
Support Vector Machine Classification Applied

to the Parametric Design of Centrifugal

Pumps†∗

E. Riccietti†and J.Bellucci, M.Checcucci, M.Marconcini, A.Arnone‡

Abstract

In this article the parametric design of centrifugal pumps is addressed.
To deal with this problem, an approach based on coupling expensive Com-
putational Fluid Dynamics (CFD) computations with Artificial Neural
Networks (ANN) as a regression meta-model had been proposed in Chec-
cucci et al. (2015), ’A Novel Approach to Parametric Design of Centrifugal
Pumps for a Wide Range of Specific Speeds’, ISAIF 12, paper n.121. Here,
the previously proposed approach is improved by including also the use of
Support Vector Machines (SVM) as a classification tool. The classification
process is aimed at identifying parameters combinations corresponding to
manufacturable machines among the much larger number of unfeasible
ones. A binary classification problem on an unbalanced dataset has to be
faced. Numerical tests show that the addition of this classification tool
helps to considerably reduce the number of CFD computations required
for the design, providing large savings in computational time.

keywords Support vector machines; parametric design; binary classi-
fication; centrifugal pumps; unbalanced dataset.

1 Introduction

In the last years the approach of the designer to the aerodynamic and me-
chanical redesign of a turbomachinery component is changed with respect to
some decades ago, [12]. Often the requirements of the customer lead to analyse
the performance of a component with complex three-dimensional geometry and
to extend these investigations to different operating conditions simultaneously,
with the aim of optimizing the performance under tight constraints. To meet
all the customer requirements, it is necessary to accept a compromise between
reliability, low-cost manufacturing and high aerodynamic efficiency, [12].

∗†Work partially supported by INdAM-GNCS
†Dipartimento di Matematica e Informatica ’Ulisse Dini’, Università di Firenze, viale G.B.

Morgagni 67a, 50134 Firenze, Italia
‡Dipartimento di Ingegneria Industriale, Università di Firenze, via S. Marta 3, 50139

Firenze, Italia

1

Nowadays, the exponential increase of computational power allows to face
such problems evaluating the performance objective functions through CFD
(Computational Fluid Dynamics) analysis, [20]. Anyway these calculations are
computationally expensive, and even if reliability is still the most important
aspect that guides the choice of the final geometry, the competitiveness of the
business requires the design process to be as short as possible.

The research in this field is currently active, providing a wide range of dif-
ferent strategies for the end user to handle the optimization procedure of a
machine component. Gradient methods, methods based on the response surface
approximation (e.g. Artificial Neural Network (ANN), Support Vector Machine
(SVM), Design of Experiment (D.O.E.)), exploratory techniques (e.g. Genetic
Algorithm, Simulated Annealing, Particle Swarm Optimization Algorithm), ad-
joint methods or a combination of these ones, are the most used techniques,
see among the others [22], [4], [13], [29], [20], [10], [6]. Among the different
strategies, the methods based on the response surface have reached a good level
of maturity and represent a good compromise in terms of time-consumption
and prediction accuracy. Regression meta-models are employed to predict val-
ues of the functions describing the components performance and to build the
response surface, to reduce the amount of required CFD computations, [22, 21].
These indeed can be restricted just to the amount necessary to build a perfor-
mance database to train the meta-model. Thus, the challenge is to perform the
lowest number of computations and to obtain the highest accuracy in the ap-
proximation of the response surface of the problem, on which a multi-objective
optimization algorithm is run to find the best compromise among the considered
performance functions.

Usually, a redesign or an optimization procedure starts from a baseline con-
figuration that is geometrically close to the final one. All the tools (e.g. for
geometry parameterization, mesh generation, CFD solver etc.) involved in the
process are automated and fine tuned for the specific application, in order to
work very well within the whole design space of interest, [12]. Thus, many of
the issues concerning manufacturing and geometrical constraints, and the ones
due to the computational setup (in particular the mesh generation) are a priori
taken into account during the tuning of the tools. As a result, all (or almost all)
the computations performed can be used to form the performance database.

The case in which a parametric design has to be faced is different, [15]. Gen-
erally, a new design starts from scratch and relies on a quick and flexible design
tool, capable of describing in a continuous manner the whole range of geomet-
rical variability of a family of components. The design space investigated to
meet the customer requirements becomes really vast, so that a high number of
points is required to adequately cover it and consequently a very large amount
of computations is needed to accurately train the meta-model. Moreover it is
difficult to estimate the required number of computations, as it will be higher
than the one the designer could expect. In fact, no matter how robust the tool
is, it is impossible to take a priori into account all the manufacturing or geomet-
rical constraints. Then a designer could experience that many of the analysed
geometries will result non feasible from a manufacturing point of view, or will

2

reach a poor computational convergence. In the following these geometries will
be addressed as unfeasible, while all the others will be addressed as feasible. As
an outcome, the obtained database will result strongly unbalanced, as generally
the unfeasible geometries will be many more than the others. The use of such a
database to train the meta-model would lead to a very poor accuracy, or even
to the failure, of meta-model training. As an outcome, the number of com-
putations necessary to generate a suitable performance database, with enough
feasible features, will increase exponentially, and consequently the time needed
to perform computations.

To the authors’ knowledge, a strategy to efficiently handle a parametric
design in which the issue of the database’s lack of balancedness occurs has not
been addressed yet.

Then, in this article a strategy to overcome the aforementioned problem is
described and validated. A hybrid approach is proposed which is a modification
of the procedure described in [9] which couples high-fidelity three-dimensional
Reynolds Averaged Navier-Stokes (RANS) equations computations and ANN
(regression mode). That procedure is improved, including also the use of a
classifier with the aim of discarding the unfeasible parameters combinations.

Support Vector Machines (SVM) are employed as a classifier, as their ca-
pability has been proven in many different scientific fields, see for example
[27, 19, 26], and also approaches based on Support Vector Machine has been
successfully applied within a hybrid structure together with Artificial Neural
Networks or Genetic Algorithms, [24, 14, 17]. SVM indeed, are characterized
by high flexibility thanks to the possibility of choosing among various kernels,
also different from the linear one. This allows to classify a wide range of datasets
with high precision, improving on non linearly separable data with respect to
linear classifiers. This adaptability is also improved by the possibility of tuning
the free parameters for the specific application, [23]. Moreover, by a simple
modification of the standard approach, SVM can be used as a powerful tool to
handle unbalanced datasets, [7], as it is needed in the application considered in
this article.

The remainder of this article is organized as follows. First, in Section 2 a brief
introduction to the machine learning tools employed in the proposed procedure
is provided. Then, in Section 3 the industrial problem under consideration is
presented, pointing out the drawbacks related to the approach presented in
[9]. In Section 4 the proposed hybrid approach is described. In Section 5 the
issues related to the need of handling an unbalanced dataset in the classification
process are discussed. Finally in Section 6 the benefits of the use of the hybrid
approach on different datasets arising from the considered industrial application
are shown.

3

2 Machine learning tools involved in the para-
metric design

In this section a brief description of the machine learning tools that will be
employed in the procedure proposed in this article, which are Artificial Neural
Network and Support Vector Machines, is provided.

Machine learning meta-models are able to learn a task, for example to ap-
proximate a function or classify data, from given examples. The examples are
n-dimensional vectors called features or samples and in the following a sample
will be denoted by x = [x1, . . . , xn] ∈ Rn. The main feature of machine learning
meta-models is that their employment is based on two different steps:

• a training phase, in which the model learns the task it has to perform
from some given examples that form a set called training set.

• an execution phase, in which the trained model is used to perform the
learned task on new samples.

2.1 ANN: Artificial Neural Networks

In the approach presented in this article Artificial Neural Networks (ANN) will
be used to approximate values of pumps performance functions.

An Artificial Neural Network is a mathematical model whose structure is
thought to try to replicate the functioning of a human brain, [11]. It is composed
of artificial nodes uj known as neurons, which are connected together to form
a network which mimics a biological neural network. Each neuron uj can be
thought of as a unit to which a transfer function tj is associated and that
receives some inputs x1j , . . . , xmj and produces a single output yj = tj(Ij) =
tj(
∑m
i=1 xij).

Usually the same transfer function is used for all neurons, i.e. tj = t for all
j and the most common is the sigmoidal function:

t(Ij) =
1

1 + e−Ij
, (1)

that is employed also in this article. Two neurons ui, uj are connected to each
other if there exists a weight wij such that the i-th input of uj is obtained from
the output of uj weighted by wij : xij = wijyi. In this way uj receives an input
which can be inhibited, enhanced or damped, with respect to the output of ui,
according to the sign and value of wij . Assuming that neuron uj receives inputs
from other neurons u1, . . . , um, its own output will be computed as

yj = t(Ij) = t

(
m∑
i=1

xij

)
= t

(
m∑
i=1

wijyi

)
, (2)

as it is shown in the left part of Figure 1. Then, the output of each neuron
depends on the weights, which can be adjusted to allow the network to predict

4

Figure 1: Graphical representation of a neuron (left) and of the network (right).

different functions. Neurons are usually stored in layers and can be connected to
the others in many ways, so that different kinds of ANN can be obtained. The
connections between neurons are called synapses and they store the weights.
When the ANN is used for regression purposes to approximate a function f , it
is assumed to have a training set at disposal given by

T = {(x1, y1), . . . , (xmtrain
, ymtrain

)| yi = f(xi) i = 1, . . . ,mtrain}. (3)

During the training phase the samples in the training set are given as an input
to the ANN, the weights of the connections are adjusted by an iterative process
to fit the data in the training set, and the network builds its own model function
f̄ approximating the desired function f : f̄(x) ' f(x) for all inputs x, which
will be used in the execution phase to predict the outputs of new samples.

When the aim is to predict values of a scalar function usually a feed-forward
ANN (i.e. without loops in the connections) trained with a back propagation
algorithm is used.

In this article a network structured on four levels is employed, see right part
of Figure 1: an input layer which is composed of as many neurons as the number
of degrees of freedom n, two hidden layers and an output layer composed of a
single neuron. The neurons in each level are connected to all the neurons in the
upper level.

The back propagation algorithm is a supervised learning algorithm, which
means that it is necessary to provide to the ANN examples of both inputs and
outputs the network has to compute.

During the training the samples in the training set (3) are provided as an
input to the network one by one. Each neuron in the input layer receives in
input a component of the considered training sample x. All the components
are then transmitted through the network and transformed by the activation

5

functions of the neurons they come across, until they reach the neuron in the
output layer, whose output y′ is the network output and that represents the
current approximation to the desired y = f(x). Notice that the prediction,
and so also the prediction error, depends on the weights (see equation (2)), so
it is possible to adjust them to minimize it. Then, the weights are initialized
randomly and updated if y′ is different from the expected result y, to minimize
the error E = ‖y − y′‖2. Specifically, the current weights of all the connections
are stacked together forming a vector w which is updated as

w = w − α∇E, (4)

where α ∈ (0, 1] is a fixed value called learning rate. All the samples in the
training set are given in input to the network, this is equivalent to performing a
single step of gradient method for each training couple (xi, yi), i = 1, . . . ,mtrain.
To obtain values of the weight to get a good approximation to function f , the
whole process is repeated for a high number of times (called epochs, ' 105/106).
The final values of the weights, those obtained at the end of the last epoch, are
then used in the execution phase to compute the output of new samples. To
predict the function value of a new sample x, it is provided as an input to the
network, whose output is the desired approximation of f(x).

2.2 SVM: Support Vector Machines

In the approach presented in this article Support Vector Machines will be used
to solve a binary classification problem, namely the classification of geometries
as feasible or unfeasible. Then, here a brief introduction on SVM for binary
classification problems is given, for a more detailed description see [23].

Assume to have samples belonging to two different classes F and U , the goal
is to predict which class a new data point will be in. The training set in this
case is given by

T = {(x1, y1), . . . , (xmtrain , ymtrain), yi = +1 if xi ∈ F , yi = −1 if xi ∈ U , i = 1, . . . ,mtrain},

i.e. yi will be the label of the class the feature is in.
Starting from the samples in the training set, the meta-model builds a de-

cision function that is used to assign a label to new samples. Particularly, a
hyperplane is sought that separates the features belonging to different classes.
If the samples are not linearly separable, they are projected in a higher dimen-
sional space by a kernel function φ(·) and the separating hyperplane is searched
in the projected space. The hyperplane H is the set of points such that:

H = {x ∈ Rn | h(x) = wTΦ(x) + b = 0},

its equation depends on two parameters, w ∈ Rn and b ∈ R. Features x laying on
the hyperplane are such that h(x) = 0, the others are such that either h(x) ≥ 1
or h(x) ≤ −1, choosing a suitable scaling for the free coefficients. If the features

6

are linearly separable in the projected space

h(xi) = wTΦ(xi) + b ≥ 1 for all xi ∈ F ,
h(xi) = wTΦ(xi) + b ≤ −1 for all xi ∈ U ,

so that features can be assigned to one of the two classes according to the sign
of function h. If it exists, the separating hyperplane is not unique. For each H
the margin ρ is defined as the minimum distance among the features and the
hyperplane itself:

ρ(w, b) = min
x

|wTx + b|
‖w‖

.

The optimal hyperplane is defined as the one that maximizes the margin and it
is found solving the following optimization problem:

max
w∈Rn,b∈R

ρ(w, b). (5)

It is possible to prove [23] that the optimal hyperplane exists and is unique, and
that (5) is equivalent to

min
w∈Rn,b∈R

1

2
‖w‖2 (6a)

s.t. wTΦ(xi) + b ≥ 1, for all xi ∈ F , (6b)

wTΦ(xi) + b ≤ −1, for all xi ∈ U . (6c)

If the features are not linearly separable (6) has no solution. In the applications
features are rarely linearly separable, even in the higher dimensional space, so it
is necessary to allow the presence of some outliers inserting some slack variables
ζi i = 1, . . . ,mtrain in the model, such that

wTΦ(xi) + b ≥ 1− ζi for all xi ∈ F ,
wTΦ(xi) + b ≤ −1 + ζi for all xi ∈ U ,

ζi ≥ 0, i = 1, . . . ,mtrain.

Notice that if xi is incorrectly classified ζi > 1, so
mtrain∑
i=1

ζi is an upper bound of

the number of training features misinterpreted. The term C
mtrain∑
i=1

ζi is inserted

in the objective function (6), where C > 0 weights the contribution of the new
term. To obtain the optimal parameters w, b, given C > 0, this minimization
problem has to be solved:

min
ω,b,ζ

1

2
‖w‖2 + C

mtrain∑
i=1

ζi (7a)

s.t. yi(w
TΦ(xi) + b) ≤ 1− ζi, (7b)

ζi ≥ 0, i = 1, . . . ,mtrain. (7c)

7

Problem (7), is not actually solved, but rather the dual problem is consid-
ered:

max
w,b,ζ,λ,µ

1

2
‖w‖2 + C

mtrain∑
i=1

ζi −
mtrain∑
i=1

λi(yi(w
TΦ(xi) + b)− 1 + ζi)−

mtrain∑
i=1

µiζi,

(8a)

s.t. w =

mtrain∑
i=1

λiyiΦ(xi), (8b)

mtrain∑
i=1

λiyi = 0, (8c)

C − λi − µi = 0, i = 1, . . . ,mtrain, (8d)

λ, µ ≥ 0, (8e)

where λ = [λ1, . . . , λmtrain
], µ = [µ1, . . . , µmtrain

] and (8e) holds component-
wise.
(8) can be rewritten as

min
λ

1

2
λTQλ− eTλ (9a)

s.t. yTλ = 0, (9b)

0 ≤ λi ≤ C, i = 1, . . . ,mtrain, (9c)

where e = [1, . . . , 1]T , y = [y1, . . . , ymtrain
],

Qi,j = yiyjK(xi,xj) ≡ yiyjΦ(xi)
TΦ(xj). (10)

After solving (9), w can be obtained by (8b) and b by the complementarity
conditions

λi(yi(w
TΦ(xi) + b)− 1 + ζi) = 0, i = 1, . . . ,mtrain.

The decision function is then defined as:

f(x) = sgn(wTΦ(x) + b).

3 Industrial application: parametric design of
centrifugal pumps

In this section the industrial application considered in this article is presented,
i.e. the parametric design of a whole family of turbomachinery components.
The steps of the design process proposed in [9] are described and the arising
drawbacks are pointed out, showing the results of the application of the con-
sidered procedure to a test case. Finally the use of a classification process is
proposed to solve the presented issues.

The procedure proposed in [9] is outlined in Framework 1. It is based on cou-
pling a geometry parameterization tool, CFD computations for solving Reynolds

8

Averaged Navier-Stokes (RANS) equations and feed-forward Artificial Neural
Networks as a regression meta-model. It is assumed that the machine per-
formance is evaluated through h scalar performance functions: f1, . . . , fh and
f = [f1, . . . , fh]. The procedure is composed of two parts: Phase 1 of ANN
training and Phase 2 of research of an optimal solutions set. In Phase 1, h ANN
models, one for each performance function, are trained that will be used in Phase
2 to build the response surface. In Phase 2 indeed, the meta-models are used to
predict performance functions of new geometries, to reduce the amount of CFD
computations required for the design. On the response surface a multi-objective
algorithm is then run to find the set of optimal geometries.

Framework 1 Parametric design of a family of turbomachinery
components, coupling CFD and ANN.

Phase 1: ANN training

1. Geometry parameterization. Choose n parameters (degrees of
freedom) to describe the machine geometry, so that each machine will
be identified by a vector x = [x1, . . . , xn] ∈ Rn, which in the following
we will address as feature or sample.

2. Sampling of the design space. Taking into account the range of
variation of each parameter, the design space is built. Assuming that
xmin
i ≤ xi ≤ xmax

i for i = 1, . . . , n, the resulting design space is defined
as:

S = [xmin
1 , xmax

1]× · · · × [xmin
n , xmax

n] ⊆ Rn.

A quasi-random sequence (Sobols or latin hypercube) is used to gen-
erate a dataset D0 = {x1, . . . ,xm} that samples the design space.

3. CFD simulations. CFD computations are performed on D0 to di-
vide the features in the sets F ′ of feasible samples and U ′ of unfeasible
samples, where usually |F ′| � |U ′|. The machine performance func-
tions of feasible samples are evaluated: fj = [f1(xj), . . . , fh(xj)]

T for
xj ∈ F ′ and a performance database DF ′ is built, which can be thought
of as a set of pairs: DF ′ = {(xj , fj), xj ∈ F ′}.

4. ANN training. The performance database is used to train the ANN
models, that learning from the examples in DF ′ , build their own func-
tions f̄i, that are approximations to the true performance functions:
f̄i ' fi, i = 1, . . . , h.

Phase 2: Research of an optimal solutions set

9

Figure 2: Flowchart of the approach outlined in Framework 1.

1. Sampling of the design space. The design space is sampled again
producing a new dataset D1.

2. ANN execution. ANN models are used to predict function f =
[f1, . . . , fh] on all the new samples in D1 through function f̄ =
[f̄1, . . . , f̄h] built at step 4 of Phase 1, thus producing the response
surface.

3. Multi-objective algorithm. A multi-objective algorithm is run to
find the set of optimal solutions Dott.

4. CFD validation of the optimal solutions set. The found solu-
tions set Dott is validated by CFD computations to discard the unfea-
sible samples, arising from the sampling at step 1.

The procedure is sketched in the flowchart in Figure 2. In this and in all
the other flowcharts a rectangle represents a process, a parallelogram an in-

10

Figure 3: Left: Single-shaft centrifugal impeller. Right: 3D view of impeller H
type grid.

put/output, a diamond indicate a decision, and specifically the result of a clas-
sification.

Specifically, in this article the parametric design of the components of a
whole family of pumps with horizontal suction duct, single-shaft centrifugal
impeller, as the one depicted in the left part of Figure 3, vertical discharge
diffuser and volute, in a wide range of specific speed, is considered. Then, some
choices made to customize the general approach outlined in Framework 1 to
the specific application are pointed out here. The geometry parameterization
is made trough an in-house tool specifically developed for the type of machines
introduced above. It relies on a reduced set of parameters (integral B-splines
control points) which have a strong correlation with the pump performance,
rather than with the geometrical shape only, and allows to handle the three-
dimensional pump geometry, that is the impeller, the diffuser and the volute, in
a parametric way. It is essential to parameterize all the components using as few
geometrical parameters as possible, in order to reduce the number of degrees of
freedom involved and the dimensionality of the resulting design space. Anyway,
tens of parameters are usually necessary. More details about the geometry
parameterization can be found in [9]. The CFD analysis of impeller performance
relies on a fully viscous three-dimensional numerical solver (TRAF [1], [2], [3]),
while the overall performance prediction of the pump (efficiency, mass flow rate,
hydraulic head etc.) was obtained coupling the results of the impeller analysis
(or the equivalent meta-model prediction) with a 1D correlation tool, which
accounts for the losses due to the other components, in order to reduce CFD
costs, [8]. The CPU time for one serial CFD computation on a Intel Xeon E5-
2680V2 @ 2.8 GHz CPU is about 2 hours. The impeller computational domain
was discretized with a structured elliptic single-block H type grid, 225×65×65
points in the streamwise, pitchwise, spanwise direction respectively, for a total
number of about a million of points, that is reported in the right part of Figure
3.

There are mainly two drawbacks arising in the outlined procedure, that we
present in the following Framework.

11

Framework 2 Drawbacks of the procedure outlined in
Framework 1

1. The first drawback arises at step 2-3 of Phase 1. Even if particular
attention is dedicated to the implementation of the parameterization
tool and to correlate the tens of degrees of freedom, when sampling the
design space generally more than 70% of the samples turn out to be
unfeasible. This is an intrinsic aspect in the nature of a parametric
design, in which the same geometrical parameters and range of varia-
tion are applied to pump geometries with very different characteristics
(wide range of specific speed) and manufacturing constraints.

To obtain an accurate prediction of the desired functions, the meta-
model has to be trained on a set F ′ of just feasible samples, which can
be found at the cost of a really large number of CFD computations, as
the most part of them will yield unfeasible geometries.

2. Another analogous problem arises in Phase 2, when the so trained
meta-model is used to find an optimal solutions set. The objective
functions of new geometries randomly selected are predicted by means
of the meta-model. The sampling is performed within the whole de-
sign space, and again the most part of the geometries provided as
meta-model input will result unfeasible. The predicted performance
functions values will then be meaningless and it is possible that step
3 of Phase 2 yields a set of optimal solutions consisting of just un-
feasible samples, leading to the need of repeating the procedure again.
This outcome is independent from the meta-model chosen, and leads
to conclude that the considered approach may not be effective for a
parametric design.

3.1 Example

In this section a test case arising from the industrial application introduced
above is considered to highlight the issues just described. The pump compo-
nents were parameterized using n = 40 degrees of freedom and it was found
experimentally that the ratio between feasible and unfeasible feature is 1:3.

The procedure sketched in Framework 1 was performed on this database.
At step 3 of Phase 1 about 50000 CFD computations were necessary to form
a training set of just 12500 feasible samples, which proved to be large enough
to obtain good regression results. This means that about 75% of performed
expensive CFD computations were useless, as the considered features results
unfeasible and therefore cannot be used in the following steps.

Two different meta-models were trained on this training set and then used

12

Geometries

0 5 10 15 20 25

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

220

240

260

280

300

320

340

360

380

400

Meta-model 1

Meta-model 2

CFD

Figure 4: Meta-model 1 (straight line, SVM in regression mode) and meta-model
2 (dashed line, ANN) predictions of an objective function, CFD computations
for feasible geometries (full triangle).

to predict one of the pump objective functions of new samples. The results
obtained on 25 of these features are reported in Figure 4. Here, the empty
squares mark the output predicted by the first meta-model (straight line) and
by the second one (dashed line), while the objective function values for feasible
features, obtained by CFD calculations, are marked by a full triangle. Notice
that only few samples are feasible (6/25), and so marked by triangles. Notice-
ably, the regression function values computed by the two models for many of
the unfeasible geometries are completely different from each other, as they are
meaningless. From this, it is possible to conclude that the drawbacks in Frame-
work 2 are intrinsic in the problem and cannot be solved choosing a different
meta-model.

3.2 Need for a classification tool

From all the considerations made above, it is possible to conclude that to make
this approach practical, it is necessary to have a tool to distinguish the feasible
geometries from the others without running CFD. This would help both to avoid
a useless large amount of expensive CFD calculations to form ANN training
set and to restrict the regression process to a set mainly composed of feasible
geometries, to reduce the presence of unfeasible ones in the optimal solution set,
making also step 4 of Phase 2 less expensive.

What has to be considered is then a binary classification problem: samples
are assumed to belong to two different classes and the goal is to predict which
class a new data point will be in. In our case a sample is a geometry and

13

the classes are that of feasible geometries (the ones corresponding to manufac-
turable machines and to convergent CFD calculations) and that of the unfeasible
geometries (all the others).

For this reason a hybrid approach has been conceived, that includes a classifi-
cation tool in the previously proposed procedure. It is described in the following
section.

4 Hybrid approach: SVM as a classification meta-
model

The main idea of the approach devised to overcome the drawbacks in Framework
2, is to use a classifier to distinguish the feasible from the unfeasible features.
As pointed out in Section 3.2 indeed, each one of the drawbacks outlined in
Framework 2 could be lightened having at disposal a cheap tool to separate the
features into these two classes. Then, two classification procedures, one for each
drawback, were inserted in the approach outlined in Framework 1. The tool
chosen as a classifier is Support Vector Machine. The resulting hybrid approach
is outlined in Framework 3.

The basic scheme is the same as the one of the procedure sketched in Frame-
work 1, except for the added classifications which are highlighted by italic font.
The approach is still divided in Phase 1 of ANN training and Phase 2 of re-
search of an optimal solutions set. Some steps are the same as in Framework
1, but their description is repeated for sake of clarity. It is assumed to have at
disposal a trained SVM model which, given a sample x as an input, classifies
it as feasible or unfeasible, i.e. it divides the features in the two classes F of
feasible samples and U of unfeasible samples. As in Section 3, it is assumed that
the machine performance is evaluated through h scalar performance functions:
f1, . . . , fh and f = [f1, . . . , fh].

Framework 3 Hybrid approach: Parametric design of a family of
turbomachinery components coupling CFD, ANN, SVM.

Phase 1: ANN training

1. Geometry parameterization. Choose n parameters (degrees of
freedom) to describe the machine geometry, so that each machine will
be identified by a vector x = [x1, . . . , xn] ∈ Rn, which in the following
we will address as feature or sample.

2. Sampling of the design space. Taking into account the range of
variation of each parameter, the design space is built. Assuming that

14

xmin
i ≤ xi ≤ xmax

i for i = 1, . . . , n, the resulting design space is defined
as:

S = [xmin
1 , xmax

1]× · · · × [xmin
n , xmax

n] ⊆ Rn.
A quasi-random sequence (Sobols or latin hypercube) is used to gen-
erate a dataset D0 = {x1, . . . ,xm} that samples the design space.

3. Classification by SVM . The samples in D0 are given in input
to SVM which divides them into the two classes F (feasible), U
(unfeasible). Features in U are not taken in further account and just
those in F are considered in the next steps.

4. CFD simulations. CFD computations are performed on the samples
in F . The outliers are eliminated obtaining a subset F ′ of just feasible
features for which the machine performance functions are evaluated:
f(xj) = [f1(xj), . . . , fh(xj)] and xj ∈ F ′. The performance database
DF ′ is built, which is a set of pairs: DF ′ = {(xj , fj),xj ∈ F ′}, where
fj = [f1(xj), . . . , fh(xj)].

5. ANN training. The performance database is used to train the
ANN models, that learning from the examples in DF ′ , build their
own functions f̄i that approximate the true performance functions:
f̄i ' fi, i = 1, . . . , h.

Phase 2: Research of an optimal solutions set

1. Sampling of the design space. The design space is sampled again
producing a new dataset D1.

2. Classification by SVM . Samples in D1 are given in input to SVM
which divides them into the two classes F ′′,U ′′. Features in U ′′ are
not taken in further account and just those in F ′′ are considered in
the next step.

3. ANN execution. The ANN model is used to predict function f of
the samples in F ′′, thus producing the response surface.

4. Multi-objective algorithm. A multi-objective algorithm is run to
find the set of optimal solutions Dott.

5. CFD validation. The optimal solutions set Dott found is validated
trough CFD computations to eliminate possible outliers, as the classi-
fication by SVM will not be 100% correct.

15

The classification procedures inserted at step 3 of Phase 1 and step 2 of Phase
2 are intended to mitigate drawbacks 1. and 2. in Framework 2 respectively.

Indeed, the first classification allows to restrict the CFD computations per-
formed at step 4 of Phase 1 just to the set F of features classified as feasible
by SVM, with the aim of eliminating outliers. This produces a great saving in
CFD computations, as |F| � |D0| and CFD performed on samples in U would
be of no use.

The second process allows to predict function values just of samples in F ′′
that is mainly composed of feasible features. Some outliers will anyway be still
present in the set, then step 5 of Phase 2 is still necessary, but it will be much
less expensive than the corresponding step 4 of Phase 2 in Framework 1.

The approach effectiveness and the benefits of the two classification proce-
dures will be discussed in more details in Section 6. The procedure in Framework
3 is sketched in the flowchart reported in Figure 5, where the two inserted clas-
sification procedures are highlighted by black boxes. It can be compared to
the previous procedure, whose flowchart is reported in Figure 2. For seek of
simplicity in the flowchart it is assumed to have at disposal a trained SVM.

Dataset

D1

Feasible

 F"

Unfeasible

 U"

SVM

model

Responce

 surface

CFD

 validation

Multi-objective

algorithm

Optimal

 solutions

Geometry

parameterization
Sampling

ANN

execution

Part 2

Figure 5: Flowchart of the proposed hybrid approach, outlined in Framework 3.

It is worth reminding that the proposed approach, compared to the previous
one, requires the additional SVM training, which however has to be done just

16

once and is not really time consuming (in the tests performed in Section 6
the training time is about 5 minutes). The main cost related to this arises
from the CFD computations necessary to form a training set of both feasible
and unfeasible features of known classification. However, this is not a useless
expense. On one hand, the feasible features found could be used to enlarge
the ANN training set obtained at step 4 of Phase 1, to gain a more accurate
regression meta-model. On the other hand the gains provided by the added
classification procedures largely cover the costs of SVM training.

In Section 6 the proposed hybrid procedure will be applied to practical test
cases arising from the described industrial application, highlighting the savings
provided.

5 Consequences of dataset unbalancedness

It is important to underline that the savings in CFD computations that can
be achieved by the proposed approach compared to the previously used one,
depend entirely on SVM classification ability. Then it is crucial to properly
train the meta-model to gain the best results. The main difficulty, intrinsic in
the classification process, is that the sets of data the SVM has to be trained on
and that have to be classified, are unbalanced, due to the predominant presence
of unfeasible geometries over the feasible ones. In this section it is shown how
this feature affects the choice of the training strategy and the criteria chosen to
evaluate the procedure performance.

With unbalanced data sets, the classifier has few information about the
minority class to make an accurate prediction, so it is easy to have many feasible
features misclassified.

Assume to classify m unknown features in the two classes F , labelled with
+1, and U , labelled with −1. Let C ∈ Rm be the vector with the correct features
classification, i.e. C(i) = 1 if the i-th feature xi ∈ F and C(i) = −1 if xi ∈ U ,
i = 1, . . . ,m, and PC ∈ Rm the result of the classification process, i.e. PC(i) is
the predicted value of C(i), i = 1, . . . ,m.

For each feature four different situations can occur, that are illustrated in
the confusion matrix in Table 1:

• TP=true positive: C(i) = 1, PC(i) = 1 the feature is feasible and is cor-
rectly classified,

• FP=false positive: C(i) = −1, PC(i) = 1 the feature is unfeasible but is
misinterpreted and classified as feasible,

• TN=true negative: C(i) = −1, PC(i) = −1 the feature is unfeasible and
is correctly classified,

• FN= false negative: C(i) = 1, PC(i) = −1 the feature is feasible but is
misinterpreted and classified as unfeasible.

17

C(i) = −1 C(i) = 1
PC(i) = 1 FP TP
PC(i) = −1 TN FN

Table 1: Confusion matrix.

When the dataset is balanced, the probability of misinterpreting a feature
is the same for the two classes, i.e. the probability of a false positive is the
same of that of a false negative, then the fraction of features correctly classified

TP+TN
TN+TP+FN+FP is a good measure of accuracy. When unbalancedness occurs
and the fraction of unfeasible features is predominant, the probability of a false
negative is much higher than the probability of a false positive, and this value
is not so meaningful. As a matter of fact, as the feasible samples represent a
small percentage of the full database, one has TP+TN

TN+TP+FN+FP '
TN

TN+FN and
it is so possible to achieve a high accuracy level even if all the features in the
minority class are misinterpreted.

For this reason a proper choice of the parameters to evaluate the performance
of the classification process has to be made taking into account that the datasets
are really unbalanced.

In this article two sets of parameters are considered to evaluate the perfor-
mance, [18]. The first set of parameters is given by those of the confusion matrix
in percentage form:

• TPR = TP
TP+FN True Positive Rate or sensitivity or recall, fraction of

positive samples correctly classified over all positive samples available in
the test,

• FNR = FN
TP+FN False Negative Rate fraction of feasible features misin-

terpreted over all positive samples available in the test,

• TNR = TN
TN+FP True Negative Rate or specificity, fraction of negative

samples correctly classified over all negative samples available in the test,

• FPR = FP
TN+FP False Positive Rate, fraction of unfeasible features misin-

terpreted over all negative samples available in the test.

The second set of parameters that is of interest for a designer is:

• PPV = TP
TP+FP Positive Predictive Value, the fraction of true positives

in the set of features classified as positive,

• FDR = FP
TP+FP False Discovery Rate, the fraction of false positives in the

set of features classified as positive,

• NPV = TN
TN+FN Negative Predictive Value, the fraction of true negatives

in the set of features classified as negative,

• FOR = FN
TN+FN False Omission Rate, the fraction of false negatives in

the set of features classified as negative.

18

Figure 6: Meaning of parameters PPV , FDR, NPV , FOR.

The meaning of these parameters is shown in Figure 6. When features are
classified by SVM they are divided into two subsets F , features classified as
positive, and U , features classified as negative. Parameter PPV interests the
designer as gives a measure of the quality of set F , telling how many features
are actually feasible, meaning that FDR = 1− PPV indicates how many use-
less CFD computations will be performed at step 4 of Phase 1 and how many
outliers could be part of the optimal solutions set at steps (4)-5 of Phase 2
of Framework 3. On the other hand, another parameter to take into account
is FOR, which gives the percentage of feasible features in the set of features
classified as unfeasible, which are then wrongly discarded after the classification
process.

Notice that the couples (TPR,FNR), (TNR,FPR), (PPV, FDR), (NPV, FOR)
sum up to one, so in the tables in Section 6 just a parameter for each couple
will be shown.

The dataset unbalancedness has to be taken into account also in meta-model
training. The designer is mainly interested in detecting feasible samples, so it
is necessary to force the classifier to take features belonging to the different
classes into different consideration. Generally the lack of balancedness of the
dataset is handled using two different weights for the positive and the negative
features, to penalize with more severity the misinterpretation of feasible features,
[25]. Coefficient C in the objective function (7) of the problem to be solved
during SVM training is then split in C+ (coefficient for feasible features) and
C− (coefficient for unfeasible features), so that the objective function becomes:

min
ω,b,ζ

1

2
‖w‖2 + C+

∑
xi∈F

ζi + C−
∑
xi∈U

ζi. (11)

To gain good results it is necessary to properly tune these coefficients, with
the aim of finding the better compromise between the need of detecting as many
feasible features as possible and that of avoiding too many unfeasible features
being classified as feasible ones, that would lead to useless CFD computations
in the regression process. In the literature, [25], it is suggested that the ratio
of the coefficients corresponding to feasible and unfeasible features should be

19

inversely proportional to the ratio of the corresponding features set sizes:

C+

C−
∼ |U|
|F|

, (12)

where |·| represents the cardinality of the set.
In the next section it will be shown how all these considerations are taken

into account in practical parametric design tests.

6 Numerical results

In this section the results of the tests performed on three different databases,
with different number of degrees of freedom and constraints, arising from the
described industrial application are reported. It is worth remembering that the
benefit granted by the proposed procedure compared to the one sketched in
Framework 1 lays in the savings arising from the use of a classification meta-
model, which makes the procedure practical. Moreover, the savings depend
entirely on the classification process quality. Then in this section the focus is
on the tuning of SVM free parameters to gain the best performance and on the
results obtained by the related classification process. The other steps of the
procedure are not shown, as this is out of the scope of the paper.

The SVM used to perform the tests is the one implemented by Chih-Chung
Chang and Chih-Jen Lin in LIBSVM - A Library for Support Vector Machines,
[7]. The tests were performed calling the LIBSVM package through its MEX
interface, on a Intel Core(TM) i7-4510U 2.6 GHz, 8 GB RAM.

6.1 Experimental setting

In this section some details on the experimental setting and the data preparation
are given.

For the tests the features are divided into two classes: class F of feasible
features, corresponding to constructable machines and convergent CFD calcu-
lations, and class U of unfeasible ones.

CFD calculations were carried out using the TRAF code [1], a steady/unsteady,
multigrid/multiblock flow solver for the three-dimensional Reynolds-averaged
Navier-Stokes equations. A detailed description of the numerical scheme can
be found in [1, 2]. The domain is divided in N cells. Denoted with R(n) the
residuals vector of the discretized equations on the n-th cell, for n = 1, . . . , N ,
and with

R =
1

N

N∑
n=1

‖Ri(n)‖, (13)

the 2-norm of the residuals averaged on the total number of cells, the compu-
tations are considered convergent if

log10R ≤ rescut (14)

20

where rescut is a suitable threshold fixed by the user. In the tests presented
below, it was set equal to one decade under the single precision machine zero,
i.e. rescut = −8. If res(i) is the residual of the i-th feature,

• F = {xi|res(i) ≤ rescut},

• U = {xi|res(i) > rescut},

assuming res(i) = 0 for non-convergent computations or non-manufacturable
machines.

The data were prepared for the classification process, scaling the geometries
degrees of freedom to have mean 0 and variance 1. In the literature indeed, it
is known that a good scaling of both the training and the testing features is
necessary to have good results, otherwise the contribution of the features that
have a bigger values of some degree of freedom would be predominant over the
contributions of the other features.

A choice that deeply influence the performance of SVM learning algorithm, is
that of the kernel function (10). In LIBSVM many different choices are possible:
linear, polynomial, radial basis function, sigmoid. For this specific application
the best performance was obtained with the radial basis function kernel:

K(x, y) = e−γ‖x−y‖
2

,

where x, y are features and γ is a parameter to be set. A good choice of free
parameter γ is crucial. LIBSVM provides a tool to select it by a cross validation
on a set of values. However when the dataset is large, cross validation can be a
really time consuming process, so γ was determined using the default method
employed in [28], [16], that is, it was set to the average squared distance among
training patterns.

For the tests the available data were divided into two subsets, a training
set of mtrain = 30000 geometries and a validation set of mval = 50000 geome-
tries, both composed of features of known classification. Notice that, even if
the number of degrees of freedom is really high and a large number of points
should be necessary to accurately sample the design space, the chosen value of
training features turned out to be sufficient to obtain good classification results.
Increasing it, leads to higher training times without significant improvement in
performance.

6.2 Tests

For the numerical experimentation three different databases arising from the
industrial application introduced before are considered, which have respectively
n=40, 44, 42 degrees of freedom, and for which the ratio between unfeasible and

feasible features |U||F| is 3:1, 7:1, 6:1.

The results of the tests are shown in Tables 2, 3 and 4, in which the pa-
rameters described in Section 5 are reported, for many classification procedures
performed with different choices of coefficient C+. Indeed, test were conducted

21

to investigate on the choice of the best combination of parameters. Then, pa-
rameter C− = 1 was fixed, and different values of C+ were tested.

Looking at the tables it is possible to see that as C+ grows SVM is more
reliable in detecting the feasible features, less and less feasible features are lost,
as it is shown by the increasing value of TPR. On the other hand the model is
less accurate in detecting the unfeasible features, and the number of false pos-
itives increases: when C+ is large the machine identifies more feasible features
but among them there are more false positives than for smaller values of C+,
as can be easily deduced by the decreasing value of PPV . So C+ should be
big enough to detect as many feasible solutions as possible and minimizing the
number of feasible features lost due to the classification process (large TPR and
small FOR), to form a reasonably large set of solutions to train the ANN, but
not too much, to keep the number of unfeasible features incorrectly classified as
feasible low (small FPR and high PPV), to avoid useless CFD computations
and the performance evaluation of unfeasible geometries.

To investigate the choice of the best parameter combination a ROC curve
could be employed, [5]. In statistics, a Receiver Operating Characteristic, or
ROC curve, is a graphical plot that illustrates the performance of a binary
classifier as a parameter is varied. The curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) for different choices
of the free parameter. The best possible prediction would yield no false negatives
and no false positives and would correspond to a point in the upper left corner
of coordinates (0,1) in the ROC space, while a random guess would give a point
along the diagonal line from the left bottom corner to the top right one. So
points above the diagonal represent classification results better than random
ones, while points below the line correspond to bad results, worse than random.
The best results from a confusion matrix are then the closest to the upper left
corner, and the distance from the random guess line can be used as an indicator
of how much predictive power a method has. In Figure 7 the ROC curves
corresponding to Table 2 (top left), Table 3 (top right) and to Table 4 (bottom)
are reported. For each test it is possible to deduce the best values for the free
parameter, choosing the point closer to the upper left corner, which is marked
by a black circle. Notice that these results are in good accordance with (12). In
the tables then, the column corresponding to the best parameters combinations
is highlighted by bold font.

Table 2: Results of the classification tests performed on Dataset 1. Labels
meaning is introduced in Section 5.

3 : 1 C+ = 1 C+ = 2 C+ = 3 C+ = 5 C+ = 10
TPR 31.5% 66.1% 78.3% 88.5% 94.5%
FPR 4.1% 15.4% 23.0% 33.1% 44.7%
PPV 70.1 % 56.6% 50.8% 44.9 % 39.2 %
FOR 17.9 % 10.9% 7.9% 5.0 % 2.9%

Then, independently of the choice of the parameter, even if SVM classifier

22

FPR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve Dataset 1

C
+

=1

C
+

=2

C
+

=3

C
+

=5

C
+

=10

FPR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve Dataset 2

C
+

=1

C
+

=2

C
+

=3

C
+

=5

C
+

=7

C
+

=10

C
+

=20

FPR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve Dataset 3

C
+

=1

C
+

=2

C
+

=3

C
+

=5

C
+

=7

C
+

=10

C
+

=20

Figure 7: ROC curve, Dataset 1 top left, Dataset 2 top right, Dataset 3 bottom.
C+ weighting factor for feasible features, best value is highlighted by a black
circle.

23

Table 3: Results of the classification tests performed on Dataset 2. Labels
meaning is introduced in Section 5.

7 : 1 C+ = 1 C+ = 2 C+ = 3 C+ = 5 C+ = 7 C+ = 10 C+ = 20
TPR 14.7% 53.5% 66.0% 77.5% 83.0% 86.5% 88.4%
FPR 0.7% 5.9% 9.9% 16.1% 19.8% 23.1% 25.7%
PPV 76.9% 58.5% 50.8% 42.7 % 39.4% 36.7 % 34.8 %
FOR 11.7% 7.1% 5.5% 3.9 % 3.1% 2.6% 2.3 %

Table 4: Results of the classification tests performed on Dataset 3. Labels
meaning is introduced in Section 5.

6 : 1 C+ = 1 C+ = 2 C+ = 3 C+ = 5 C+ = 7 C+ = 10 C+ = 20
TPR 20.5% 55.5% 67.9% 78.7% 84.2% 87.2% 89.7%
FPR 1.1% 6.1% 10.0% 15.0% 18.2% 20.7% 23.4%
PPV 74.6 % 58.9% 51.8% 45.2% 42.1% 39.8% 37.6 %
FOR 11.2 % 6.9 % 5.3% 3.8 % 2.9% 2.5% 2.1 %

allows in the feasible set a percentage of false positives, the general advantage
gained by the use of the classification procedure is that it lowers the ratio be-
tween unfeasible and feasible features in the set F that has to be tested by CFD
computations. This new ratio is given by FDR

PPV . In all the tests it is much lower
then the one in the original dataset. In the datasets considered the ratio turns
from 3:1 to about 1:1, from 7:1 to about 1.5:1 and from 6:1 to about 1.4:1. The
practical outcome of this, is that when at step 2 of Phase 1 the design space is
sampled, the most part of the unfeasible geometries is discarded by SVM. Then
the CFD are performed on dataset F which is an almost balanced dataset. The
same benefits apply to Phase 2, when the regression meta-model is applied at
step (3) to F ′′ that, like F , is mainly composed of feasible features. Thus, the
presence of unfeasible geometries in the optimal solutions set is reduced and the
cost of step (5) is lowered.

Let us show these benefits with a practical example. The same test as in
Section 3.1 is used, which is the one considered in Table 3. Let us assume to
have tested with SVM enough features to have |F| ' 24600, which it is worth
remembering is not an expensive procedure. Then, considering that for this test
case PPV = 50.8%, performing about 24600 CFD computations it is possible
to obtain a training set F ′ of about 12500 samples, the same size as the one
yielded by the procedure sketched in Framework 1, that was obtained with
50000 computations (cfr. Section 3.1). The proposed approach allows then to
save more than 50% CFD computations to form the ANN training set. Moreover
the result of step 2 of Phase 2 is a dataset F ′′ in which just half of the features
will result to be unfeasible, so it is less likely to obtain optimal solutions sets
composed just of unfeasible features.

Similar remarks can be made for the others datasets. In that cases, due to

24

Table 5: Results of the classification tests performed on Dataset 1 with optimal
value of γ.

3:1 C+ = 1 C+ = 2 C+ = 3 C+ = 5 C+ = 10
TPR 32.7% 66.2% 78.2% 88.0% 93.8%
FPR 4.3% 15.4% 22.8% 32.5% 43.1%
PPV 70.0 % 56.6% 51.1% 45.2 % 39.8 %
FOR 17.6 % 10.8 % 7.9% 5.1 % 3.2 %

the stronger unbalancedness, the savings in CFD computations are even higher,
around 67%.

Notice also that the percentage of feasible features in the set of features clas-
sified as unfeasible (and then wrongly discarded after the classification process)
is low, about 8% for Dataset 1 and 3% or the other two.

All of this, leads to conclude that the proposed procedure is actually effective
in reducing the computational costs and improves the previously considered
approach.

The strategy chosen to handle the dataset unbalancedness shows to be ef-
fective, SVM classification meta-model performs well and allows to successfully
handle problems with different unbalancedness levels. In fact, even if the last
two classification problems are more difficult than the first, with a suitable
choice of parameter C+ good results are obtained.

Finally, it is worth noticing that in all the tests presented above, indepen-
dently of the dataset considered, the same value γ = 0.0114 is used. Finding
the right value for the free parameter, using either a cross-validation or the
average squared distance among training patterns is rather a time consuming
computation, that should be performed each time the dataset is varied. It is
convenient to use the same parameter to build models also for different kind of
machines, to save computational time and to have a tool that does not need to
be tuned on each test case. The γ value that was used in the tests is optimized
for the dataset with n = 44 degrees of freedom. While the optimal parameter
for the dataset with n = 42 degrees of freedom is quite the same, the optimal
one for the other dataset is γ = 0.0135. In Table 5 the results obtained with
the optimal parameter γ = 0.0135 for the dataset with 40 degrees of freedom
are reported. Comparing them with those in Table 3, it is possible to see that
they do not change significantly, so the same parameter γ can be used for all
this dataset without loss of accuracy.

7 Conclusions and remarks

In this article a hybrid approach to face the parametric design of a centrifugal
pump is presented, which is based on coupling CFD computations, SVM classi-
fication and ANN regression. An intrinsic property of a parametric design is the
presence of many unfeasible geometries in the design space, so that the databases
formed according to the parameterization chosen are really unbalanced. This

25

has two main drawbacks. On one hand, a huge number of CFD computations
is necessary to form a suitable training set for the regression meta-model. On
the other hand, the optimal solutions set found evaluating the performance
functions of new samples by means of the trained meta-model, could be made
just of unfeasible geometries. A strategy to solve these two problems, based
on coupling the regression process with a classification by SVM, is presented.
The strategy was tested on various datasets with a large number of degrees of
freedom, different constraints and different ratio between feasible and unfeasi-
ble features. It is shown that with a fine tuning of the free parameters different
unbalancedness levels can be handled. Moreover, the use of the classification
procedure allows to discard the most part of the unfeasible samples, making the
design procedure doable and cutting the number of required CFD computations
by about 50%− 70%.

References

[1] A. Arnone. Viscous analysis of three-dimensional rotor flow us-
ing a multigrid method. Journal of Turbomachinery, 116(3):435–445,
doi:10.1115/1.2929430, 1994.

[2] A. Arnone. Multigrid methods for turbomachinery navier-stokes calcula-
tions. In Solution Techniques for Large-Scale CFD Problems, pages 293–
332. John Wiley and Sons, New York, 1995.

[3] A. Arnone and R. Pacciani. Three-dimensional viscous analysis of centrifu-
gal impellers using the incompressible navier-stokes equations. In Proceed-
ings of 1st European Conference on Turbomachinery, Erlangen, Germany,
pages 181–195, 1995.

[4] D. Bonaiuti, A. Arnone, M. Ermini, and L. Baldassarre. Analysis and
optimization of transonic centrifugal compressor impellers using the de-
sign of experiments technique. Journal of Turbomachinery, 128(4):786–797,
doi:10.1115/1.1579507, 2006.

[5] A.P. Bradley. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7):1145–1159, doi:
10.1016/S0031–3203(96)00142–2, 1997.

[6] C. Chahine, J. R. Seume, and T. Verstraete. The influence of metamod-
eling techniques on the multidisciplinary design optimization of a radial
compressor impeller. In Proceedings of ASME Turbo Expo 2012, 11-15
June 2012, Copenhagen, Denmark, pages 1951–1964. doi:10.1115/GT2012-
68358, 2012.

[7] C.C. Chang and C.J. Lin. Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):Article No.
27, 2011.

26

[8] M. Checcucci, F. Sazzini, M. Marconcini, A. Arnone, M. Coneri,
L. De Franco, and M. Toselli. Assessment of a neural-network-based op-
timization tool: a low specific-speed impeller application. International
Journal of Rotating Machinery, 2011, doi:10.1155/2011/817547, 2011.

[9] M. Checcucci, A. Schneider, M. Marconcini, F. Rubechini, A. Arnone,
L. De Franco, and M. Coneri. A novel approach to parametric design of
centrifugal pumps for a wide range of specific speeds. In Conference: 12th
International Symposium on Experimental and Computational Aerother-
modynamics of Internal Flows, 13-16 July 2015, Lerici (SP), Italy, page
ISAIF 12 paper nr.121, 2015.

[10] L. Ellbrant, L.E. Eriksson, and H. Mårtensson. Design of compressor blades
considering efficiency and stability using cfd based optimization. In Proceed-
ings of ASME Turbo Expo 2012, 11-15 June 2012, Copenhagen, Denmark,
pages 371–382. doi:10.1115/GT2012-69272, 2012.

[11] S. Haykin. Neural Networks: A Comprehensive Foundation. 2nd edition.
Macmillan, New York, ISBN: 978-0780334946, 1998.

[12] P.H. Hergt. Pump research and development: Past, present, and future.
Journal of Fluids Engineering, 121(2):248–253, doi: 10.1115/1.2822198,
1999.

[13] H. Liu, K. Wang, S. Yuan, M. Tan, Y. Wang, and L. Dong. Multicondition
optimization and experimental measurements of a double-blade centrifugal
pump impeller. Journal of Fluids Engineering, 135(1):0111031–01110313,
doi: 10.1115/1.4023077, 2013.

[14] Dingguo Lu and Wei Qiao. A ga-svm hybrid classifier for multiclass fault
identification of drivetrain gearboxes. In Energy Conversion Congress and
Exposition (ECCE), 2014, pages 3894–3900. IEEE, 2014.

[15] J. Monedero. Parametric design: a review and some experiences. Automa-
tion in Construction, 9(4):369–377, 2000.

[16] R. Ñanculef, E. Frandi, C. Sartori, and H. Allende. A novel frank–wolfe al-
gorithm. analysis and applications to large-scale svm training. Information
Sciences, 285:66–99, doi:10.1016/j.ins.2014.03.059, 2014.

[17] S. Nandi, Y. Badhe, J. Lonari, U. Sridevi, B.S. Rao, S.S. Tambe, and B.D.
Kulkarni. Hybrid process modeling and optimization strategies integrating
neural networks/support vector regression and genetic algorithms: Study of
benzene isopropylation on hbeta catalyst. Chemical Engineering Journal,
97(2):115–129, doi:10.1016/S1385–8947(03)00150–5, 2004.

[18] D. L. Olson and D. Delen. Advanced Data Mining Techniques. Springer
Science & Business Media, ISBN 978-3-540-76917-0, 2008.

27

[19] E. Osuna, R. Freund, and F. Girosit. Training support vector machines: an
application to face detection. In Proceedings of Computer Society Confer-
ence on Computer Vision and Pattern Recognition 1997, 17-19 June 1997,
Puerto Rico, pages 130–136. IEEE, 1997.

[20] S. Pierret. Turbomachinery blade design using a navier-stokes solver and
artificial neural network. ASME Journal of Turbomachinery, 121(3):326–
332, doi:10.1115/1.2841318, 1999.

[21] F. Rubechini, A. Schneider, A. Arnone, S. Cecchi, and F. A. Malavasi. A
redesign strategy to improve the efficiency of a 17-stage steam turbine. In
Proceedings of ASME Turbo Expo 2009, 812 June 2009, Orlando, Florida.,
pages 1463–1470. doi:10.1115/GT2009-60083, 2009.

[22] F. Rubechini, A. Schneider, A. Arnone, F. Dacca C. Canelli, and
P. Garibaldi. Aerodynamic redesigning of an industrial gas turbine. In
Proceedings of ASME Turbo Expo 2011, 6-10 June 2011, Vancouver, BC,
pages 1387–1394. doi:10.1115/GT2011-46258, 2011.

[23] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, ISBN:
9780262194754, 2001.

[24] D.H. Seo, T.S. Roh, and D.W. Choi. Defect diagnostics of gas tur-
bine engine using hybrid svm-ann with module system in off-design con-
dition. Journal of Mechanical Science and Technology, 23(3):677–685,
doi:10.1007/s12206–008–1120–3, 2009.

[25] H. Shin and S. Cho. How to deal with large dataset, class imbalance and
binary output in svm based response model. In Proceedings of the Korean
Data Mining Conference, pages 93–107, 2003.

[26] F. EH. Tay and L. Cao. Application of support vector machines in fi-
nancial time series forecasting. Omega, 29(4):309–317, doi:10.1016/S0305–
0483(01)00026–3, 2001.

[27] S. Tong and D. Koller. Support vector machine active learning with ap-
plications to text classification. Journal of Machine Learning Research,
2(11):45–66, doi:10.1162/153244302760185243, 2001.

[28] I. W. Tsang, J. T. Kwok, and P.M. Cheung. Core vector machines: Fast
svm training on very large data sets. Journal of Machine Learning Research,
6:363–392, 2005.

[29] A. Veress and R. Van den Braembussche. Inverse design and optimization
of a return channel for a multistage centrifugal compressor. Journal of
Fluids Engineering, 126(5):799–806, doi:10.1115/1.1792258, 2004.

28

