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a b s t r a c t

Mathematical models for the growth of tumours in the presence of stem cells (CSCs)
and differentiated tumour cells (CCs) are presented and discussed. The CSCs are assumed
to be immortal and multipotent, i.e. capable of generating several possible lineages of
CCs that may undergo ageing and apoptosis. Each CC is characterised by two indexes,
related to the differentiation lineage and the class of age, respectively. Furthermore,
the effect of crowding is taken into account, assuming that mitosis can be hindered
by the presence of cells in the vicinity of the would-be mother cell. Two families of
models are proposed. First, models based on cellular automata are considered, whose
evolution is governed by stochastic rules. Then, by averaging over the cells with the same
pair of indexes, we obtain a deterministic model that consists of a system of Ordinary
Differential Equations (ODEs) whose unknown functions are the fractions of the cells
in each lineage and the class of age. The system presents a basic novelty with respect
to the other compartmental models proposed in the literature as it cannot be solved
hierarchically because of the presence of the crowding effect. Numerical simulations
based on the two families of models give the same qualitative results and, in particular,
they evidentiate the occurrence of the tumour paradox: an increased mortality of the
CCs may induce a faster growth of the tumour. A final section of the paper is devoted
to the case in which the age distribution of the CCs is continuous and not discrete. In
this case, an interesting mathematical problem is obtained that consists of one ODE for
the fraction of CSCs and m first-order Partial Differential Equations (PDEs); one for each
lineage of CCs.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The heterogeneity of cancer cells is currently considered to be a key factor in determining the evolution of many
umours. The basic idea in explaining the genesis of the inhomogeneities consists, in its simplest version, of assuming
hat the entire tumour is generated by a small number of cancer stem cells (CSCs) that are immortal and multipotent,
n the sense that they are able to proliferate indefinitely and to produce either new-born CSCs or differentiated cancer
ells (CCs). The differentiation can occur following distinct lineages of the CCs with their usual cycle of ageing, mitosis,
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nd apoptosis [1,2]. CSCs (originally called tumorigenic cells) were first isolated and described in the haematopoietic
ystem [3], and the importance of their role in tumour growth has been described [4,5]. In the early 2000’s, the existence
f CSCs was shown for solid tumours, such as breast and brain cancers [6]. Since then, the number of papers that present
heoretical and experimental results in this area has been steadily increasing, and we will limit ourselves to quoting some
eview papers that contain extensive reference lists [7–10] and, more recently, [11–14]. Furthermore, we refer the reader
o the webpage [15] containing a weekly updated list of published papers on CSCs.

In the past decade, many papers have also been devoted to mathematical modelling of the growth of tumours in the
resence of CSCs, applying the methods of population dynamics. We can quote, e.g. [16–24], as well as [25] that has an
xtensive bibliography in this area, updated to 2017.
Several papers use compartmental models: the unknown functions represent abundances of each type of cells

v0, v1, . . . , vN ) where v0 is the fraction of CSCs and v1 . . . vN is the fraction of the N classes of successively differentiated
cells. In the simplest case (differentiation in cascade), these functions obey N + 1 ordinary differential equations of the
type ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv0
dt

= r0v0 − a0v0 − m0v0 ,

...

dvi
dt

= ai−1vi−1 − aivi − mivi + rivi , i = 1, 2, . . . ,N − 1 ,

...

dvN
dt

= aN−1vN−1 − mNvN + rNvN ,

(1)

supplemented with initial conditions. Here ai (i = 0, 1, . . . ,N − 1) represents the differentiation rate of the ith class
of cells, and mi and ri (i = 0, 1, . . . ,N − 1) are the mortality and the reproduction rate without differentiation. Models of
this class are called hierarchical models since the equations can be solved recursively, starting from the first one.

In other cases, agent-based computer models are used to find mechanisms that drive tumour development and
progression; see, e.g. [26,27], as well the more recent works [28–33].

The stem cell assumption is also crucial for describing the tumour growth paradox that consists of an accelerated
tumour growth that can be found with an increased cell death that, for example, can result from the immune response
or from cytotoxic treatments [27,34,35].

Of course, this fact could have a crucial relevance in connection with the strategy of treatment, to avoid the fact that
the latter produces a faster progression of the tumour [34–36].

The occurrence of the paradox has been associated with a crowding effect [28,37–40], assuming that mitosis can be
inhibited when the density of the cells in the vicinity of the would-be mother cells exceeds a threshold value.1 Indeed,
numerical simulations based on different models incorporating the crowding effect evidentiate this paradoxical behaviour.

The papers quoted in this context introduce two basic approximations: (i) they neglect the age-dependence of the
replication potential and of the mortality of the non-stem cells, and (ii) they group all the non-stem cancer cells in a
single population.

The present paper releases these assumptions and considers the simultaneous effects of crowding, multiple differen-
tiation, and ageing.

Throughout this paper, we will assume that CSCs have zero mortality and a constant replicative potential, and that they
are capable of generating new CSCs or ordinary non-stem cancer cells (CCs). In the first case, we speak of symmetrical
mitosis, while the second case is denoted as asymmetrical mitosis.2 The fraction of asymmetrical mitosis will be denoted
by d (usually larger than 90%).

We will consider two families of models. In the first family we present agent-based models consisting of the application
of cellular automata whose evolution is governed by stochastic rules, in the sense that given probabilities of replication
and apoptosis are prescribed for each class of age and for each differentiation lineage.3 The models in the second family
are deterministic, since the behaviour of the cells is averaged (in each class of age and in each differentiation lineage) as in
typical mean field approximations. The mathematical structure of these models, presented in Section. 3, consists of a mean
field approximation and results in a system of Ordinary Differential Equations (ODEs) in which the unknown functions are
fractions of the age classes in each lineage of CCs, irrespective of their position in the region under consideration. Thus,
the population of CCs is composed of m sub-populations of differentiated cells with n classes of age (from new-born to

1 In [41] general mechanisms of negative feedback are assumed in computational simulations.
2 As far as the mathematical models are concerned, it is immaterial whether different classes of differentiated CCs are generated in cascade or

in parallel.
3 In the example that will be displayed in Section 2 all the probabilities are supposed to be space-independent and constant-in-time. Moreover, the

ageing process is assumed to be deterministic. However, generalisations in these directions could be incorporated with some additional computational
work.
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ld). All of them can only generate new CCs and may undergo apoptosis. The replicative potential and the mortality rate
f class kth (k = 1, 2, . . . ,m) and age i (i = 1, 2, . . . , n) will be denoted by ρki and µki, respectively. We are still in the
lass of compartmental models but, because of the presence of the crowding term depending on the total number of CCs,
he system is much more complex and qualitatively different from the hierarchical models quoted above.

In Sections 2 and 3 , we display some numerical simulations that show that both families of models give the same
ualitative results and that both evidentiate the occurrence of the tumour paradox, i.e. an accelerated tumour growth
hen the mortality of the CCs is increased. It should be noted that the numerical values of the parameters used in the
imulations are only speculative, but the role of this kind of conceptual model consists of giving the correct qualitative
nformation regarding the complex mechanisms involved in the phenomenon.

Finally, in Section 4, we consider a generalisation of the family of deterministic models, assuming that a continuous
ge distribution, instead of a structure in age classes, is given. The mathematical aspects of the problem are substantially
ifferent. Here, we have a system of one ODE for the evolution of the fraction of CSCs and m first-order Partial Differential
quations (PDEs), one for each lineage of CCs.

. Cellular automata

For the sake of simplicity, we will confine ourselves to the case of a single lineage of CCs (i.e. we take m = 1) and three
lasses of age (n = 3): new-born cells (i = 1), adult cells (i = 2), and old cells (i = 3). More general cases give essentially
imilar results. We imagine the cells to be living in a square lattice4 of 50 × 50 sites, and we prescribe probabilistic rules
or their replication or death. At each time step, each site in the lattice can be in one of the following states:

• vacant sites (white);
• sites occupied by a CSC (black);
• sites occupied by a young CC (red);
• sites occupied by an adult CC (orange);
• sites occupied by an old CC (yellow).

Starting from a given situation at time tk, each CC (red, orange, or yellow) has a probability µ1, µ2, µ3 of undergoing
apoptosis (becoming white) in the time interval corresponding to the time step of the Cellular Automata (CA). Then, the
surviving cells have probabilities ρ1, ρ2, ρ3 of being potentially replicant. However, in this case, mitosis is only possible
if there are vacant (white) sites in the chosen neighbourhood; if this situation occurs a daughter CC appears and one of
these white sites (randomly chosen) becomes red, as well as the site of the mother cell. The situation with CSCs is similar
but with two differences: (i) µ = 0, and (ii) if mitosis occurs a daughter CSC appears with probability 1 − d, while the
asymmetrical proliferation (i.e. the appearance of a new-born CC) has probability d. The replication probability is ρ0.

Remark. Of course, the phenomenon might be much more complex with respect to this simplified scheme. For instance,
possible dormancy of some CSCs should be considered, so that the replicative probability is not the same for all cells but
a (possibly variable) stochastic distribution should be introduced. Similarly, distribution for ageing and mortality of the
CCs could be taken into consideration. We remark that the model is sufficiently flexible to deal with these generalisations.
We choose to keep the number of parameters as small as possible to illustrate some fundamental aspects of this complex
phenomenon.

It is natural to assume that ρ0 > ρ1 > ρ2 > ρ3 and that µ1 < µ2 < µ3.
In what follows we assume that dying cells leave the site they occupied immediately blank, but we can also simulate

cases in which apoptosis gives rise to necrotic material that occupies the site for some time (grey sites), and, possibly,
this material influences the surrounding cells (intoxicating effect).

According to the crowding effect, we have assumed that cells can proliferate only if in their neighbourhood.5 Some
lattice sites are vacant; more specifically, the replicative potential is scaled in the function of the sites that are vacant in
the neighbourhood.

On the other hand, it is possible that the mother cell pushes the adjacent cells if all of the close neighbourhood is
occupied. To take this effect into account, we consider a hierarchy of neighbourhoods: the 1st order is formed by the 8
sites of the Moore’s neighbourhood, the second order is formed by the 24 cells of the 5 × 5 neighbourhood and so on. If
the first-order neighbourhood is occupied, the algorithm counts the vacant sites in the 2nd order neighbourhood, and so
on. However, we postulate that some energy is spent in the case of displacement, thus decreasing the replicative potential
accordingly.

Finally, we remark that in our simulations, cells will be supposed to be immobile, but it is evident that random motion
(e.g. diffusion) or drift can be incorporated into the model as well. In the sequel, we display results in the basic case (no
intoxication nor pushing).

4 A tri-dimensional lattice could easily be considered with a little computational work (see [42]).
5 Different definitions of neighbourhood are possible: for the 2 − D lattice, a Von Neumann or Moore neighbourhood can be used (4 orthogonal

neighbours – north, south, east, west – or 8 neighbours – adding northwest, northeast, southwest, southeast – respectively). We use Moore
neighbourhoods unless otherwise specified.
3
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As the initial condition for the simulations displayed below, we took a single CSC situated in the centre of the grid.
The setup of the parameters is

d = 0.9, ρ0 = 1, ρi = ρ1(1 − iϕ), µi = µ1(1 + iθ ), i = 2, 3. (2)

Parameters θ and ϕ were fixed to be 0.1, while ρ1 and µ1 were chosen in each experiment.
The choice of the value of the parameters is only speculative because the model is aimed at reproducing the

characteristics of the evolution of tumour growth and not at giving an exact prediction of the dimension of the tumour.
In fact, the role of conceptual modelling is to mimic the relevant features of the phenomenon. Nevertheless, even in
this oversimplified model, it is, in principle, possible to experimentally determine realistic values for the parameters. We
remark that

(i) choosing ρ0 = 1 is nothing other than choosing the time unit equal to the average length of the reproduction cycle
of CSCs under consideration;

(ii) the average fraction d of the asymmetric reproduction can be determined by in vitro experiments;
(iii) in the simulations we have assumed that the permanence of the CCs in each age class is, on average, the same as

the lifecycle of the CSCs, i.e. we chose the amplitude of the age classes accordingly, and this can be easily changed
to correspond with the experimental conditions;

(iv) plausible values for θ and ϕ could easily be found, once the amplitude of the age classes has been chosen.

We assume that at each time step the CCs that do not replicate or die change their state (from new-born to adult, to
old). Thus, to take ρ0 = 1 corresponds to assuming that the interval between the two replications of a CSC is of the same
order as the time of permanence of a CC in an age class.

In Fig. 1 we show some screenshots (at different times) of a simulation corresponding to ρ1 = 0.5 and µ1 = 0.25.
It is a common characteristic of agent-based models that the individual behaviour of each cell contributes to the

evolution of the system and that the latter can be visualised as a collective behaviour, possibly averaging over several
simulations in the same conditions to evidentiate the response of the model to different setups of parameters and
conditions. This is what is shown in Fig. 2, where the averages are taken over 20 simulations. The curves show the
evolution of the total number of cancer cells (CSCs and the three classes of CCs) as a function of time. Next, we compare
the behaviour for two different values of the mortality rate. In Fig. 3, the blue curve corresponds to µ1 = 0.25, while the
magenta curve corresponds to µ1 = 0.35. The tumour paradox is clearly evident: a higher mortality of the CCs produces
a faster progression of the tumour.

The same algorithm can be used to simulate the effect of a treatment that, for some prescribed time, destroys a fraction
g of the CCs. For instance, it assumes that in the time interval t ∈ [200, 350] µ1 is switched from 0.25 to 1. As can be seen
in Fig. 4, the reduction of the dimensions of the tumour is only temporary. Comparing the situation with this aggressive
treatment with the one with constant µ1 = 0.25 for all time, the paradox is evident.

3. Compartmental models

A general compartmental model for a system of CSCs and m lineages of differentiated cells and n classes of age can
generally be written in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dt

= ρ (1 − d) u ,

dv1i
dt

= ρ di u + 2
n∑

j=1

m∑
k=1 jk̸=1i

ρjk→ivjk −

m∑
k=1

ρ1i→kv1i

− (µ1i + ψi) v1i + ρ1i→ivi ,

...

dvki
dt

= ψivk−1,i − ψivki − µkivki −

n∑
j=1

ρki→jvki ,

...

dvni
dt

= ψivn−1,i − µnivni −

n∑
j=1

ρni→jvni .

(3)

Here vki is the fraction of cells of lineage i and the class age k, ρ is the replication potential of the CSCs; d =
∑m

i=1 di
s the ratio of asymmetrical mitosis,6 µki is the mortality of the cells in the compartment (ki), ρki→j is the replication
otential of the cells in compartment (ki) to produce cells in the lineage j, and ψi represents the ageing for lineage i.

6 To save notation we have assumed that a mitosis with differentiation produces two cells (in the age class 1) of the same lineage.
4
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Fig. 1. Screenshots of the simulation of the evolution of the tumour growth according to the setup (2) and ρ1 = 0.5 and µ1 = 0.25. In white, we
display the vacant sites; in black we show the sites occupied by a CSC, while red, orange, and yellow show the sites occupied by a young, adult,
and old CC, respectively.

Fig. 2. Evolution of the fraction of cancer cells (CSCs on the top and the three classes of CCs on the bottom) as a function of time.

The system (3) is composed of n × m + 1 first-order ordinary differential equations that have to be solved starting

rom an equal number of initial conditions. It is clear that the system represents a mean field approximation of the tumour,

5
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Fig. 3. Evolution of the fraction of all cancer cells (CSCs and CCs) applying µ1 = 0.25 (blue curve) and µ1 = 0.35 (magenta curve).

Fig. 4. Evolution of the fraction of all cancer cells (CSCs and CCs) applying µ1 = 0.25 (blue curve) and µ1 = 1 when t ∈ [200, 350] and µ1 = 0.25
elsewhere (green curve).

because the dependence of the cell fractions on the position is not taken into account. Of course, some of the parameters
appearing in (3) may vanish. For instance, if each lineage of CC can only be generated by a CSC and evolves with age,
independently of the others, then the only replication terms appearing in the equations are ρki→i.

So far, no crowding effect has been taken into account. In the spirit of the mean field approximation, we can introduce
this effect by multiplying each replicative potential in (3) by a function F (p) of the total fraction p of all the cells present
in the domain. Quantity p is given by

p = u +

n∑
j=1

m∑
k=1

vjk , (4)

and the function F (p) will be a decreasing function of p such that F (0) = 1 and F (1) = 0.
It is clear at this point that the system is no longer hierarchical. Even in the simplest cases, the term F (p) introduces

in each equation the full set of the unknown functions. This means that is it not possible to solve the system recursively,
and, of course, this fact introduces a relevant difference and complexity with respect to the other compartmental models
quoted in Section 1.

To be specific, to avoid dealing with cumbersome notation and increasing the number of parameters to be chosen,
from now on, we will consider the case m = 1 (one lineage of non-stem cells) and three classes of age (new-born, adult
6
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nd old cells) as we did in the simulations with cellular automata. Simultaneously, we will include the crowding factor
(p) in the differential equations. We point out that all the simulations we will show can be duplicated in more complex
ases with some additional computational work.
Thus we will study in detail the following system of ODE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dt

= ρ0 (1 − d) F (p(t)) u(t),

dv1
dt

= ρ0 d F (p(t)) u(t) + ρ1v1F (p) + 2ρ2v2F (p) + 2ρ3v3F (p) − µ1v1 − ψv1,

dv2
dt

= ψ v1 − ρ2v2F (p(t)) − µ2v2 − ψv2,

dv3
dt

= ψ v2 − ρ3v3F (p(t)) − µ3v3,

(5)

u(0) = u0 ≥ 0, v1(0) = v10 ≥ 0, v2(0) = v20 ≥ 0, v3(0) = v30 ≥ 0 , (6)

here

p(t) = u(t) + v1(t) + v2(t) + v3(t) , (7)

nd it is assumed that

p(0) = u0 + v10 + v20 + v30 ≤ 1. (8)

The case u0 = 0 would correspond to a model without CSCs and is (simpler but) outside our interest.
We will assume that F (p) is a Lipschitz continuous decreasing function such that F (0) = 1 and F (1) = 0. For technical

easons, we will extend F (p) so that

F (p) = 1 for p ≤ 0, F (p) = 0 for p ≥ 1. (9)

The ageing ψ represents the inverse of the time of permanence of the cells in each age class. Of course, the conclusions
we will reach in this section also apply to cases in which there is a different value of ψ for each class.

By standard techniques, it can be easily proved that the set u ∈ (0, 1), vi ∈ (0, 1) and p ∈ (0, 1) is invariant for system
5).

As a consequence, u = 1, vi = 0, i = 1, 2, 3 is the unique equilibrium point for (5)–(8). It is globally attractive and the
olution of

du
dt

= ρ0(1 − d) F (u) u (10)

s a super-solution for (5). For the case of F (p) = 1 − p, the solution of (10) is a logistic.
In the following simulations, we assume, as in Section 2

d = 0.9, ρ0 = 1, ρ1 = 0.5, ρi = ρ1(1 − iϕ), µi = µ1(1 + iθ ), i = 2, 3. (11)

We take θ = ϕ = 0.1 and F (p) = 1p, and the initial conditions are chosen in accordance with the simulations that we
carried out with CA

u(0) = 1/2500, v1(0) = v2(0) = v3(0) = 0. (12)

Since time has been normalised by choosing ρ0 = 1, we set ψ accordingly as the ratio of the average time between
two replications (for CSCs without space constraints) and the average time spent in each age class. In what follows, we
set ψ = 1 according to the CA simulations.

We can numerically solve the system (5) with initial conditions (6) with standard solvers for ordinary differential
equations as the Matlab function ode45 that implements a Runge–Kutta method with a variable time step for efficient
computation.

In Fig. 5, we show the quantity p(t) (representing the normalised volume of the tumour) and we compare the cases
of µ1 = 0.25 and µ1 = 0.35. The curves exhibit the occurrence of the tumour paradox, although this fact is less evident
than in the curves of Fig. 3 that correspond to the CA approach. This fact can be easily explained in terms of the different
choice of the crowding term: in the case of simulations with CA, crowding was introduced as a local effect, counting the
empty sites in the vicinity of the mother cell. In the mean field approximation of this section we chose to mimic crowding
by a term F (p) and, thus, depending on the fraction of the total space available. This is also the reason why the speed of
growth is larger in this case.
7
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Fig. 5. Evolution of the normalised volume p(t) of the tumour cells (CSCs and CCs) applying µ1 = 0.25 (blue curve) and µ1 = 0.35 (magenta curve).

4. Continuous age-structure for the non-stem cells

In this section, we will model the evolution of the tumour assuming that there is a single lineage of CCs but considering
the case of a continuous age structure.

As in the usual models of population dynamics, the age structure of the population of non-stem cells can be represented
by introducing a function v(a, t) such that, for any non-negative t , a1 and a2 (a1 < a2), the integral∫ a2

a1

v(a, t) da (13)

epresents the fraction of CCs that, at time t , have an age between a1 and a2.
Assuming that the biological age coincides with the chronological age,7 the equation regulating the evolution of the

age distribution in the population of the CCs will be:
∂v(a, t)
∂a

+
∂v(a, t)
∂t

= − µ̄(a) v(a, t) − ρ̄(a) v(a, t) F (p), t > 0, a > 0 , (14)

while the fraction u(t) will still obey
du
dt

= ρ0 (1 − d) u(t) F (p), t > 0 , (15)

here

p(t) = u(t) +

∫
+∞

0
v(a, t) dt, t > 0 , (16)

In (14), we denoted the mortality and replication potential of the CCs as functions of their age by µ̄(a) and ρ̄(a).
The system has to be supplemented by initial conditions

u(0) = u0, v(a, t) = v0(a), a > 0, (17)

nd by a boundary condition expressing the number of new-born CCs (a = 0) generated by the replication of the whole
opulation, i.e.

v(0, t) = v0(0) + ρ0 d
∫ t

0
F (p(τ )) u(τ ) dτ + 2

∫ t

0
F (p(τ ))

∫
+∞

0
ρ̄(a) v(a, τ ) da dτ . (18)

We assume

H1 u0 > 0, ρ > 0, d ∈ (0, 1),
H2 0 < b ≤ v0(a) ≤ b̄ < 1 is continuous in [0, α] and vanishes for a > α,
H3 0 < C ≤

∫ α
0 v0(a) da + u0 ≤ C̄ < 1.

7 Otherwise a constant factor would appear in the first term of Eq. (14).
8
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We have the following immediate result

Proposition 4.1. For any solution (14)–(18) with data satisfying (H1)–(H3) and for any T > 0, there exists A > 0 such that:

v(a, t) = 0, for a > A, t ∈ (0, T ). (19)

roof. The characteristic lines for (14) are the straight lines t = a + c . Therefore (19) is satisfied for any A ≥ α + T . □

We define S to be the support of v, and we will look for a pair (u, v), u ∈ C1
[0, T ], v ∈ C(S̄) ∩ C1(S ∩ (0, T )), v ≡ 0 in

(0, A)× (0, T ) \ S satisfying (17) and such that (14) holds in (0, A)× (0, T ), (15) holds in (0, T ), and (18) is satisfied where
the upper limit in the integrals is A instead of +∞.

We will assume:

H4 ρ̄(a) and µ̄(a) are positive and continuous in [0, A],
H5 F (p) is a non-increasing Lipschitz-continuous function in (−∞,+∞), with F (p) = 1, p ≤ 0 and F (p) = 0, p ≥ 1.

Let us consider the following auxiliary problem:⎧⎪⎨⎪⎩
∂w

∂a
+
∂w

∂t
= g(a, t), 0 < a ≤ A, 0 < t < T ,

w(a, 0) = w0(a), 0 ≤ a ≤ α, w0(a) = 0, a ∈ [α, A],

w(0, t) = Γ (t;w(a, t)), 0 < t < T ,

(20)

where

g(a, t) ≤ 0, −b1 ≤ w0(a) ≤ −b2 < 0, (21)

and Γ (t;w) is a functional such that for any bounded w and suitably small T it is:

− B1 ≤ Γ (t;w) ≤ −B2 < 0, (22)

| Γ (t;w1) − Γ (t;w2) |≤ c(t)∥w1 − w2∥ , (23)

where c(t) = O(T ) and ∥ ∥ is the uniform norm.
We choose ŵ(a, t) ∈ C([0, A] × [0, T ]), and define G(t) = Γ (t; ŵ(a, t)). Then we solve (20) where the third condition

is replaced by w(0, t) = G(t).
We have immediately

w(a, t) =

⎧⎪⎪⎨⎪⎪⎩
w0(a − t) +

∫ t

0
g(z + a − t, z) dz, t < a < A, 0 < t < T ,

G(t − a) +

∫ a

0
g(z, z + t − a) dz, 0 < a < t, 0 < t < T .

(24)

We denote the set of continuous functions [0, A]×[0, T ] by Σ such that −C1 ≤ w ≤ −C2 < 0 where C1 > max(B1, b1)
and C2 = min(B2, b2). The procedure just described defines a mapping of Σ into itself for suitable small T because of (21),
22), (24).

Moreover, (23) guarantees that the mapping is contractive (reducing T if necessary). Using Banach’s fixed point theorem
e conclude the proof of

roposition 4.2. If (21)–(23) are satisfied, problem (20) has one unique solution in a suitable time interval (0, T ).

We are now in a position to prove the following

heorem 4.3. Under the assumptions (H1)–(H5), the problem (14)–(18) has one unique solution for a suitable T .

Proof. We again use a fixed point argument. We prescribe a continuous function p̃(t) such that

0 < K ≤ p̃(t) ≤ K̄ < 1 , (25)

hen K̄ > C and K < C of assumption (H3). Let F̃ (t) = F (p̃(t)) and consider the problem⎧⎪⎨⎪⎩
du
dt

= ρ (1 − d) F̃ (t) u, t ∈ (0, T ),

∂v

∂a
+
∂v

∂t
= −(µ̄(a) + ρ̄(a)F̃ (t)) v, a ∈ (0, A), t ∈ (0, T ),

(26)

with conditions

u(0) = u , v(a, 0) = v (a), (27)
0 0

9



L. Meacci, M. Primicerio and G.C. Buscaglia Physica A 570 (2021) 125841

a

s

a
o

P

v(0, t) = v0(0) + ρ d
∫ t

0
F̃ (τ ) u(τ ) dτ + 2

∫ t

0
F̃ (τ )

∫
+∞

0
ρ̄(a) v(a, τ ) da dτ . (28)

Hence

u(t) = u0 exp[ρ (1 − d)
∫ t

0
F̃ (τ ) dτ ], (29)

nd the function

w(a, t) = ln v(a, t) (30)

olves a problem of type (20) where

g(a, t) = −µ̄(a) − ρ̄(a)F̃ (t), (31)

w0(a) = ln v0(a) , (32)

Γ (t;w(a, t)) = ln[v0 + ρ d
∫ t

0
F̃ (τ )u(τ ) dτ + 2

∫ t

0
F̃ (τ )

∫ A

0
ρ̄(a) exp[w(a, t)] da dτ ]. (33)

Of course (29) and (30) guarantee that (21) is fulfilled since (H2), (H4), and (H5) are supposed to hold. Moreover (H1)
nd (27) ensure that, for any bounded w, the functional Γ defined by (33) is the logarithm of v0 plus a positive function
f O(t) so that, since v0 satisfies (H2), there exist two constants B1 and B2 such that (22) holds for a suitable T > 0.
By reducing, if necessary, T we have that (23) holds as well. Therefore, problem (26)–(28) is uniquely solvable by

roposition 4.2.
This means that, for any p̃(t) ∈ C[0, T ], 0 < C ≤ p̃ ≤ C̄ < 1 we have found two functions u(t) given by (29) and

v(a, t) = exp(w(a, t)),

with

v(a, t) =

{
v0(a − t) + O(t), t < a < A,
v0(t − a) + O(t) 0 < a < t.

Therefore∫ A

0
v(a, t) da =

∫ A

0
v0(a) da + O(t).

But it is also

u(t) = u0 + O(t),

so that

p(t) = u(t) +

∫ A

0
v(a, t) da + O(t),

and reducing T if necessary we conclude

K ≤ p(t) ≤ K̄ . (34)

This means that we have defined a mapping

p(t) = T p̃(t)

that maps the set of continuous functions satisfying (34) into itself.
To prove that T can be chosen so that T is a contraction is immediate: take p̃1 and p̃2 and define ∆p̃ = ∥p̂1 − p̂2∥ and

∆F̃ = ∥F (p̃1) − F (p̃2)∥. Assume (H5) yields ∆F̃ ≤ D∆p̃.
Now let ui(t), vi(a, t) be the solutions of (26)–(28) with F̃ replaced by F (pi(t)), i = 1, 2. We have

∆u = | u1 − u2 | = O(t)∆p̃, (35)

∆v = | v1 − v2 | = O(t)∆p̃. (36)

Consequently

∆p = ∆u +

∫ A

0
∆v da = O(t)∆p̃,

and T can be chosen so that O(t) < 1, thus proving the contractivity of the mapping.
The application of Banach’s fixed point theorem concludes the proof. □
10
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We conclude this section by remarking that the proof of existence and uniqueness can be extended as long as, for
t = T , assumptions (H2) and (H3) are fulfilled for some constants b, b̄, C and C̄ .

5. Conclusions

We have presented two families of models for the growth of tumours in the presence CSCs and of CC’s. We have
considered the simultaneous effect of crowding, differentiation, and ageing. First, we have considered agent-based models
based on the application of cellular automata. Then, a non-hierarchical compartmental model has been presented in
which the crowding effect is not included as a local effect but is averaged over the whole domain. Numerical results
of simulations for the two families of models have been displayed, showing the same qualitative behaviour. In particular,
we have shown in both cases the occurrence of the tumour paradox: tumours in which the death rate of the CCs is
higher may have faster growth. This fact is, of course, relevant in connection with the treatment strategies and, indeed,
an example has been displayed in which the killing of tumour cells may not induce, in the long run, the slowing down
of the growth of the cancer.

While in the models just described, the ageing has been modelled dividing the differentiated cells in age classes, in
a final section, we have considered the more general case in which there is a continuous distribution in the age of the
population of the differentiated cells. The resulting mathematical model is non-standard but its being well posed has been
proved.
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