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Abstract. — The evolution of a geothermal system is studied. A mathematical model is pro-

posed and the corresponding free boundary problem is formulated in a one-dimensional geome-
try. A situation corresponding to the geothermal field in Larderello, Tuscany (Italy) is considered,

showing that the problem has two characteristic time scales, related to the motion of interface
and di¤usion of vapor. Since the former is much slower, a quasi-steady approximation can be in-

troduced and solved, obtaining a qualitative description of the evolution of the Larderello basin
from a liquid-dominated to a vapor-dominated situation. This is in agreement with the geological

results.
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1. Introduction

A geothermal system consists of three essential components: the heat source, the
reservoir and the fluid. The heat source can be a magmatic intrusion located at a
relatively small depth (5 to 10 km) producing temperatures of 500–700 �C in the
surrounding rocks [10]. The reservoir is a complex of fractured permeable rocks
confined by two impermeable layers and is saturated by water, in liquid and/or in
vapor phase. The lower boundary of the reservoir is called K-horizon, while the
upper limit is perforated by wells through which the hot fluid is extracted and its
energy is exploited in geothermal power plants, [10], [7], [22].

Of course, this is just a very schematic description, since in practice chemi-
cals are carried by the fluid, the geometry of the reservoir can be very com-
plicated, with several interconnected layers, recharge channels can be present
through which meteoric water or artificially pumped water can feed the reser-
voir, etc.

Geothermal systems are usual classified as water-dominated or vapor-
dominated [22]. In the first case the fluid (often called ‘‘the energy vector’’, [7]) is
mainly in liquid phase, while in the second case there is a significant fraction
in vapor phase. The first experiment in electric energy generation from geother-
mal sources (an electric generator driven by geothermal steam put into opera-
tion in 1904 by the Prince Piero Ginori Conti) took place in Larderello (a site in
Tuscany, Italy) where several power plants are still operating and the production
of geothermal energy continues up to the present [23], [8].



We refer to the Larderello basin for the following reasons. Larderello is con-
sidered as an evolved geothermal basin. Indeed, geologically there is evidence
that the Larderello basin was formed as a water dominated system. The transfor-
mation into a vapor dominated basin seems caused by superficial manifestations
[21], [4].

In this paper we present a simplified one-dimensional mathematical model
aimed at describing such evolution, starting from the may papers that have been
devoted to empirical and more sophisticated studies of this phenomenon [20],
[13], [15], [3], [17]. The main simplifications that we will introduce, besides of the
1-D geometry, are the following: ðiÞ we assume that the fluid is pure water, ðiiÞ
we neglect recharge, ðiiiÞ we suppose that the motion of the fluid does not modify
the temperature profile of the rocks in the reservoir, ðivÞ we neglect the width of
the capillary fringe separating the zone of liquid water from the vapor zone. This
means that, from the mathematical point of view, the problem is a typical free
boundary problem, in which the movement of the interface is an unknown func-
tion since it is determined by evaporation/condensation dynamics.

We discuss the time scales of the two phenomena involved (movement of the
free boundary and di¤usion of vapor) and we give the analytical solution of the
quasi-steady dynamics that provides an immediate interpretation of the historical
evolution of the basin. The results are in good agreement with the papers that
have studied the evolution of the Larderello basin with empirical or semiempiri-
cal models with a more sophisticated numerical modelling.

The research was supported by the regional administration of Tuscany and
was led and coordinated by Professors Antonio Fasano and Fabio Rosso. We
also acknowledge the fruitful cooperation with ENEL and International Institute
for Geothermal Research, Pisa.

2. Physical hypothesis and geometry

Let consider a geothermal fluid composed by water in a vapor and liquid state.
We denote by x the vertical axis pointing upward (see Figure 1). The bottom
and the top of the geothermal reservoir correspond to x ¼ Li, and to x ¼ Ls,
Li < Ls < 0, respectively. The ground surface corresponds to x ¼ 0, so that the
domain of interest is ½Li;Ls�. We assume that the width of the capillary fringe is
negligible with respect to the vertical dimensions of the reservoir and thus that the
liquid and the vapor phase are separated by a sharp interface, x ¼ sðtÞ, that may
vary in time. So, the lower part of the domain Li a xa sðtÞ, is filled by liquid,
while in the upper part of the domain, sðtÞa xaLs, there is only vapor. At
x ¼ Ls the vapor pressure is known and we denote it as Ps. The latter is measured
essentially depends on the exploitation of the basin.

According to the experimental data [2], the temperature within the reservoir is
linear

TðxÞ ¼ Ts þ gðLs � xÞ; Li a xaLs;ð1Þ

where g > 0, constant in time, is the known thermal gradient.
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3. The mathematical model

We denote by Pl the liquid pressure. We have

PlðxÞ ¼ PlðsðtÞÞ þ rlgðsðtÞ � xÞ; Li < x < sðtÞaLs < 0;ð2Þ

where rl is the density of the liquid and g the gravity acceleration.
The domain sðtÞ < x < Ls, is saturated by vapor whose continuity equation

is

q

qt
ðfrÞ þ q

qx
ðfrvÞ ¼ 0; sðtÞ < xaLs;ð3Þ

where f is the porosity of the medium assumed uniform and constant, v the
velocity of the vapor and r its density. The vapor is assumed to behave as a per-
fect gas, i.e.

r ¼ P

rT
;ð4Þ

where P the vapor pressure and r the molar vapor constant. We recall Darcy’s
law

v ¼ � K

fm

�qP
qx

þ rg
�
;ð5Þ

Figure 1. The one-dimensional domain is the interval ½Li;Ls� that is splitted into two
parts: the upper part is saturated by vapor while the bottom by the liquid phase. The tem-
perature decreases linearly from Ts to Ti. At x ¼ Ls the vapor pressure is Ps (known)
while the bottom of the reservoir, x ¼ Li, is impermeable.
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where m is the vapor viscosity and K the permeability of the medium. Thus we
rewrite (3) as

1

T

qP

qt
� K

fm

q

qx

P

T

�qP
qx

þ g

r

P

T

�� �
¼ 0; sðtÞ < xaLs < 0;ð6Þ

where T is given by (1).

3.1. Free boundary conditions

The continuity of the mass flux across sðtÞ entails (see [5])

rðv� _ssÞ ¼ �rl _ss;ð7Þ

and, with a reasonable approximation, rv ¼ �rl _ss, so that (5) yields

_ss ¼ r

rl

K

fm

�qP
qx

þ rg
�����

x¼sðtÞ
ð8Þ

¼
ð4Þ

P

rTrl

K

fm

�qP
qx

þ P

rT
g
�����

x¼sðtÞ
:

A second free boundary condition is provided by the Clapeyron’s law that
gives the relationship between P and T at the liquid-vapor interface. In the range
of temperature relevant to our problem this law takes the empirical form

P�ðTÞ ¼ a exp b
T � 273

T

� �
;ð9Þ

where T is �K, P in Pascal and a and b have values a ¼ 961; 7 Pa, b ¼ 17:35.
Consequently the second condition on the free boundary is

PðsðtÞ; tÞ ¼ P�ðTðsðtÞÞÞ;ð10Þ

and (8) rewrites as

_ss ¼ P�ðTðsðtÞÞÞ
rTðsðtÞÞrl

K

fm

�qP
qx

����
sðtÞ

þ P�ðTðsðtÞÞÞ
rTðsðtÞÞ g

�
:ð11Þ

We remark that (10) requires that the following conditions have to be
fulfilled

Pðx; tÞ < P�ðTðxÞÞ; in the vapor domain; i:e: sðtÞ < xaLs;ð12Þ
Pðx; tÞ > P�ðTðxÞÞ; in the liquid domain; i:e: Li a x < sðtÞ;ð13Þ

in order to have a physically consistent solution. We easily realize that (2) satisfies
(13). We shall analyze (12) in Section 3.3.
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3.2. The problem

To complete the information, we need to give the pressure at the reservoir
top, PðLs; tÞ ¼ Ps (already introduced in Section 2) and the initial conditions
sð0Þ ¼ so, Li < so < Ls, and Pðx; 0Þ ¼ PoðxÞ, so < x < Ls, fulfilling (12) and (10),
i.e. PoðxÞ < P�ðTðxÞÞ and PoðsoÞ ¼ P�ðTðsoÞÞ.

Thus the mathematical problem to be solved is the following: find a time
t > 0, a function sðtÞ a C½0; t�BC1ð0; tÞ such that sðtÞ a ðLi;LsÞ and a function
Pðx; tÞ continuous in Dt ¼ fðx; tÞ : sðtÞa xaLs; 0a ta tg, C2;1ðDtÞ having Px

continuous up to x ¼ sðtÞ, t a ð0; tÞ, so that, for TðxÞ given by (1), the system is
fulfilled

qP

qt
� KT

fm

q

qx

P

T

�qP
qx

þ g

r

P

T

�� �
¼ 0; ðx; tÞ a Dt;

PðLs; tÞ ¼ Ps; t a ½0; t�;
PðsðtÞ; tÞ ¼ P�ðTðsðtÞÞÞ; t a ½0; t�;

_ss ¼ P�ðTðsÞÞ
rTðsÞrl

K

fm

�qP
qx

����
s

þ P�ðTðsÞÞ
rTðsÞ g

�
; t a ð0; tÞ;

Pðx; 0Þ ¼ PoðxÞ; x a ½so;Ls�;
sð0Þ ¼ so; so a ðLi;LsÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð14Þ

According to the results [9] the problem has one unique solution provided that
Po a C½so;Ls� and PoðLsÞ ¼ Ps, PoðsoÞ ¼ P�ðTðsoÞÞ. We remark again that the
solution is physically consistent only if (12) holds true.

3.3. Discussing time scales

To analyze the time scales that characterize the problem, we normalize the vari-
ables (excluding time) in the following way

~xx ¼ x� Ls

L
; ) ~xx a ½�1; 0�;ð15Þ

~ss ¼ s� Ls

L
; ) ~ss a ½�1; 0�;ð16Þ

~TT ¼ T

Ts

;ð17Þ

~PP ¼ P

Ps

;ð18Þ

~PP�ð ~TTÞ ¼ a

Ps

exp b
~TT � 273=Ts

~TT

� �
;ð19Þ

129a free boundary model for the evolution of a geothermal system



where L ¼ Ls � Li ¼ 1200 m (see Table 1). Equation (14)1 rewrites as

t1
q ~PP

qt
� ~TT

q

q~xx

~PP
~TT

�q ~PP
q~xx

þ a
~PP
~TT

�� �
¼ 0;ð20Þ

where

t1 ¼
fmL2

KPs

; and a ¼ gL

rTs

:ð21Þ

Referring to the parameters of Table 1 we have t1Q50 years, while aQ4 � 10�2.
We remark that the estimate of t1 is close to the one often appearing in the liter-
ature concerning the Larderello reservoir, [1].

In turn equation (14)4 rewrites as

d~ss

dt
¼ t2

~PP�ð ~TTð~ssÞÞ
~TTð~ssÞ

�q ~PP
q~xx

����
~ss

þ a
~PP�ðTð~ssÞÞ
~TTð~ssÞ

�
;ð22Þ

where ~PP�ð ~TTÞ is given by (19) and where

t2 ¼ t1
rTsrl
Ps

Q9000 years:

This datum is confirmed by the geological researches, which show that the evolu-
tion of the Larderello basin towards a ‘‘vapor dominated’’ system took place on
temporal scalesP 103 years.

In Table 1 we list the values of the constants involved in the model. The
parameters refer to the geothermal reservoir of Larderello, Tuscany (see also
[11]).

The problem has clearly two di¤erent time scales. If our analysis is confined to
‘‘short’’ periods, the free boundary is practically immobile and the dimensionless

Symbol Description Value Units

Ls Reservoir top depth �1300 m
Li Reservoir bottom depth �2500 m
Ts Temperature at the top of the reservoir 650 �K
g Thermal gradient 0.04 �K/m
Ps Vapor pressure at the top of the reservoir 3; 1� 106 Pa
r Universal gas constant over H2O molar mass 4; 6� 102 J/Kg�K
rl Liquid water density 103 Kg/m3

f Medium porosity 10�2 –
g Standard gravity 9; 8 m/s2

m Vapor viscosity 2� 10�5 Pa � s
K Medium permeability 3� 10�16 m2

Table 1. Table of parameters referring to the reservoir of Larderello.
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vapor pressure ~PP evolves from the initial value PoðxÞ=Ps to the stationary profile.
Such a problem is not particularly interesting from a mathematical point of view
(a standard parabolic problem in a fixed domain) nor for applications (indeed,
the ‘‘initial’’ pressure PoðxÞ is not easily estimated).

On the contrary, the motion of the interface over long periods can be much
more interesting to understand the trend of the geothermal reservoir in terms
of the condition of exploitation (the known pressure Ps). Thus, in the time scale
of the order of centuries the vapor pressure is in its stationary configuration,
while the interface is moving. Thus, selecting t2 as characteristic time and intro-
ducing

~tt ¼ t

t2
;

the problem to be studied has the form

q

q~xx

~PP
~TT

�q ~PP
q~xx

þ a
~PP
~TT

�� �
¼ 0; ~xx a ð~ssð~tt Þ; 0Þ; ~tt > 0;

~PPð0; ~tt Þ ¼ 1; ~tt > 0;
~PPð~ss; ~tt Þ ¼ ~PP�ðTð~ssÞÞ; ~tt > 0;

d~ss

d~tt
¼

~PP�ð ~TTð~ssÞÞ
~TTð~ssÞ

�q ~PP
q~xx

����
~xx¼~ss

þ a
~PP�ð ~TTð~ssÞÞ
~TTð~ssÞ

�
; ~tt > 0;

~ssð0Þ ¼ ~sso:

8>>>>>>>>>><
>>>>>>>>>>:

ð23Þ

Recalling now (1), we can easily rewrite the problem (23) in the ‘‘temperature-
time domain’’. We remark that T ¼ 1 corresponds to the top of the basin while
1þ gL

Ts
to the bottom. Indeed, we have

~TT ¼ 1� gL

Ts

~xx; ) ~TT a
�
1; 1þ gL

Ts

�
Qð1; 1:07Þ;ð24Þ

and define ~ssðtÞ ¼ ~TTð~ssÞ as the temperature at which the change of state occurs, i.e.

~ss ¼ 1� gL

Ts

~ss;ð25Þ

problem (23)1–(23)3 can be rewritten as (we omit the ‘‘e’’ for simplicity)

q

qT

P

T

�qP
qT

� d
P

T

�� �
¼ 0; T a ð1; sðtÞÞ

Pð1Þ ¼ 1;

PðsÞ ¼ P�ðsÞ;

8>>><
>>>:ð26Þ

where d ¼ aTs

gL
Q0:75, and P�ðsÞ is given by (19) with ~TT ¼ s.
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The solution to (26) is

PðT ; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðsÞ
1� d

ðT 2 � T 2dÞ þ T 2d

r
; 1aT a s;ð27Þ

where

AðsÞ ¼ ð1� dÞP
�ðsÞ2 � s2d

s2 � s2d
:ð28Þ

The behavior of AðsÞ, when s a ð1; 1:07�, is shown in Fig. 2.
We note that, for any s > 1:01 it is P�ðTÞ > PðT ; sÞ, 1 < T < s, as required

by the compatibility condition i.e. (12). As an example, Fig. 3 displays the vapor
pressure and the Clapeyron pressure for 0 < T < s, with s ¼ 1:04.

Taking (27) into account, the free boundary equation becomes

_ss ¼
�gL
Ts

�2 P

T

�qP
qT

� d
P

T

�� �
T¼s

¼
�gL
Ts

�2
AðsÞ;

sð0Þ ¼ so;

8<
:ð29Þ

where so a
�
1; 1þ gL

Ts

�
is the initial temperature of the interface.

Looking at Figure 2 we realize that, if the interface is su‰ciently far from the
top of the reservoir (where AðsÞ diverges), we can assume A constant A ¼ A0 ¼
Aðs0Þ. So, we obtain a linear evolution of the free boundary

sðtÞ ¼ A0

�gL
Ts

�2
tþ so;ð30Þ

where, for instance, A0

�gL
Ts

�2
Q4:9 if A0 ¼ 103.

Figure 2. Plot of AðsÞ. The function diverges as s ! 1.

132 l. meacci, a. farina and m. primicerio



Figure 4 shows the linear approximation (dashed line) given by (30) and the
exact solution to problem (29) (dotted line) when s0 ¼ �0:8, namely s0 ¼ 1:06.

Figure 5 corresponds to, s0 ¼ �0:13 (i.e. the interface is close to the top of
the basin) namely s0 ¼ 1:01 and A0 ¼ 1:25� 103. Even in such a configuration,
the linear approximation (30) is su‰ciently close to the exact solution to (29). The
above results highlight that the complete model can be considerably simplified
without substantially losing its physical consistency. We refer the readers to [12]
where the full problem is numerical solved by means a moving mesh finite ele-
ments method.

Figure 3. Plot of P�ðTÞ, PðT ; sÞ given by (27), for 1 < T < s, with s ¼ 1:04.

Figure 4. sðtÞ given by (30) in dotted line considering s0 ¼ 1:06, i.e. s0 ¼ �0:8, and
A0 ¼ 103. The dashed line corresponds to the solution of (29).
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4. Conclusions: Historical evolution of Larderello basin

The results obtained describes qualitatively the historical evolution of the Larder-
ello basin from the water-dominated to a vapor-dominated system. Of course our
solution cannot be presented as a quantitatively exact description of the phenom-
enon that depends on the unknown ‘‘initial’’ conditions.

An important characteristic of the model is the fact that the system evolution,
i.e. the motion of the interface away from the top of the reservoir, takes place
over a time scale of millennia, whereas the e¤ects of di¤usion of the vapor have
characteristic times of the order of decades. Such a conclusion agrees with the
results of geological studies, despite the drastic simplifications introduced in our
model: in particular, 1-D geometry, the absence of chemicals dissolved in water
and the absence of recharge.

We note that recharge could be simulated by modifying the boundary condi-
tion at the reservoir. Of course, recharge will slow down the motion of the inter-
face, thus enhancing the di¤erence between the two time scales.
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