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Abstract

We present a mathematical model for the process of frying a rather
thick sample of an indeformable porous material saturated with water
(e.g. a potato slice).

The model is based on thermodynamical arguments and results in a
initial-boundary value problem for a system of equations satisfied by the
temperature and vapour content, with a free boundary separating the
region saturated with water and the vapour region.

We provide some results of numerical simulations.

In questo lavoro viene presentato un modello per il processo di frit-
tura per immersione. Si considera il processo applicato ad un campione
il cui spessore sia sufficientemente grande da rendere trascurabili le de-
formazioni dovute alla cottura come accade, per esempio, nelle comuni
patatine fritte.

Lo sviluppo del modello è basato su considerazioni termodinamiche ed
ha la forma di un sistema di equazioni differenziali alle derivate parziali
con frontiera libera, quest’ultima rappresentata dal fronte di desaturazione
dovuta alla vaporizzazione dell’acqua contenuta nel campione (modellato
come un mezzo poroso non deformabile). Le incognite del sistema rap-
persentano la temperatura all’interno del campione ed il vapore contenuto.
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1 Introduction

In the last decade, several papers have been devoted to the mathematical model
of frying, starting from [2] [3] that abandoned the purely phenomenological ap-
proach of previous attempts and analyzed and discussed the different phenomena
of mass and energy transfer that are involved in the process.

Referring to one-dimensional geometry with planar symmetry, a slab x ∈
(−L,L) of porous material saturated with water and having a given temperature
is considered to be put in contact, on the faces x = ±L, with an oil bath kept at
temperature T∞ above the boiling point of water. This is assumed to happen
starting from time t = 0 and frying is described as a coupling between heat
transfer (conduction and convection) and vapour migration in an undeformable
porous medium (see [1] and [8]).

As a matter of fact, this idealized situation exhibits most of the basic in-
gredients that seem to be relevant e.g. in the process of frying relatively thick
samples of potatoes. Moreover it is suitable for rather easy numerical simulation
and hence to possible experimental validation. Of course, once this preliminary
check is obtained, modification induced in the organic material by the thermal
history (see [8] [9] and e.g. [7] for an introduction to the influence of the process
on the result) as well as more realistic geometry will be taken into account.

But, even in the idealized situation described above, the problem is far from
being trivial. In a recent paper [5] a complete analysis of the phenomenon,
based on a correct application of the basic balance laws, has been performed.
There the mathematical model is formulated in terms of a non-standard free
boundary problem for a system of parabolic equations. Indeed, the region x ∈
(−L,L), t > 0 (of course, using symmetry the analysis is confined to (0, L)×<+)
is the union of four sub-region separated by free boundary: the water-saturated
part, the region of coexistence of vapour and water, the pure vapour region and
the crust.

Here, we present a simplified model in which the region of coexistence is
assumed to have a negligible thickness, while incorporating in the model the
correct Rankine-Hugoniot type conditions. Moreover, in the model that will be
presented and discussed, crust formation is neglected although a simple modi-
fication of the boundary condition on x = L is suggested in order to take this
effect into account.

Thus, only one free boundary and two regions are considered: region 1,
where the porous medium is completely saturated by water, and region 2 in
which the pores are filled by water vapour in thermodynamical equilibrium.

A crucial point is to assume that the porous medium is non-deformable
and thus frying processes of thin layers (e.g. tortilla chips, see [9]) will need a
substantially different model.

After evaluating the time scales, it will be possible to reach a partial dis-
entangling of the problem for the unknown temperature from the problem for
the unknown pressure, suggesting how to investigate the well-posedness of the
problem.

Finally, numerical simulations are shown for some specific cases.

2 The governing equations and the boundary
conditions

According to the discussion of the previous section, we write the balance equa-
tions in the two regions.

In region 1 (water-saturated porous medium), we have that pressure is con-
stant, since ∂p

∂x = 0 at x = 0 and the medium is assumed non-deformable (and
water compressibility is neglected). Thus, the only equation we have to consider
is the energy balance
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(ρc)1
∂T

∂t
− k1

∂2T

∂x2
= 0, (2.1)

where (ρc)1 and k1 are respectively heat capacity and conductivity in region 1,
that are essentially given by

(ρc)1 = (1− ε)ρscs + ερwcw, (2.2)

k1 = (1− ε)ks + εkw. (2.3)

In (2.2) and (2.3), we denoted by ε the porosity and ρ, c and k represent
density, specific heat and conductivity respectively, while suffixes s and w refer
to solid matrix and water, respectively.

In region 2 (solid + vapour) we have to consider mass balance in addition to
energy conservation. Indeed, vapour migration is induced by pressure gradient,
so that Darcy’s law implies

ε
∂ρv

∂t
− K

µ

∂

∂x

(
ρv

∂p

∂x

)
= 0, (2.4)

where suffix v refers to vapour and K, µ denote intrinsic permeability of the
porous medium and dynamic viscosity of vapour.

Passing to energy balance, we should consider that, in principle, heat capac-
ity and conductivity depend on ρv, but it is reasonable to assume that

(ρc)2 = (1− ε)ρscs + ερvcv ≈ (1− ε)ρscs, (2.5)

k2 = (1− ε)ks + εkv(ρv) ≈ (1− ε)ks. (2.6)

The most important difference with energy balance in region 1 is that now
a relevant role is played by convection. Indeed, we have

(ρc)2
∂T

∂t
− k2

∂2T

∂x2
− cv

K

µ

∂

∂x

(
ρv

∂p

∂x
(T − T0)

)
= 0, (2.7)

where T0 is the boiling point temperature at atmospheric pressure.
Let us pass to discuss the conditions on the external boundary and at the

initial time. For the latter, we have e.g.

T (x, 0) = T̄ < T0, 0 < x < L, (2.8)

where we may allow, in general, T̄ to depend on x. Moreover,for symmetry
reasons,

∂T

∂x
(0, t) = 0, t > 0. (2.9)

On the boundary x = L, we write

−k1
∂T

∂x
(L, t) = γ1(T (L, t)− T∞), 0 < t < t∗, (2.10)

and
−k2

∂T

∂x
(L, t) = γ2(T (L, t)− T∞), t > t∗ (2.11)

where T∞ is the (prescribed) temperature of the oil bath, γi are thermal ex-
change coefficients (in principle, γ2 is dependent on the thermal history of the
surface and on the discharge of vapour) and

t∗ = sup
t
{T (L, t) < T0}
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Moreover for t > t∗

p(L, t) = p0, t > t∗, (2.12)

where p0 is the atmospheric pressure.
Finally, we have to write the conditions on the free boundary x = s(t), t > t∗,

separating the two regions. To simplify notation we write T± ≡ T (s(t) ± 0, t)
and similarly for the other quantities. Thus, we have

T− = T0, (2.13)

Pressure is continuous and given by the Clapeyron’s law

p+ = p− = p0 exp
{

λ

R

(
1
T0
− 1

T+

)}
, (2.14)

where λ is the latent heat of vapourization and R is the gas constant. Note
that we had to write on the r.h.s. the temperature of vapour, since temperature
will be discontinuous across the free boundary, as a consequence of the fact
that in our scheme the thickness of the region occupied by saturated vapour is
neglected.

Imposing global mass and energy balance and differentiating as in the pro-
cedure currently used to obtain Rankine-Hugoniot jump conditions, we obtain

ε(ρw − ρ+
v )s′(t) =

K

µ
ρ+

v p+
x , t > t∗ (2.15)

that will be approximated by

ερws′(t) =
K

µ
ρ+

v p+
x , t > t∗ (2.16)

−ελρws′(t)+k1T
−
x −k2T

+
x −(ρc)2(T+−T0)s′(t)−cv(T+−T0)

K

µ
ρ+

v p+
x = 0, t > t∗,

(2.17)
We will finally assume that, in region 2, ρv, p and T are related by a known

state equation. For simplicity, we take

p = RTρv. (2.18)

Of course, the ”initial” condition for s(t) is

s(t∗) = L. (2.19)

3 Rescaling

We set
x = ξL, (3.1)

T = uT0, (3.2)

p = vp0, (3.3)

and we rescale time by a constant σ that will be chosen later

t = στ. (3.4)

Then, we define
ρ0 = po/(RT0), (3.5)
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and
τ∗ = t∗/σ, (3.6)

so that τ∗ = supτ{u(1, τ) < 1}. We also define the rescaled free boundary
between the water-saturated region and the vapour region

z(τ) =
{

1, τ ≤ τ∗,
s(στ)/L, τ > τ∗ (3.7)

Then, after simple calculation, we get

∂u

∂τ
=

σ

t1

∂2u

∂ξ2
, 0 < ξ < z(τ), τ > 0, (3.8)

∂u

∂τ
=

σ

t2

∂2u

∂ξ2
+ ε

ρ0cv

(ρc)2
σ

t3

∂

∂ξ

[
v
∂v

∂ξ

(
1− 1

u

)]
, z(τ) < ξ < 1, τ > τ∗, (3.9)

∂v

∂τ
− v

u

∂u

∂τ
=

σ

t3
u

∂

∂ξ

[
v

u

∂v

∂ξ

]
, z(τ) < ξ < 1, τ > τ∗, (3.10)

where

t1 =
L2(ρc)1

k1
, (3.11)

t2 =
L2(ρc)2

k2
, (3.12)

t3 =
L2ε

p0

µ

K
. (3.13)

Initial and fixed boundary conditions read

u(ξ, 0) = ū(ξ) = T̄ (ξ)/T0, 0 < ξ < 1, (3.14)

∂u

∂ξ
(0, τ) = 0, τ > 0, (3.15)

−∂u

∂ξ
(1, τ) = Γ1[u(1, τ)− u∞], 0 < τ < τ∗, (3.16)

−∂u

∂ξ
(1, τ) = Γ2[u(1, τ)− u∞], τ > τ∗ (3.17)

v(1, τ) = 1, τ > τ∗. (3.18)

where Γ1 = γ1L/k1, Γ2 = γ2L/k2, u∞ = T∞/T0.
Next, we consider the interphase conditions. From (2.16), we have

dz

dτ
=

σ

t3

ρ0

ρw

v+

u+

(
∂v

∂ξ

)+

, τ > τ∗, (3.19)

From (2.17), we obtain

dz

dτ
=

(ρc)1T0

ελρw

σ

t1
u−ξ −

(ρc)2T0

ελρw

σ

t2
u+

ξ −
(ρc)2T0

ελρw
(u+−1)

dz

dτ
−ρ0cvT0

λρw

σ

t3
v+v+

ξ

u+ − 1
u+

,

τ > τ∗. (3.20)
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Finally, (2.13) and (2.14) become respectively

u− = 1, (3.21)

v(z(τ), τ) = exp
{

λ

RT0

(
1− 1

u+

)}
, τ > τ∗. (3.22)

At this point, it is natural to choose

σ =
ελρwL2

k1T0
, (3.23)

so that, setting

θ =
(ρc)2T0

ελρw
, (3.24)

condition (3.20) becomes

dz

dτ
= u−ξ −

k2

k1
u+

ξ − θ(u+ − 1)
dz

dτ
− ε

ρ0cv

(ρc)1
t1
t3

v+v+
ξ

u+ − 1
u+

, τ > τ∗. (3.25)

4 A reasonable simplified model

It is immediately checked that, while σ and the characteristic diffusion times t1
and t2 are of the same order of magnitude (using the data of [2] we have indeed
σ ' 325, t1 ' 846, t2 ' 870), t3 = 0.38 and thus σ/t3 is of the order 103.

Therefore, it is reasonable to substitute (3.10) with the much simpler rela-
tionship

∂

∂ξ

(
v

u

∂v

∂ξ

)
= 0, z(τ) < ξ < 1, τ > τ∗, (4.1)

Note that (3.9), (3.19) and (3.25) contain the ratios σ/t3, t2/t3, t1/t3, but there
are also multiplying factors of the order ρ0/ρw ∼ 10−3.

Now, we use again symbols x and t instead of ξ and τ and denoting by
capital letters A,B, C, ... the constants O(1) appearing in the equations written
in Section 3, we can state the following classical formulation of our problem:

Find a constant t∗, a decreasing function z(t), z(t∗) = 1, z(t) > 0 and two
functions u(x, t), v(x, t) possessing all the regularity we will need and such that:





ut = Auxx, in D0 = (0, 1)× (0, t∗),
u(x, 0) = ū, x ∈ (0, 1),
ux(0, t) = 0, t ∈ (0, t∗),
−ux(1, t) = Γ1[u(1, t)− u∞], t ∈ (0, t∗),

(4.2)

where ū ∈ (0, 1) and A = σ/t1.

0 < u(x, t) < 1, in D0, (4.3)

u(1, t∗) = 1. (4.4)





ut = Auxx, in D1 = {(x, t) : 0 < x < z(t), t > t∗},
u(x, t∗+) = u(x, t∗−), x ∈ (0, 1),
ux(0, t) = 0, t > t∗,
u(z(t), t) = 1, t > t∗.

(4.5)
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0 < u(x, t) < 1, in D1, (4.6)

{
ut = Buxx + C

[
vvx

(
1− 1

u

)]
x

in D2 = {(x, t) : z(t) < x < 1, t > t∗}
−ux(1, t) = Γ2[u(1, t)− u∞] t > t∗,

(4.7)
B = σ/t2, C = ερ0cvσ/[(ρc)2t3].

(vvx

u

)
x

= 0, in D2, (4.8)

v(z(t), t) = exp
{
G(1− 1/u+)

}
, t > t∗, (4.9)

v(1, t) = 1, t > t∗, (4.10)

and
z′(t) = Hv+v+

x /u+, t > t∗, (4.11)

z′(t) = u−x −Mu+
x − θ(u+ − 1)z′(t)−Nv+v+

x

(
u+ − 1

u+

)
, t > t∗, (4.12)

1 < u(x, t) < u∞, in D2, (4.13)

v(x, t) > 1, in D2. (4.14)

where G = λ/[RT0], H = σρ0/[t3ρw], M = k2/k1 and N = ερ0cvt1/[(ρc)1t3].
Since (4.2) is a standard heat conduction problem we can solve it. Then (4.3) is
a consequence of maximum principle and the existence of t∗ follows immediately
from (4.4) if u∞ > 1.

Let us write, from (4.8)

vvx

u
= −f(t), in D2, (4.15)

for an unknown positive function f(t) and consider the free boundary problem
for u(x, t) consisting in (4.5) and

ut = Buxx − Cf(t)ux, in D2. (4.16)

−ux(1, t) = Γ2(u(1, t)− u∞), t > t∗, (4.17)

z′(t) = −Hf(t), t > t∗, (4.18)

z′(t) = u−x −Mu+
x − θ(u+ − 1)z′(t) + Nf(t)(u+ − 1), t > t∗, (4.19)

with the condition on f(t)

(v2)x = −2f(t)u(x, t), in D2, (4.20)

i.e.

f(t) = −1− exp{2G(1− 1/u+)}
2

∫ 1

z(t)
u(x, t)dx

. (4.21)

Thus, for any given f(t), we have transformed the original problem in a free
boundary problem (in two ”phases”) for a single unknown function u(x, t),
whose solution in turn gives f(t). The analysis of the well-posedness of this
non-standard problem will be performed in a forthcoming paper.
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5 Numerical simulation
We show here some numerical simulations where the simplified adimensional
model has been used. With reference to the situation sketched in Fig. 1 (where
the conditions on the fixed boundaries are shown) we have solved

ut = Auxx in D0 ∪D1 (5.1)
ut = Buxx − Cf(t)ux in D2 (5.2)

where f(t) is given by (4.21) and z(t) (z(t∗) = 1) is the free boundary on which
the following conditions are prescribed

u(z(t)−, t) = 1 (5.3)
z′(t) = −Hf(t) (5.4)

z′(t)
[
1 + θ(u+ − 1)

]
= u−x −Mu+

x + Nf(t)(u+ − 1). (5.5)

The following values have been taken for the physical quantities (taken from
[10] [11]).

ρs 1.6 g/cm3

ρv 0.001 g/cm3

ρw 1.0 g/cm3

cs 0.74 cal/(g K)
cv 0.48 cal/(g K)
cw 1.0 cal/(g K)
ks 0.00136 cal/(sec cm K)
kw 0.00127 cal/(sec cm K)
L 1.0 cm
ε 0.3
K 1.0E − 9 darcy
µ 0.0013 poise
R 0.11 cal/(g ∗K)
γ1 0.002 cal/(sec ∗ cm2 ∗K)
γ2 0.003 cal/(sec ∗ cm2 ∗K)
T0 373.16 K
λ 540.2 cal/g
p0 1013250.0 g/(cm ∗ sec2)

Consequently the constants appearing in (5.1)-(5.5) and (4.21) are the fol-
lowing:

A = 0.38, B = 0.37
C = 0.08,

H = 0.49, θ = 1.9
M = 0.71, N = 0.16
G = 13.16.

The constants appearing in the initial and boundary conditions are

u0 = 0.745
u∞ = 1.428
Γ1 = 1.50
Γ2 = 3.15
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L

u
x

=
0

x = s(t)

t = t∗

−ux = Γ2(u− u∞)

−ux = Γ1(u− u∞)D0

D1

D2

u(x, 0) = ū

Figure 1: Sketch of the problem

In Figure 2 we show tha evolution of the rescaled free boundary as a function
of the rescaled time.

Figure 3 gives the rescaled temperature profile in the two zones, at different
times.

In Figures 4 and 5 we display the same quantities, but we simulate the crust
formation as a relaxation in the heat exchange coefficient Γ2. In particular we
assumed

Γ2(0) = Γ2 (5.6)

Γ̇2(t) = γ (u(1, t)− 1)+ (5.7)

Acknowledgments. We are indebted to Prof. A. Fasano for many interesting
discussions.
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