reduction in the model mGN

k

that is at least some fixed multiple of the decrease attained by the Cauchy step [59, The-
orem 4.5-4.7]. The idea of the following methods is to generate approximate solutions to
the trust-region problem (2.11) starting by computing the Cauchy point and then trying
to improve on it. This way, global convergence is guaranteed.

The so-called dogleg method belongs to a special class of algorithms that approximate
the solution of the trust region problem by minimizing mGN

k along a piecewise linear
path called dogleg because of its shape. Let us consider the case where JTk Jk is positive
definite. One may think of the dogleg path as a piecewise linear approximation to the
path with parametric representation

{−(JTk Jk + λIn)
−1∇θk }λ≥0. (2.17)

From Theorem 2.4, this is the path on which the exact solution of the trust-region
problem lies. The classical dogleg path replaces the curved trajectory (2.17) with a
path consisting of two line segments. The first line segment runs from the origin to the
unconstrained minimizer along the steepest descent direction (−∇θk) given by

pUk = − ‖∇θk‖2

‖Jk∇θk‖2
∇θk,

while the second line segment runs from pUk to the unique unconstrained minimizer pNk
of mGN

k . Formally, we denote this trajectory by p(τ), for τ ∈ [0, 2], where

p(τ) =

{

τpUk , τ ∈ [0, 1],
pUk + (τ − 1)(pNk − pUk ), τ ∈ [1, 2].

(2.18)

The dogleg method chooses ptr to minimize the model mGN
k along this path, subject to

the trust-region bound. In fact, it is not even necessary to carry out a search, because it
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can be proved that ‖p(τ)‖ is an increasing function of τ and mGN
k (p(τ)) is a decreasing

function of τ , see [59, Lemma 4.1]. This implies that as long as ‖pNk ‖ ≥ ∆k, the dogleg
path (2.18) intersects the trust-region boundary at most once and this point is the
approximate ptr sought. In practice, we have

ptr =







































pNk if ‖pNk ‖ ≤ ∆k,

∆k

‖pUk ‖
pUk if ‖pUk ‖ > ∆k,

pUk + τ(pNk − pUk ), with τ ∈ [0, 1) s.t.
‖pUk + τ(pNk − pUk )‖2 = ∆2

k otherwise,

and by the properties stated above, the value of the model at ptr is guaranteed to be at
least as good as the value at the Cauchy point pck.

The dogleg strategy can be adapted to handle the case where JTk Jk is positive semidef-
inite by choosing the minimum norm minimizer pNk = −J+

k Θk between the unconstrained
minimizers of mGN

k .

Clearly, the main cost of the dogleg strategy is the computation of pNk that involves
the solution of the system (2.6), i.e. the factorization of Jk. When problem (LS) is large
and Jk is dense, this operation may be quite costly. In order to avoid the high overhead
of computing series of factorizations while approximating a solution of (2.11) along the
iterations, there have been proposed techniques based on iterative methods for solving
linear systems.

The Conjugate Gradient (CG) method is an iterative algorithm for solving linear
systems with symmetric positive definite coefficient matrices [7, 39] and it is the core
of most strategies for finding an approximate solution of (2.11) via iterative methods
[10, 32, 66, 68].

For the moment we assume that JTk Jk is positive definite. The idea is applying the

CG method to the linear system (2.6), generating a sequence of approximations {p(j)
k }j≥0

of the unconstrained minimizer pNk of mGN
k and then exploiting the special properties of

the CG iterations to handle the trust-region constraint.

Let p
(0)
k = 0. Each p

(j)
k with j ≥ 1 is generated by the CG method minimizing mGN

k

over the j-th Krylov subspace

Kj = span
(

{(JTk Jk)iJTk Θk}j−1
i=0

)

, (2.19)

i.e. each p
(j)
k solves the following subspace minimization problem

min {mGN
k (p) : p ∈ Kj}.

The subspaces {Kj} satisfy the expansion property Kj ⊂ Kj+1 for j ≥ 1 and this implies
that CG computes the exact solution of the system (2.6) in at most l iterations, where
l ≤ n is the number of distinct eigenvalues of JTk Jk [38]. The CG method remains
valid when JTk Jk is positive semidefinite and in this event the algorithm terminates
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computing the minimum norm step (−J+
k Θk) in at most l iterations, where l is the

number of distinct nonzero singular values of Jk [7, 38].

A crucial property of the sequence {p(j)
k } is that the norm of the iterates is monoton-

ically increasing, i.e. ‖p(j)
k ‖ < ‖p(j+1)

k ‖ for all j ≥ 0. This allows to extend CG to cope
with the trust-region constraint. In fact, it is acceptable to stop iterating as soon as the
trust-region boundary is encountered because no further iterates giving a lower value of
mGN
k will be inside the trust-region. Summarizing, either CG finds the unconstrained

minimizer of mGN
k in the interior of the trust-region or exits the trust-region, i.e. finds

‖p(j−1)
k ‖ < ∆k ≤ ‖p(j)

k ‖, (2.20)

for some j ≥ 1. In the last case, a solution of the problem (2.11) must lie on the boundary
and different techniques have been proposed to approximate it. The Truncated Conjugate
Gradient method proposed independently by Steihaug [66] and Toint [68], computes the
so-called Steihaug-Toint point pSTk that is

pSTk = p
(j−1)
k + τ(p

(j)
k − p

(j−1)
k ), τ ∈ (0, 1] such that ‖pSTk ‖ = ∆k. (2.21)

The Steihaug-Toint point has the favorable property that the optimal decrease of
mGN
k at the exact solution of the trust-region problem (2.11), i.e. (mGN

k (0)−mGN
k (ptr)),

is no more than twice that achieved at pSTk [12, Theorem 7.5.9]. On the other hand, the
computation of the Steihaug-Toint point does not allow the accuracy of the constrained
solution to be specified.

Regarding the global convergence of the trust-region method based on CG, it is

important to remark that since p
(0)
k = 0, the step p

(1)
k coincides with the Cauchy point

pck in (2.16). This implies that the value of the model at each subsequent iterate will be
lower than the value attained at the Cauchy point which ensures global convergence.

The algorithm described can be applied substituting CG method with CGLS method
[39] or LSQR method [60, 61]. In fact, the methods CGLS and LSQR are mathematically
equivalent to CG applied to the system (2.6) and generate exactly the same sequence of
iterates. As a consequence, all the properties of CG iterates are retained. Nevertheless
their implementations improve the numerical performance of CG if the system (2.6)
is ill-conditioned. In particular, CGLS method is a slight modification of CG method
derived by algebraic rearrangements that prevent the computation of the matrix JTk Jk
and allow the only use of matrix-vector products of the form Jkv and JTk v. The LSQR
procedure is based on the iterative bi-diagonalization algorithm due to Golub and Kahan
[30] applied to Jk for generating an orthonormal basis for the Krylov subspace (2.19); in
[60] it is shown that the numerical properties of LSQR are better than those of CGLS
and more accurately reflect the conditioning of the problem.

Methods that allow a solution on the trust-region boundary to be calculated to any
prescribed accuracy have been proposed in [10, 32]. The approach presented in these
papers consists in finding an iterate for which (2.20) occurs and then solving a sequence
of equality constrained subspace problems of the form

min {mGN
k (p) : p ∈ Kj , ‖p‖ = ∆k},

until a prescribe accuracy is reached. The iterative methods used are the CG method
in [32] and the LSQR method in [10].
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2.3 The bound-constrained problem

Consider the bound-constrained least-squares problem

min
x∈Ω

θ(x) =
1

2
‖Θ(x)‖2, (BCLS)

where θ : IRn → IR, Θ : IRn → IRm and Ω is the n-dimensional box Ω = {x ∈ IRn | l ≤
x ≤ u}, l ∈ (IR ∪ −∞)n, u ∈ (IR ∪∞)n, l < u.

The necessary conditions for optimality admit the possibility that the minimizer lies
on the boundary of Ω; the first-order and second-order necessary conditions are expressed
by the following theorems.

Theorem 2.5 (First-Order Necessary Conditions) ([49]) Let θ be continuously dif-
ferentiable on Ω. If x∗ is a solution to problem (BCLS), then x∗ is such that

∇θ(x∗)T (x− x∗) ≥ 0, for all x ∈ Ω. (2.22)

A point x∗ satisfying (2.22) is called a stationary point for problem (BCLS).
Given x∗ ∈ Ω, let F∗ denote the set of indices corresponding to free components of

x∗, F∗ = {i : li < x∗i < ui} and (∇2θ(x∗))F∗ denote the submatrix of ∇2θ(x∗) with
indices in F∗.

Theorem 2.6 (Second-Order Necessary Conditions) ([49]) If x∗ is a solution to
problem (BCLS) and θ is twice continuously differentiable in an open neighbourhood of
x∗, then (∇2θ(x∗))F∗ is positive semidefinite.

The concept of nondegenerate stationary point is used in the formulation of the
sufficient conditions for (BCLS).

Definition 2.3.1 ([49]) A point x∗ ∈ Ω is a nondegenerate stationary point for problem
(BCLS) if x∗ is stationary and

(∇θ(x∗))i 6= 0, if x∗i = li or x∗i = ui,

for i = 1, . . . , n.

For a nondegenerate stationary point the sufficient conditions are very similar to the
unconstrained case.

Theorem 2.7 (Second-Order Sufficient Conditions) ([49]) Let x∗ ∈ Ω be a non-
degenerate stationary point for problem (BCLS). Let θ be twice continuously differen-
tiable in an open neighbourhood of x∗ and assume that the matrix (∇θ(x∗))F∗ is positive
definite. Then x∗ is a solution to problem (BCLS).

Let Θ be a continuously differentiable mapping. The first-order necessary conditions
(2.22) for x∗ to be a local minimizer can be formulated componentwise as

(∇θ(x∗))i







= 0 if li < x∗i < ui,
≤ 0 if x∗i = ui,
≥ 0 if x∗i = li,

(2.23)
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for i = 1, . . . , n. Coleman and Li [11] noted that introducing a proper scaling matrix,
(2.23) can be stated as a system of nonlinear equations which parallels the system (2.3)
of the unconstrained case. Let D be the diagonal scaling matrix

D(x) = diag(|v1(x)|, . . . , |vn(x)|), (2.24)

and

vi(x) =







xi − ui if (∇θ(x))i < 0, ui <∞,
xi − li if (∇θ(x))i ≥ 0, li > −∞,
1 if (∇θ(x))i ≥ 0, li = −∞ or (∇θ(x))i < 0, ui = ∞,

(2.25)

for i = 1, . . . , n. Then conditions (2.23) are equivalent to the system of nonlinear
equations

D(x)∇θ(x) = 0, (2.26)

for x ∈ Ω. By (2.1), equation (2.26) can be written as D(x)J(x)TΘ(x) = 0.
The scaling matrix D has further nice properties. In particular, the scaled steepest

descent direction of θ at xk defined as

dk = −Dk∇θk, (2.27)

is well-angled with respect to the bounds. In fact, for the components (xk)i which
are approaching the correct bounds, dk becomes increasingly tangential to the bounds;
hence, the bounds will not prevent a large stepsize along dk. On the other hand, for
the components (xk)i which are approaching the incorrect bounds, dk points away from
these bounds in relatively large angles [8].

In recent years, a number of methods have exploited the fact the first-order necessary
conditions of (BCLS) can be written as (2.26). Such methods generate feasible iterates
and are named affine scaling methods. The methods proposed in [25, 47, 73] and intro-
duced in Section 1.2.1 belong to this class along with the methods in [1, 2, 3, 4, 43, 46]
for square problems.





Chapter 3

The affine scaling trust-region

methods

Bound-constrained least-squares problems can be a unifying formulation for the problems
addressed in this thesis. In this chapter we discuss two ways to transform the feasibility
problem (FP) into the problem

min
x∈Ω

θ(x) =
1

2
‖Θ(x)‖2, (BCLS)

where θ : IRn → IR, Θ : IRn → IRm is a given continuously differentiable mapping and
Ω is the n-dimensional box Ω = {x ∈ IRn | l ≤ x ≤ u}, l ∈ (IR ∪ −∞)n, u ∈ (IR ∪∞)n,
l < u. Then, we present two new trust-region methods for solving problem (BCLS)
which belong to the class of affine scaling methods. The quadratic models used in the
trust-region strategy are a Gauss-Newton model and a regularized Gauss-Newton model.
A linear algebra phase arises at each iteration of the methods; in this chapter we restrict
to the case where matrix factorizations are used.

In Section 3.1 we discuss formulations of nonlinear feasibility problems as problem
(BCLS) where the function Θ is continuously differentiable. In Section 3.2 we explore two
approaches for bound-constrained least-squares problems which require differentiability
of the residual function Θ. In Section 3.3 we show that the methods are globally and po-
tentially q-quadratically convergent. A comparison between the numerical performance
of the methods is presented in Section 3.4.

3.1 Nonlinear feasibility problems

Consider the problem
CE(v) = 0,
CI(v) ≤ 0,
vl ≤ v ≤ vu,

(FP)

where the vector functions CE : IRp → IRmE and CI : IRp → IRmI are continuously
differentiable, vl ∈ (IR∪−∞)p, vu ∈ (IR∪∞)p and vl < vu. Now we discuss formulations
of this problem which are alternative to those described in Section 1.2.2 and let m =
mE +mI .

21
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We convert the general inequalities, CI(v) ≤ 0, into equalities and transform the
problem (FP) into problem (BCLS) where Θ is continuously differentiable. A possible
transformation is to add a slack variable s ∈ IRmI whose non-positivity is imposed by
means of simple bounds. The problem then becomes the least-squares problem (BCLS)
where

x =

(

v
s

)

, Θ(x) =

(

CE(v)
s−CI(v)

)

, l =

(

vl
− Inf

)

, u =

(

vu
0

)

. (3.1)

Here, Θ : IRp+mI → IRm, the column vectors −Inf and 0 are in IRmI and such that
(−Inf)i = −∞, (0)i = 0 for i = 1, . . . ,mI .

Another transformation is to use the function

[t]+ =
1

2
max{t, 0}2,

which is continuously differentiable. Then, the problem takes the form (BCLS) where

x = v, Θ(x) =

(

CE(x)
[CI(x)]+

)

, l = vl, u = vu. (3.2)

Note that Θ : IRp → IRm and [CI(x)]+ denotes the vector of infeasibilities at x.

The above formulations are such that any zero-residual solution to problem (BCLS)
gives a solution to problem (FP). It is also important to note that by (2.1) any zero-
residual solution to (BCLS) is a degenerate stationary point.

In both transformations, the number of components of the vector function Θ is m
while the number of variables differs. The transformation (3.1) adds mI extra variables
and the problem (BCLS) is underdetermined if the system of equalities is underde-
termined. On the contrary, the transformation (3.2) leaves the number of unknowns
unchanged and Θ inherits the dimensions of the system of equalities and general in-
equalities.

For the functions Θ in (3.1) and (3.2), the Jacobian matrix J of Θ is given by

J(x) =

(

C ′
E(v) 0

−C ′
I(v) ImI

)

, (3.3)

and

J(x) =

(

C ′
E(x)

max{CI(x),0}C ′
I (x)

)

, (3.4)

respectively, where C ′
E and C ′

I denote the Jacobian matrices of CE and CI , 0 denotes
the null matrix in IRmE×mI in (3.3) and the null vector in IRmI in (3.4). Letting x∗ be a
solution to (FP), the matrix J(x∗) given in (3.4) has full rank if the system of equalities
CE(x) = 0 is square or overdetermined and C ′

E(x∗) has full rank. Otherwise, J(x∗) does
not have full rank and the rate of convergence of a minimization method for smooth
problems may be inhibited.
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3.2 The methods and the algorithmic options

We present trust-region methods for solving the bound-constrained least-squares problem
(BCLS). The sequence {xk} generated by the methods consists of feasible points, i.e.
xk ∈ Ω, k ≥ 0. Without loss of generality we assume that for all k, xk is not a stationary
point for the least-squares problem (BCLS).

At the k-th iteration, we define a quadratic model mk for θ as

mk(p) =
1

2
‖Jk p+ Θk‖2 +

1

2
µk‖p‖2, (3.5)

where µk is a nonnegative scalar. Then, given the trust-region radius ∆k ≥ 0, we consider
the trust-region problem

min {mk(p) : ‖p‖ ≤ ∆k}. (3.6)

We allow for two options in the choice of the parameter µk in (3.5). The first option
is to let µk = 0 so that the Gauss-Newton model is used. The second option is to
choose a strictly positive scalar µk which depends on the value ‖Θk‖; this way, mk can
be interpreted as a regularized Gauss-Newton model.

In order to give the precise characterization of a solution to (3.6), we first note
that the Gauss-Newton model is convex and that the global unconstrained minimizer
is unique if Jk is full column rank. On the other hand, the regularized Gauss-Newton
model is strictly convex and admits a unique unconstrained minimizer. Let pNk denote
the minimum norm minimizer of mk. If µk = 0, the step pNk has the form

pNk = −Jk+ Θk. (3.7)

Otherwise pNk solves the linear system

(Jk
TJk + µkIn) p

N
k = −JkTΘk. (3.8)

Trivially, the model mk in (3.5) can be written as

mk(p) =
1

2

∥

∥

∥

∥

(

Jk√
µk In

)

p+

(

Θk

0

)∥

∥

∥

∥

2

. (3.9)

Then, taking into account the trust-region constraint, by Theorem 2.4 we know that any
solution ptr to the trust-region problem (3.6) satisfies the equation

(Jk
TJk + (µk + λ)In) ptr = −JkTΘk, (3.10)

where λ ≥ 0 and λ(‖ptr‖ − ∆k) = 0. Then we have the following cases.

(i) If Jk
TJk + (µk + λ)In is positive definite, then ptr is unique; clearly this is the case

whenever µk > 0 or JTk Jk is nonsingular.

(ii) The vector pNk solves (3.10) with λ = 0. Hence there are two possibilities: either pNk
is inside the trust-region, i.e. ptr = pNk , or there are no unconstrained minimizers
of mk inside the trust-region.
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(iii) If µk = 0, Jk
TJk is rank deficient and pNk given in (3.7) is inside the trust-region,

then ptr = pNk is the solution to (3.6) for which ‖ptr‖ is least.

Correspondingly to problem (3.6), we consider a generalized Cauchy step pCk which
is typical of affine scaling trust-region methods. Such step is defined along the scaled
steepest descent direction dk given in (2.27) and minimizes mk within the feasible trust-
region, i.e.

pCk = argmin {mk(p) : p ∈ span(dk), ‖p‖ ≤ ∆k, xk + p ∈ Ω}. (3.11)

Now we outline the general form of the method which will be denoted as TREBO

method (Trust-REgion method for BOund-constrained least-squares problems). It is
the paradigm for our procedure and two different implementations are allowed. They
correspond to the following possible choices of the sequence {µk}. Fixed µ ≥ 0 and a
small positive scalar µ̂, we let

µk =

{

min{µ̂, µ} ‖Θ0‖2 if k = 0,
min{µk−1, µ‖Θk‖2} if k > 0.

(3.12)

Choosing µ = 0 we get µk = 0 for all k; on the other hand if µ > 0 then µk > 0 for all k
such that ‖Θk‖ 6= 0.

The assignment (3.12) is in accordance to the proposal in [48]. The implementation
with µ = 0 is based on the Gauss-Newton model and will be denoted as TREBO-GN. The
other implementation is obtained setting µ > 0 and gives rise to a Levenberg-Marquardt
method; therefore it will be denoted TREBO-LM method. We remark that the parameter
µ̂ in (3.12) has effect only on the Levenberg-Marquardt procedure; it is assumed small
enough so that the model mk does not drift too far from the Gauss-Newton model when
‖Θk‖ is large.

Algorithm 3.1 describes the k-th iteration of the TREBO framework. We now analyze
it in detail specifying the tasks that are not shared by the two implementations and
discussing the most relevant algorithmic options.

The input parameters ∆min, β1, β2, µ̂, µ, δ are independent of k. The initial trust-
region radius ∆k satisfies ∆k ≥ ∆min. The parameter µk which characterizes the model
mk used is evaluated in Step 1. Then, in Step 2 we find the minimum norm minimizer pNk
of mk. For the TREBO-GN method the step pNk in (3.7) can be computed in a numerically
reliable way from either the complete orthogonal factorization of Jk or the singular value
decomposition of Jk, [28, §6.6.4, §6.6.5]. In the TREBO-LM method the step pNk solves the
linear system (3.8) with positive definite matrix and there are two ways to compute it.
The simplest way to obtain pNk is to use the Cholesky decomposition on the system (3.8).
Alternatively, pNk can be computed applying the QR decomposition to the least-squares
problem minp mk(p) with mk(p) stated as (3.9). A possible disadvantage of the first
approach is that the condition number of JTk Jk +λIn is the square of that of the matrix
in (3.9).

Taking into account (2.27) and (3.11), Step 3 is performed letting

pCk = ck dk, ck =

{

ĉk if xk + ĉkdk ∈ Ω,
λk otherwise,

(3.13)
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where

ĉk = min

{

‖D1/2
k ∇θk‖2

‖Jkdk‖2 + µk‖dk‖2
,

∆k

‖dk‖

}

, λk = argmax{λ > 0, xk + λdk ∈ Ω}. (3.14)

It is easy to verify that λk has the form

λk = min
1≤i≤n

Λi where Λi =

{

max
{

li−(xk)i

(dk)i
, ui−(xk)i

(dk)i

}

if (dk)i 6= 0,

∞ if (dk)i = 0.
(3.15)

Algorithm 3.1 TREBO: k-th iteration

Input: xk ∈ Ω, ∆k ≥ ∆min > 0, µ ≥ 0, µ̂, β1, β2, δ ∈ (0, 1).

1. Define µk according to (3.12).
2. Compute the minimum norm solution pNk to the problem minp∈IRn mk(p).

3. Compute the generalized Cauchy step pCk based on (3.11).
4. If ‖pNk ‖ ≤ ∆k set ptr = pNk ;

Else find the dogleg step ptr for (3.6).
5. Let p̄tr = PΩ(xk + ptr) − xk.
6. If

ρc(p̄tr) =
mk(0) −mk(p̄tr)

mk(0) −mk(p
C
k )

≥ β1, (3.16)

Set pk = p̄tr;
Else find pk = t pCk + (1 − t)p̄tr, t ∈ (0, 1], such that (3.16) holds.

7. If

ρθ(pk) =
θ(xk) − θ(xk + pk)

mk(0) −mk(pk)
≥ β2, (3.17)

Set xk+1 = xk + pk, choose ∆k+1 ≥ ∆min;
Else reduce ∆k, ∆k = δ∆k, and go to Step 3.

In Step 4, the trust-region problem (3.6) is solved. We set ptr = pNk if pNk is inside the
trust-region; otherwise, we find an approximate solution ptr to (3.6) on the boundary
of the trust-region by the dogleg strategy, see Section 2.2.2. To generate a new feasible
iterate, in Step 5 we use the projection map PΩ(x) = max {l,min {x, u}}. Specifically,
we project xk + ptr onto the box Ω and let p̄tr be a possibly modified step such that
xk + p̄tr is feasible.

Steps 6–7 attempt to find a feasible iterate xk+1 = xk+pk which provides a sufficient
decrease in the value of θ with respect to xk. In Step 6 we impose a sufficient decrease of
mk in comparison to the generalized Cauchy step pCk ; this is crucial to make the method
globally convergent [1, 11]. We let pk = p̄tr if p̄tr satisfies (3.16), otherwise, we look for a
step of the form pk = tpCk + (1 − t)p̄tr, t ∈ (0, 1], satisfying the required condition. This
task can be accomplished easily in two different ways. The first possibility is to simply
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set t = 1, i.e. pk = pCk [11]. The second one is to find the scalar t ∈ (0, 1) such that
ρc(pk) = β1; this is equivalent to find the smallest positive root of the scalar quadratic
equation in t of the form ρc(tp

C
k + (1 − t)p̄tr) − β1 = 0, [2].

In Step 7, we measure the quality of the quadratic model mk as an approximation to
θ around xk. If the sufficient improvement condition (3.17) is satisfied, the new iterate
is xk+1 = xk + pk and ∆k+1 is fixed so that ∆k+1 ≥ ∆min; otherwise, pk is rejected and
the trust-region size ∆k is reduced. We point out that in each iteration of the method
the initial radius is greater than or equal to ∆min while on termination of the iteration
the trust-region radius may be smaller than ∆min.

We conclude this section making some further comments. In both the TREBO-GN

and TREBO-LM methods the use of the step pNk is motivated by the fast convergence
attainable ultimately. This property will be shown in the next Section 3.3.

The use of the minimum norm step (3.7) in the TREBO-GN method is common to the
methods given in [16, 25, 70]. The reason for using the dogleg strategy in the solution of
(3.6) instead of the Moré and Sorensen algorithm [57], depends on the occurrence of the
so-called “hard case”. If JTk Jk is positive semidefinite, the Moré and Sorensen strategy
steps to the boundary of the trust-region even when the unconstrained minimizer pNk of
mk is safely inside and loses the opportunity of taking such step, see Section 2.2.2.

In the unconstrained setting, many versions of the Levenberg-Marquardt method
have been proposed using various strategies for choosing the regularization parameter µk.
In particular, the implementation of the Levenberg-Marquardt method as a trust-region
algorithm is due to Moré [56]. Therefore, the combination of the Levenberg-Marquardt
model and the trust-region strategy proposed here may be viewed as a double regulariza-
tion. We point out that our choice (3.12) of the Levenberg-Marquardt parameter is not
implemented as in a trust-region strategy. Global convergence of the TREBO-LM algo-
rithm depends on the trust-region strategy while the aim of the parameter µk is to replace
the Gauss-Newton model by a nearby strictly convex model and to achieve strong local
convergence properties. In particular, quadratic convergence to a zero-residual solution
can be achieved also in the case where JTJ is singular at such point.

To complete the discussion on the Levenberg-Marquardt algorithm, we note from
(3.12) that µk may become very small near to a zero-residual solution to (BCLS). The
danger of this occurrence is that the matrix in (3.8) may become numerically singu-
lar. To cope with this situation, safeguards are needed in practical implementations
to prevent µk from becoming too small. Finally, Fan and Yuan [20] noted some pos-
sible defects of the choice (3.12) and suggested the use of µk = O(‖Θk‖) while still
preserving local quadratic convergence properties; however, the numerical behaviour of
Levenberg-Marquardt methods for the different choices of {µk} has not been investigated
thoroughly and may deserve further analysis.

3.3 Convergence analysis

In this section we establish global and local convergence properties of the methods pre-
sented. The analysis in Section 3.3.1 and Section 3.3.2 is carried out considering the
general form of the TREBO method, whereas for the local convergence analysis in Sec-
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tions 3.3.3, 3.3.4 and 3.3.5 it will be necessary to distinguish between the TREBO-LM

method and the TREBO-GN method.
Throughout the section we let {xk} be the sequence generated by any implementation

of the TREBO method and, without loss of generality, we assume that for all k, xk is not
a stationary point for the least-squares problem (BCLS), i.e.

‖Dk∇θk‖ 6= 0. (3.18)

Moreover we make the following basic assumptions on the function Θ in (BCLS).

Assumption 1 There exists an open, bounded and convex set L containing the whole
sequence {xk} such that L ⊃ {x ∈ IRn : ∃ xk s.t. ‖x − xk‖ ≤ r}, for some r > 0, and
the Jacobian matrix J is Lipschitz continuous in L with Lipschitz constant 2γD, i.e. for
all x, z ∈ L

‖J(x) − J(z)‖ ≤ 2γD‖x− z‖. (3.19)

Assumption 2 ‖Θ′‖ is bounded above on L and χL = supx∈L ‖J(x)‖.

It is easy to see that if Θ has the form (3.1) then these assumptions are equivalent to
suppose that C ′

E(x), C ′
I(x) are bounded in norm for x ∈ L and that C ′

E(x) and C ′
I(x) are

Lipschitz continuous at every point of the set L. If Θ has the form (3.2) it can be shown
following the lines of [16, Lemma 4.1] that the Assumptions 1 and 2 are equivalent to
suppose that CI(x), C

′
E(x), C ′

I(x) are bounded in norm for x ∈ L and that C ′
E(x) and

C ′
I(x) are Lipschitz continuous at every point of the set L.

Trivially, Assumption 1 implies that the sequence {xk} is bounded. Moreover the
following lemma can be easily proved.

Lemma 3.1 Let Assumptions 1 and 2 hold. Then for all x, z ∈ L

‖Θ(x) − Θ(z)‖ ≤ χL‖x− z‖, (3.20)

‖Θ(x) − Θ(z) − J(z)(x− z)‖ ≤ γD‖x− z‖2. (3.21)

Proof. Since Θ is continuously differentiable, by the Mean Value Theorem A.2 and
Assumption 2 we have

‖Θ(x) − Θ(z)‖ ≤
∫ 1

0
‖J(x+ t(x− z)) ‖ ‖x − z ‖dt ≤ χL ‖x− z‖.

To prove (3.21), we use the Mean Value Theorem A.2 and (3.19) as follows

‖Θ(x) − Θ(z) − J(z)(x − z)‖ =

∥

∥

∥

∥

∫ 1

0
(J(z + t(x− z)) − J(z)) (x − z) dt

∥

∥

∥

∥

≤
∫ 1

0
‖J(z + t(x− z)) − J(z)‖ ‖x − z‖ dt

≤
∫ 1

0
2γD‖x− z‖2 t dt = γD‖x− z‖2.

�

The properties below follow from the contractivity of the projection map PΩ.
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Lemma 3.2 Let x ∈ Ω, let p be a vector of IRn and let p̄ = PΩ(x + p) − x. Then we
have

‖p̄‖ ≤ ‖p‖, (3.22)

‖x+ p̄− z‖ ≤ ‖x+ p− z‖, z ∈ Ω. (3.23)

Proof. The projection map PΩ(x) satisfies the contractivity property [6]:

‖PΩ(x) − PΩ(z)‖ ≤ ‖x− z‖, for all x ∈ IRn, z ∈ Ω.

This implies (3.22) since ‖p̄‖ = ‖PΩ(x+ p) − x‖. Moreover, for all z ∈ Ω

‖x+ p̄− z‖ = ‖x+ PΩ(x+ p) − x− z‖ ≤ ‖x+ p− z‖.

�

3.3.1 Termination of the iteration

An important result in any trust-region analysis is that condition (3.17) holds if the
trust-region radius is small enough. This implies that the k-th iteration of the TREBO

method terminates and the method is well-defined.
In order to prove this result we turn our attention to the actual reduction ared(pk)

in θ at xk + pk
ared(pk) = θ(xk) − θ(xk + pk),

and to the predicted reduction pred(pk), i.e. the decrease in the quadratic model mk at
pk

pred(pk) = mk(0) −mk(pk).

Lemma 3.3 Let Assumption 1 hold. If pk satisfies mk(pk) ≤ mk(0) then

ared(pk) ≥ pred(pk) −
(

1

2
µk + γD‖Θk‖ +

1

2
γ2
D‖pk‖2

)

‖pk‖2. (3.24)

Proof. From the Mean Value Theorem A.2 it follows that

‖Θ(xk + pk)‖2 = ‖Θk + Jkpk + w(xk, pk)‖2,

where

w(xk, pk) =

∫ 1

0
(J(xk + tpk) − J(xk)) pk dt.

Thus, we have

|mk(pk) − θ(xk + pk)| =
1

2

∣

∣ ‖Θk + Jkpk‖2 + µk‖pk‖2 − ‖Θ(xk + pk)‖2
∣

∣

≤ 1

2
µk‖pk‖2 + ‖Θk + Jkpk‖‖w(xk , pk)‖

+
1

2
‖w(xk, pk)‖2. (3.25)
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From the Lipschitz continuity of Jk, we obtain

‖w(xk, pk)‖ ≤ γD‖pk‖2

and by using mk(pk) ≤ mk(0) we get ‖Θk + Jkpk‖ ≤ ‖Θk‖. Then the inequality (3.25)
becomes

|mk(pk) − θ(xk + pk)| ≤
(

1

2
µk + γD‖Θk‖ +

1

2
γ2
D‖pk‖2

)

‖pk‖2. (3.26)

Since mk(0) = θ(xk), we have

ared(pk) = θ(xk) −mk(pk) +mk(pk) − θ(xk + pk)

≥ pred(pk) − |mk(pk) − θ(xk + pk)|,

and this along with (3.26) gives the thesis. �

Next lemma shows that the progress pred(pk) that can be made at iteration k on the

model mk, is at least proportional to ‖D1/2
k ∇θk‖. This quantity is an indication of the

amount by which xk violates (2.26).

Lemma 3.4 If pk satisfies (3.16) then

pred(pk) ≥
β1

2
‖D1/2

k ∇θk‖min

{

∆k

‖D1/2
k ‖

,
‖D1/2

k ∇θk‖
‖D1/2

k (Jk
TJk + µkIn)D

1/2
k ‖

,
‖D1/2

k ∇θk‖
‖∇θk‖∞

}

.

(3.27)

Proof. First, we note that (3.18) implies that ‖D1/2
k ∇θk‖ 6= 0 and ‖∇θk‖∞ 6= 0. By

(3.16) we have pred(pk) ≥ β1 pred(p
C
k ). Hence, to prove (3.27) we determine a lower

bound for pred(pCk ).

Note that from (3.13), pCk is given by

pCk =

{

ĉkdk if xk + ĉkdk ∈ Ω,
λkdk otherwise,

where dk, ĉk and λk are given in (2.27), (3.14) and (3.15) respectively. If pCk = ĉkdk and

ĉk =
‖D1/2

k ∇θk‖2

‖Jkdk‖2 + µk‖dk‖2
, then

pred(pCk ) = ĉk‖D1/2
k ∇θk‖2 − 1

2
ĉ2k(‖Jkdk‖2 + µk‖dk‖2) =

1

2

‖D1/2
k ∇θk‖4

‖Jkdk‖2 + µk‖dk‖2

=
1

2

‖D1/2
k ∇θk‖4

(D
1/2
k ∇θk)T (D

1/2
k (JTk Jk + µkIn)D

1/2
k )(D

1/2
k ∇θk)

≥ 1

2

‖D1/2
k ∇θk‖2

‖D1/2
k (JTk Jk + µkIn)D

1/2
k ‖

. (3.28)
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On the other hand, if pCk = ĉkdk and ĉk = ∆k/‖dk‖, then ĉk ≤
‖D1/2

k ∇θk‖2

‖Jkdk‖2 + µk‖dk‖2
and

we obtain

pred(pCk ) = ĉk(‖D1/2
k ∇θk‖2 − 1

2
ĉk(‖Jkdk‖2 + µk‖dk‖2))

≥ 1

2
ĉk‖D1/2

k ∇θk‖2 ≥ 1

2
∆k

‖D1/2
k ∇θk‖
‖D1/2

k ‖
. (3.29)

Now, let us consider the case pCk = λkdk, where λk is defined in (3.15). Since by con-

struction λk ≤ ĉk ≤ ‖D1/2
k ∇θk‖2

‖Jkdk‖2 + µk‖dk‖2
and that by [11, Lemma 3.1] λk ≥ 1/‖∇θk‖∞,

we get

pred(pCk ) = λk‖D1/2
k ∇θk‖2 − 1

2
λ2
k(‖Jkdk‖2 + µk‖dk‖2)

≥ 1

2
λk‖D1/2

k ∇θk‖2 ≥ 1

2

‖D1/2
k ∇θk‖2

‖∇θk‖∞
. (3.30)

Thus pred(pk) ≥ β1pred(p
C
k ), (3.28), (3.29) and (3.30) yield the thesis. �

We next show that each iteration k of the TREBO method is well-defined.

Lemma 3.5 Let Assumption 1 hold. Then condition (3.17) is satisfied in a finite num-
ber of trials.

Proof. First we need to bound ‖pk‖, where pk is formed in Step 6 of Algorithm 3.1. By
‖ptr‖ ≤ ∆k, (3.22) yields ‖p̄tr‖ ≤ ∆k and from the definition of the Cauchy point we
have ‖pCk ‖ ≤ ∆k. By construction pk satisfies (3.16) and since either pk = p̄tr or pk is a
convex combination of pCk and p̄tr, we conclude

‖pk‖ ≤ ∆k. (3.31)

From assumption (3.18) it follows ‖D1/2
k ∇θk‖ 6= 0 and ‖∇θk‖∞ 6= 0. Hence, letting

∆k ≤ ‖D1/2
k ‖min

{

‖D1/2
k ∇θk‖

‖D1/2
k (JTk Jk + µkIn)D

1/2
k ‖

,
‖D1/2

k ∇θk‖
‖∇θk‖∞

}

,

(3.27) implies ∆k ≤ C̃k pred(pk), with C̃k = 2‖D1/2
k ‖/(β1‖D1/2

k ∇θk‖) and from (3.31)
we get

‖pk‖ ≤ C̃k pred(pk). (3.32)

Then, (3.24), (3.31) and (3.32) yield

ared(pk) ≥ pred(pk) −
(

1

2
µk∆k + γD ‖Θk‖∆k +

1

2
γ2
D ∆3

k

)

‖pk‖,

≥ gk(∆k) pred(pk), (3.33)
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where

gk(∆k) = 1 − C̃k

(

1

2
µk∆k + γD ‖Θk‖∆k +

1

2
γ2
D ∆3

k

)

. (3.34)

By gk(0) = 1, β2 ∈ (0, 1), and the continuity of the function gk, there exists a ∆̃k > 0
such that gk(∆k) ≥ β2 when ∆k ≤ ∆̃k. Then, if

∆k ≤ min

{

∆̃k,
‖D1/2

k ‖ ‖D1/2
k JTk Θk‖

‖D1/2
k (JTk Jk + µkIn)D

1/2
k ‖

,
‖D1/2

k ‖ ‖D1/2
k JTk Θk‖

‖∇θk‖∞

}

,

condition (3.17) is met. �

3.3.2 Global convergence

Under Assumptions 1 and 2, the TREBO-GN and TREBO-LM methods are globally con-
vergent. The convergence analysis is provided in the following theorem where we prove
that independently of the choice of the initial guess x0, the limit points of the sequence
{xk} generated by the TREBO method are stationary points for the problem (BCLS).

Theorem 3.1 Let Assumptions 1 and 2 hold and {xk} be the sequence generated by the
TREBO method. Then every limit point of the sequence {xk} is a first-order stationary
point for the problem (BCLS), i.e.

lim
k→∞

‖Dk∇θk‖ = 0.

Proof. Since {xk} is bounded, there exists a constant χD > 0 such that ‖D1/2
k ‖ < χD for

all k. Hence it suffices to prove that limk→∞ ‖D1/2
k ∇θk‖ = 0 to obtain the thesis. From

Assumptions 1, the gradient ∇θ(x) is Lipschitz continuous in L [59, p. 295]. Moreover
by Assumption 2 there exists a positive scalar χg such that ‖∇θk‖∞ < χg. Further by
construction µk ≤ µ0 for all k. First, we will prove that

liminf
k→∞

‖D1/2
k ∇θk‖ = 0. (3.35)

We will proceed by contradiction. Assume that there exists ǫ > 0 such that

liminf
k→∞

‖D1/2
k ∇θk‖ > ǫ.

This implies that there exists k̄ such that ‖D1/2
k ∇θk‖ > ǫ whenever k > k̄. Assume

k > k̄. The sequence {θk} is monotone decreasing and bounded from below. Then, it
is convergent and limk→∞(θk − θk+1) = 0. By construction, at each iteration (3.17) is
satisfied, i.e.

θk − θk+1 ≥ β2pred(pk).

Then, by (3.27)

θk − θk+1 ≥ β1 β2

2
ǫmin

{

∆k

χD
,

ǫ

χ2
D(χ2

L + µ0)
,
ǫ

χg

}

, (3.36)
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with χL given in Assumption 2 and limk→∞(θk − θk+1) = 0 implies limk→∞ ∆k = 0.
Then, there exists k̂ > k̄ such that ∆k ≤ χD min{ǫ/(χ2

D(χ2
L + µ0)), ǫ/χg} when k ≥ k̂.

Assume k > k̂.
Using (3.33) and (3.34) and taking into account that C̃k ≤ 2χD/(β1ǫ), we get the

following inequality
ared(pk) ≥ g(∆k)pred(pk),

where

g(∆k) = 1 − 2χD
β1ǫ

(

1

2
µ0∆k + γD ‖Θ0‖∆k +

1

2
γ2
D ∆3

k

)

.

Since g(0) = 1, g is continuous and β2 ∈ (0, 1), there exists a ∆̃ > 0, independent from
k, such that g(∆k) ≥ β2 when ∆k ≤ ∆̃. Consequently, ared(pk) ≥ β2pred(pk) holds for

∆k ≤ min

{

∆̃,
ǫ

χD(χ2
L + µ0)

,
ǫχD
χg

}

.

Thus, letting ∆̄k be the initial value of ∆k in Algorithm 3.1, at termination of the k-th
iteration, we have either ∆k = ∆̄k ≥ ∆min or

∆k ≥ min

{

δ∆̃,
ǫ

χD(χ2
L + µ0)

,
ǫχD
χg

}

.

Thus, ∆k is bounded away from zero. This is a contradiction and we must have

liminfk→∞ ‖D1/2
k ∇θk‖ = 0.

Finally we prove that limk→∞ ‖D1/2
k ∇θk‖ = 0. Now we assume that there exists a

sequence {mi} such that ‖D1/2
mi ∇θmi

‖ ≥ ǫ1 for some ǫ1 ∈ (0, 1). By using (3.35), we
can state that for any ǫ2 ∈ (0, ǫ1) there exists a subsequence of {mi}, without loss of
generality we assume it is the full sequence, and a sequence {li} such that

‖D1/2
k ∇θk‖ ≥ ǫ2, mi ≤ k < li ‖D1/2

li
∇θli‖ < ǫ2. (3.37)

Then (3.36) yields

θk − θk+1 ≥ 1

2
β1 β2 ǫ2 min

{

∆k

χD
,

ǫ2
χ2
D(χ2

L + µ0)
,
ǫ2
χg

}

, mi ≤ k < li,

and since from (3.31) we have ‖xk+1 − xk‖ ≤ ∆k, we can conclude that

θk − θk+1 ≥ 1

2
β1 β2 ǫ2 min

{‖xk+1 − xk‖
χD

,
ǫ2

χ2
D(χ2

L + µ0)
,
ǫ2
χg

}

, mi ≤ k < li. (3.38)

Since limk→∞(θk − θk+1) = 0, from (3.38) we have

θk − θk+1 ≥ ǫ3‖xk+1 − xk‖, mi ≤ k < li, (3.39)

for i sufficiently large and ǫ3 = 1
2β1 β2 ǫ2/χD. Thus, using the triangle inequality we get

θmi
− θki

≥ ǫ3‖xmi
− xki

‖, mi ≤ ki ≤ li, (3.40)
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and we can conclude that ‖xmi
− xki

‖ tends to zero. Moreover, from the Lipschitz
continuity of ∇θ and the fact that ‖xmi

− xki
‖ tends to zero, it follows

‖∇θmi
−∇θki

‖ ≤ ǫ2, (3.41)

for i sufficiently large.
Without loss of generality, assume that the full sequence {xli} converges to a point,

say x∗. From (3.40) we have that {xmi
} converges to x∗.

If (∇θ(x∗))j 6= 0 for some j ∈ {1, . . . , n}, then (2.25) implies |(vmi
)j − (vli)j | ≤

|(xmi
)j − (xli)j | for i sufficiently large. Consequently limi→∞ ‖(D1/2

mi − D
1/2
li

) = 0 and
therefore

‖(D1/2
mi

−D
1/2
li

)∇θli‖ ≤ ǫ2, (3.42)

for i sufficiently large. Finally, from ‖D1/2
mi ∇θmi

‖ ≥ ǫ1, (3.37), (3.41), (3.42) and

‖D1/2
mi ∇θmi

‖ ≤ ‖D1/2
mi ‖ ‖∇θmi

−∇θli‖+

‖(D1/2
mi −D

1/2
li

)∇θli‖ + ‖D1/2
li

∇θli‖,
we get

ǫ1 ≤ (χD + 2) ǫ2,

i.e. a contradiction since ǫ2 ∈ (0, ǫ1) can be arbitrarily small. �

Since a limit point x∗ may be such that ‖Θ(x∗)‖ > 0, we list the cases where the
limit points are zero-residual solutions to problem (BCLS).

Theorem 3.2 Let Assumptions 1 and 2 hold and {xk} be the sequence generated by the
TREBO method.

i. If x∗ is a limit point of {xk} and ‖Θ(x∗)‖ = 0, then all the limit points of {xk} are
zero-residual solutions to problem (BCLS).

ii. If the problem is either square or underdetermined and x∗ is a limit point of {xk}
such that x∗ ∈ int(Ω) and J(x∗) has full rank, then x∗ is such that ‖Θ(x∗)‖ = 0.

Proof. i. The sequence {θk} is monotone decreasing and bounded from below; hence it
converges. Since ‖Θ(x∗)‖ = 0, then limk→∞ θk = 0.

ii. From Theorem 3.1, x∗ satisfies ‖D(x∗)∇θ(x∗)‖ = 0. Since x∗ ∈ int(Ω) it follows
J(x∗)TΘ(x∗) = 0. Then, rank(J(x∗)) = m yields ‖Θ(x∗)‖ = 0. �

3.3.3 Assumptions for local convergence

Under further assumptions, we are able to carry out the local convergence analysis. We
let S be the set of zero-residual solutions to problem (BCLS), d(x,S) denote the distance
from the point x to the set S and [x]S ∈ S be such that ‖x− [x]S‖ = d(x,S), i.e.

S = {y ∈ Ω : ‖Θ(y)‖ = 0}, (3.43)

d(x,S) = inf{‖x− y‖, y ∈ S}, [x]S = argmin
y∈S

‖x− y‖. (3.44)

We make the following assumptions.
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Assumption 3 The zero-residual solution set S of problem (BCLS) is nonempty. The
sequence {xk} generated by the TREBO method has a limit point x∗ ∈ S.

It is important to remark that due to Assumption 3 and Theorem 3.2 we know that
limk→∞ ‖Θk‖ = 0.

The next lemma provides two useful properties that are a direct consequence of
Assumptions 1, 2 and 3.

Lemma 3.6 Let Assumptions 1, 2 and 3 hold. Then there exists a constant ǫ > 0 such
that for x ∈ Bǫ(x

∗)

x ∈ L and [x]S ∈ L, (3.45)

‖Θ(x)‖ ≤ χL d(x,S). (3.46)

Proof. Let r be the scalar given in Assumption 1 and ǫ < r/2. Since from Assumption
3 x∗ is a limit point of the sequence {xk}, there exists k such that ‖xk − x∗‖ ≤ r − 2ǫ.
Then, if x ∈ Bǫ(x

∗) we have ‖x−xk‖ ≤ ‖x−x∗‖+‖x∗−xk‖ ≤ r−ǫ, i.e. x ∈ L. Further,
let [x]S as in (3.44). Then, ‖ [x]S −xk‖ ≤ ‖ [x]S −x‖+‖x−xk‖ ≤ ‖x∗−x‖+‖x−xk‖ ≤ r
i.e. [x]S ∈ L.

The second part of the thesis follows from Θ(x) = Θ(x)−Θ([x]S), (3.20) and (3.44).
�

To prove that the sequence {xk} is q-quadratically convergent, we distinguish be-
tween the TREBO-GN and TREBO-LM method. In particular, for the TREBO-LM method
we assume an error bound condition in a neighbourhood of a limit point x∗ ∈ S. For the
TREBO-GN method we require that the Jacobian matrix J is full rank at x∗ ∈ S. These
assumptions are stated below.

Assumption 4 (Error bound condition) Let {xk} be the sequence generated by the
TREBO-LM method. For a limit point x∗ ∈ S of {xk}, there exists positive constants ρ
and α0 such that

1

α0
d(x, S) ≤ ‖Θ(x)‖ for all x ∈ Bρ(x

∗). (3.47)

Assumption 5 (Full rank condition) Let {xk} be the sequence generated by the TRE-
BO-GN method. For a limit point x∗ ∈ S of {xk}, the Jacobian J(x∗) is full rank.

Assumptions 4 and 5 and their relationship deserve some considerations. When
(3.47) is satisfied the function ‖Θ‖ provides a local error bound for the problem (BCLS)
near x∗ ∈ S. It is important to remark that (3.47) depends on the point in S in the
sense that it may fail in a neighbourhood of a point in S different from x∗, see [51, 62].

The local error bound condition is known to be weaker than the standard nonsingu-
larity assumption of J(x∗) in case J is a square matrix. For nonsquare Jacobian matrices,
(3.47) is weaker than the nonsingularity assumption of J(x∗)TJ(x∗). It is interesting to
note that, if problem (BCLS) is overdetermined and J(x∗) is full rank, then (3.47) is
guaranteed on some neighbourhood of x∗, see the forthcoming Lemma 3.7; in this case,
x∗ is an isolated solution. The converse is not true and Assumption 4 allows the solution
set S to be locally nonunique.
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Typically, condition (3.47) is assumed to hold in a region of the form Bρ(x
∗) ∩ Ω

[62]. However, in our convergence analysis we need to apply the error bound condition
on points that may lie outside Ω. For this reason, we drop the restriction on Ω and
consider the assumption (3.47). Although the condition (3.47) is more restrictive when
x ∈ Bρ(x∗) than in the case where x ∈ Bρ(x

∗)∩Ω, it has been shown that such condition
is still significantly weaker than the nonsingularity of J(x∗)TJ(x∗), see [48, §3].

In view of these properties, Assumption 4 is used in the analysis of the TREBO-LM

method and allows for strong convergence properties, i.e. quadratic convergence in the
case where J(x∗)TJ(x∗) is singular.

The following lemma shows an important feature of overdetermined problems. If
J(x∗) is full rank, then ‖Θ‖ is guaranteed to provide a local error bound on some
neighbourhood of x∗ and x∗ is an isolated zero-residual solution to (BCLS).

Lemma 3.7 Let Assumptions 1, 2 and 3 hold. If m ≥ n and J(x∗) is full rank, then
there exist positive constants α0 and ω such that if x ∈ Bω(x∗) then

1

α0
d(x, S) =

1

α0
‖x− x∗‖ ≤ ‖Θ(x)‖. (3.48)

Proof. Let x ∈ Bǫ(x
∗) where ǫ is the scalar given in Lemma 3.6. Since J(x∗) is full column

rank, then J(x∗)+ = (J(x∗)TJ(x∗))−1J(x∗)T and J(x∗)+ J(x∗) = In, see Appendix A.4.
Also, by Assumption 1 we get

‖In − J(x∗)+J(x)‖ ≤ ‖J(x∗)+‖ ‖J(x∗) − J(x)‖ ≤ 2γD‖J(x∗)+‖ ‖x− x∗‖.

Choosing ω < min{ǫ, 1/(4γD‖J(x∗)+‖)}, we have ‖In − J(x∗)+J(x)‖ ≤ 1/2 for x ∈
Bω(x∗). Then, by using the Mean Value Theorem A.2 we obtain

‖J(x∗)+Θ(x)‖ = ‖(x− x∗) −
∫ 1

0

(

In − J(x∗)+J(x∗ + t(x− x∗))
)

(x− x∗) dt‖

≥
(

1 − 1

2

)

‖x− x∗‖.

Hence

‖Θ(x)‖ ≥ ‖J(x∗)+Θ(x)‖
‖J(x∗)+‖ ≥ 1

2‖J(x∗)+‖‖x− x∗‖.

This inequality implies that x∗ is an isolated zero-residual solution to (BCLS) and re-
ducing ω if necessary, we get d(x,S) = ‖x−x∗‖ for x ∈ Bω(x∗). Thus (3.48) is obtained
with α0 = 2‖J(x∗)+‖. �

The following lemma states useful local properties of the Jacobian J(x) and its
pseudoinverse J(x)+, if x is sufficiently close to x∗ and J(x∗) is full rank.

Lemma 3.8 Let Assumptions 1, 2 and 3 hold. If J(x∗) is full rank, then there exist
positive constants τ and ν such that for x ∈ Bτ (x

∗)

J(x) is full rank and ‖J(x)+‖ ≤ ν. (3.49)
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Proof. Let ǫ be given in Lemma 3.6 and let τ ≤ ǫ. Fix x ∈ Bτ (x
∗). Let q = min{m, n}

and σq(J(x)) be the smallest singular value of J(x). Since rank(J(x∗)) = min{m,n},
we know that σq(J(x∗)) > 0. Using Theorem A.6 and Assumption 1 we get

|σq(J(x)) − σq(J(x∗))| ≤ ‖J(x) − J(x∗)‖ ≤ 2γD‖x− x∗‖,

and consequently

σq(J(x)) ≥ σq(J(x∗)) − 2γD‖x− x∗‖. (3.50)

Then, reducing τ so that τ < min{ǫ, σq(J(x∗))/(2γD)}, (3.50) implies that J(x) is full
rank for all x ∈ Bτ (x

∗). Setting ν = 1/(σq(J(x∗))−2γDτ), by (A.4) we obtain (3.49).�

3.3.4 Analysis of the minimum norm step p
N
k

Let xk be an iterate of the TREBO method, pNk be the step given in (3.7) and in (3.8)
and p̄Nk be defined as

p̄Nk = PΩ(xk + pNk ) − xk. (3.51)

The steps pNk and p̄Nk play a central role in the asymptotic behaviour of the sequence
{xk}. Here we provide an analysis of such steps in the vicinity of a limit point x∗ ∈ S.
The main provided result is that if xk is sufficiently close to x∗ then the trust-region
constraint is inactive and the unconstrained minimizer of the model mk is the solution
of the trust-region problem (3.6).

A result on the distance of a point from the zero-residual solution set S follows
from the contractivity of the projection map PΩ. From definition (3.44) we have d(xk +
p̄Nk ,S) ≤ ‖xk + p̄Nk − [xk + pNk ]S‖ ≤ ‖xk + pNk − [xk + pNk ]S‖, i.e.

d(xk + p̄Nk ,S) ≤ d(xk + pNk ,S). (3.52)

The next two lemmas concern with upper bounds on the quantity d(xk + p̄Nk ,S) that
will be crucial for proving the quadratic convergence rate. In particular, Lemma 3.9
refers to the TREBO-LM method and Lemma 3.10 is related to the TREBO-GN method.

Lemma 3.9 Let Assumptions 1 – 3 and 4 hold. Then for the TREBO-LM method there
exist positive constants ψ1 and Γ such that if xk ∈ Bψ1

(x∗) then

d(xk + p̄Nk ,S) ≤ Γ d(xk,S)2. (3.53)

Proof. By the definition (3.12) of µk, it follows

µk = µ‖Θk‖2, (3.54)

for xk sufficiently close to x∗. Let ǫ as in Lemma 3.6, ρ as in Assumption 4 and ψ1 ≤
min{ǫ, ρ} small enough so that if xk ∈ Bψ1

(x∗) then (3.54) holds. Fix xk ∈ Bψ1
(x∗).

First, we provide an upper bound on the norm of the step pNk showing that

‖pNk ‖ ≤ α1 d(xk,S), (3.55)
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for some positive scalar α1. We prove this fact in the same way as in [48, Lemma 2.3].
In particular, by (3.54), (3.47) and (3.46)

µ

α2
0

d(xk,S)2 ≤ µk ≤ µχ2
L d(xk,S)2. (3.56)

Also, since pNk is the global minimum of the model mk we have

mk(p
N
k ) ≤ mk(xk − [xk]S),

where [xk]S is the closest solution to xk, see (3.44). Then, by (3.21)

2mk(p
N
k ) ≤ ‖Jk(xk − [xk]S) + Θk‖2 + µk‖xk − [xk]S‖2

≤ γ2
D d(xk,S)4 + µk d(xk,S)2, (3.57)

and by (3.56)

‖pNk ‖2 ≤ 2

µk
mk(p

N
k ) ≤

(

1 +
α2

0 γ
2
D

µ

)

d(xk,S)2.

Thus, we obtain (3.55) setting α1 =
√

1 + α2
0γ

2
D/µ. Moreover, note that from (3.55) and

(3.56) we get the inequality

µk ‖pNk ‖2 ≤ µα2
1 χ

2
L d(xk,S)4. (3.58)

Second, we show that if ψ1 is sufficiently small then

xk + pNk ∈ Bρ(x∗), xk + pNk ∈ Bǫ(x
∗), xk + pNk ∈ L, [xk + pNk ]S ∈ L. (3.59)

To this end, reduce ψ1 if necessary so that ψ1 ≤ min{ǫ, ρ}/(1+α1) and note that (3.55)
yields

‖xk + pNk − x∗‖ ≤ ‖xk − x∗‖ + ‖pNk ‖ ≤ (1 + α1)ψ1 ≤ min{ǫ, ρ}.
Then, the last two statements in (3.59) derive from Lemma 3.6.

Finally, to prove (3.53), note that

∥

∥

∥

∥

(

Θ(xk + pNk )
0

)∥

∥

∥

∥

≤
∥

∥

∥

∥

(

Θ(xk + pNk ) − Jkp
N
k − Θk

−√
µk p

N
k

)∥

∥

∥

∥

+

∥

∥

∥

∥

(

Jkp
N
k + Θk√
µk p

N
k

)∥

∥

∥

∥

=
(

‖Θ(xk + pNk ) − Jkp
N
k − Θk‖2 + µk‖pNk ‖2

)
1

2 + (2mk(p
N
k ))

1

2 .

Hence, using (3.21), (3.55), (3.58), (3.57) and (3.56) we obtain

‖Θ(xk + pNk )‖ ≤ η d(xk,S)2, (3.60)

with η =
√

α4
1γ

2
D + µα2

1χ
2
L+

√

γ2
D + µχ2

L . We complete the proof using (3.47) and (3.52)

and setting Γ = α0η. �

An analogous lemma holds for the TREBO-GN method.
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Lemma 3.10 Let Assumptions 1 – 3 and 5 hold. Then for the TREBO-GN method there
exist positive constants ψ1 and Γ such that if xk ∈ Bψ1

(x∗) then

d(xk + p̄Nk ,S) ≤ Γ d(xk,S)2. (3.61)

Proof. Let τ given by Lemma 3.8, ψ1 < τ and fix xk ∈ Bψ1
(x∗). Note that by (3.7),

(3.49) and (3.46) we get

‖pNk ‖ ≤ ν‖Θk‖ ≤ α1d(xk,S), (3.62)

with α1 = νχL.

Consider the case m ≥ n. Reduce ψ1 if necessary so that ψ1 < min{τ, ω}/(1 + α1)
where ω is given in Lemma 3.7. Then (3.62) yields

‖xk + pNk − x∗‖ ≤ ‖xk − x∗‖ + ‖pNk ‖ ≤ (1 + α1)ψ1 ≤ min{τ, ω}.

and then

xk + pNk ∈ Bω(x∗), xk + pNk ∈ Bτ (x∗), xk + pNk ∈ L, [xk + pNk ]S ∈ L.

where the last two statements follows from Lemma 3.6.

Setting µk = 0 in (3.57), we have 2mk(p
N
k ) ≤ γ2

Dd(xk,S)4. Hence by (3.21) and
(3.62) we obtain

‖Θ(xk + pNk )‖ ≤ ‖Θ(xk + pNk ) − Jkp
N
k − Θk‖ + ‖JkpNk + Θk‖

≤ γD‖pNk ‖2 + (2mk(p
N
k ))

1

2

≤ γD(α2
1 + 1)d(xk,S)2.

Using (3.48) and (3.52) this inequality implies (3.61) with Γ = α0γD(α2
1 + 1).

Now let us consider the case m ≤ n. Let α2 = νγD and reduce ψ1 so that

ψ1 ≤ min

{

1

2α1α2
,

τ

1 + 2α1

}

. (3.63)

To prove the thesis we need intermediate results. Consider the sequence {wk+l}l,
l ≥ 0, of the form

wk = xk, wk+l+1 = wk+l + sNk+l, l ≥ 0, (3.64)

with

sNk+l = −J(wk+l)
+ Θ(wk+l), l ≥ 0. (3.65)

Note that for l = 0, we get sNk = pNk with pNk given in (3.7). First, we show that
{wk+l} ⊆ Bτ (x

∗). Second, we prove that {wk+l} has limit point in S. We begin proving
that {wk+l} ⊆ Bτ (x

∗) by induction. The thesis trivially holds for wk = xk. Then, we
suppose that wk+j ∈ Bτ (x

∗) for j ≤ l and show that wk+l+1 ∈ Bτ (x
∗). By (3.65) and

(3.49) we get

‖sNk+j‖ ≤ ν‖Θ(wk+j)‖ 1 ≤ j ≤ l, (3.66)

‖J(wk+j−1)s
N
k+j−1 + Θ(wk+j−1)‖ = 0, 1 ≤ j ≤ l. (3.67)



3.3. CONVERGENCE ANALYSIS 39

Moreover, from (3.62) it follows

‖pNk ‖ ≤ α1ψ1, (3.68)

while (3.66), (3.67), (3.64) and (3.21) provide

‖sNk+j‖ ≤ ν‖Θ(wk+j−1 + sNk+j−1) − Θ(wk+j−1) − J(wk+j−1)s
N
k+j−1‖

≤ α2‖sNk+j−1‖2,

with 1 ≤ j ≤ l. So by (3.68) and the definition (3.63) of ψ1 we obtain

‖sNk+j‖ ≤ α2j−1
2 ‖pNk ‖2j

(3.69)

≤ (α1α2ψ1)
2j−1‖pNk ‖

≤
(

1

2

)2j−1

‖pNk ‖.

It then follows

‖wk+l+1 − x∗‖ ≤
l

∑

j=0

‖wk+j+1 − wk+j‖ + ‖xk − x∗‖ ≤ ‖pNk ‖
∞

∑

j=0

(

1

2

)j

+ ψ1,

and (3.68) yields to

‖wk+l+1 − x∗‖ ≤ 2‖pNk ‖ + ψ1 ≤ (2α1 + 1)ψ1 ≤ τ.

As a consequence, {wk+l} ⊂ Bτ (x
∗) and wk+l satisfies Lemma 3.6 and Lemma 3.8 for

all l ≥ 0. Further, the conditions (3.66) and (3.67) hold for j ≥ 1.

Second, we prove that {wk+l} is a Cauchy sequence with limit point x̄ ∈ S. In fact,
letting p > q ≥ 0 and proceeding as above we obtain

‖wk+p − wk+q‖ ≤
p−1
∑

j=q

‖sNk+j‖ ≤
∞
∑

j=0

‖sNk+j‖ ≤ 2α1ψ1.

Thus, {wk+l} is a Cauchy sequence and the limit is denoted as x̄. To show that x̄ ∈ S
note that (3.67) and (3.21) yield

‖Θ(wk+l+1)‖ = ‖Θ(wk+l + sNk+l) − Θ(wk+l) − J(wk+l)s
N
k+l‖ ≤ γD‖sNk+l‖2,

for l ≥ 0. Since sNk+l = wk+l+1 − wk+l, it follows ‖Θ(x̄)‖ = liml→∞ ‖Θ(wk+l+1)‖ = 0.

Now we can prove the thesis of the lemma. Note that ‖xk +pNk − x̄‖ = ‖wk+1 − x̄‖ ≤
∑∞

j=1 ‖sNk+j‖, since

wk+l = wk+1 +

l−1
∑

j=1

sNk+j, lim
l→∞

wk+l = x̄,
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and from the continuity of the norm

‖wk+1 − x̄‖ =

∥

∥

∥

∥

wk+1 − lim
l→∞

wk+l

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

lim
l→∞

l−1
∑

j=1

sNk+j

∥

∥

∥

∥

∥

∥

≤ lim
l→∞

l−1
∑

j=1

‖sNk+j‖ =

∞
∑

j=1

‖sNk+j‖,

see [48]. From (3.69) and (3.68) we get

‖xk + pNk − x̄‖ ≤ α2

∞
∑

j=1

(α2‖pNk ‖)2
j−2‖pNk ‖2 ≤ α2

∞
∑

j=1

(α1α2ψ1)
2j−2‖pNk ‖2.

Then, in a way analogous to above and using (3.62) we get

‖xk + pNk − x̄‖ ≤ 2α2‖pNk ‖2 ≤ 2α2ν
2‖Θk‖2.

Since d(xk + pNk ,S) ≤ ‖xk + pNk − x̄‖, we get

d(xk + pNk ,S) ≤ η‖Θk‖2. (3.70)

with η = 2α2ν
2. Finally, applying (3.52) and (3.46) we easily obtain condition (3.61)

with Γ = ηχ2
L. �

The next lemma shows that if xk is sufficiently close to x∗, then the trust-region
constraint becomes inactive.

Lemma 3.11 Let Assumptions 1 – 3 and 4 hold. Then for the TREBO-LM method there
exists ς > 0 such that if xk ∈ Bς(x

∗) then the trust-region solution ptr in Algorithm 3.1
is the step pNk given in (3.8).

Proof. Let ψ1 > 0 be given in Lemma 3.9 and let xk ∈ Bψ1
(x∗). Since x∗ ∈ S and

(3.55) holds, there exists a scalar ς ≤ ψ1 sufficiently small so that if xk ∈ Bς(x
∗) then

‖pNk ‖ ≤ ∆min. Namely, the unconstrained minimizer of the quadratic model mk lies in
the trust-region. �

The above result holds for the TREBO-GN method as well.

Lemma 3.12 Let Assumptions 1 – 3 and 5 hold. Then for the TREBO-GN method there
exists ς > 0 such that if xk ∈ Bς(x

∗) then the trust-region solution ptr in Algorithm 3.1
is the step pNk given in (3.7).

Proof. Let ψ1 > 0 be given in Lemma 3.10 and let xk ∈ Bψ1
(x∗). Using (3.62) and

choosing ς < ψ1 sufficiently small, the proof can be completed as in the proof of Lemma
3.11. �
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3.3.5 Convergence of the sequence {xk} and rate of convergence

In this section we first show that if xk is sufficiently close to x∗ then the step p̄Nk defined in
(3.51) satisfies both conditions (3.16) and (3.17) and it is taken to form the new iterate.
Second, we prove that the whole sequence {xk} generated by the methods converges to
x∗ ∈ S and the convergence rate is q-quadratic.

We start giving useful asymptotic bounds on quantities that will be used to analyze
conditions (3.16) and (3.17).

Lemma 3.13 Let Assumptions 1, 2 and 3 hold. If xk + pNk ∈ L and [xk + pNk ]S ∈ L,
then

‖Jk p̄Nk + Θk‖ ≤ χLd(xk + pNk ,S) + γD‖pNk ‖2, (3.71)

‖Θ(xk + p̄Nk )‖2 − ‖Jkp̄Nk + Θk‖2 ≤ γ2
D‖pNk ‖4 + 2γD‖Jkp̄Nk + Θk‖ ‖pNk ‖2. (3.72)

Proof. By (3.51) and Lemma 3.2, xk + pNk ∈ L implies xk + p̄Nk ∈ L. Consider the
equality

Jkp̄
N
k + Θk = Θ(xk + p̄Nk ) − Θ([xk + pNk ]S) + Jkp̄

N
k − (Θ(xk + p̄Nk ) − Θk).

Then by (3.20), (3.22) and (3.23) we obtain

‖Jk p̄Nk + Θk‖ ≤ χL‖xk + p̄Nk − [xk + pNk ]S‖ + γD‖p̄Nk ‖2

≤ χL‖xk + pNk − [xk + pNk ]S‖ + γD‖pNk ‖2

≤ χLd(xk + pNk ,S) + γD‖pNk ‖2,

and the (3.71) is proved.
To prove (3.72) we use the Mean Value Theorem A.2 to get the statement

Θ(xk + p̄Nk ) = Θk +

∫ 1

0
J(xk + tp̄Nk ) p̄Nk dt+ Jkp̄

N
k − Jkp̄

N
k .

Hence,

‖Θ(xk + p̄Nk )‖2 = ‖Jk p̄Nk + Θk‖2 + ‖
∫ 1

0
(J(xk + tp̄Nk ) − Jk) p̄

N
k dt‖2

+2

(
∫ 1

0
(J(xk + tp̄Nk ) − Jk) p̄

N
k dt

)T
(

Jkp̄
N
k + Θk

)

,

and consequently by (3.19) and (3.22)

‖Θ(xk + p̄Nk )‖2 − ‖Jkp̄Nk + Θk‖2 ≤ γ2
D‖pNk ‖4 + 2γD‖Jkp̄Nk + Θk‖ ‖pNk ‖2.

�

Now we prove that if xk is sufficiently close to x∗ then xk+1 = xk + p̄Nk .

Lemma 3.14 Let Assumptions 1 – 3 and 4 hold. Then for the TREBO-LM method there
exists ψ2 > 0 such that if xk ∈ Bψ2

(x∗) the iterate xk+1 has the form

xk+1 = xk + p̄Nk .
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Proof. Let ς as in Lemma 3.11 and suppose ψ ≤ ς. Fix xk ∈ Bψ(x∗). Then, the step pNk
is the solution to the trust-region problem (3.6) and (3.59) holds.

To show the thesis we will prove that p̄Nk defined in (3.51) satisfies both conditions
(3.16) and (3.17). First consider condition (3.16). If p̄Nk = pNk then (3.16) trivially
follows by mk(p

N
k ) < mk(p

C
k ). If p̄Nk 6= pNk note that by (3.47) we have

ρc(p̄
N
k ) ≥ mk(0) −mk(p̄

N
k )

mk(0)
≥ 1 − α2

0

‖Jkp̄Nk + Θk‖2 + µk‖p̄Nk ‖2

d(xk,S)2
. (3.73)

Thus, to investigate condition (3.16) we need to estimate ‖Jkp̄Nk + Θk‖. From (3.71),
(3.47), (3.60) and (3.55) we obtain

‖Jkp̄Nk + Θk‖ ≤ α0χL‖Θ(xk + pNk )‖ + γD‖pNk ‖2 ≤ ϕ d(xk,S)2, (3.74)

where ϕ = (α0ηχL + γDα
2
1). Thus, combining (3.73), (3.74) and (3.58)

ρc(p̄
N
k ) ≥ 1 − α2

0(ϕ
2 + µα2

1 χ
2
L)d(xk,S)2 ≥ 1 − α2

0(ϕ
2 + µα2

1 χ
2
L)‖xk − x∗‖2,

i.e. p̄Nk satisfies condition (3.16) if xk is sufficiently close to x∗.
Second, we focus on condition (3.17). Let us assume that p̄Nk satisfies condition

(3.16). From (3.72) and (3.74) we have

‖Θ(xk + p̄Nk )‖2 − ‖Jk p̄Nk + Θk‖2 ≤
(

γ2
D‖pNk ‖2 + 2ϕγD d(xk,S)2

)

‖pNk ‖2. (3.75)

Furthermore, using (3.47), (3.74) and the fact that xk ∈ Bψ(x∗) we have

‖Θk‖2 − ‖Jkp̄Nk + Θk‖2 ≥
(

1

α2
0

− ϕ2d(xk,S)2
)

d(xk,S)2 ≥
(

1

α2
0

− ϕ2ψ2

)

d(xk,S)2.

Reduce ψ if needed so that 1/α2
0 − ϕ2ψ2 ≥ 1/(2α2

0). This fact, (3.75) and (3.55) yield

ρθ(p̄
N
k ) = 1 − ‖Θ(xk + p̄Nk )‖2 − ‖Jk p̄Nk + Θk‖2

‖Θk‖2 − ‖Jk p̄Nk + Θk‖2

≥ 1 − 2α2
0

(

γ2
D‖pNk ‖2 + 2ϕγD d(xk,S)2

)

‖pNk ‖2

d(xk,S)2

≥ 1 − 2α2
0α

2
1γD

(

α2
1γD + 2ϕ

)

d(xk,S)2.

Finally, by (3.44)

ρθ(p̄
N
k ) ≥ 1 − 2α2

0α
2
1γD

(

α2
1γD + 2ϕ

)

‖xk − x∗‖2.

Hence, p̄Nk satisfies both the conditions (3.16) and (3.17) if xk is sufficiently close to x∗,
i.e. if xk ∈ Bψ2

(x∗) for some ψ2 ≤ ψ. �

An analogous result holds for the TREBO-GN method.

Lemma 3.15 Let Assumptions 1 – 3 and 5 hold. Then for the TREBO-GN method there
exists ψ2 > 0 such that if xk ∈ Bψ2

(x∗) the iterate xk+1 has the form

xk+1 = xk + p̄Nk .
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Proof. Let ς as in Lemma 3.12 and suppose ψ ≤ ς. Fix xk ∈ Bψ(x∗). Then, the step pNk
is the solution to the trust-region problem (3.6) and xk + pNk , [xk + pNk ]S ∈ L.

Consider the case m ≥ n. The thesis can be proved following the lines of the proof
of Lemma 3.14, using (3.48) in place of (3.47) and setting µ = 0.

Consider the case m ≤ n. To show the thesis we will prove that p̄Nk defined in
(3.51) satisfies both condition (3.16) and (3.17). First consider condition (3.16). If
p̄Nk = pNk , condition (3.16) trivially follows as mk(p

N
k ) < mk(p

C
k ). If p̄Nk 6= pNk note that

mk(0) −mk(p
C
k ) ≤ mk(0) and

ρc(p̄
N
k ) ≥ 1 − ‖Jk p̄Nk + Θk‖2

‖Θk‖2
. (3.76)

Using (3.71), (3.70) and (3.62) yield

‖Jkp̄Nk + Θk‖ ≤ (χLη + γDν
2)‖Θk‖2. (3.77)

Thus, (3.76), (3.77) and (3.46) give

ρc(p̄
N
k ) ≥ 1 − (χLη + γDν

2)2 ‖Θk‖2 ≥ 1 − χ2
L (χLη + γDν

2)2 d(xk,S)2,

i.e. p̄Nk satisfies condition (3.16) if xk is sufficiently close to x∗.

Now, let us assume that p̄Nk satisfies condition (3.16). To prove that p̄Nk satisfies
(3.17), use (3.77), (3.46) and since xk ∈ Bψ(x∗) we have

‖Θk‖2 − ‖Jk p̄Nk + Θk‖2 ≥
(

1 − (χLη + γDν
2)2‖Θk‖2

)

‖Θk‖2

≥
(

1 − (χLη + γDν
2)2χ2

Ld(xk,S)2
)

‖Θk‖2

≥
(

1 − (χLη + γDν
2)2χ2

Lψ
2
)

‖Θk‖2. (3.78)

Reduce ψ if needed so that 1− (χLη+γDν
2)2χ2

Lψ
2 > 0. Using (3.72) and (3.78) we have

ρθ(p̄
N
k ) ≥ 1 −

(

γ2
D‖pNk ‖2 + 2γD‖Jkp̄Nk + Θk‖

)

‖pNk ‖2

(

1 − (χLη + γDν2)2χ2
Lψ

2
)

‖Θk‖2
,

and from (3.62), (3.77) it follows

ρθ(p̄
N
k ) ≥ 1 − ν4γ2

D + 2ν2γD(χLη + γDν
2)

1 − (χLη + γDν2)2χ2
Lψ

2
‖Θk‖2,

i.e. p̄Nk satisfies condition (3.17) if xk is sufficiently close to x∗.

Hence there exists ψ2 < ψ such that if xk ∈ Bψ2
(x∗) then xk+1 = xk + p̄Nk . �

Now we provide the main result on the behavior of the sequence {xk}.

Theorem 3.3 Let Assumptions 1, 2 and 3 hold. Moreover let Assumption 4 and As-
sumption 5 hold for the TREBO-LM method and the TREBO-GN method respectively. Then,
the sequence {xk} generated by the TREBO method converges to x∗ q-quadratically.
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Proof. Consider the TREBO-LM method first. Let ψ2 as in Lemma 3.14 and ζ ≤
min{ψ2/(1 + 2α1), 1/(2Γ)} and Γ is given in (3.53). Since x∗ is a limit point of {xk},
there exists xk such that xk ∈ Bζ(x

∗).
We begin showing that if xk ∈ Bζ(x

∗) then xl ∈ Bψ2
(x∗) for l > k. We proceed

by induction. First, we show that xk+1 ∈ Bψ2
(x∗). In fact, by (3.22) we have ‖xk+1 −

x∗‖ = ‖xk + p̄Nk − x∗‖ ≤ ζ + ‖pNk ‖. Thus by (3.55) and the definition of ζ, we get
‖xk+1 − x∗‖ ≤ (1 + α1)ζ ≤ ψ2. Second, we assume xk+1, . . . , xk+m−1 ∈ Bψ2

(x∗), and
show that xk+m ∈ Bψ2

(x∗). From (3.53) it follows

d(xk+l,S) ≤ Γ d(xk+l−1,S)2 ≤ · · · ≤ Γ2l−1d(xk,S)2
l ≤ Γ2l−1ζ2l ≤ ζ

(

1

2

)2l−1

,

for l = 1, . . . ,m, where the last inequality is due to the choice of ζ. Thus,

‖xk+m − x∗‖ ≤ ‖xk+m − xk+m−1‖ + · · · + ‖xk − x∗‖

≤
m−1
∑

l=0

‖p̄Nk+l‖ + ζ

≤ α1

m−1
∑

l=0

d(xk+l,S) + ζ,

where the last inequality follows from (3.55), and

‖xk+m − x∗‖ ≤ (α1

m−1
∑

l=0

(

1

2

)2l−1

+ 1)ζ ≤ (α1

∞
∑

l=0

(

1

2

)l

+ 1)ζ = (2α1 + 1)ζ ≤ ψ2.

By Lemma 3.14 we have xk+l = xk+l−1 + p̄Nk+l−1 for l > 0. Moreover, letting p > q ≥ k
we have

‖xp − xq‖ ≤
p−1
∑

l=q

‖p̄Nl ‖ ≤ α1

∞
∑

l=0

(

1

2

)l

ζ = 2α1ζ.

This means that {xk} is a Cauchy sequence and hence it converges. Since x∗ is a limit
point we conclude limk→∞ xk = x∗.

To establish the convergence rate of {xk}, let k sufficiently large so that xk+j+1 ∈
Bψ2

(x∗) for j ≥ 0. By (3.55) and (3.53) we obtain

‖p̄Nk+j+1‖ ≤ α1 d(xk+j+1,S) ≤ α1Γ d(xk+j,S)2.

Then, we proceed as above and using ‖xk+1 − x∗‖ ≤ ∑∞
j=0 ‖p̄Nk+j+1‖, and (3.53) we get

‖xk+1 − x∗‖ ≤ α1Γ





∞
∑

j=0

(Γ d(xk,S))2
j+1−2



 d(xk,S)2 ≤ 2α1Γ‖xk − x∗‖2.

This shows that {xk} converges q-quadratically to x∗.
The proof of the theorem for the TREBO-GN method can be easily drawn from the

above considerations and using Lemmas 3.10, 3.12 and 3.15. �
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3.4 Numerical experiments

The TREBO-GN and TREBO-LM methods were implemented in Matlab codes and tested
on a number of problems arising in different areas. In this section we present two sets of
experiments: the first set concerns the numerical performance analysis of the TREBO-GN

and the TREBO-LM procedures, see Section 3.4.1; the second set concerns the numerical
comparison of formulations (3.1) and (3.2) of problem (FP), see Section 3.4.2.

The results obtained from these experiments indicate a slight superiority of the
TREBO-GN method with respect to the TREBO-LM method in terms of robustness and
efficiency. Moreover, the numerical comparison of the two reformulations of problem
(FP) is in favour of (3.2). These observations encouraged us in developing a new Matlab

solver which implements the TREBO-GN method and the reformulation (3.2) for nonlinear
feasibility problems; this will be the subject of Chapter 4.

3.4.1 Numerical comparison of the methods

The first set of experiments is devoted to a comparison of the performance of the
TREBO-GN and TREBO-LM methods. The main implementation issues referring to Al-
gorithm 3.1 are listed below.

The trust-region parameters are: ∆0 = 1, ∆min = 10−12, β1 = 1/10, β2 = 1/4.
In Step 1 the value of µk is assigned. The TREBO-GN method is free of such param-
eter; in fact, according to the rule (3.12), the method is obtained setting µ = 0 and
consequently µk = 0 for all k. On the contrary, for the TREBO-LM method we fol-
lowed the paper [48] and fixed the scalars µ = 1, µ̂ = 10−8. Moreover a safeguard
was introduced to prevent µk from being too small. Thus we set µ0 = 10−8‖Θ0‖2,
µk = max {10−10,min {µk−1, ‖Θk‖2}}, k > 0.

In Step 2, the Jacobian matrix J is formed by using finite differences. Then the
computation of the vector pNk in (3.7) is performed using the Matlab backslash operator if
m = n and Jk is nonsingular; otherwise it is done using the singular value decomposition
of Jk. The vector pNk defined in (3.8) is computed by the QR decomposition applied to
the least-squares problem (3.9).

Regarding Steps 6–7, if p̄tr does not satisfy condition (3.16) we find the scalar t ∈
(0, 1) such that ρc(t p

C
k + (1 − t)p̄tr) = β1 and set pk = t pCk + (1 − t)p̄tr. Then, the

trust-region update is performed as follows: if the step pk fails to satisfy (3.17) the
trust-region radius is reduced setting ∆k = min{∆k/4, ‖pk‖/2}; if the step pk satisfies
(3.17) and ρθ(pk) ≥ 3/4 we set ∆k+1 = max{∆k, 2‖pk‖, ∆min}, otherwise we let ∆k+1 =
max{∆k, ∆min}.

Successful termination of the algorithms means that they return an approximation
to a zero-residual solution to the problem (BCLS). In practice we stop the algorithms
when

‖Θk‖ ≤ 10−6.

A failure is declared when a stationary nonzero-residual point for the problem (BCLS)
is found, i.e. ‖Θk‖ > 10−6 whereas

‖Dk∇θk‖ ≤ 100 ǫm or ‖Θk+1 − Θk‖ ≤ 100 ǫm‖Θk‖,
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where ǫm ≈ 2 · 10−16 is the machine precision. Moreover, the algorithms fail when the
trust-region radius is less than ∆min or the number of iterations is greater than 300.

The two methods were compared on 30 test problems which are the constraint sets of
nonlinear programming problems from the handbook of tests [24] by Floudas et al. and
the Hock-Schittkowski test collection [41]. The problems have the form (FP) and are
listed in Table 3.1 where we report their names, their sources and their dimensions. All
the test problems contain simple bounds on the variables, except for problems marked
with the symbol * where we added simple bounds on the variables letting Ω = {x ∈ IRn :
x ≥ 0}. All the problems were written as the bound-constrained least-squares problem
(BCLS) where the residual function Θ has the form (3.2) and each problem was solved
starting from three different starting guesses.

name, source p mE mI name, source p mE mI

Test 3.4, [24] 6 0 6 Test 7.2.7, [24] 4 0 2
Test 3.5, [24] 3 0 3 Test 7.2.8, [24] 8 0 4
Test 4.10, [24] 2 0 2 Test 7.2.9, [24] 10 0 7
Test 14.1.3, [24] 2 2 0 Test 7.2.10, [24] 11 0 9
Test 14.1.5, [24] 5 5 0 HS32, [41] 3 1 1
Test 14.1.6, [24] 8 8 0 Test 3.3, [24] 5 0 6
HS8*, [41] 2 2 0 Test 7.2.1, [24] 7 0 14
HS14*, [41] 2 1 1 Test 7.2.5, [24] 5 0 6
HS15, [41] 2 0 2 HS20, [41] 2 0 3
HS55, [41] 2 6 0 HS23, [41] 2 0 5
Test 5.2.4, [24] 7 1 5 HS24, [41] 2 0 3
Test 6.3.2, [24] 8 6 0 HS44, [41] 4 0 6
Test 7.2.2, [24] 6 4 1 HS59, [41] 2 0 3
Test 7.2.3, [24] 8 0 6 HS74, [41] 4 3 2
Test 7.2.4, [24] 8 0 4 HS83, [41] 5 0 6

Table 3.1: First set of experiments, problem data.

Both methods showed to be reliable and quite insensitive to the choice of the starting
point. In fact, on a total of 90 runs the methods TREBO-GN and TREBO-LM solved 80 and
77 tests respectively. The ability of the methods to handle bounds is supported by the
fact that an active solution to (BCLS) was computed in 20 runs for the TREBO-GN method
and in 21 runs for the TREBO-LM method. Concerning the TREBO-LM implementation,
the coefficient matrix in (3.8) resulted safely numerically nonsingular for all the runs.

Most problems were solved with a low number of function evaluations and this num-
ber is, on average, favorable for the TREBO-GN method. To compare the overall compu-
tational effort of our methods we plot the performance profile proposed by Dolan and
Moré [18]. We considered the 90 tests performed by each algorithm. For each test T and
algorithm A, we let feT,A denote the number of Θ-evaluations required to solve test T
by the algorithm A and feT be the lowest number of Θ-evaluations required by the two
algorithms to solve test T . Then, for the algorithm A the performance profile is defined
as

π(τ) =
number of tests s.t. feT,A/feT ≤ τ

number of tests
, τ ≥ 1.

Figure 3.1 shows the function evaluation performance profile. The difference between
the performance profiles of the two methods is modest but on the whole the TREBO-GN
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Figure 3.1: Function Θ-evaluation performance profile.

method can be considered more efficient than the TREBO-LM method. In particular, the
TREBO-GN method is the most efficient algorithm for about 84% of the runs and the
TREBO-LM method is within a factor 2 of the TREBO-GN method for about 80% of the
runs.

Concerning the failures, it is important to note that there are occurrences where
the methods converged to a first-order stationary point for (BCLS) that is not a zero-
residual solution. These failures occurred 3 and 5 times for TREBO-GN and TREBO-LM

method respectively and considering the overall ability of the methods to compute a
first-order stationary point for (BCLS), the TREBO-GN and TREBO-LM methods solved
92% and 91% of the tests respectively.

From the above results we drew some conclusions. The methods are reliable in solv-
ing the problem (BCLS) and in most cases a zero-residual solution is computed. How-
ever our experience showed that the reliability and efficiency of the TREBO-LM method
strongly depend on the choice of the sequence of scalars (3.12) and proper safeguarding.
Therefore, we concluded that the most promising and reliable method is the TREBO-GN

method.

3.4.2 Further experiments

The second set of experiments was conducted with the TREBO-GN method and its aim
was twofold. First, we intended to study the TREBO-GN method on “hard” problems, i.e.
problems with nonisolated solutions. Second, we wanted to investigate which reformu-
lation of problem (FP) between (3.1) and (3.2) gives better numerical results.

We tested the TREBO-GN method on 67 problems: 63 problems are the feasible regions
of nonlinear programming problems from the Hock-Schittkowski test collection [41]; the
remaining four problems are underdetermined nonlinear systems from [14]. In Table
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3.2 we report the problem names together with their dimensions and their references.
The symbol * indicates the problems where the unknown was not subject to simple
bounds and a nonnegative constraint was added on all the components; all the resulting
problems admit a solution.

name, source p mE mI name, source p mE mI

HS6*, [41] 2 1 0 Problem 4*, [14] 300 150 0
HS7*, [41] 2 1 0 Problem 10*, [41] 2 0 1
HS8*, [41] 2 2 0 Problem 11*, [41] 2 0 1
HS26*, [41] 3 1 0 HS12*, [41] 2 0 1
HS27*, [41] 2 1 0 HS13, [41] 2 0 1
HS28*, [41] 3 1 0 HS14*, [41] 2 1 1
HS39*, [41] 4 2 0 HS15, [41] 2 0 2
HS40*, [41] 4 3 0 HS16, [41] 2 0 2
HS41, [41] 4 1 0 HS17, [41] 2 0 2
HS42*, [41] 3 2 0 HS18, [41] 2 0 2
HS46*, [41] 5 2 0 HS19, [41] 2 0 2
HS47*, [41] 5 3 0 HS22*, [41] 2 0 2
HS48*, [41] 5 2 0 HS29*, [41] 3 0 1
HS49*, [41] 5 2 0 HS31, [41] 2 0 1
HS50*, [41] 5 3 0 HS32, [41] 3 1 1
HS53, [41] 5 3 0 HS33, [41] 3 0 2
HS55, [41] 6 6 0 HS34, [41] 3 0 2
HS56*, [41] 7 4 0 HS35, [41] 3 0 1
HS60, [41] 3 1 0 HS36, [41] 3 0 1
HS61*, [41] 3 2 0 HS37, [41] 3 0 2
HS62, [41] 3 1 0 HS43*, [41] 4 0 3
HS63, [41] 3 2 0 HS57, [41] 2 0 1
HS77*, [41] 5 2 0 HS64, [41] 3 0 1
HS78*, [41] 5 3 0 HS65, [41] 3 0 1
HS79*, [41] 5 3 0 HS71, [41] 4 1 1
HS80, [41] 5 3 0 HS73, [41] 4 1 2
HS87, [41] 6 4 0 HS76, [41] 4 0 3
HS99, [41] 7 2 0 HS93, [41] 6 0 2
HS107, [41] 9 6 0 HS100*, [41] 7 0 4
HS111, [41] 10 3 0 HS101, [41] 7 0 6
HS112, [41] 10 3 0 HS104, [41] 8 0 6
Problem 3*, [14] 100 100 0 HS106, [41] 10 0 8
Problem 3*, [14] 300 300 0 HS113*, [41] 10 0 8
Problem 4*, [14] 100 50 0

Table 3.2: Second set of experiments: problem data.

The set of underdetermined systems of equalities with simple bounds consists of 35
problems. The remaining problems are made up of systems of mixed equalities and
inequalities and have been solved using both reformulations (3.1) and (3.2); for sake of
clarity, let R S and R M denote these reformulations respectively.

Three initial guesses were used for each problem. All the algorithmic options are the
same of those described in Section 3.4.1 except for the setting ∆min =

√
ǫm and for the

computation of the step pNk in (3.7). In fact, if m 6= n or m = n but Jk is singular, pNk
is computed using the complete orthogonal factorization of Jk.

The experiments carried out on underdetermined systems of equalities showed that
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the TREBO-GN method is able to solve most of the problems with a low computational
cost. In particular, on a total of 105 runs our method solved 87 tests and 12 failures out
of 18 occurred as the sequence {xk} approaches a nonzero-residual stationary point for
(BCLS).

Concerning the solution of problems of the form (FP), the TREBO-GN method resulted
very robust on problems transformed by R M. In fact, on a total of 96 tests, using the
reformulations R S and R M the TREBO-GN method solved 78 and 90 tests respectively.
In particular we noted that (FP) resulted quite difficult to solve for some initial guesses
when it consists only of inequalities and is reformulated as R S. In such cases we noted
that the step generated by the Gauss-Newton method pointed to a stationary point for
the measure of infeasibility ‖s − CI(v)‖2 such that s > 0, i.e. to a point which is not
feasible for (BCLS). This fact yielded to a failure or slow convergence; in practice if
some components of the iterates become active prematurely, the length of the step taken
is quite small and a stationary point for (BCLS) is slowly approached.
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Figure 3.2: Problems (FP). Function Θ-evaluation performance profile for runs solved
with both reformulations.

Finally, Figure 3.2 shows the Θ-evaluation performance profile for runs solved success-
fully with both reformulations. When reformulation R S is used, the TREBO-GN method
is the most efficient for 60% of the runs and that it is within a factor two and four with
respect to R M reformulation for 70% and 80% of the tests respectively. A reason why
the method is more efficient when reformulation R S is used, is that fast convergence is
achieved in several runs. At this regard, it is important to make some comments on the
Jacobian matrix J of Θ. Letting x∗ be a solution to (FP), in case of reformulation R M,
we have max{CI(x∗),0} = 0 where 0 is the null vector of dimension mI . Hence, by (3.4)
matrix J(x∗) is not full rank and we cannot expect quadratic convergence. On the other
hand, the full rank condition of J(x∗) is not precluded if the reformulation R S is used.





Chapter 4

A new Matlab solver: TRESNEI

We introduce a Matlab implementation of the TREBO-GN method presented in Chapter
3. The solver is adequate for solving zero and small-residual bound-constrained non-
linear least-squares problems and handles the solution of nonlinear feasibility problems.
For this reason it is called TRESNEI, Trust-REgion Solver for Nonlinear Equalities and
Inequalities.

Our solver addresses the solution of nonlinear feasibility problems offering their in-
ternal reformulation (3.2) and solving the resulting problem (BCLS) by the TREBO-GN

algorithm. For sake of generality, the solver is designed using a widespread modelling of
the problems. Moreover, TRESNEI can be applied in the solution of nonsquare bound-
constrained nonlinear systems and it turns out to be a nontrivial extension of the solver
STRSCNE [3] for square bound-constrained systems.

The functions for solving bound-constrained nonlinear least-squares problems pro-
vided by the Matlab Optimization Toolbox [54] cannot solve underdetermined problems.
On the other hand, TRESNEI overcomes this limitation and can be applied in the solution
of problem (BCLS) irrespective of its dimensions.

TRESNEI has been intensively tested and the goals of our experiments were twofold.
First, we were interested in assessing if the formulation (BCLS) may offer an advantage as
compared with an unconstrained least-squares formulation. Second, we were interested
in comparing the computational cost and robustness of our algorithm with competing
solvers. The function lsqnonlin from the Matlab Optimization Toolbox served our
purposes as will be shown in Sections 4.3 and 4.5.

The overall performance of TRESNEI show that it is cost effective and robust. In this
chapter we present the structure and the usage of our solver and the results of a bench-
marking process for TRESNEI and the lsqnonlin function from the Matlab Optimization
Toolbox.

4.1 Problem statement

TRESNEI implements the TREBO-GN method for solving the bound-constrained least-
squares problem

min
x∈Ω

θ(x) =
1

2
‖Θ(x)‖2, (BCLS)

51
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where θ : IRn → IR, Θ : IRn → IRm and Ω is the n-dimensional box Ω = {x ∈ IRn | l ≤
x ≤ u}, l ∈ (IR ∪ −∞)n, u ∈ (IR ∪∞)n, l < u.

The problems handled by the solver have a general formulation. They are the bound-
constrained least-squares problem stated as

min
L≤x≤U

1

2
‖CE(x)‖2, (4.1)

where CE : IRn → IRmE , and the nonlinear feasibility problem given by

CE(x) = 0,
CI(x) ≤ 0,
L ≤ x ≤ U,

(4.2)

where CE : IRn → IRmE , CI : IRn → IRmI . Following a widespread modelling of the above
problems, in both (4.1) and (4.2), the components of the box constraints L, U ∈ IRn

satisfy −∞ ≤ Li ≤ Ui ≤ ∞, i = 1, · · · , n. It follows that the components xi of x can be
either free or bounded on one side or bounded from above and from below, or “fixed”
i.e. variables with equal upper and lower bounds. In fact, it is common to provide the
problem parameters as “fixed” variables, see e.g. the standard adopted in CUTEr [33].
In what follows, we let Ifx, Ilb and Iub be the sets containing the indices of fixed, lower
and upper bounded variables respectively:

Ifx = {i ∈ {1, . . . , n} : Li = Ui}, (4.3)

Ilb = {i ∈ {1, . . . , n} : i /∈ Ifx and Li 6= −∞}, (4.4)

Iub = {i ∈ {1, . . . , n} : i /∈ Ifx and Ui 6= +∞}. (4.5)

Obviously Ilb and Iub may not be disjoint.
The first step of TRESNEI is to express the problems considered as a bound-constrained

least-squares problem where Θ is continuously differentiable and l < u, as required by the
TREBO-GN method. Suppose that the problem (4.1) contains no fixed variables. Then,
TRESNEI attempts to solve (BCLS) where

Θ(x) = CE(x), (4.6)

m = mE , l = L, u = U.

This is the case also if (4.2) contains no fixed variables neither nonlinear inequalities.
If problem (4.1) contains fixed variables, the bounds on such variables are dropped
introducing equalities of the form

[x]Ifx
− [U ]Ifx

= 0. (4.7)

Thus, problem (4.1) takes the form (BCLS) where

Θ(x) =

(

CE(x)
[x]Ifx

− [U ]Ifx

)

, (4.8)

Θ : IRn → IRmE+nfx and nfx is the cardinality of the set Ifx. The bounds l and u are
given by

li =

{

−∞ if i ∈ Ifx
Li otherwise

, ui =

{

+∞ if i ∈ Ifx
Ui otherwise

, (4.9)
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i = 1, . . . , n. Analogously, the problem (4.2) is posed as a bound-constrained nonlinear
least-squares problem including fixed variables and the general inequalities CI(x) ≤ 0
into the function Θ. In particular, the general inequalities are converted into equalities
using the continuously differentiable function [t]+ = max{t, 0}2/2 and the function Θ in
(BCLS) takes the form

Θ(x) =





CE(x)
[x]Ifx

− [U ]Ifx

[CI(x)]+



 . (4.10)

The number of components of Θ is m = mE +mI + nfx, where nfx is the cardinality of
the set Ifx. The remaining simple bounds are kept separate from the objective function
and the bounds l and u are as in (4.9).

4.2 The algorithm

The procedure implemented in TRESNEI consists of two phases: in the first phase, the
problem (BCLS) is formed; in the second phase such problem is solved. The implemen-
tation is fully described in Algorithm 4.1 which is an adaptation to our framework of
Algorithm 3.1 for the TREBO-GN method. The notations used are in accordance with
those used in Section 4.1. The subsections that follow provide a detailed description of
the steps of Algorithm 4.1.

4.2.1 Problem description

The problem to be solved by the TREBO-GN algorithm is formed in Step 1. The statement
of Algorithm 4.1 refers to the general form (4.10) of Θ which includes all the problems
considered.

TRESNEI covers the solution of (4.1) providing the residual function CE and the
bounds L and U . Then either the reformulation (4.6) or (4.8) is internally carried out.
Clearly, these functions Θ can be viewed as a special case of (4.10) where the vector
function CI is empty.

Regarding (4.2), TRESNEI offers its user the facility of requiring a minimal description
and building an internal reformulation of the problem. In particular, the functions CE ,
CI and the bounds L and U are expected. Then, the problem (BCLS) is internally
formed as described in the previous paragraph. It is important to note that the user may
prefer an alternative transformation of the nonlinear inequalities to the one employed
in (4.10). For example, the use of slack variables casting nonlinear inequalities into
nonlinear equalities in (3.1), can be accomplished providing the resulting system of
nonlinear equations to TRESNEI.

If the Jacobian matrices C ′
E , C ′

I have been provided along with CE and CI , the
Jacobian matrix J is formed. Otherwise, a finite difference approximation of matrix J
is evaluated.

Finally, the user must supply an initial guess x0 belonging to the box Ω.
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Algorithm 4.1 TRESNEI

Input: CE , CI , L, U , mE, mI , n,
x0, ∆0, kM , ǫ1, ǫ2.

1. Problem description
Let l, u as in (4.9), Ω = {x ∈ IRn | l ≤ x ≤ u}; if x0 /∈ Ω, exit.
Let m be the length of Θ in (4.10).
Compute Θ(x0) by (4.10) and J(x0). Set k = 1.

2. Internal parameters
Set β1 = 1/10, β2 = 1/4, β3 = 3/4.
Let ǫm be the machine precision, set ∆m1 =

√
ǫm, ∆m2 = ǫm.

While k ≤ kM do

3. Solve the trust-region problem
3.1 If m 6= n, compute pNk given in (3.7) by the complete

orthogonal decomposition.
If m = n, solve the linear system Jk p

N
k = −Θk;

If Jk is singular, compute pNk by the complete
orthogonal factorization.

3.2 If ‖pNk ‖ ≤ ∆k, set ptr = pNk ;
Else form pck given in (4.11),

compute the dogleg step ptr between pNk and pck.
4. Compute the trial step pk

4.1 Let p̄tr = PΩ(xk + ptr) − xk.
4.2 Compute pCk in (3.13).
4.3 If p̄tr satisfies (3.16), set pk = p̄tr;

Else compute the positive root t∗ of ρc(t p
C
k + (1 − t)p̄tr) − β1 = 0,

set pk = t∗ pCk + (1 − t∗)p̄tr.
5. Test on pk and trust-region radius update

5.1 Compute Θ(xk + pk) by (4.10).
If pk satisfies (3.17), set xk+1 = xk + pk;
Else set ∆k = min{∆k/4, ‖pk‖/2};

If ∆k > ∆m2, go to Step 3.2;
Else exit.

5.2 If ρθ(pk) ≥ β3, set ∆k+1 = max{∆k, ∆m1, 2‖pk‖};
Else set ∆k+1 = max{∆k, ∆m1}.

6. Termination test
6.1 If (4.13) or (4.14) is satisfied, exit.

Else compute J(xk+1) and increment k.
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4.2.2 Solution of the trust-region problem

The solution of the trust-region problem (3.6) is addressed in Step 3 of the algorithm.
If the Jacobian matrix J is square, the computation of the step pNk given in (3.7) is
attempted by the Matlab backslash operator. If J is square and results close to singular
or J is nonsquare, the complete orthogonal decomposition of J is applied using proce-
dures which are slight modifications of those given by Higham in [40]. Clearly, the use
of matrix factorization sets limits on the size of problems that can be solved efficiently
by TRESNEI.

If pNk does not solve the trust-region problem, then we use the classical dogleg path
to approximate the trust-region solution, see Section 2.2.2. The Cauchy step pck for the
problem (3.6) has the form

pck = −min

{ ‖∇θk‖2

‖Jk∇θk‖2
,

∆k

‖∇θk‖

}

∇θk. (4.11)

The procedure described above was implemented achieving economies in the calculations.
Since a zero component of [CI(xk)]+ gives rise to a zero component in Θ and to a null
row in J , instead of (3.5) we use the reduced model

m̂k(p) =
1

2
‖Ĵk p+ Θ̂k‖2, (4.12)

where Θ̂k is the vector formed by CE(xk) and the nonzero components of [CI(xk)]+ and

Ĵk is the Jacobian of Θ̂ at xk, see [34].

4.2.3 Computation of the trial step

In Step 4 of the algorithm, the trial step pk is formed testing the condition (3.16); the
scalar β1 used in (3.16) is an internal parameter fixed in Step 2. The Generalized Cauchy
step pCk is evaluated in Step 4.2 using (3.13), (3.14) and (3.15). The step p̄tr is accepted
as the trial step pk if it satisfies (3.16). Alternatively, we find the step pk of the form
t pCk + (1 − t)p̄tr, t ∈ [0, 1] such that ρc(pk) = β1; this is equivalent to solve a quadratic
scalar equation admitting a unique positive root t∗.

4.2.4 Test on the trial step and trust-region radius update

The trial step pk is accepted in Step 5 of the algorithm if condition (3.16) is satisfied.
In this case the trust-region radius for the next iterate is updated following a standard
strategy and imposing ∆k+1 ≥ ∆m1. Clearly, on termination of each iteration, the trust-
region radius may be smaller that ∆m1. On the other hand, if pk fails to satisfy (3.17),
then it is rejected and the trust-region radius ∆k is reduced. Note that if ∆k becomes
smaller than the fixed parameter ∆m2, we terminate the procedure and declare a failure.
The parameters β2, β3, ∆m1, ∆m2 are set internally in Step 2.

4.2.5 Termination criteria and accuracy

Successful termination of TRESNEI means that one of the following conditions is met

‖Θk‖∞ ≤ ǫ1, (4.13)

min{‖Dk∇θk‖, ‖P (xk −∇θk) − xk‖} ≤ ǫ2
√
n, (4.14)
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where ǫ1 and ǫ2 are prescribed tolerances. The condition (4.14) involves two optimality
measures: the scaled gradient D∇f which is a key ingredient of our method, and the
projected gradient of function f . The use of both measures is due to the fact that the
value ‖D∇f‖ may oscillate and exhibit a large growth at some iterations. Thus, the use
of the norm of the projected gradient provides a more reliable stopping condition.

4.3 The function lsqnonlin

The use of the commercial Matlab Optimization Toolbox software for solving least-
squares problems gives rise to an approach alternative to the one used in TRESNEI. In
particular, it yields to testing an unconstrained least-squares formulation of (4.2).

The MATLAB Optimization Toolbox includes the function lsqnonlin which consists
of two implementations: the large-scale algorithm and the medium-scale algorithm. The
large-scale algorithm is a subspace trust-region method while the medium-scale algorithm
uses either the Levenberg-Marquardt method or the Gauss-Newton method globalized
by a line search strategy.

The applicability of lsqnonlin has some limitations. Bounds on the variables can
be handled only by the large-scale algorithm. On the other hand, such algorithm cannot
solve problems where the number of elements of Θ is lower than the number of variables.
Therefore, bound-constrained underdetermined least-squares problems cannot be solved
by lsqnonlin.

Because of the above limitations, the only way to solve a variety of systems of equal-
ities and inequalities without restrictions on their dimensions consists in expressing the
problems as unconstrained least-squares problems. In fact, given (4.2) we apply the
medium-scale algorithm to the problem

min
x∈IRn

g(x) = ‖G(x)‖2, (4.15)

where

G(x) =













CE(x)
[x]Ifx

− [U ]Ifx

[CI(x)]+

max

{

[

[L− x]Ilb

]

+
,
[

[x− U ]Iub

]

+

}













. (4.16)

Note that the function G differs from (4.10) as it incorporates the simple bounds in the
sets Ilb, Iub and that G is continuously differentiable.

We will consider the solution of (4.15) by the medium-scale algorithm of lsqnonlin.
It terminates successfully either if the directional derivative along the search direction
sk and the ∞-norm of the gradient of gk are less than prescribed tolerances, i.e.

∇gTk sk ≤ ζ1 and ‖∇gk‖∞ ≤ 10(ζ1 + ζ2), (4.17)

or if the magnitude of search direction is sufficiently small, i.e.

‖sk‖∞ ≤ ζ2. (4.18)

On the other side, a failure is declared if the line search strategy can not sufficiently
decrease the residual along the current search direction.
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4.4 Benchmarking

The solvers TRESNEI and lsqnonlin do not test a uniform stopping criterium. Hence,
it is essential benchmarking the two solvers in order to guarantee that the returned
approximate solutions satisfy the same accuracy requirement, see e.g. [19, 36].

We adopt the benchmarking process proposed in [19] for general constrained op-
timization problems and we fit it to problem (BCLS). It consists in computing and
checking a specific test for the solvers a posteriori. Specifically, each solver is run using
the default tolerances. If the approximate solution returned by the solver does not sat-
isfy the a posteriori convergence test, then the native solver tolerances are reduced and
the problem is solved again. Further tolerance reductions are made until the a posteriori
convergence test is satisfied or a failure is declared.

The definition of the a posteriori convergence test is given in terms of measures for
feasibility and stationarity. Such measures are defined using an error measure function
δ[·, ·] which involves a mixture of absolute and relative error. In particular, given real
numbers ξ1 and ξ2, δ[ξ1, ξ2] is defined as

δ[ξ1, ξ2] = min

{

|ξ1 − ξ2|,
|ξ1 − ξ2|
|ξ1| + |ξ2|

}

,

with δ[0, 0] = 0 and δ[ξ1, ξ2] = 1 if either ξ1 or ξ2 is infinite. The function δ[·, ·] is
continuous.

The feasibility measure is given by

νf (x) = ‖v(x)‖∞, (4.19)

where v(x) ∈ IRn and

(v(x))i =

{

0 if li ≤ xi ≤ ui,
min{δ[xi, li], δ[xi, ui]} otherwise.

Clearly, νf is null at feasible points while it measures the constraint violations at in-
feasible points. Given a small positive scalar τ , a vector x is defined to be τ -feasible if
0 < νf (x) ≤ τ , [19].

The stationarity measure νs can be defined as

νs(x, τ) = ‖r(x, τ)‖∞, (4.20)

where τ is a small positive scalar, r(x, τ) ∈ IRn and

(r(x, τ))i =























min{0, (∇θ(x))i} if δ[xi, li] ≤ τ, δ[xi, ui] > τ,
max{0, (∇θ(x))i} if δ[xi, li] > τ, δ[xi, ui] ≤ τ,
(∇θ(x))i if δ[xi, li] > τ, δ[xi, ui] > τ,
0 if δ[xi, li] ≤ τ, δ[xi, ui] ≤ τ or

if δ[xi, Ui] ≤ τ, i ∈ Ifx.

(4.21)

Note that the last assignment in (4.21) is related to the equation (4.7) and that Ui is
the value of the fixed variable xi, i ∈ Ifx, in problem (4.2).

The relationship between the optimality measures (4.19) and (4.20) and the first-
order optimality conditions for the problem (BCLS) is clarified by the following theorem.
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Theorem 4.1 Let τ > 0 be given and let x∗ be a first-order stationary point for the prob-
lem (BCLS). If {xk} is a sequence that converges to x∗, then {νf (xk)} and {νs(xk, τ)}
converge to zero.

Proof. The sequence {νf (xk)} trivially converges to zero since the sequence {xk} con-
verges to a feasible point x∗ of problem (BCLS).

Now we prove that {νs(xk, τ)} converges to zero. Consider the i-th component of xk
for k sufficiently large and without lack of generality suppose that if x∗i is active then
x∗i = li. Since {xk} converges to x∗, if x∗i = li then δ[(xk)i, li] ≤ τ for all k sufficiently
large, otherwise either δ[(xk)i, li] ≤ τ or δ[(xk)i, li] > τ may hold.

If x∗i = li and (∇θ(x∗))i > 0, then by (4.21) and the continuity of the gradient, we
get

(r(xk, τ))i = min{0, (∇θ(xk))i} = 0,

for k sufficiently large.

If x∗i = li and (∇θ(x∗))i = 0 or x∗i > li and δ[(xk)i, li] ≤ τ , then

(r(xk, τ))i = min{0, (∇θ(xk))i} ≤ |(∇θ(xk))i|. (4.22)

Since limk→∞(∇θ(xk))i = 0, then from (4.22) we obtain limk→∞(r(xk, τ))i = 0.

Finally if x∗i > li and δ[(xk)i, li] > τ , limk→∞(r(xk, τ))i = 0 easily follows from (4.21)
and (2.23).

The case x∗i = ui can be studied as above and therefore we can conclude that
limk→∞ νs(xk, τ) = 0. �

The first requirement on the solutions returned by the solvers TRESNEI and lsqnonlin

is their τ -feasibility. Moreover, we assess the accuracy of the solutions by using the sta-
tionarity measure νs. In practice, benchmarking requires that the solutions delivered by
TRESNEI and lsqnonlin satisfy

νf (x) ≤ τf , νs(x, τf ) ≤ τs, (4.23)

for specified tolerances τf and τs. The τ -feasibility feature is nontrivially fulfilled by
lsqnonlin as it may return a nonzero-residual stationary point for (4.15). On the other
hand, since TRESNEI generates a sequence of feasible iterations, enforcing (4.23) means
controlling only the stationarity measure νs.

4.5 Numerical experience

In this section we discuss the numerical experiments with TRESNEI and lsqnonlin, with
particular emphasis on the effects of the enforcement of the convergence test (4.23). All
the tests were performed on an Intel Xeon (TM) 3.4 Ghz, 1GB RAM using Matlab 7.6

and machine precision ǫm ≈ 2 · 10−16.
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4.5.1 The problem set

The test examples are from the CUTEr test collection [33]. In view of the suitability
of TRESNEI for medium-size problems, we selected 135 problems of the form (4.2) and
we adjusted their dimensions to obtain variants where n ≤ 500. Among the problems
considered, there are 14 systems of nonlinear equations; the rest of the problems are
constraint sets of programming problems.

In Tables 4.2-4.4 we report the names along with the main characteristics of the
problems under consideration. In particular, nfr and nfx indicate the number of free
and fixed variables respectively, nb the number of variables that are bounded at least
on one side and nr the number of variables bounded on both sides (“range” variables).
Moreover, the number mE of equalities and the number mI of general inequalities are
reported.

The starting point x0 and the analytical Jacobian matrices C ′
E and C ′

I are provided
by CUTEr as part of each problem specification.

4.5.2 Algorithmic options

TRESNEI was run with the initial trust-region radius ∆0 = 1. The initial guess x0 was
the one provided by CUTEr if it is feasible. Otherwise such vector was projected onto
the box Ω; this case occurred for 17 problems.

In lsqnonlin, for the line search algorithm we selected a safeguarded cubic poly-
nomial method instead of the default strategy. This choice is recommended in [54] if
gradients are supplied and can be calculated quite inexpensively. The initial point used
is the one employed in TRESNEI.

For both solvers, all attempts to solve the test problems were limited to a maximum
of 1000 iterations or 1000 function evaluations. The default tolerances ǫ1, ǫ2 in (4.13)
and (4.14) and ζ1, ζ2 in (4.17) and (4.18) are

ǫ1 = ǫ2 = 10−6, ζ1 = ζ2 = 10−6.

Benchmarking of the solvers has been performed as follows. If one solver reports
a failure with the default tolerances then the benchmarking process is not activated.
Otherwise, the a posteriori test (4.23) is checked as suggested in [19], i.e. setting

τf = τs = 10−6.

In case (4.23) is not satisfied, the tolerances provided to the solvers are reduced by a
factor 10 and the problem is solved again. The progressive reduction of the tolerances
is stopped, and a failure is declared, when they reach the value 10−16. It is important
to remark that if the solvers fail during the repeated runs but the test (4.23) is satisfied
at the returned approximation, then we declare a successful run.

4.5.3 Results

Firstly, we tested TRESNEI and lsqnonlin on the problem set using the default toler-
ances. Secondly, we compared TRESNEI and lsqnonlin checking the a posteriori test
(4.23).
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Let consider the experiments conducted with the default tolerances. Both the Gauss-
Newton method and the Levenberg-Marquardt method implemented in the medium-scale
algorithm of lsqnonlin were run, see §4.3. TRESNEI solved 121 of the 135 problems, the
Levenberg-Marquardt and the Gauss-Newton implementations of lsqnonlin solved 131
and 79 problems respectively. In fact, the Gauss-Newton implementation of lsqnonlin
fails to handle overdetermined problems with rank-deficient Jacobian matrices. Due to
this pitfall, we will refer to the Levenberg-Marquardt implementation of lsqnonlin in
the remaining of the section.

For the successful runs, we analyzed the value of residual functions Θ in (4.10) and G
in (4.16) returned by TRESNEI and lsqnonlin respectively; Figure 4.1 shows the values

ρT = − log10 ‖Θ(x)‖, ρl = − log10 ‖G(x)‖. (4.24)

We note that the final residual is less than 10−6 in 70 problems for TRESNEI and in 26
problems for lsqnonlin. For problem HS99EXP, the residual ‖G‖ returned is around 1.
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Figure 4.1: Plot of final residuals (4.24) for the successful runs.

A further information of interest is the value of the final constraint violations ‖[CI ]+‖∞
for the 53 problems containing inequalities. For all the successful runs this norm is lower
than 1. In Table 4.1 we list five ranges of values for ‖[CI ]+‖∞ at the computed solution
and report the number of problems which attained a value in such intervals. We remark
that the inequalities CI(x) ≤ 0 are satisfied for 9 problems solved by TRESNEI and for
7 problems solved by lsqnonlin. In the remaining problems, the constraint violations
appear to be smaller at the solutions computed by TRESNEI.

Since the convergence tests of the solvers are not consistent, conclusions are difficult
to be drawn from the results obtained. It is quite evident that TRESNEI returns small
values of ‖Θ‖; hence we can safely conclude that the solutions returned by the solver are
accurate approximations to the solutions of problem (4.2). On the other hand, assessing
the accuracy of the solutions delivered by lsqnonlin is more difficult. The residual
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TRESNEI lsqnonlin

‖[CI ]+‖∞ no.of problems no.of problems

0 9 7
(0 10−5) 4 0
[10−5 10−2) 18 10
[10−2 10−1) 14 29
[10−1 1) 0 3

Table 4.1: Constraint violations at computed solutions.

function G in (4.15) includes the simple bounds and the values of ‖G‖ shown in Figure
4.1 may indicate the computation of an infeasible solution of (4.2) with respect to the
simple bounds.

Performing the benchmark, TRESNEI and lsqnonlin computed a solution satisfying
(4.23) in 119 (88%) of the 135 problems and 117 (87%) of the tests, respectively. Figure
4.2 displays the function-evaluation count performance profile [18] for these runs. The
plot shows that both solvers are very reliable and makes clear that TRESNEI is the most
efficient for about 75% of the runs and lsqnonlin is within a factor 5 of TRESNEI for
about 80% of the runs.
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Figure 4.2: Performance profile, ψ(χ): function-evaluation counts for the 135 CUTEr
problems under consideration.

Some comments on the failures occurring in the benchmarking process are needed.
TRESNEI fails to satisfy the stationarity requirement νs given in (4.23) for 2 problems
while lsqnonlin fails 13 times as the τ -feasibility required in (4.23) is not met. The
reason why lsqnonlin fails to satisfy this requirement is that its iterates may not be
feasible and typically the problem (4.2) has nonisolated solutions. Thus, it may happen
that the sequence generated by lsqnonlin converges to a solution to problem (4.15) that
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is not feasible but close to the boundary of the box Ω. This situation can be verified
numerically as the value of νf settles down for decreasing values of the tolerances ζ1 and
ζ2 in (4.17) and (4.18).

The purpose of what follows is to investigate the effect of the convergence criteria
(4.23) on solvers performance. In Figures 4.3-4.4, for each problem we report the bar
showing the values

Π = − log10(τB), (4.25)

where τB is the tolerance needed by either TRESNEI or lsqnonlin to satisfy the condition
(4.23). If one solver failed either with the default tolerances or in the benchmarking, no
bar is plotted. Concerning runs made with TRESNEI, Figure 4.3 shows that the height
of 65 bars is equal to 6 and that for only 7 problems the bars reach values greater than
or equal to 9. On the other hand, for lsqnonlin 26 bars have height equal to 6 and
24 bars are higher than 9; this indicates that lower tolerances than the default ones are
often necessary to obtain accurate solutions in the sense of (4.23), see Figure 4.4.

These observations are confirmed in Figures 4.5-4.6 where for each problem and solver
we plot the performance metric

p(x) = − log10(max{νf (x), νs(x, τf )}), (4.26)

for the computed solution x. Clearly, the heights of the bars give the levels of accuracy
reached, and returned solutions x such that p(x) < 6 do not satisfy the test (4.23). The
white bars indicate the values p(x) obtained using the default tolerances. The black bars
indicate the values p(x) resulting from the benchmarking process; if a black bar is not
present, then (4.23) is satisfied using the default tolerances. If no bar is present, then
the solver fails with the default tolerances.

Figure 4.5 shows that TRESNEI is able to compute highly accurate solutions and,
in accordance to Figure 4.3, the convergence test (4.23) is satisfied with the default
tolerances for most of the problems. Therefore, we can conclude that criteria (4.13)-
(4.14) tend to agree with (4.23) in most cases. On the other hand, comparing Figure
4.5 and Figure 4.6 it is evident that the level of accuracy of the solutions computed by
lsqnonlin is remarkably lower than in TRESNEI.

4.6 Final remarks

The solver TRESNEI is accessible through the web site: http://TRESNEI.de.unifi.it.
Since TRESNEI does not require any special toolbox, it can easily serve as a template for
translations in another language.

TRESNEI has been used in several contexts. We are aware of its use in [67] for
solving nonlinear feasibility problems arising in the restoration phase of a filter method
for nonlinear optimization with expensive function. Moreover in [5], TRESNEI has been
applied to bound-constrained systems resulting from the performance analysis of multi-
radio wireless networks.

The overall performance of TRESNEI against lsqnonlin encourages us to study pos-
sible improvements and extensions of the algorithm implemented. A chance of extending
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the applicability of TRESNEI comes from the use of iterative linear solvers in the trust-
region solution. Next chapter is devoted to the design and analysis of the TREBO-GN

method for large-scale problems.
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Figure 4.3: Graph of the performance measure (4.25) for TRESNEI.
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Figure 4.5: Graph of the performance metric (4.26) for TRESNEI.
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Problem nfr nb nr nfx mE mI

AIRPORT 0 0 84 0 0 42
ALLINITC 1 1 1 1 1 0
ALJAZZAF 0 100 0 400 1 0
ALSOTAME 0 0 2 0 1 0
ANTWERP 0 3 24 0 8 2
AVGASA 0 0 8 0 0 10
AVION2 0 0 49 0 15 0
BATCH 0 2 46 0 12 61
BIGGSC4 0 0 4 0 0 13
BLOCKQP1 0 0 30 0 10 1
BLOWEYA 11 0 11 0 12 0
BT13 4 1 0 0 1 0
CAMSHAPE 0 0 100 0 0 304
CANTILVR 0 5 0 0 0 1
CHANDHEQ 0 10 0 0 10 0
CHEMRCTA 0 10 0 0 10 0
CHEMRCTB 0 10 0 0 10 0
CLNLBEAM 51 0 98 4 100 0
CONCON 10 5 0 0 11 0
CORE2 0 41 116 0 108 26
CORKSCRW 47 0 40 9 60 10
C-RELOAD 0 84 258 0 200 84
CSFI1 0 4 1 0 2 3
CSFI2 0 5 0 0 2 3
CVXQP1 0 0 100 0 50 0
DALLASM 0 0 196 0 151 0
DALLASS 0 0 46 0 31 0
DECONVC 0 51 10 0 1 0
DEGENLPA 0 0 20 0 15 0
DEMBO7 0 0 16 0 0 21
DISC2 22 0 7 0 17 6
DISCS 21 12 0 3 18 48
DNIEPER 1 0 56 4 24 0
DRUGDISE 10 30 19 4 50 0
DUAL1 0 0 85 0 1 0
EG3 1 0 100 0 1 299
EIGENA 0 0 110 0 110 0
EIGMAXA 0 0 101 0 101 0
EIGMAXB 0 0 101 0 101 0
FCCU 0 19 0 0 8 0
FEEDLOC 0 0 87 3 19 288
FLETCHER 3 1 0 0 1 3
GRIDNETA 26 16 4 14 36 0
GRIDNETC 40 20 0 0 36 0
HAGER4 10 10 0 1 10 0

Table 4.2: Test problem characteristics.
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Problem nfr nb nr nfx mE mI

HIMMELBI 0 100 0 0 0 12
HIMMELBJ 0 43 0 2 14 0
HIMMELBK 0 24 0 0 14 0
HIMMELP5 0 0 2 0 0 3
HONG 0 0 4 0 1 0
HS15 1 1 0 0 0 2
HS17 0 1 1 0 0 2
HS18 0 0 2 0 0 2
HS19 0 0 2 0 0 2
HS23 0 0 2 0 0 5
HS41 0 0 4 0 1 0
HS53 0 0 5 0 3 0
HS54 0 0 6 0 1 0
HS59 0 0 2 0 0 3
HS60 0 0 3 0 1 0
HS63 0 3 0 0 2 0
HS68 0 0 4 0 2 0
HS69 0 0 4 0 2 0
HS71 0 0 4 0 1 1
HS72 0 0 4 0 0 2
HS73 0 0 4 0 1 2
HS74 0 0 4 0 3 2
HS75 0 0 4 0 3 2
HS80 0 0 5 0 3 0
HS83 0 0 5 0 0 6
HS87 0 0 6 0 4 0
HS95 0 0 6 0 0 4
HS101 0 0 7 0 0 5
HS104 0 0 8 0 0 5
HS106 0 0 8 0 0 6
HS107 4 2 3 0 6 0
HS108 8 1 0 0 0 13
HS109 0 2 7 0 6 4
HS111 0 0 10 0 3 0
HS112 0 10 0 0 3 0
HS114 0 0 10 0 3 8
HS116 0 0 13 0 0 15
HS119 0 0 16 0 8 0
HS99EXP 21 0 7 3 21 0
HUES-MOD 0 10 0 0 2 0
HUESTIS 0 10 0 0 2 0
LEAKNET 80 70 6 0 153 0
LEWISPOL 0 0 6 0 9 0
LOTSCHD 0 12 0 0 7 0
MANNE 0 199 100 1 0 200

Table 4.3: Test problem characteristics.
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Problem nfr nb nr nfx mE mI

MCONCON 10 5 0 0 11 0
MINC44 0 11 12 4 18 0
MINPERM 0 1 4 0 5 0
MISTAKE 8 1 0 0 0 13
MRIBASIS 0 0 24 12 9 46
NET1 20 0 23 5 38 19
NCVXQP1 0 0 10 0 5 0
ODFITS 0 10 0 0 6 0
OPTCDEG3 40 39 40 3 80 0
OPTCNTRL 9 10 10 3 20 0
ORTHREGE 35 1 0 0 20 0
ORTHREGF 78 2 0 0 25 0
PFIT1 2 1 0 0 3 0
PFIT2 2 1 0 0 3 0
PFIT3 2 1 0 0 3 0
PFIT4 2 1 0 0 3 0
POLYGON 0 0 48 2 0 324
PRODPL0 0 60 0 0 20 9
QR3D 145 10 0 0 155 0
QR3DBD 117 10 0 0 155 0
READING1 0 0 5 1 2 0
READING4 0 0 50 1 0 100
READING5 0 0 100 1 100 0
READING6 50 0 51 1 50 0
READING9 100 0 101 1 100 0
RK23 11 6 0 0 11 0
ROCKET 102 101 100 4 252 0
SEMICON1 0 0 10 2 10 0
SEMICON2 0 0 10 2 10 0
SINROSNB 9 0 1 0 0 18
SOSQP1 0 0 20 0 11 0
SSNLBEAM 11 0 20 2 20 0
STCQP1 0 0 17 0 8 0
STCQP2 0 0 65 0 30 0
STEENBRA 0 432 0 0 108 0
STEERING 197 1 51 7 200 0
STNQP2 0 0 65 0 30 0
SWOPF 73 0 10 0 88 14
SYNTHES2 0 2 9 0 1 14
TRAINF 200 0 200 8 202 0
TRAINH 20 0 20 8 22 0
TRUSPYR1 3 8 0 0 3 1
TWOBARS 0 0 2 0 0 2
UBH1 54 0 33 12 60 0
WATER 0 0 31 0 10 0

Table 4.4: Test problem characteristics.



Chapter 5

An inexact Gauss-Newton

method

The methods proposed in Chapter 3 and their implementations rely on direct methods
for linear systems and linear least-squares problems. These direct methods may be
preferable to iterative methods when the cost of a matrix factorization is not excessive,
e.g. if the dimension of the problem is sufficiently small or the Jacobian matrix is
structured. Otherwise, it becomes necessary to use iterative methods for the solution of
the linear systems and linear least-squares problems arising at each iteration.

In this chapter we present a modification of the TREBO-GN method based on iterative
methods for the linear algebra phase which can be especially suited for the large-scale
setting. In Section 5.1 we introduce a version of such procedure where a solution of
the trust-region problem is approximated by the Conjugate Gradient (CG) method.
Provided a suitable control on the accuracy to which we attempt to solve the trust-
region problem, in Sections 5.2 and 5.3 we prove that the properties of global and local
convergence of the TREBO-GN method are retained.

5.1 Description of the method

In this section we describe an inexact Gauss-Newton trust-region method, called ITRE-

BO-GN, for solving large bound-constrained least-squares problems of the form

min
x∈Ω

θ(x) =
1

2
‖Θ(x)‖2, (BCLS)

where θ : IRn → IR, Θ : IRn → IRm is a given continuously differentiable mapping and
Ω is the n-dimensional box Ω = {x ∈ IRn | l ≤ x ≤ u}, l ∈ (IR ∪ −∞)n, u ∈ (IR ∪∞)n,
l < u.

The basic idea of the TREBO-GN method is to take the possibly projected minimum
norm step (3.7) as frequently as possible, taking advantage of its good properties in
a neighbourhood of a zero-residual solution. The aim of the new method is retaining
this property and at the same time avoiding the high computational cost in forming the
minimum norm step by direct factorization methods.

69
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Algorithm 5.1 Solving the trust-region problem by CG method

Input: xk, 0 ≤ ηk < 1, ∆k > 0.

1. Set p
(0)
k = 0 and j = 1;

2. Compute the j-th CG iterate p
(j)
k given in (5.3);

3. If ‖p(j)
k ‖ ≤ ∆k and p

(j)
k satisfies (5.5),

then set pIk = p
(j)
k , return ptr = pIk.

4. If ‖p(j)
k ‖ > ∆k,

find τ such that pSTk = p
(j−1)
k + τ(p

(j)
k − p

(j−1)
k ) satisfies ‖pSTk ‖ = ∆k,

return ptr = pSTk ;
5. Set j = j + 1 and go to Step 2.

The ITREBO-GN method differs from the TREBO-GN method in the solution of the
trust-region problems which are solved by the CG method. Now we describe the algo-
rithm for computing an inexact trust-region step ptr and use the properties of the CG
method summarized in Section 2.2.2.

Given xk ∈ Ω, we consider the following trust-region problem

min {mk(p) =
1

2
‖Jk p+ Θk‖2 : ‖p‖ ≤ ∆k}. (5.1)

Let p
(0)
k = 0 and {p(j)

k } be the sequence of iterates generated by the CG method applied
to the normal equations

JTk Jkp = −JTk Θk. (5.2)

We know that for j ≥ 1

p
(j)
k = argmin {mk(p) : p ∈ Kj}, (5.3)

where Kj is the Krylov subspace defined in (2.19).
Let pIk be the first CG iterate producing a prescribed reduction of the value of ∇mk,

i.e.
pIk = argmin {mk(p) : p ∈ Kj}, ‖∇mk(p

I
k)‖ ≤ ηk‖∇mk(0)‖, (5.4)

where ηk ∈ [0, 1) is the so-called forcing term. We note that by ∇mk(p) = JTk (Jk p+Θk)
and (5.4) it follows

JTk Jkp
I
k = −JTk Θk + rk,

‖rk‖ ≤ ηk‖JTk Θk‖, (5.5)

i.e. pIk is an inexact Gauss-Newton step for the problem ∇θ(x) = 0 and the forcing term
ηk is used to control the accuracy in the solution of the system (5.2) [15].

Since we initialize p
(0)
k to zero, each iterate p

(j)
k is larger in norm than its predecessor

and CG terminates in a finite number of iterations computing the minimum norm step

pNk = −Jk+ Θk. (5.6)
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This implies that
‖pIk‖ ≤ ‖pNk ‖. (5.7)

Therefore, we stop the CG iterations as soon as either the specified accuracy (5.5) is
achieved or the trust-region boundary is reached. In the former case the approximate
trust-region solution is the low-dimensional unconstrained minimizer pIk of mk. In the
latter case, no further iterates giving lower value of mk will be inside the trust-region.

If p
(j)
k is such that ‖p(j−1)

k ‖ < ∆k ≤ ‖p(j)
k ‖ then we take the Steihaug-Toint point pSTk

given in (2.21). This process is described in Algorithm 5.1.
Except for the solution of the trust-region problem, the ITREBO-GN method coincides

with the TREBO-GN method given in Algorithm 3.1. For sake of completeness, in Algo-
rithm 5.2 we describe the k-th iteration of the ITREBO-GN procedure. At each iteration
we set an upper bound ηmax < 1 on the forcing term ηk so that the sequence {ηk} is
uniformly less than 1. This is a basic requirement for the inexact Newton framework
[15].

Algorithm 5.2 ITREBO-GN: k-th iteration

Input: xk ∈ Ω, 0 < ∆min ≤ ∆k, 0 ≤ ηk ≤ ηmax < 1, β1, β2, δ ∈ (0, 1).

1. Compute the inexact trust-region step ptr using Algorithm 5.1.
2. Let p̄tr = PΩ(xk + ptr) − xk.
3. Compute the generalized Cauchy step pCk based on (3.11).
4. If

ρc(p̄tr) =
mk(0) −mk(p̄tr)

mk(0) −mk(p
C
k )

≥ β1, (5.8)

Set pk = p̄tr;
Else find

pk = t pCk + (1 − t)p̄tr, (5.9)

t ∈ (0, 1], such that (5.8) holds.
5. If

ρθ(pk) =
θ(xk) − θ(xk + pk)

mk(0) −mk(pk)
≥ β2, (5.10)

Set xk+1 = xk + pk, choose ∆k+1 ≥ ∆min and ηk+1 ∈ [0, ηmax];
Else reduce ∆k, ∆k = δ∆k and go to Step 1.

We conclude this section making some comments on Algorithm 5.2 and pointing out
the differences between the TREBO-GN and the ITREBO-GN methods.

The CG approach in the ITREBO-GN method substitutes the computation of the step
pNk and possibly of the dogleg step performed in the TREBO-GN method, see Step 4 of
Algorithm 3.1.

It is interesting to note that the TREBO-GN method works directly with the matrix
Jk and orthogonal transformations showing very satisfactory stability properties, while
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the ITREBO-GN method works with the matrix JTk Jk. More insight the CG approach,
it requires the action of Jk and JTk on vectors but the explicit formation of the ma-
trix JTk Jk can be avoided using the factorized form JTk (Jkp + Θk) = 0 of the Newton
equation. Working with Jk and JTk separately has two important advantages. First,
a small perturbation in JTk Jk, e.g. by roundoff, may change the solution much more
than perturbations of similar size in Jk itself. Second, we avoid the fill which can occur
in the formation of JTk Jk. On the other hand, the accuracy of the computed solution
may depend on the square of the conditioning of Jk. In view of these considerations, we
think that as long as the computational and storage cost is not prohibitive, the TREBO-GN
method can be competitive with the inexact approach.

5.2 Global convergence analysis

The analysis is carried out under the Assumptions 1 and 2 stated in Section 3.3. Follow-
ing the lines of the proof of Lemma 3.5 it is easy to show that the ITREBO-GN method is
well-defined i.e. the k-th iteration of the method terminates in a finite number of trials.

The global convergence properties of the method are guaranteed by imposing the
condition (5.8) in Step 4 of Algorithm 5.2 and they are summarized in the following
theorem.

Theorem 5.1 Let Assumptions 1 and 2 hold and {xk} be the sequence generated by the
ITREBO-GN method.

i) Every limit point of the sequence {xk} is a first-order stationary point for the problem
(BCLS).

ii) If x∗ is a limit point of {xk} and ‖Θ(x∗)‖ = 0, then all the limit points of {xk} are
zero-residual solutions to problem (BCLS).

iii) If x∗ is a limit point of {xk} such that x∗ ∈ int(Ω) and J(x∗) has full row rank,
then x∗ is such that ‖Θ(x∗)‖ = 0.

Proof. See Theorems 3.1 and 3.2. �

5.3 Local convergence analysis

The local convergence analysis of the ITREBO-GN method parallels that of the TREBO-GN
method. Let assume that the sequence {xk} generated by the ITREBO-GN method has
a limit point x∗ such that ‖Θ(x∗)‖ = 0 and that the Jacobian J(x∗) is full rank. Then,
under suitable choices of the sequence {ηk} of the forcing terms, the use of the inexact
step pIk as an approximation to the minimum norm step pNk preserves the convergence
properties of the TREBO-GN method.

In this section we will show that eventually there is a simple transition from the
global method with a direction pk of the form (5.9) to the projected step

p̄Ik = PΩ(xk + pIk) − xk. (5.11)
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In fact, eventually the trust-region constraint becomes inactive and p̄Ik satisfies (5.8) and
(5.10). As a consequence the sequence converges to x∗ and, for appropriate choices of
{ηk}, the rate of convergence is q-quadratic, see Theorems 5.2 and 5.3.

As in Section 3.3.3, we let S be the nonempty set of zero-residual solutions to problem
(BCLS). We denote the distance from the point x to the set S by d(x,S) and let [x]S ∈ S
be such that ‖x− [x]S‖ = d(x,S), see (3.43) and (3.44). Note that Lemma 3.2 applied
with the steps pIk, p̄

I
k given in (5.4) and (5.11) provides a condition analogous to (3.52),

i.e.

d(xk + p̄Ik,S) ≤ d(xk + pIk,S). (5.12)

The assumptions made throughout the section are the Assumptions 3 and 5 described
in Section 3.3. For sake of clarity, we restate these two assumptions in one as follows.

Assumption 6 The sequence {xk} generated by the ITREBO-GN method has a limit
point x∗ ∈ S and J(x∗) is full rank.

In the following study we will use the results proved in Lemmas 3.1, 3.2, 3.6, 3.7 and
3.8. In particular, for subsequent references, we let α1 and α2 be constants defined as

α1 = νχL, α2 = νγD, (5.13)

where χL and γD are in Assumptions 1 and 2 and reduce the constant τ of Lemma 3.8
if necessary so that

α1α2τ ≤ 1/4. (5.14)

Under Assumptions 1, 2 and 6, (5.6), (3.49) and (3.46) imply that if xk ∈ Bτ (x
∗) then

‖pNk ‖ ≤ ν ‖Θk‖ ≤ α1 d(xk,S). (5.15)

5.3.1 Properties of the inexact trust-region step

The next lemma establishes that if xk is sufficiently close to x∗, then the trust-region is
inactive and the inexact step pIk is taken as the approximate trust-region step.

Lemma 5.1 Let Assumptions 1, 2 and 6 hold. Then there exists ς > 0 such that if
xk ∈ Bς(x

∗) then the trust-region solution ptr computed by Algorithm 5.1 is the step pIk
given in (5.4).

Proof. Let τ > 0 be given in Lemma 3.8 and let xk ∈ Bτ (x
∗). Since x∗ ∈ S and

(5.15) holds, there exists a scalar ς ≤ τ sufficiently small so that if xk ∈ Bς(x
∗) then

‖pNk ‖ ≤ ∆min. Namely, the unconstrained minimum norm minimizer of the quadratic
modelmk lies in the trust-region. Therefore, by the property (5.7), Algorithm 5.1 returns
the step pIk. �

Moreover, the following technical lemma holds.
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Lemma 5.2 Let Assumptions 1, 2 and 6 hold. Let τ1 ≤ τ where τ is given in Lemma
3.8 and τ2 ≤ τ1/(1 + α1). Then if xk ∈ Bτ2(x

∗) then

xk + pIk ∈ Bτ1(x
∗), xk + pIk ∈ L, [xk + pIk]S ∈ L, (5.16)

and

xk + p̄Ik ∈ Bτ1(x
∗), xk + p̄Ik ∈ L. (5.17)

Proof. Note that (5.7) yields

‖xk + pIk − x∗‖ ≤ ‖xk − x∗‖ + ‖pIk‖ ≤ ‖xk − x∗‖ + ‖pNk ‖.

Then, by (5.15) we have ‖xk + pIk − x∗‖ ≤ (1 + α1)τ2 ≤ τ1. Hence, by Lemma 3.6 the
statements in (5.16) are proved. Similarly, using the contractivity (3.22), (5.17) holds.
�

The analysis of the steps pIk and p̄Ik is the subject of the next lemmas. Lemma 5.3
concerns the overdetermined case, while Lemma 5.4 refers to the underdetermined case.

Lemma 5.3 Let m ≥ n and let Assumption 1, 2 and 6 hold. Let α1 and α2 be the
constants defined in (5.13). Then, there exists a positive constant ρo, such that if xk ∈
Bρo(x∗)

‖xk + p̄Ik − x∗‖ ≤ ‖xk + pIk − x∗‖ ≤ φok ‖xk − x∗‖, (5.18)

where

φok = α0(γD(α2
1 + 1)‖xk − x∗‖ + α1χLηk). (5.19)

Proof. Let ω and τ as in Lemma 3.7 and Lemma 3.8 respectively. Fix xk ∈ Bρo(x∗),
where

ρo < min{ω, τ}/(1 + α1).

Then by Lemma 5.2 and using (5.16) with τ1 = min{ω, τ} we obtain

xk + pIk ∈ Bτ (x
∗), xk + pIk ∈ Bω(x∗), xk + pIk ∈ L, [xk + pIk]S ∈ L. (5.20)

By condition (3.48) we get

‖xk + pIk − x∗‖ ≤ α0‖Θ(xk + pIk)‖, (5.21)

so we need to estimate ‖Θ(xk + pIk)‖ to prove (5.18). By (3.21) we get

‖Θ(xk + pIk)‖ ≤ ‖Θ(xk + pIk) − Θk − Jkp
I
k‖ + ‖Θk + Jkp

I
k‖

≤ γD‖pIk‖2 + ‖Θk + Jkp
I
k‖. (5.22)

Consider the SVD decomposition of Jk, see Appendix A.4. By Lemma 3.8 Jk is full rank.
Hence, let Jk = UkΣkV

T
k = (Uk,1, Uk,2)ΣkV

T
k where Uk,1 ∈ ℜm×n, Uk,2 ∈ ℜm×(m−n),

Vk ∈ IRn×n Σk ∈ IRm×n, Σk = diag(ς1, . . . , ςn), ςi > 0 for all i = 1, . . . , n. Then we have
that

UTk,1 = UTk,1(J
T
k )+JTk ,
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because (JTk )+JTk is the orthogonal projection onto the range of Jk, [20]. As a conse-
quence we may write that

‖UTk,1(Θk + Jkp
I
k)‖ = ‖UTk,1(JTk )+JTk (Θk + Jkp

I
k)‖.

If we use (3.49), (5.5) and Assumption 2 we obtain

‖UTk,1(Θk + Jkp
I
k)‖ ≤ ‖J+

k ‖‖JTk (Θk + Jkp
I
k)‖

≤ α1 ηk‖Θk‖. (5.23)

Moreover we verify easily that UTk,2Jk = 0 and so

‖UTk,2(Θk + Jkp
I
k)‖ = ‖UTk,2Θk‖ = ‖Uk,2UTk,2Θk‖,

where the last equality follows from UTk,2Uk,2 = Im−n. Moreover the equality Im = UkU
T
k

yields
Uk,2U

T
k,2Θk = (Im − Uk,1U

T
k,1)Θk

and by Jkp
N
k = −JkJ+

k Θk = −Uk,1UTk,1Θk we get

Uk,2U
T
k,2Θk = Θk + Jkp

N
k . (5.24)

Since pNk is the global minimizer of ‖Θk + Jkp‖ we obtain from (5.24) that

‖UTk,2(Θk + Jkp
I
k)‖ = ‖Θk + Jkp

N
k ‖ ≤ ‖Θk + Jk(xk − x∗)‖.

From (3.21) we get
‖UTk,2(Θk + Jkp

I
k)‖ ≤ γD‖xk − x∗‖2. (5.25)

Combining together ‖Θk + Jkp
I
k‖ = ‖UTk (Θk + Jkp

I
k)‖, (5.23) and (5.25) we find that

‖Θk+Jkp
I
k‖ ≤ ‖UTk,1(Θk+Jkp

I
k)‖+‖UTk,2(Θk+Jkp

I
k)‖ ≤ α1 ηk‖Θk‖+γD‖xk−x∗‖2. (5.26)

By (5.22), (5.7), (5.15), (5.26), (3.46) and (3.48) we obtain

‖Θ(xk + pIk)‖ ≤ (γD(α2
1 + 1)‖xk − x∗‖ + α1χLηk) ‖xk − x∗‖.

Hence (5.21) and (3.23) give (5.18). �

The same result holds if m ≤ n and the proof is essentially the one of Lemma 3.10.

Lemma 5.4 Let m ≤ n and let Assumption 1, 2 and 6 hold. Let α1, α2 and ν be the
constants defined in (5.13) and (3.49) respectively. Then there exists a positive constant
ρu, such that if xk ∈ Bρu(x∗) and if ηk ≤ min{ηmax, 1/(4α1)}, then

d(xk + pIk, S) ≤ 2ν(να2‖Θk‖ + α1ηk) ‖Θk‖, (5.27)

and
d(xk + p̄Ik, S) ≤ φuk d(xk,S), (5.28)

where
φuk = 2α2

1(α2d(xk,S) + ηk). (5.29)



76 CHAPTER 5. AN INEXACT GAUSS-NEWTON METHOD

Proof. Let τ as in Lemma 3.8 and such that (5.14) holds. Fix xk ∈ Bρu(x∗), where

ρu < τ/(1 + 2α1). (5.30)

Then by Lemma 5.2, we get

xk + pIk ∈ Bτ (x∗), xk + pIk ∈ L, [xk + pIk]S ∈ L. (5.31)

To prove the thesis we need intermediate results. Consider the sequence {wk+l}l,
l ≥ 0, of the form

wk = xk, wk+l+1 = wk+l + sIk+l, l ≥ 0, (5.32)

where sIk+l is computed by applying CG method to the linear system

J(wk+l)
TJ(wk+l)s = −J(wk+l)

T Θ(wk+l).

Specifically, starting from the null initial guess, the step sIk+l is the first CG iterate such
that

‖r̃k+l‖ ≤ η̃k+l‖J(wk+l)
TΘ(wk+l)‖, l ≥ 0,

where r̃k+l is given by

r̃k+l = J(wk+l)
TJ(wk+l)s

I
k+l + J(wk+l)

T Θ(wk+l), l ≥ 0, (5.33)

and {η̃k+l}l≥0 is a sequence of positive scalars such that η̃k = ηk and supj≥0 η̃k+j ≤
1/(4α1). Note that for l = 0, we get sIk = pIk. Letting

sNk+l = −J(wk+l)
+ Θ(wk+l), l ≥ 0. (5.34)

we have
‖sIk+l‖ ≤ ‖sNk+l‖, l ≥ 0. (5.35)

First, we show that {wk+l}l≥0 ⊆ Bτ (x
∗). Second, we prove that {wk+l}l≥0 has limit

point in S. We begin proving that {wk+l} ⊆ Bτ (x
∗) by induction. The thesis trivially

holds for wk = xk. Then, we suppose that wk+j ∈ Bτ (x
∗) for j ≤ l and show that

wk+l+1 ∈ Bτ (x
∗). By (5.34), (5.35), (3.49), (3.21) and Lemma 3.8 we get

‖sIk+j‖ ≤ ‖sNk+j‖ ≤ ν‖Θ(wk+j)‖, (5.36)

‖Θ(wk+j) − Θ(wk+j−1) − J(wk+j−1)s
I
k+j−1‖ ≤ γD‖sIk+j−1‖2, (5.37)

‖r̃k+j‖ ≤ χL η̃k+j‖Θ(wk+j)‖, (5.38)

for j = 1, . . . , l. Moreover, from (5.33), (5.34), (3.49) and (JTk )+JTk = JkJk
+ = Im it

follows
‖J(wk+j−1)(s

N
k+j−1 − sIk+j−1)‖ ≤ ν‖r̃k+j−1‖, 1 ≤ j ≤ l.

Hence from (5.38) and (3.46)

‖Θ(wk+j)‖ = ‖Θ(wk+j) − Θ(wk+j−1) − J(wk+j−1)s
N
k+j−1 ± J(wk+j−1)s

I
k+j−1‖

≤ γD‖sIk+j−1‖2 + ν‖r̃k+j−1‖
≤ (να2‖Θ(wk+j−1)‖ + α1η̃k+j−1) ‖Θ(wk+j−1)‖ (5.39)

≤ (α1α2 d(wk+j−1,S) + α1η̃k+j−1) ‖Θ(wk+j−1)‖
≤ (α1α2τ + α1η̃k+j−1) ‖Θ(wk+j−1)‖

≤ 1

2
‖Θ(wk+j−1)‖,
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for j = 1, . . . , l, since α1α2τ ≤ 1
4 and supj≥0 η̃k+j ≤ 1/(4α1). Then it follows that

‖Θ(wk+j)‖ ≤
(

1

2

)j

‖Θk‖, 1 ≤ j ≤ l,

and by (5.36)

‖sIk+j‖ ≤ ν

(

1

2

)j

‖Θk‖, 1 ≤ j ≤ l. (5.40)

It then follows from (5.40) that

‖wk+l+1 − x∗‖ ≤
l

∑

j=0

‖wk+j+1 − wk+j‖ + ‖xk − x∗‖

≤
l

∑

j=0

‖sIk+j‖ + ρu

≤ ν‖Θk‖
∞

∑

j=0

(1

2

)j
+ ρu,

and (3.46) and (5.30) yield to

‖wk+l+1 − x∗‖ ≤ 2ν‖Θk‖ + ρu ≤ 2α1 d(xk,S) + ρu ≤ (2α1 + 1)ρu ≤ τ.

As a consequence, {wk+l} ⊂ Bτ (x
∗) and wk+l satisfies Lemma 3.6 and Lemma 3.8 for

all l ≥ 0. Further, the conditions (5.36), (5.37) and (5.38) hold for j ≥ 1.
Second, we prove that {wk+l} is a Cauchy sequence with limit point x̄ ∈ S. In fact,

letting p > q ≥ 0 and proceeding as above we obtain

‖wk+p − wk+q‖ ≤
p−1
∑

j=q

‖sIk+j‖ ≤
p−1
∑

j=q

‖sNk+j‖ ≤
∞
∑

j=0

‖sNk+j‖ ≤ 2α1ρ
u.

Thus, {wk+l} is a Cauchy sequence and the limit is denoted as x̄. To show that x̄ ∈ S note
that (5.33), (3.21), (3.20), (5.32), (5.38) and the property (J(wk+l)

T )+J(wk+l)
T = Im

yield

‖Θ(wk+l+1)‖ = ‖(J(wk+l)
T )+J(wk+l)

TΘ(wk+l+1)‖
≤ ‖J(wk+l)

+‖‖J(wk+l)
T (Θ(wk+l+1) − J(wk+l)s

I
k+l − Θ(wk+l)) + r̃k+l‖

≤ ν
(

χLγD‖sIk+l‖2 + ‖r̃k+l‖
)

≤ ν
(

χLγD‖sIk+l‖2 + χLη̃k+l‖Θ(wk+l)‖
)

≤ α1γD‖wk+l+1 − wk+l‖2 + α1η̃k+l(‖Θ(wk+l+1) − Θ(wk+l)‖ + ‖Θ(wk+l+1)‖)
≤ α1γD‖wk+l+1 − wk+l‖2 + 1/4(χL‖wk+l+1 −wk+l‖ + ‖Θ(wk+l+1)‖),

for l ≥ 0. Hence

‖Θ(wk+l+1)‖ ≤ 4

3
(α1γD‖wk+l+1 − wk+l‖ + χL/4) ‖wk+l+1 − wk+l‖,
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for l ≥ 0. Since liml→∞ ‖wk+l+1−wk+l‖ = 0, it follows ‖Θ(x̄)‖ = liml→∞ ‖Θ(wk+l+1)‖ =
0.

Now we can prove the thesis of the lemma. Note that ‖xk + pIk− x̄‖ = ‖wk+1 − x̄‖ ≤
∑∞

j=1 ‖sIk+j‖, see [48]. From (5.36) and (5.40) we get

‖xk + pIk − x̄‖ ≤
∞
∑

j=1

‖sIk+j‖ ≤
∞
∑

j=1

ν

(

1

2

)j−1

‖Θ(wk+1)‖ = 2ν‖Θ(wk+1)‖.

Then, using equation (5.39) with j = 1 we obtain

‖xk + pIk − x̄‖ ≤ 2ν(να2‖Θk‖ + α1ηk)‖Θk‖. (5.41)

Since d(xk + pIk,S) ≤ ‖xk + pIk − x̄‖, (5.27) holds. Finally, applying (5.12), (5.27) and
(3.46) we easily obtain condition (5.28). �

The next lemma gives useful asymptotic bounds on quantities that will be used in
the proofs of Lemma 5.6 and Lemma 5.7.

Lemma 5.5 Let Assumptions 1, 2 and 6 hold. Let α1, α2 and ν be the constants defined
in (5.13) and (3.49) respectively. Then there exist a constant τ̂ > 0 such that if xk ∈
Bτ̂ (x

∗) then

‖Jk p̄Ik + Θk‖ ≤ χLd(xk + pIk,S) + να2‖Θk‖2, (5.42)

‖Θ(xk + p̄Ik)‖2 − ‖Jkp̄Ik + Θk‖2 ≤
(

ν2α2
2‖Θk‖2 + 2να2‖Jkp̄Ik + Θk‖

)

‖Θk‖2.(5.43)

Proof. Let τ as in Lemma 3.8. Fix xk ∈ Bτ̂ (x
∗), where τ̂ < τ/(1+α1). Then by Lemma

5.2, (5.16) and (5.17) hold with τ1 = τ .
Consider the equality

Jkp̄
I
k + Θk = Θ(xk + p̄Ik) − Θ([xk + pIk]S) + Jkp̄

I
k − (Θ(xk + p̄Ik) − Θk).

Then by (3.20), (3.21), (3.23), (3.22), (5.7) and (5.15) we obtain

‖Jkp̄Ik + Θk‖ ≤ χL‖xk + p̄Ik − [xk + pIk]S‖ + γD‖p̄Ik‖2

≤ χL‖xk + pIk − [xk + pIk]S‖ + γD‖pNk ‖2

≤ χLd(xk + pIk,S) + να2‖Θk‖2,

and (5.42) is proved.
To prove (5.43) we use Theorem A.2 to get the statement

Θ(xk + p̄Ik) = Θk +

∫ 1

0
J(xk + tp̄Ik) p̄

I
k dt+ Jkp̄

I
k − Jkp̄

I
k.

Hence,

‖Θ(xk + p̄Ik)‖2 = ‖Jk p̄Ik + Θk‖2 + ‖
∫ 1

0
(J(xk + tp̄Ik) − Jk) p̄

I
k dt‖2

+2

(
∫ 1

0
(J(xk + tp̄Ik) − Jk) p̄

I
k dt

)T
(

Jkp̄
I
k + Θk

)

,
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and consequently by (5.15)

‖Θ(xk + p̄Ik)‖2 − ‖Jkp̄Ik + Θk‖2 ≤ γ2
D‖p̄Ik‖4 + 2γD‖Jk p̄Ik + Θk‖ ‖p̄Ik‖2

≤ ν2α2
2‖Θk‖4 + 2να2‖Jk p̄Ik + Θk‖ ‖Θk‖2.

�

5.3.2 Local analysis: the overdetermined case

The next results concern the case m ≥ n. We begin proving that under proper as-
sumptions on the forcing sequence {ηk}, the step pIk satisfies condition (5.8) and (5.10)
whenever xk is sufficiently close to x∗ and k is sufficiently large. The proof follows closely
the lines of Lemma 3.15.

Lemma 5.6 Let m ≥ n and let Assumptions 1, 2 and 6 hold. Assume that limk→∞ ηk =
0. Then p̄Ik satisfies conditions (5.8) and (5.10) whenever xk is sufficiently close to x∗

and k is sufficiently large.

Proof. Let ψo ≤ min{ρo, τ̂}, where ρo and τ̂ are given in Lemma 5.3 and Lemma 5.5
respectively and fix xk ∈ Bψo(x∗).

Note that mk(0) −mk(p
C
k ) ≤ mk(0) and

ρc(p̄
I
k) ≥ 1 − ‖Jk p̄Ik + Θk‖2

‖Θk‖2
. (5.44)

Since d(xk + pIk,S) ≤ ‖xk + pIk − x∗‖, (5.42), (5.18), (3.46) and (3.48) yield

‖Jk p̄Ik + Θk‖ ≤ χLφ
o
k‖xk − x∗‖ + να2‖Θk‖2

≤ σok‖xk − x∗‖, (5.45)

where φok is given in (5.19) and σok is defined as

σok = χLφ
o
k + α1α2‖xk − x∗‖. (5.46)

Thus, (5.44), (5.45) and (3.48) give

ρc(p̄
I
k) ≥ 1 −

(

σok
α0

)2

.

Since limk→∞ ηk = 0, if xk is sufficiently close to x∗ and k is sufficiently large we
obtain that p̄Ik satisfies condition (5.8).

Let pIk satisfy (5.8). To prove that p̄Ik satisfies (5.10), observe that mk(0) = ‖Θk‖2/2,
mk(p

I
k) < mk(0) and

ρθ(p̄
I
k) = 1 − ‖Θ(xk + p̄Ik)‖2 − ‖Jkp̄Ik + Θk‖2

‖Θk‖2 − ‖Jkp̄Ik + Θk‖2
. (5.47)
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From (3.48) and (5.45) we have

‖Θk‖2 − ‖Jk p̄Ik + Θk‖2 ≥
(

1

α2
0

− (σok)
2

)

‖xk − x∗‖2. (5.48)

Using (5.43), (5.48), (5.45), (3.46), (3.48) we have

ρθ(p̄
I
k) ≥ 1 − (ν2α2

2‖Θk‖2 + 2να2‖Jkp̄Ik + Θk‖) ‖Θk‖2

(

1
α2

0

− (σok)
2
)

‖xk − x∗‖2
,

≥ 1 − χ2
L

α2
1α

2
2‖xk − x∗‖2 + 2να2σ

o
k‖xk − x∗‖

1
α2

0

− (σok)
2

. (5.49)

Then, if xk is sufficiently close to the solution x∗ and k sufficiently large, the second
term in (5.49) can be made less than (1 − β2) and p̄Ik satisfies condition (5.10). �

Next theorem provides the main result on the convergence rate of the sequence
generated by the ITREBO-GN method for the overdetermined case.

Theorem 5.2 Let m ≥ n and let Assumptions 1, 2 and 6 hold. Then the sequence {xk}
generated by the ITREBO-GN method converges to x∗ q-superlinearly if limk→∞ ηk = 0.
Moreover the convergence rate is q-quadratic if ηk = O(‖Θk‖).

Proof. Let {xkj
} a subsequence of {xk} converging to x∗. By Lemmas 5.1 and 5.6 if xkj

is sufficiently close to x∗ and for kj sufficiently large, then the step taken is equal to p̄Ikj

and by (3.22), (5.7) and (5.15) limj→∞ p̄Ikj
= 0. Then, since x∗ is an isolated limit point

of {xk}, using Lemma A.1, we conclude that limk→∞ xk = x∗.

To establish the convergence rate of {xk}, let xk sufficiently near to x∗ and k suffi-
ciently large so that xk+1 = xk + p̄Ik and Lemma 5.3 holds. Then from (5.18)

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ φok,

where φok is defined in (5.19). Since limk+∞ φok = 0, xk converges to x∗ q-superlinearly.
Moreover, if ηk = O(‖Θk‖), then ηk = O(‖xk − x∗‖) and it follows ‖xk+1 − x∗‖ =
O(‖xk − x∗‖2), i.e. the q-quadratic rate is guaranteed. �

5.3.3 Local analysis: the underdetermined case

The main local convergence properties of the ITREBO-GN method for the case m ≤ n
follow. First we prove a lemma whose proof follows the lines of Lemma 5.6 for the
overdetermined case.

Lemma 5.7 Let m ≤ n and let Assumptions 1, 2 and 6 hold. Assume that limk→∞ ηk =
0. Then p̄Ik satisfies conditions (5.8) and (5.10) whenever xk is sufficiently close to x∗

and k is sufficiently large.
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Proof. Let ψu ≤ min{ρu, τ̂}, where ρu and τ̂ are given in Lemma 5.4 and Lemma 5.5
respectively and let k sufficiently large that ηk ≤ min{ηmax, 1/(4α1)}. Fix xk ∈ Bψu(x∗).
Note that since x∗ is a limit point of {xk} and limk→∞ ηk = 0, there exists an iterate xk
and a forcing term ηk satisfying the above conditions.

First we prove that p̄Ik satisfies (5.8). By (5.42), (5.27) and (3.46) we obtain

‖Jkp̄Ik + Θk‖ ≤ σuk‖Θk‖, (5.50)

where
σuk = α1α2(2α1 + 1)d(xk,S) + 2α2

1ηk. (5.51)

Thus, (5.44), (5.50) and (3.46) give

ρc(p̄
I
k) ≥ 1 − (σuk )

2,

Then, p̄Ik satisfies condition (5.8) if xk is sufficiently close to x∗ and k is sufficiently large
so that 1 − (σuk )

2 > β1.
Second we prove that p̄Ik satisfies (5.10). Let p̄Ik satisfy (5.8). From (5.50), (3.46) we

have

‖Θk‖2 − ‖Jk p̄Ik + Θk‖2 ≥
(

1 − (σuk )
2
)

‖Θk‖2. (5.52)

Using (5.47), (5.43) and (5.52) we obtain

ρθ(p̄
I
k) ≥ 1 − ν2α2

2‖Θk‖2 + 2να2‖Jk p̄Ik + Θk‖
1 − (σuk )

2
,

≥ 1 − ν2α2
2‖Θk‖2 + 2να2σ

u
k‖Θk‖

1 − (σuk )
2

,

≥ 1 − α1α
2
2d(xk,S)2 + 2α1α2σ

u
kd(xk,S)

1 − (σuk )
2

. (5.53)

Then, if xk is sufficiently close to the solution x∗ and k is sufficiently large, the second
term in (5.53) can be made less than (1 − β2), hence p̄Ik satisfies condition (5.10). �

Now we provide the main result on the behavior of the sequence {xk} generated by
the ITREBO-GN method for the underdetermined case. The proof of the theorem parallels
that of Theorem 3.3.

Theorem 5.3 Let m ≤ n and let Assumptions 1, 2 and 6 hold. Then the sequence {xk}
generated by the ITREBO-GN method converges to x∗ q-superlinearly if limk→∞ ηk = 0.
Moreover the convergence rate is q-quadratic if ηk = O(‖Θk‖).

Proof. Let k̂ be sufficiently large so that φu in (5.29) satisfies φuk ≤ 1
2 and ηk ≤

min{ηmax, 1/(4α1)} for k ≥ k̂. Let ψ2 ≤ min{ς, ρu}, where ς and ρu are given in Lemma
5.1 and Lemma 5.4 respectively, and k̄ ≥ k̂ be such that if xk ∈ Bψ2

(x∗) and k ≥ k̄ then

p̄Ik satisfies (5.8) and (5.10). Finally, let ζ < ψ2

1+2α1
. Fix k ≥ k̄ and xk ∈ Bζ(x

∗).
We begin showing that if xk ∈ Bζ(x

∗) then xl ∈ Bψ2
(x∗) for l > k. We proceed by

induction. First, we show that xk+1 ∈ Bψ2
(x∗). In fact, by (3.22) we have ‖xk+1−x∗‖ =



82 CHAPTER 5. AN INEXACT GAUSS-NEWTON METHOD

‖xk + p̄Ik − x∗‖ ≤ ζ + ‖pIk‖. Thus by (5.7) and (5.15) and the definition of ζ, we get
‖xk+1 − x∗‖ ≤ (1 + α1)ζ ≤ ψ2. Second, we assume xk+1, . . . , xk+m−1 ∈ Bψ2

(x∗), and
show that xk+m ∈ Bψ2

(x∗). From (5.28) it follows

d(xk+l,S) ≤ φuk+l−1 d(xk+l−1,S) ≤ 1

2
d(xk+l−1,S) ≤ · · · ≤

(

1

2

)l−1

φuk d(xk,S) ≤ ζ
(1

2

)l
,

for l = 1, . . . ,m. Thus,

‖xk+m − x∗‖ ≤ ‖xk+m − xk+m−1‖ + · · · + ‖xk − x∗‖

≤
m−1
∑

l=0

‖p̄Ik‖ + ζ

≤ α1

m−1
∑

l=0

d(xk+l,S) + ζ,

where the last inequality follows from (5.7) and (5.15), and

‖xk+m − x∗‖ ≤ (α1

m−1
∑

l=0

(1

2

)l
+ 1)ζ ≤ (α1

∞
∑

l=0

(1

2

)l
+ 1)ζ = (2α1 + 1)ζ ≤ ψ2,

where the last inequality is due to the choice of ζ. Note that we have xk+l = xk+l−1 +
p̄Ik+l−1 for l > 0. Moreover, letting p > q ≥ k we have

‖xp − xq‖ ≤
p−1
∑

l=q

‖p̄Il ‖ ≤ α1

∞
∑

l=0

(1

2

)l
ζ = 2α1ζ.

This means that {xk} is a Cauchy sequence and hence it converges. Since x∗ is a
limit point we conclude limk→∞ xk = x∗. To establish the convergence rate of {xk}, let
k ≥ k̄ sufficiently large so that xk+j+1 ∈ Bψ2

(x∗) for j ≥ 0. By (5.15) and (5.28) we
obtain

‖p̄Ik+j+1‖ ≤ ‖p̄Nk+j+1‖ ≤ α1 d(xk+j+1,S) ≤ α1φ
u
k+j d(xk+j,S) ≤ 1

2
α1 d(xk+j ,S).

Then, we proceed as above and using ‖xk+1 − x∗‖ ≤ ∑∞
j=0 ‖p̄Ik+j+1‖, and (5.28) we get

‖xk+1 − x∗‖ ≤ α1

∞
∑

j=0

d(xk+j+1,S)

≤ α1

∞
∑

j=0

(

1

2

)j

d(xk+1,S)

≤ 2α1φ
u
k d(xk,S).

Hence
‖xk+1 − x∗‖
‖xk − x∗‖ ≤ 2α1φ

u
k d(xk,S)

d(xk,S)
= 2α1φ

u
k .
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Since limk+∞ φuk = 0, xk converges to x∗ q-superlinearly. If moreover ηk = O(‖Θk‖),
then ηk = O(d(xk,S)) by (3.46) and hence for k sufficiently large there exists φ̄ > 0 such
that φuk ≤ φ̄ d(xk,S), i.e.

‖xk+1 − x∗‖ ≤ 2α1φ
u
k d(xk,S) ≤ 2α1φ̄ d(xk,S)2 ≤ 2α1φ̄ ‖xk − x∗‖2,

and then the q-quadratic rate is guaranteed. �





Research perspectives

In this thesis, we have presented trust-region quadratic methods for solving bound-
constrained least-squares problems and nonlinear feasibility problems. The presented
TREBO-LM and TREBO-GN methods, have been studied from both a theoretical and prac-
tical point of view and the TREBO-GN method has been coded into the Matlab imple-
mentation TRESNEI. An inexact version of the TREBO-GN method, named ITREBO-GN,
was also proposed and its local convergence properties were analyzed.

The next step in our research will consist in implementing the ITREBO-GN method
and studying its numerical behaviour. The core of the implementation will be the use of
iterative solvers for the solution of the trust-region problem and the choice of a suitable
accuracy requirement in the computation of the inexact trust-region step. In particu-
lar, modules from the GALAHAD [35] package, as e.g. LSTR or GLTR, would serve our
purposes. As a consequence, TRESNEI will be generalized to include the ITREBO-GN

implementation and Fortran 95 will be the adequate programming language used.
Another issue we are interested in addressing, is the use of ∞-norm trust-regions.

All the trust-region methods presented in this thesis attempt to solve a spherical trust-
region problem at each iteration. Then the feasibility is enforced by projecting the
trust-region step onto the box Ω defined by the simple bounds. Since the projected
trust-region step may not produce a sufficient reduction in the quadratic model and
in the objective function, the solution of the trust-region problem may result to be
useless. An alternative approach takes into account the shape of the bound constraints
and consider an ∞-norm trust-region problem. Taking advantage of the geometry of
the problem, the current quadratic model is minimized over a box resulting from the
intersection of Ω and the trust-region so that the feasibility is automatically preserved.

Finally, a further reasearch development concerns the introduction of filter tech-
niques in our trust-region framework [23]. It is well known that the combination of filter
techniques with the trust-region strategy enhances the efficiency and the robustness of
the trust-region method and yields to strong global convergence properties. Specifically,
the filter allows a nonmonotone behaviour of the values of the objective function at the
iterates and, under reasonable assumptions, every limit point of the sequence generated
is actually a zero-residual solution to the bound-constrained problem.
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Appendix A

This appendix gives prerequisites to our study. We give an account of the convergence
of sequences of vectors, multivariable calculus and the generalization of the inverse for
any nonzero matrix via its pseudoinverse. Also, we summarize local convergence results
for iterative methods applied to nonlinear least-squares problems.

A.1 Convergence of sequences

Let x∗ ∈ IRn and {xk} be a sequence of vectors in IRn. The sequence is said to converge
to x∗, i.e. limk→∞ xk = x∗, if

lim
k→∞

‖xk − x∗‖ = 0,

where ‖·‖ is a norm on IRn. Moreover, the sequence {xk} is said to be a Cauchy sequence
if, given ǫ > 0, there is an integer N such that ‖xm−xl‖ < ǫ for all m, l > N . Note that
in IRn, a sequence {xk} converges if and only if it is a Cauchy sequence.

We say that x∗ is a limit point of the sequence {xk} if there is some infinite sub-
sequence of indices k1, k2, . . . , such that limj→∞ xkj

= x∗. An isolated limit point x∗ is
such that there exists a neighbourhood of x∗ in which x∗ is the only limit point.

The following lemma gives a characterization of the sequences in IRn which have
isolated limit points.

Lemma A.1 [57, Lemma 4.10] Let x∗ be an isolated limit point of a sequence {xk} in
IRn. If {xk} does not converge then there is a subsequence {xkj

} which converges to x*
and an ǫ > 0 such that ‖xkj+1 − xkj

‖ ≥ ǫ.

Let {xk} ⊂ IRn be a sequence that converges to x∗ and ‖ · ‖ a norm in IRn. The
convergence rate of the sequence {xk} can be classified as follows.

− If there exists a constant c ∈ (0, 1) and an integer K ≥ 0 such that for all k ≥ K,

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖,

then {xk} is said to be q-linearly convergent to x∗.

− If

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0,

then {xk} is said to converge q-superlinearly to x∗.
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− If there exist constants p > 1, c > 0 and K ≥ 0 such that

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖p,

for each k ≥ K, then {xk} is said to converge to x∗ with q-order p. If p = 2 then
the convergence is said to be q-quadratic.

A.2 Multivariable calculus

Let f : IRn → IR be a multivariable function. Then, it is said to be differentiable if all
its partial derivatives

∂f(x)

∂xi
= lim

h→0

f(x+ hei) − f(x)

h
, i = 1, . . . , n,

exist, where ei is the i-th coordinate vector in IRn. If this is the case, then we define the
gradient of f as the vector that groups all its partial derivatives, and we denote it by

∇f(x) =









∂f(x)
∂x1

...
∂f(x)
∂xn









.

If f is differentiable, and all derivatives of f are continuous with respect to x, then we
say that f is continuously differentiable. The second partial derivatives of f are defined
by

∂2f(x)

∂xixj
=

∂

∂xi

(

∂f(x)

∂xj

)

, 1 ≤ i, j ≤ n.

If all second partial derivatives of f exist, then f is said to be twice differentiable; if,
furthermore, all second partial derivatives of f are continuous, we say that f is twice
continuously differentiable. The Hessian matrix ∇2f(x) of f at x is the n × n matrix
defined as

(

∇2f(x)
)

ij
=
∂2f(x)

∂xixj
, 1 ≤ i, j ≤ n.

Let C be a convex subset of IRn. A function f : IRn → IR is called convex over the
set C if

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y), for all x, y ∈ C,α ∈ [0, 1].

The function f is called strictly convex over the set C if the above inequality is strict for
all x, y ∈ C with x 6= y and all α ∈ (0, 1).

Let f be twice continuously differentiable over IRn. If ∇2f(x) is positive semidefinite
for every x ∈ C , then f is convex over C. If ∇2f(x) is positive definite for every x ∈ C,
then f is strictly convex over C, [6, Proposition B.4].

It follows the Taylor’s Theorem for multivariable functions.
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Theorem A.1 [49, Theorem 1.2.2] Let f : IRn → IR be twice continuously differentiable
in a neighborhood of a point x ∈ IRn. Then for p ∈ IRn and ‖p‖ sufficiently small

f(x+ p) = f(x) + ∇f(x)T p+
1

2
pT∇2f(x)p+ o(‖p‖2),

where ‖ · ‖ denotes a vector norm in IRn.

Now we consider a vector-valued function F : IRn → IRm and let (F (x))i = Fi(x)
with Fi : IRn → IR, i = 1, . . . ,m. We say that F is continuously differentiable if each
component Fi, i = 1, . . . ,m, is continuously differentiable. The derivative of F at x is
called the Jacobian matrix of F at x and it is denoted by J(x) where

(J(x))i,j =
∂Fi(x)

∂xj
, i = 1, . . . , m, j = 1, . . . , n.

It follows the Mean Value Theorem for vector-valued functions.

Theorem A.2 [17, Lemma 4.1.9] Let F : IRn → IRm be continuously differentiable in
an open convex set D ⊂ IRn. For any x, x+ p ∈ D,

F (x+ p) − F (x) =

∫ 1

0
J(x+ tp)p dt.

Finally, let ‖ · ‖ denote a vector norm and the induced matrix norm. We say that a
matrix-valued function G : IRn → IRm×n is Lipschitz continuous in an open set D ⊂ IRn

with Lipschitz constant γ, if there exists a positive constant γ such that for all x, y ∈ D

‖G(x) −G(y)‖ ≤ γ‖x− y‖. (A.1)

A.3 Nonlinear least-squares: local theory

Let consider the nonlinear least-squares problem

min
x∈IRn

θ(x) =
1

2
‖Θ(x)‖2, (LS)

where θ : IRn → IR and Θ : IRn → IRm. In this section we collect results for the local
convergence of the Gauss-Newton and the Levenberg-Marquardt methods presented in
Section 2.2.1.

Theorem A.3 establishes local convergence results for the Gauss-Newton method
assuming that the Jacobian J of Θ is full column rank at a local minimizer x∗.

Theorem A.3 [17, Theorem 10.2.1, Corollary 10.2.2] Let m ≥ n, Θ : IRn → IRm

and let θ = 1
2‖Θ‖2 be twice continuously differentiable in an open convex set D ⊂ IRn.

Let the Jacobian J of Θ be Lipschitz continuous on D with Lipschitz constant γ and
‖J(x)‖ ≤ α, ∀x ∈ D. Assume that there exist x∗ ∈ D and λ, σ ≥ 0 such that ∇θ(x∗) =
J(x∗)TΘ(x∗) = 0, λ is the smallest eigenvalue of J(x∗)TJ(x∗), and

‖(J(x) − J(x∗))TΘ(x∗)‖ ≤ σ‖x− x∗‖,
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for all x ∈ D. If σ < λ, then, for any c ∈ (1, λ/σ), there exists ǫ > 0 such that for all
x0 ∈ Bǫ(x

∗), the sequence generated by Gauss-Newton (2.7) is well-defined, converges to
x∗, and satisfies

‖xk+1 − x∗‖ ≤ cσ

λ
‖xk − x∗‖ +

cαγ

2λ
‖xk − x∗‖2,

and

‖xk+1 − x∗‖ ≤ cσ + λ

2λ
‖xk − x∗‖ < ‖xk − x∗‖.

If Θ(x∗) = 0, then {xk} converges q-quadratically to x∗.

The local properties of the normal flow method are proved in Theorem A.4 assuming
the Jacobian J full row rank at x∗ such that Θ(x∗) = 0.

Theorem A.4 [70, Theorem 2.1] Let m ≤ n and Θ : IRn → IRm be continuously
differentiable in an open convex set D ⊂ IRn. Suppose that in the set D the Jacobian J of
Θ is full rank, Lipschitz continuous with Lipschitz constant γ and such that ‖J(x)+‖ ≤ µ.
Let η > 0 and Dη be defined as Dη = {x ∈ D : ‖y − x‖ < η ⇒ y ∈ D}. Then there is
an ǫ > 0 depending only on γ, µ and η such that if x0 ∈ Dη and ‖Θ(x0)‖ < ǫ, then the
sequence generated by the normal flow method (2.8) is well-defined and converges to a
point x∗ ∈ D such that Θ(x∗) = 0. Furthermore, there is a constant β for which

‖xk+1 − x∗‖ ≤ β‖xk − x∗‖2, k = 0, 1, . . . .

Theorem A.5 gives the convergence properties of the Levenberg-Marquardt method
which are similar to those of the Gauss-Newton method given in Theorem A.3.

Theorem A.5 [17, Theorem 10.2.6] Let the conditions of Theorem A.3 be satisfied, and
let the sequence {µk} of nonnegative scalars be bounded by b > 0. If σ < λ, then for any
c ∈ (1, (λ + b)/(σ + b)), there exists ǫ > 0 such that for all x0 ∈ Bǫ(x

∗), the sequence
generated by the Levenberg-Marquardt

xk+1 = xk − (JTk Jk + µkIn)
−1JTk Θk,

is well-defined and satisfies

‖xk+1 − x∗‖ ≤ c(σ + b)

(λ+ b)
‖xk − x∗‖ +

cαγ

2(λ+ b)
‖xk − x∗‖2,

and

‖xk+1 − x∗‖ ≤ c(σ + b) + (λ+ b)

2(λ+ b)
‖xk − x∗‖ < ‖xk − x∗‖.

If Θ(x∗) = 0 and µk = O(‖JTk Θk‖), then {xk} converges q-quadratically to x∗.
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A.4 The pseudoinverse

Any matrix A ∈ IRm×n can be written as

A = UΣV T , (A.2)

where U ∈ IRm×m and V ∈ IRn×n are orthogonal matrices and Σ ∈ IRm×n is a diagonal
matrix, Σ = diag(σ1, . . . .σp), with p = min{m,n} and σi ≥ 0, i = 1, . . . p. The non-
negative scalars σi, i = 1, . . . , p, are called the singular values of A and (A.2) is called
the singular value decomposition (SVD). Assume that σ1 ≥ σ1 ≥ · · · ≥ σp, so that σ1

denotes the largest singular value of A.
If A has rank r and r > 0, then A has exactly r strictly positive singular values so

that σr > 0 and σr+1 = · · · = σp = 0. If A has full rank, all its singular values are
nonzero. The singular values of A are the square roots of the eigenvalues of ATA (if
m ≥ n) or of AAT (if m < n). If A is symmetric, its singular values are the absolute
values of its eigenvalues [28].

It follows a perturbation result for singular values of arbitrary matrices.

Theorem A.6 [42, Corollary 7.3.8] Let A,B ∈ IRm×n and let p = min{m,n}. If σi
and ψi, i = 1, . . . , p, are the singular values of A and B respectively then

|σi − ψi| ≤ ‖A−B‖, i = 1, . . . , p.

A classical generalization of the inverse that exists for any nonzero matrix A is the
pseudoinverse, denoted by A+. Let r be the rank of A and let (A.2) be its SVD. The
matrix A+ ∈ IRn×m is defined as

A+ = V Σ+UT , (A.3)

where Σ+ ∈ IRn×m is a diagonal matrix, Σ+ = diag(σ+
1 , . . . .σ

+
p ), with

σ+
i =







1

σi
for i = 1, . . . , r,

0 for i = r + 1, . . . , p.

For the matrix 2-norm, it is straightforward to show that ‖A‖ = σ1. The value of
the 2-norm of A+ is also related to the singular values of A. When A has rank r > 0,
then σr is the smallest nonzero singular value of A. Since the nonzero diagonal entries
of A+ are the reciprocals of the nonzero singular values of A, the relation (A.3) shows
that σr is the largest singular value of A+. It follows immediately that

‖A+‖ =
1

σr
. (A.4)

Finally, if A has full column rank then

A+ = (ATA)−1AT and A+A = In.

On the other hand, if A has full row rank then

A+ = AT (AAT )−1 and AA+ = Im.
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