


Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA
IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN MATEMATICA
CICLO XXX

Sede amministrativa Università degli Studi di Firenze
Coordinatore Prof. Graziano Gentili

Levenberg-Marquardt methods
for the solution of noisy nonlinear

least squares problems
Settore Scientifico Disciplinare MAT/08

Dottorando:
Elisa Riccietti

Tutore
Prof. Stefania Bellavia

Coordinatore
Prof. Graziano Gentili

Anni 2014/2017





Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

Institut National Polytechnique de Toulouse, Institut de Recherche en
Informatique de Toulouse

Thesis candidated for the label of
DOCTOR EUROPAEUS

Institutions involved:
Università di Firenze, Università di Perugia, INdAM consorziate

nel CIAFM,
Institut National Polytechnique (INP) de Toulouse,

Institut de Recherche en Informatique (IRIT) de Toulouse.

Part of this thesis has been realized in collaboration with Prof.
Serge Gratton during my six-months visit at INP-IRIT Toulouse.

Dottorando:
Elisa Riccietti

Coordinatore
Prof. Graziano Gentili

Tutori
Prof. Stefania Bellavia,
Università di Firenze
Prof. Serge Gratton,
INP-IRIT





Acknowledgments
Ringraziamenti

I would like to thank Andreas Fischer and Luis Vicente for agreeing to review my
thesis and for their useful comments and suggestions on this manuscript.

Vorrei ringraziare tutte le persone che mi sono state vicine in questo percorso.
Prima di tutto la mia relatrice Stefania per avermi introdotto al mondo della

ricerca e per avermi insegnato come muovermi da sola in questo mondo, per la sua
costante presenza e disponibilità, e per avermi consigliato nei momenti difficili
e nelle scelte complicate. Ringrazio anche tutto il gruppo di ottimizzazione di
Firenze, Margherita, Benedetta e Alessandra per il piacevole ambiente di lavoro.

Vorrei ringraziare anche il prof. Graziano Gentili per la sua disponibilitá e
gentilezza e per il suo costante supporto con la burocrazia, le segretarie Tiziana
e Francesca per le piacevoli chiacchierate, il prof. Sergio Vessella e la prof. Elisa
Francini per le loro pazienti consulenze sui problemi inversi.

Vorrei ringraziare il prof. Andrea Arnone per avermi dato l’opportunità di
lavorare su un interessante problema industriale, e di scoprire un diverso aspetto
del mondo della ricerca. Ringrazio i ragazzi del gruppo di Ingegeneria Industriale,
per le piacevoli giornate a Santa Marta, i caffè al ginseng, per aver cercato di farmi
una cultura ingegneristica, e per avermi offerto una scrivania!

Ensuite, je voudrais remercier toute l’équipe APO de l’ENSEEIHT de Toulouse,
pour m’avoir accueillie pendant six mois, surtout les Italiens, parmi lesquels, na-
turellement, je compte aussi Patrick! Je remercie également Charlie, Clément,
Florent, Grégoire, Lucie et Romain pour les belles soirées passées ensemble, et
Thibaut pour m’avoir aidé à pratiquer mon français. Un remerciement spécial
va à Serge, pour les intéressantes discussions scientifiques pendant ma thèse, et
pour le passionnant postdoc qu’il m’a proposé, mais aussi pour promouvoir les
échanges internationaux, y compris de nature non académique.

A questo proposito ringrazio Theo, per essere arrivato inaspettatamente nella
mia vita e averla stravolta con il suo sorriso ♥.

Infine ringrazio le mie amiche Silvia e Sofia, e tutta la mia famiglia per il con-
tinuo sostegno, soprattutto il mio cognato preferito Michele e mia sorella Eleonora.
Dedico un pensiero speciale ai miei genitori Susanna e Paolo, che mi hanno sem-
pre sostenuto, anche quando le mie scelte mi hanno portato lontano.

v





Abstract

In this thesis, we investigate the numerical resolution of noisy nonlinear least
squares problems. We devise novel, specialized variants of Levenberg-Marquardt
methods to solve two classes of noisy problems: ill-posed problems and large scale
problems whose objective function is expensive to evaluate and can be replaced
by cheaper noisy approximations. We propose three different approaches: a regu-
larizing Trust-Region approach, an elliptical regularizing Trust-Region approach
and a Levenberg-Marquardt method for large scale problems with dynamic noise.

The first two methods are intended to tackle ill-posed least squares problems
with noisy data. Such problems are challenging, because continuous dependence
on the data does not hold for them. It is therefore necessary to design ad hoc
regularizing strategies for their stable solution. The regularizing Trust-Region
approach aims at solving zero residual problems. We show how it represents an
improvement over existing Levenberg-Marquardt methods in the literature and
how it is more robust compared to them. The elliptical regularizing Trust-Region
approach aims at solving small residual problems. To the best of our knowledge,
there are no other existing methods in the literature designed to handle ill-posed
least squares problems with nonzero residual. We theoretically prove regularizing
and local convergence properties of these methods under mild assumptions, and
then numerically validate them on different problems.

We then turn to large scale problems with an expensive objective function that
can be replaced by cheaper approximations of increasing accuracy. Such approxi-
mations are used as objective functions of a sequence of noisy least squares prob-
lems. We design a novel Levenberg-Marquardt method for large scale problems
with dynamic noise that computes a solution of the original problem by solving
this sequence of noisy problems. The proposed method is able to handle noisy func-
tions and gradients and can consequently solve the problem at a greatly reduced
computational cost. We are not aware of any other method specially designed to
solve least squares problems with noisy functions and gradients for which both
local and global convergence are proved. We validate the numerical behaviour
of the method on problems arising from data assimilation and real-life machine
learning applications.
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Introduction

Nonlinear least squares problems arise in many practical applications. They can
be stated as

min
x∈Rn

f (x)= 1
2
‖R(x)‖2

where R : Rn → Rm is a nonlinear function. We consider the case m ≥ n, which
is the most common in applications as they arise, for example, from data-fitting
issues. Classical well-studied iterative methods to solve this class of problems are
Gauss-Newton and Levenberg-Marquardt methods [27, 80, 84].

In this thesis, we consider the case in which the exact values of the function
f and of its derivatives are not known. This is the case in many problems of
practical interest. Indeed, in many applications, only approximations to exact
function values, up to a given accuracy, are available. For example, this may be
due to the fact that the function depends on measured data, which are usually
affected by errors, arising from instruments sensitivity or measurement errors.
In this case, the exact function is unknown and it is not possible to recover it,
by any means. In other applications, the function can actually be computed, but
it is computationally demanding to do it. Then, it may be more convenient to
avoid this computation when possible, at least at the initial stage of the iterative
process, and replace the function with some cheaper approximation.

This thesis deals with the study and implementation of suitable methods that
aim to recover an approximation to a solution x∗ of a least squares problem, with-
out using the exact values of f . Our methods would rather build a sequence of
approximations approaching x∗, by considering only problems built employing the
available approximations fδ to f :

min
x∈Rn

fδ(x),

that we will refer to as noisy problems, as opposed to the unperturbed or original
problem that is given by the minimization of f .

We will focus on the class of Levenberg-Marquardt methods and devise ap-
proaches suitable to handle two different broad classes of noisy nonlinear least
squares problems, that fit in the outlined framework.
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1. Ill-posed problems. The first class is that of least squares problems arising
from the fitting of measured data. For this kind of problems fδ is the squared
norm of the difference between the measured data yδ and the model F we
want to fit them with:

fδ(x)= 1
2
‖F(x)− yδ‖2.

In practical contexts, the measured data are not exact measurements of the
quantity that we would actually like to measure, but rather an approxima-
tion yδ of the true data y, affected by noise, that is such that

‖y− yδ‖ ≤ δ,

where δ is the noise level. It is usually assumed that the noise level δ is
known and represents a fixed quantity arising from measurement errors
and instruments sensitivity. Problems arising in this context are usually
ill-posed, in the sense that the solutions of the problem do not depend con-
tinuously on the data. Then, particular attention should be devoted to the
development of stable methods for their solution. In fact, it is not possible
to approximate the solutions of the original problem with those of the noisy
problem, computed applying a classical method directly to it. Indeed, its
solutions may be bad approximations to solutions of the unperturbed prob-
lem. Then, a method should aim at recovering partial information about the
solution as stably as possible. The final accuracy of the solution cannot be
expected to be better than what the noise allows for [55].

2. Large scale noisy problems. The second class of problems is that of large
scale problems for which the exact values of the objective function cannot
be employed along all the optimization process, either because the exact
function is unknown or because its evaluation is expensive. This situation
arises in many applications. This is for example the case when the exact
objective function cannot be computed and only noisy approximations are
available, or when the objective function evaluation is a sum over a large
number of terms or the result of a computation whose accuracy can vary
and must be specified in advance. In these latter cases, the evaluation of
the function may be expensive, but it can also be made cheaper considering
a subset of the addends or asking for a lower accuracy level. We consider any
problem for which an exact evaluation of the function is computationally
demanding and can be replaced by possibly cheaper approximations. As
opposed to the first class of problems, the noise is not assumed to be limited
to the data, so that the Jacobian matrix is also affected by noise. The noise
is in general defined as the accuracy of the function approximations

| fδ(x)− f (x)| ≤ δ,

and here we assume that it is possible to decrease it if needed.
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Aim of the thesis

The thesis is devoted to the development of variants of Levenberg-Marquardt type
methods to solve the two classes of problems presented above. We propose three
different approaches, two for the first class and one for the second class of prob-
lems:

• Regularizing Trust-Region. We propose a Trust-Region approach for the sta-
ble solution of zero residual nonlinear ill-posed problems, which takes its ori-
gin from the Levenberg-Marquardt method presented in [50]. Our method
is based on an adaptive choice of the regularization parameters that are
chosen to satisfy a specific regularizing condition. A suitable choice of the
Trust-Region radius is devised that guarantees an indirect and automatic
choice of the parameters satisfying the regularizing condition.

• Elliptical regularizing Trust-Region. We propose an nonstationary iterated
Tikhonov procedure to stably solve nonlinear ill-posed problems with small
residual. We propose also an elliptical Trust-Region reformulation that al-
lows for an automatic setting of the regularization parameters.

• Levenberg-Marquardt method for large scale problems with dynamic noise.
We introduce an inexact Levenberg-Marquardt method aimed at solving a
nonlinear least squares problem relying solely on approximations fδ to f .
The method builds a sequence of solutions approximations considering noisy
problems, whose objective functions are approximations of known and in-
creasing accuracy to the exact objective function. This feature is exploited
by asking the lowest possible accuracy in the value of the objective that is
sufficient to guarantee progress of the minimization, with the ultimate goal
of saving computing time.

We study theoretical properties of the proposed methods, like convergence proper-
ties, complexity, and regularizing properties. In this context, one does not usually
look for fast locally convergent methods as the need of regularizing and handling
the noise requires to slow down the convergence to avoid approaching noisy solu-
tions.

We also perform a numerical validation of the proposed procedures and we
show numerical evidence of their properties on several examples of least squares
problems, like Fredholm equations of the first kind, parameter identification prob-
lems and problems arising in geophysics, data assimilation and machine learning,
one of which arises from a real life application in the domain of the parametric de-
sign of turbomachinery components.

Contributions of the thesis

• We analyze the practical implementation of the method in [50] that was not
considered in the original paper or in related articles. Specifically we discuss
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how to compute the regularization parameters in a reliable way.

• The regularizing Trust-Region approach we propose represents an improve-
ment over the method in [50], as it is shown to be more robust compared to it.
The two methods indeed are based on similar conditions for the choice of the
regularization parameter. However, the condition on which the Levenberg-
Marquardt method in [50] is based may fail to be satisfied for iterates not
close enough to a solution, while the condition we adopted can always be
satisfied. It can be enforced by a suitable choice of the Trust-Region ra-
dius, while it is not straightforward to understand how to enforce it with a
Levenberg-Marquardt method. The Trust-Region approach is also shown to
be less-dependent on the free parameters of the method.

• The most part of the literature on ill-posed nonlinear least squares deals
with zero residual problems, even if nonzero residual problems frequently
appear in applications, especially when a natural phenomenon is repre-
sented through a mathematical model. While it is common especially in
the literature on linear problems to incorporate the modelling error in the
data error and solve the problem as a zero residual problem, our elliptical
regularizing Trust-Region is an ad hoc method for nonzero residual prob-
lems. It has the advantage that an estimation of the modelling error for the
computation of the regularization parameters is not required. To our knowl-
edge, approaches designed to deal with ill-posed nonzero residual problems
have never been proposed in the literature.

• This work represents also a contribution on the study of local convergence
properties of Trust-Region methods. The local analysis of the methods for ill-
posed problems is indeed performed under assumptions different and some-
how weaker than those usually used in the literature.

• The Levenberg-Marquardt method for noisy problems provides a method
to solve least squares problems with both noisy function and gradients.
Several methods have been designed for noisy unconstrained minimization
problems with approximated gradient and Hessian, both in the case in which
it is possible to assume the noise to vary (namely in problems arising from
machine learning) [5, 16] and in the case of fixed noise [70]. On the contrary,
we are not aware of methods specially designed for noisy nonzero residual
nonlinear least squares problems, for which both local and global conver-
gence is proved.

• The proposed Levenberg-Marquardt method allows considerable savings in
terms of function evaluations and matrix vector products compared to in-
exact Levenberg-Marquardt method employing the exact objective function
and Jacobian.
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Organization of the thesis

The thesis is divided into three parts.
Part I represents an introductory part, in which least squares problems and

the methods under study are presented. A review of classical results in optimiza-
tion theory are reported, to make the understanding of the methods and theory
presented in the following chapters easier.

Part II is devoted to ill-posed nonlinear least squares problems. The zero resid-
ual case is considered in Chapter 4 and the nonzero residual case in Chapter 5.
In Chapter 6 we briefly discuss the extension of the procedures proposed in the
previous chapters to an infinite-dimensional Hilbert setting.

Part III is devoted to large scale noisy least squares problems. The proposed
Levenberg-Marquardt method is presented. This part of the thesis has been re-
alized in collaboration with Prof. Serge Gratton, during my six-months visit to
INP-IRIT Toulouse [S1].

Notations

Given f : Rn → R, we will denote with ∇ f ∈ Rn its gradient and with ∇2 f ∈ Rn×n

its Hessian matrix. Given R :Rn →Rm, we will denote with J ∈Rm×n its Jacobian
matrix.
If not differently specified, ‖ ·‖ denotes the Euclidean norm.
We denote with R+ = {x ∈R |x ≥ 0} and given x∗ ∈Rn with Br(x∗)= {x ∈Rn |‖x−x∗‖ ≤
r} a ball of radius r and centre x∗.
Given a matrix A, we will denote with A+ its Moore-Penrose pseudoinverse, with
rank(A) its rank, with R(A) its range and with R(A )⊥ the orthogonal comple-
ment of R(A ).
Given m ≥ n and a vector v = [v1, . . . ,vn], diag(v) ∈ Rm×n denotes a matrix with
elements vi i = 1, . . . ,n on the diagonal, i.e. if D =diag(v), D ii = di and the other
entries are zero.
We denote with I the identity matrix. If a subscript is present, it specifies the
dimension of the matrix, otherwise we assume I to have dimension n×n.
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Part I

General background
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CHAPTER

1
Least squares problems

Least squares problems are a special case of unconstrained minimization prob-
lems. Given a function f :Rn →R, that is usually addressed as the objective func-
tion, an unconstrained minimization problem has the following form:

min
x∈Rn

f (x). (1.1)

A least squares problem corresponds to a specific choice of f , namely given Ri :
Rn →R for i = 1, . . . ,m, f is the sum of squares:

f (x)= 1
2

m∑
i=1

Ri(x)2.

If we denote as R(x) = [R1(x),R2(x), . . . ,Rm(x)]T , a least squares problem can be
formulated as

min
x∈Rn

f (x)= 1
2
‖R(x)‖2, (1.2)

with R : Rn → Rm and f : Rn → R+. If function R, and consequently function f , is
nonlinear we gain a nonlinear least squares problem.

A solution of such problem is a minimizer, i.e. a point x∗ in which the lowest
possible value for the function is achieved: f (x∗) ≤ f (x) for all x ∈ Rn. Such a
point is called a global minimizer. However, finding a global minimizer is usually
expensive and in many applications it is not even necessary to find the lowest
possible value of the function. In most applications it is sufficient to find what is
called a local minimizer, namely a point x∗ for which it exists a neighbourhood
Br(x∗), such that f (x∗) ≤ f (x) for all x ∈ Br(x∗). In the following, when we refer
to a solution of a least squares problem like (1.2), we are then referring to a local
minimizer. Local minimizers can be characterized by the following optimality
conditions [85, Chapter 2]. We denote with ∇ f and ∇2 f the gradient and the
Hessian matrix of f , respectively.

Theorem 1.1 (First-Order Necessary Conditions). If x∗ is a local minimizer and
f is continuously differentiable in an open neighbourhood of x∗, then ∇ f (x∗)= 0.

Theorem 1.2 (Second-Order Necessary Conditions). If x∗ is a local minimizer
and ∇2 f exists and is continuous in an open neighbourhood of x∗, then ∇ f (x∗)= 0
and ∇2 f (x∗) is positive semidefinite.
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Theorem 1.3 (Second-Order Sufficient Conditions). Suppose that ∇2 f is contin-
uous in an open neighbourhood of x∗, and that ∇ f (x∗) = 0 and ∇2 f (x∗) is positive
definite. Then, x∗ is a strict local minimizer of f .

All the points satisfying ∇ f (x∗) = 0 are called first order critical points or sta-
tionary points. Once a solution x∗ of (1.2) is found, the residual at the solution
is defined as the value of the function at the local minimizer: f (x∗) = 1

2‖R(x∗)‖2.
If a point for which f (x∗) = 0 exists, (1.2) is said a zero residual problem. In this
case x∗ is also a solution to the nonlinear system R(x)= 0. If such a point does not
exist, then f (x)> 0 for all x ∈Rn and (1.2) is said to be a nonzero residual problem.

We consider the case in which m ≥ n, that is called the overdetermined case.
This is the most common case, as it arises in many data fitting applications.

Example 1.4 (Data fitting applications). In data fitting applications one wants
to approximate an unknown function ψ(z), having at disposal m empirical data
yi, i = 1, . . . ,m. The data are empirical measurements of the unknown function for
different values of the parameter z. Taking into account that the data are usually
affected by errors, the set of data can be thought as a set of couples {zi, yi} where
yi ' ψ(zi). For example f can be the temperature depending on the time of the
day z. Then, the unknown function ψ is approximated through a model m(x, z),
depending on some parameters x ∈ Rn. The best values for them should be found
to get a model that predicts the function in the best way. This is done employing
the available data. For each available data value a residual Ri is defined as the
difference between the model prediction and the data value itself:

Ri(x)= m(x, zi)− yi, i = 1, . . . ,m.

and the best value for the parameters x can be found solving a least squares prob-
lem:

min
x∈Rn

1
2
‖R(x)‖2

for R(x) = [R1(x), . . . ,Rm(x)]T . If at least one of the parameters x appears nonlin-
early in the model we obtain a nonlinear least squares problem. This is the case
for example when data are fitted to a Gaussian curve:

m(x, z)= ae
(z−b)2

2c2 .

In this example x = [a,b, c]T are the unknown parameters to be found.

A least squares problem is a really special case of problem (1.1), as it has
a strong structure. For example we can derive special expressions for the deriva-
tives of f , assuming it to be twice continuously differentiable. Indeed, if we denote
with J(x) ∈ Rm×n the Jacobian matrix of R(x), the gradient of f can be expressed
as [27, Chapter 10]

∇ f (x)= J(x)TR(x). (1.3)
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Similarly the Hessian is given by

∇2 f (x)= J(x)T J(x)+S(x)= J(x)T J(x)+
m∑

i=1
Ri(x)∇2Ri(x). (1.4)

Notice that term S(x) contains the second derivatives ∇2Ri of R. Its norm depends
both on the nonlinear residual R(x) and on the magnitude of such derivatives.

Least squares problems are a special case of (1.1), and they could therefore be
solved by general optimization methods. However other methods have been spe-
cially devised that are more efficient, as they exploits the special structure of the
problem. In many cases they achieve better than linear convergence, sometimes
even quadratic convergence, even though they do not need implementation of sec-
ond derivatives of R [27, Chapter 10]. Well-known methods specially designed
for the solution of such problems are Gauss-Newton and Levenberg-Marquardt
methods, that will be introduced in Chapter 2.

1.1 Linear least squares problems

A special case of (1.2) is given by linear least squares, that are obtained when
function R is linear: R(x) = Ax− b, for A ∈ Rm×n and b ∈ Rm. Then the following
problem is considered:

min
x∈Rn

f (x)= 1
2
‖Ax−b‖2. (1.5)

This represents an important occurrence, as the solution of nonlinear problems
reduces to the solution of a sequence of linear subproblems. In this case

∇ f (x)= AT(Ax−b) and ∇2 f (x)= AT A. (1.6)

Notice that the second term in (1.4) does not appear in this case, as the second
derivatives of R are zero. As f in (1.5) is convex, the points for which ∇ f (x) = 0
are all global minimizers. They can then be found from (1.6) as the solutions of
the following linear system of equations, that are called normal equations:

AT Ax = AT b. (1.7)

In case A has full rank, AT A is positive definite and f is strictly convex. In
this case (1.7) has a unique solution, which is the global minimizer for (1.5). If
A is rank deficient, matrix AT A is singular, but system (1.7) will still have a
solution because of the equivalence with (1.5). In this case an infinite number of
solutions exists, while the so-called minimum norm solution, i.e. the solution of
minimal norm, will still be unique. This can be characterized by means of the
pseudoinverse of matrix A, that we introduce in the next section.
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1.1.1 Singular value decomposition and least squares
problems

For a real matrix many different decompositions can be defined. Among them, one
that is particularly useful in various contexts is the singular value decomposition
(SVD). It can be defined thanks to the results stated in the following theorem:

Theorem 1.5 (Theorem 2.5.2 [44]). Given a real matrix A ∈Rm×n, it exist orthog-
onal matrices

U = (u1, . . . ,um) ∈Rm×m, V = (v1, . . . ,vn) ∈Rn×n

such that
UT AV =diag([ς1, . . . ,ςν]) ∈Rm×n, ν=min{m,n},

with ς1 ≥ ·· · ≥ ςν ≥ 0.

The values ς1, . . . ,ςν are called the singular values of matrix A and the SVD of
matrix A is defined as

A =UΣV T , Σ=diag([ς1, . . . ,ςν]) ∈Rm×n. (1.8)

This decomposition reveals a great deal about the matrix. For example if ς1 ≥
·· · ≥ ς` > ς`+1 = ·· · = ςν = 0, then the rank of matrix A is `,

K er(A)= span{v`+1, . . . ,vn}, R(A)= span{u1, . . . ,u`},

where K er(A) and R(A) are respectively the null space and the range space of
A. The SVD expansion can be written as [44, §2.5]

A = ∑̀
i=1

ςiuivT
i . (1.9)

Also it holds [44, §2.5]

‖A‖2 = ς1, min
x 6=0

‖Ax‖2

‖x‖2
= ςn (m ≥ n).

The SVD decomposition can be used also to define the Moore-Penrose pseu-
doinverse of a matrix, which generalizes the concept of inverse of a matrix to
the rank deficient case and to rectangular matrices [44, §5.5.4]. Given a ma-
trix A ∈ Rm×n, whose SVD in given by (1.8), the Moore-Penrose pseudoinverse
A+ ∈Rn×m is

A+ =VΣ+UT , Σ+ =diag
([

1
ς1

, . . . ,
1
ς`

,0, . . . ,0
])

∈Rn×m, `= rank(A).

It is the unique minimal Frobenius norm solution to the problem [44, §5.5.4]

min
X∈Rn×m

‖AX − Im‖F .
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If rank(A) = n, then A+ = (AT A)−1AT and A+A = I, while if m = n = rank(A),
then A+ = A−1.

The pseudoinverse can be equivalently defined as the unique matrix X that
satisfies the four following conditions:

1) AX A = A 3) (AX )T = AX

2) X AX = X 4) (X A)T = X A.

These conditions amount to the requirement that AA+ and A+A be orthogonal
projections onto R(A) and R(AT), respectively. Indeed, AA+ =U1UT

1 where U1 =
(u1, . . . ,u`) ∈Rm×` and A+A =V1V T

1 , where V1 = (v1, . . . ,v`) ∈Rn×` [44, §5.5.4].
The Moore-Penrose pseudoinverse can be used to characterize solutions to lin-

ear least squares problems. Indeed, the minimum norm solution x∗ to (1.5) and
the optimal residual can be expressed as [44, §5.5.3].

x∗ = A+b = ∑̀
i=1

uT
i b
ςi

vi,
1
2
‖Ax∗−b‖2

2 =
1
2
‖(I − AA+)b‖2

2 =
1
2

m∑
i=`+1

(uT
i b)2. (1.10)

1.1.2 Solution techniques

In this section we briefly give some indications to solution techniques for linear
least squares problems. For a more detailed description we refer to [44, §5]. To
solve (1.5) in case of small dimensional problems, one could form and solve system
(1.7) through the Cholesky factorization of AT A. The main advantage of this
approach is speed. It can be convenient also when m À n and it is practical to
store AT A but not A. However, this will not yield an accurate solution when A is
ill-conditioned, considering that the condition number of AT A is the square of the
condition number of A. Other solution methods are possible, for which the error
in the computed solution is proportional to the condition number of A rather then
to that of AT A, like the QR-based approaches [85, §10.2]. In case of large scale
problems, specific variants of the Conjugate Gradient (CG) method, like CGLS,
are used. They avoid to form matrix AT A and just rely on multiplications by A
and AT for which it is possible to devise also matrix-free implementations [60,
87]. These are implementations for which computing and storing A is not needed,
provided that the operators computing the products A and AT times a vector are
available.
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CHAPTER

2
Numerical methods

In this section we introduce the methods we are going to consider in the thesis.
As least squares problems are a special case of unconstrained minimization, we
will first focus on solution methods for this latter class. Then, approaches arising
from them, specially designed for least squares, will be presented. Particularly,
we will briefly introduce Newton’s method and then Trust-Region schemes, for the
globalization of approaches for unconstrained minimization. Finally, we present
Gauss-Newton and Levenberg-Marquardt methods.

These are all iterative procedures, that starting from an initial guess x0 build
a sequence {xk} approximating the sought solution. As the aim is to minimize the
function, at each iteration k we look for a direction along which it is possible to
achieve a decrease in the function. Namely, given the current approximation xk,
the new approximation is defined as xk+1 = xk+pk where pk is called the step, that
should be such that f (xk + pk) < f (xk). At each iteration the objective function is
approximated by a model easy to minimize and the step is defined as the model
minimizer. Given an iterative method designed to solve problem (1.1), we expect it
to produce a sequence {xk} converging to a stationary point of f . Then, we expect
the sequence to be such that limk→∞∇ f (xk) = 0. If this is obtained regardless of
the starting point x0 the method is said to be globally convergent. Usually the
second order sufficient conditions are not checked at the solution, then one cannot
exclude convergence to a saddle point. However convergence to a maximum can
be excluded, as the function is decreased at each step.

2.1 Newton’s method

Newton’s method is a fast approach designed to solve unconstrained problems
(1.1) for a nonlinear twice continuously differentiable function f : Rn → R [27,
Chapter 5]. Given the current iterate xk, the new solution approximation is built
as xk+1 = xk + pN

k , where pN
k is the Newton step, that is computed as follows.

At each iteration information on the objective function is used to build a quadratic
model for it. From Taylor’s theorem for every x and p it exists z ∈ (x, x+ p) such
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that:
f (x+ p)= f (x)+∇ f (x)T p+ 1

2
pT∇2 f (z)p. (2.1)

This suggests to build the model for function f at iteration k as

mN
k (xk + p)= f (xk)+∇ f (xk)T p+ 1

2
pT∇2 f (xk)p, (2.2)

so that mN
k and f are in agreement up to second order at the current iterate xk.

The step is then sought to minimize the quadratic model and, whenever ∇2 f (xk)
is positive definite, it can be found solving the Newton’s equations:

∇2 f (xk)p =−∇ f (xk),

that is equivalent to looking for a point such that ∇mN
k (xk + p) = 0. The method

is well-defined in a neighbourhood of a minimum that satisfies second order suf-
ficient conditions. In this case the Hessian is positive definite, then is invertible
and the step is well-defined. Newton’s method indeed, is intended primarily as
a local method to be used when xk is close enough to a minimizer, even if useful
adaptations has been devised to handle also the case of non positive definite Hes-
sians [27, §5.5]. It can be proved that the method is fast locally convergent, as
stated in the following theorem.

Theorem 2.1 (Theorem 3.5 [85]). Suppose that f is twice continuously differen-
tiable and ∇2 f (x) is Lipschitz continuous in a neighbourhood of a solution x∗ at
which the sufficient conditions are satisfied. Then

• if the starting point is sufficiently close to x∗ , the sequence of iterates con-
verges to x∗;

• the rate of convergence is quadratic, i.e. ‖xk+1−x∗‖ ≤ c‖xk−x∗‖2 for a suitable
c > 0.

• the sequence of gradient norms ‖∇ f (xk)‖ converges quadratically to zero.

However, if a good starting point is not available the method may not be con-
vergent at all. In next section we introduce a possible strategy to make it globally
convergent.

2.2 Trust-Region methods

Let us consider unconstrained problems of the form (1.1) for a nonlinear twice
continuously differentiable function f :Rn →R and let x∗ be a stationary point for
(1.1). Trust-Region methods are globally convergent iterative methods intended
to their solution. For what reported in this section we refer to [22]. At each
iteration, given the current approximation xk to x∗, a new iterate is built that
lays in a neighbourhood Bk of xk:

Bk = {x ∈Rn |‖x− xk‖k ≤∆k}, (2.3)
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for ‖ · ‖k a norm that may be iteration dependent and ∆k a positive value called
the Trust-Region radius. A sequence {xk} converging to a first order critical point
is generated. In Algorithm 2.1 we sketch the k-th iteration of the method.

Algorithm 2.1 k-th iteration of basic Trust-Region algorithm for problem (1.1)
Initialization: Given xk, Bk, 0< η1 ≤ η2 < 1, 0< γ1 ≤ γ2 < 1.
Compute f (xk).
1. Model definition: Define a model mTR

k (xk + p) in Bk.
2. Step calculation: Compute a step pTR

k that "sufficiently reduces" the model
and such that xk + pTR

k ∈Bk.
3. Acceptance of the trial point: Compute f (xk + pTR

k ) and define

ρk(pTR
k )= f (xk)− f (xk + pTR

k )

mTR
k (xk)−mTR

k (xk + pTR
k )

. (2.4)

If ρk(pTR
k )≥ η1, then set xk+1 = xk + pTR

k , otherwise define xk+1 = xk.
4. Trust-Region radius update: Set

∆k+1 ∈


[∆k,∞) if ρk(pTR

k )> η2,
[γ2∆k,∆k] if ρk(pTR

k ) ∈ [η1,η2],
[γ1∆k,γ2∆k] if ρk(pTR

k )< η1.

Let’s now give more insight into the steps of the procedure.
At step 1 a model for the objective function f is defined. Usually, motivated by

(2.1), given the current approximation xk a quadratic model is employed, which is
defined as

mTR
k (xk + p)= f (xk)+∇ f (xk)T p+ 1

2
pTBk p, (2.5)

where Bk is a a symmetric matrix that approximates the Hessian of f (xk). In
case Bk =∇2 f (xk) the model used is Newton model (2.2) and the method is called
Newton Trust-Region method, otherwise it is called a Quasi-Newton Trust-Region
method.

Then, a step pTR
k is computed to define the new solution approximation: xk+1 =

xk+pTR
k . The model is expected to be a good approximation to the function only in

a neighbourhood of the current iterate, because mTR
k (xk + p)− f (xk + p)=O(‖p‖2),

and so the approximation error is small if the step is small. Then, we restrict the
search for the step to a neighbourhood Bk of the current solution approximation,
called the Trust Region. To enforce this, the so-called Trust-Region constraint
p ∈Bk is considered.

The Trust Region is usually a ball B∆k (xk) of radius ∆k > 0 and centre xk. This
motivates why ∆k is called the Trust-Region radius. In this case ‖ · ‖k in (2.3) is
the Euclidean norm for all k and the Trust-Region constraint becomes ‖p‖ ≤ ∆k.
However, other choices are also possible, for example elliptical and box-shaped
Trust Regions may also be used, see also [85, §4.5]. In case of an elliptical Trust
Region a scaling matrix D is inserted in the constraint: ‖D p‖ ≤ ∆k. Matrix D is
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usually diagonal with positive elements, and can be iteration dependent. It is used
when the function is more sensitive to the value of some components than to the
others, to balance this. Namely, elements D ii will be large for the components i to
which the function is more sensitive. Box-shaped Trust Regions are usually used
when the problem is subject also to box constraints. These are obtained employing
the infinity norm, rather than the Euclidean one in the Trust-Region constraint.

Assuming to choose a spheric Trust Region, at step 2 pTR
k is computed solving

the following constrained subproblem, known as the Trust-Region subproblem:

min
p∈Rn

mTR
k (xk + p)= f (xk)+∇ f (xk)T p+ 1

2
pTBk p

s.t. ‖p‖ ≤∆k.
(2.6)

Notice that in (2.6) both the objective function and constraint (which can be rewrit-
ten as pT p ≤∆2

k) are quadratic. Minimizing f reduces to considering a sequence
of such subproblems.

The step can be chosen as the exact solution of (2.6). However, to obtain con-
vergence and good practical behaviour it is enough to find an approximate solution
pTR

k , that "sufficiently reduces" the model. We will give more insight in Section
2.2.1 into the solution of the Trust-Region subproblem and we will give conditions
to define a sufficient reduction.

Got such a step, we are sure of getting a decrease in the model, but we also
want to be sure of having a decrease in the objective function. Then, at step 3 we
measure the accordance between model and function through the ratio (2.4) be-
tween the actual reduction f (xk)− f (xk+ pTR

k ), the reduction achieved in the func-
tion, and the predicted reduction mTR

k (xk)−mTR
k (xk + pTR

k ), that is the reduction
predicted by the model. Note that since the step pTR

k is obtained by minimizing
the model mTR

k over a region that includes the step p = 0, the predicted reduction
will always be nonnegative. Thus if ρk(pTR

k ) is negative, the new objective value
f (xk + pTR

k ) is greater than the current value f (xk), so the step must be rejected.
On the other hand, if ρk(pTR

k ) is positive the function has been decreased and the
step can be accepted.

The ratio (2.4) measures the agreement between the model and the function
over the step: the larger the ratio, the better the agreement. Then, at step 4 (2.4)
it is used also to update the Trust-Region radius for the next iteration. Three
cases may occur. If the ratio is large, ideally close to 1 (ρk(pTR

k ) > η2), there
is good agreement between the function and the model, so it is safe to expand
the Trust Region for the next iteration. If ρk(pTR

k ) is positive but not close to 1
(ρk(pTR

k ) ∈ [η1,η2]), it is safer not to expand the Trust Region, that is then left
unchanged. If it is close to zero or negative (ρk(pTR

k ) < η1), the model is not a
good approximation to the function in the ball, and the Trust Region is shrunk.
These three cases correspond to three different kinds of iterations: very successful
iterations, successful iterations, and unsuccessful iterations. To obtain a method
with good practical behaviour two cases would suffice, i.e. distinguishing between
successful and unsuccessful iterations is sufficient. Indeed, this amounts to the
choice η1 = η2 and γ1 = γ2 in Algorithm 2.1.
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Notice also that the one at step 4, is not the only possible update for the ra-
dius. Other updates have been proposed in the literature, for example in [34, 36,
38, 39, 113] updates are considered for which the resulting Trust-Region radius
converges to zero as k goes to infinity. See [111] for a review on recent develop-
ments on Trust-Region methods.

The fact that the model is minimized in a ball and the rules employed for
the update of its radius, ensure global convergence properties to Trust-Region
schemes. This property makes Trust-Region methods appealing, for the possibil-
ity of ensuring global convergence properties to fast locally convergent methods
(like Newton’s method), by using steps produced by such methods in the Trust-
Region framework. Global convergence can be also achieved with an approximate
solution of the Trust-Region subproblem, as we will state in Theorem 2.6.

In next section we focus on the solution of the Trust-Region subproblem.

2.2.1 Solution of the Trust-Region subproblem

Let us consider here the solution of the Trust-Region subproblem (2.6). We will
consider first its exact solution and then state the conditions that an approximate
solution should satisfy to guarantee convergence of the method.

2.2.1.1 Exact solution

Exact solutions are characterized by the following theorem, that states KKT con-
ditions for a constrained problem like (2.6). For all the results reported in this
section we refer to [85, §4.3], see also [22, §7].

Theorem 2.2 (Theorem 4.1, [85]). A vector p ∈Rn is a global solution of

min
‖p‖≤∆

m(p)= f + gT p+ 1
2

pTBp,

if and only if there is a scalar λ such that p = p(λ) and the following conditions
are satisfied:

(B+λI) is positive semidefinite (2.7a)

(B+λI)p(λ)=−g, (2.7b)

λ(∆−‖p(λ)‖)= 0, (2.7c)

‖p(λ)‖ ≤∆, (2.7d)

λ≥ 0. (2.7e)

Note that from (2.7b) λp(λ) = −Bp(λ)− g = −∇m(p(λ)) that is, the step is
collinear with the negative gradient of the model and then it is normal to its
contours.

From (2.7a) λ= 0 is feasible only if B is positive semidefinite, otherwise it must
hold λ> 0. In this latter case, from complementarity condition (2.7c), the solution
of (2.7b) must lie on the Trust Region boundary. Namely ‖p(λ)‖ =∆ and the Trust
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Region is said to be active. On the other hand, if B is positive semidefinite two
different situations may happen. The solution may either lie on the Trust Region
boundary and λ may be strictly positive, or the step may be strictly inside the
region, ‖p(λ)‖ <∆ and then it must hold λ= 0. In this latter case the Trust Region
is said to be inactive and Bp =−g. In case B is positive definite the minimum is
unique, and if Newton-model is considered, the case λ = 0 corresponds to taking
the full Newton step.

Theorem 2.2 suggests a strategy to find the step. If B is positive semidefinite,
one can first try to solve Bp =−g. If the norm of the minimum norm solution does
not exceed the Trust-Region radius, this is the step we were looking for. Otherwise
we define p(λ)=−(B+λI)−1 g for λ sufficiently large that B+λI is positive definite
and we seek a value λ> 0 such that

‖p(λ)‖ =∆.

This is a scalar nonlinear equation in the variable λ that is usually called secular
equation [22, §7.3.3]. This one-dimensional root-finding problem can be faced with
Newton’s method for one-dimensional problems. In the next lemma we show that
a value of λ with all the desired properties exists.

Lemma 2.3 (§4.3 in [85]). Let B ∈Rn×n be a symmetric matrix and g ∈Rn. Then it
exists λ≥ 0 such that B+λI is positive definite and if p(λ) is defined in (2.7b), then
there exist orthogonal vectors q1, . . . , qn such that

p(λ)=−
n∑

j=1

qT
j g

σ j +λ
q j, ‖p(λ)‖2 =

n∑
j=1

(qT
j g)2

(σ j +λ)2 , (2.8)

where σ1 ≤σ2 ≤ ·· · ≤σn are the eigenvalues of B.

Proof. If λ > −min{σ1, . . . ,σn} = −σ1 then B +λI is positive definite. As B is a
symmetric matrix, there exists an orthogonal matrix Q such that B = QΛQT for
Λ = diag([σ1, . . . ,σn]) ∈ Rn×n the diagonal matrix of the eigenvalues of B. Then,
as B+λI is positive definite

p(λ)=−Q(Λ+λI)−1QT g =−
n∑

j=1

qT
j g

σ j +λ
q j,

with q j the j-th column of Q. By orthonormality of the q j we also get the second
relation.

From Lemma 2.3 we can deduce the following corollary.

Corollary 2.4 (§4.3 in [85]). Let the assumptions of Lemma 2.3 hold. If λ > −σ1

then σ j+λ> 0 for all j = 1, . . . ,n and ‖p(λ)‖ is a continuous, nonincreasing function
of λ on the interval (−σ1,∞). Moreover

lim
λ→∞

‖p(λ)‖ = 0, and lim
λ→−σ1

‖p(λ)‖ =∞ if qT
1 g 6= 0.
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Then we can conclude that:

• If B is positive definite and ‖B−1 g‖ ≤ ∆ then λ = 0 and there is no need to
solve the secular equation.

• If B is positive definite but ‖B−1 g‖ >∆ it exists unique λ∗ in (0,∞) such that
‖p(λ∗)‖ =∆.

• If B is indefinite and qT
1 g 6= 0 Corollary 2.4 ensures that we can find a λ∗ ∈

(−σ1,∞) such that ‖p(λ∗)‖ =∆.

The case qT
1 g = 0 is known as the hard case [22, §7.3], [85, §4.3]. We do not

consider it here, as in this thesis we will always deal with positive semidefinite B,
then this case is not of interest. We then describe here how to numerically solve
the secular equation in the other cases.

One can apply the root-finding Newton’s method to

Φ1(λ)= ‖p(λ)‖−∆= 0. (2.9)

The disadvantage of this approach is that in case B is indefinite, when λ is greater
but close to −σ1, Φ1 is a highly nonlinear function, and therefore Newton’s method
would be unreliable or slow [85, §4.3]. However we can reformulate (2.9) as

Φ2(λ)= 1
∆
− 1
‖p(λ)‖ = 0. (2.10)

FunctionΦ2 is an analytic function [22, §7.3.3] and it is nearly linear for λ slightly
greater than −σ1. Newton’s method will perform well provided that it maintains
λ > −σ1. Then it is better to apply Newton’s method to Φ2, which generates the
following sequence:

λl+1 =λl +
(
Φ2(λl)
Φ′

2(λl)

)
.

Let’s consider the Cholesky factorization B+λI = RTR and set RTw = p. Taking
into account (2.8) and the fact that

d
dλ

(
1

‖p(λ)‖
)
= d

dλ

(
(‖p(λ)‖2)−

1
2

)
=−1

2
(‖p(λ)‖2)− 3

2 d
dλ

(‖p(λ)‖2)

= 1
2

(‖p(λ)‖2)− 3
2 2

n∑
j=1

(qT
j g)2

(σ j +λ)3 ,

we get, using also B+λI =Q(Λ+λI)QT and (2.7b), that

Φ′
2(λ)=− 1

‖p(λ)‖3

n∑
j=1

(qT
j g)2

(σ j +λ)3 ,

‖w‖2 = ‖R−T p‖2 = pT(B+λI)−1 p = gTQ(Λ+λI)−3QT g =
n∑

j=1

(qT
j g)2

(σ j +λ)3 .

Then, we derive the practical implementation of the procedure in Algorithm 2.2.
The main cost of this procedure is given by the Cholesky factorization at step

1. However, usually it is not necessary to look for a highly accurate solution of
(2.10).
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Algorithm 2.2 l-th iteration of Newton’s method applied to Φ2(λ)= 0.
Initialization: Given λl , ∆> 0.
1. Factor B+λl I = RTR.

2. Solve

{
RTR pl =−g,
RTwl = pl .

3. Set λl+1 =λl +
( ‖pl‖
‖wl‖

)2 (‖pl‖−∆
∆

)
.

2.2.1.2 Approximate solution

As we have previously stated, it is sufficient to solve (2.6) approximately to get
global convergence of the method. An approximate solution of (2.6) is a step that
lies within the Trust Region and gives a "sufficient reduction" in the model. This
reduction can be quantified in the following way. As the model locally decreases
at the fastest rate in the direction of the negative gradient −∇ f (xk), that is the
steepest descend direction, it makes sense to analyze the decrease got in this
direction, i.e the decrease got along the Cauchy arc [22, §6.3]:

{x |x = xk − t∇ f (xk), t ≥ 0, x ∈ B∆k (xk)}.

It is possible to minimize the model exactly on the Cauchy arc [22, §6.3]. The
resulting unique point is called the Cauchy point that we denote by xC

k . Then, it
can be defined as

xC
k = xk − tC

k∇ f (xk)= argmin
t≥0

xk−t∇ f (xk)∈B∆k (xk)

mTR
k (−t∇ f (xk)) (2.11)

where pC
k =−tC

k∇ f (xk) is called the Cauchy step. It holds [22, Theorem 6.3.1]

tC
k =

{ ∆k
‖∇ f (xk)‖ if ∇ f (xk)TBk∇ f (xk)≤ 0,

min
{ ‖∇ f (xk)‖2

∇ f (xk)T Bk∇ f (xk) ,
∆k

‖ f (xk)‖
}

if ∇ f (xk)TBk∇ f (xk)> 0.

In the following theorem we show a lower bound for the decrease obtained in
the model employing this point.

Theorem 2.5 (Theorem 6.3.1 [22]). If the Cauchy point is defined as in (2.11), it
holds

mTR
k (xk)−mTR

k (xk + pC
k )≥ 1

2
‖∇ f (xk)‖min

[
∆k,

‖∇ f (xk)‖
‖Bk‖

]
. (2.12)

Condition (2.12) is called sufficient Cauchy decrease because, as we show in
the following theorem, a fraction of that decrease is sufficient to obtain global
convergence of the method.

Theorem 2.6 (Theorem 4.6 [84]). Suppose that f is bounded below on the level set
L = {x ∈ Rn s.t. f (x) ≤ f (x0)} and Lipschitz continuously differentiable in a neigh-
bourhood of L . Suppose further that ‖Bk‖ is bounded above for all k and that the
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approximate solutions p = pTR
k computed at step 2 of Algorithm 2.1 satisfy for all

k
mTR

k (xk)−mTR
k (xk + p)≥ θ‖∇ f (xk)‖min

[
∆k,

‖∇ f (xk)‖
‖Bk‖

]
(2.13)

for some positive θ. Then we have that the sequence {xk} generated by Algorithm
2.1 satisfies

lim
k→∞

∇ f (xk)= 0. (2.14)

We remark that condition (2.13) is satisfied for all pk such that ‖pk‖ ≤ ∆k

and that achieve at least some fixed fraction θ2 of the reduction achieved by the
Cauchy step, i.e. if

mTR
k (xk)−mTR

k (xk + pk)≥ θ2(mTR
k (xk)−mTR

k (xk + pC
k )).

In this case (2.13) is satisfied with θ = θ2/2. In particular it holds for the exact
solution p∗ of (2.6) with θ = 1

2 [85, Theorem 4.4].
Then, to make it clear what is looked for at step 2 of Algorithm 2.1, we can

give the following definition, arising from all the previously stated results.

Definition 2.7. We say that p sufficiently reduces model mTR
k if it provides the

sufficient Cauchy decrease, i.e. if it exists θ > 0 such that (2.13) holds.

Remark 2.8. A special case of Trust-Region approaches is that of Trust-Region
Newton schemes. In such approaches Bk = ∇2 f (xk), i.e. the exact Hessian is used
in the model mTR

k , when xk is close to a solution that satisfies second-order con-
ditions. These approaches are usually designed in such a way that asymptotically
the Trust-Region constraint results to be inactive, so that the Trust-Region bound
eventually does not interfere with the convergence and fast local convergence of
Newton’s method is recovered. Indeed, it is possible to prove that for any algorithm
of the form of Algorithm 2.1 the Trust-Region constraint eventually becomes inac-
tive. This holds provided that the algorithm produces steps that asymptotically
become closer and closer to the pure Newton step, whenever the true Newton step is
well inside the Trust Region. This is the case also when the subproblem is solved
inexactly, if the step satisfies the Cauchy decrease according to Definition 2.7. The
result is stated in the following Theorem:

Theorem 2.9 (Theorem 4.9 [84]). Let f be twice Lipschitz continuously differen-
tiable in a neighbourhood of a point x∗ at which second order sufficient condi-
tions are satisfied. Suppose the sequence {xk} converges to x∗ and that for all k
sufficiently large, the Trust-Region algorithm based on the choice Bk = ∇2 f (xk)
in the model mTR

k , chooses steps pk that satisfy the Cauchy-decrease (2.13) and
are asymptotically similar to Newton steps pN

k whenever ‖pN
k ‖ ≤ 1

2∆k, that is,
‖pk − pN

k ‖ = O(‖pN
k ‖). Then the Trust-Region constraint becomes inactive for all

k sufficiently large and the sequence {xk} converges superlinearly to x∗.

In the next sections we turn to consider methods specially designed for least
squares problems: Gauss-Newton and Levenberg-Marquardt methods. They are
designed as suitable modifications of the methods just presented.
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2.3 Gauss-Newton method

Gauss-Newton method is a modification of Newton’s method, specially designed
to handle nonlinear least squares problems.

Like Newton’s approach, Gauss-Newton method builds a model for function f
at each iteration, but taking into account the special form of the objective function.
Then, recalling (1.3) and (1.4), model (2.2) for f as in (1.2) becomes

1
2
‖R(xk)‖2 + (J(xk)TR(xk))T p+ 1

2
pT(J(xk)T J(xk)+S(xk))p.

Gauss-Newton model is obtained approximating the Hessian J(xk)T J(xk)+S(xk)'
Bk = J(xk)T J(xk), dropping the term S(xk) which contains the second derivatives
of R(x) at xk:

mGN
k (xk + p)= 1

2
‖R(xk)‖2 + (J(xk)TR(xk))T p+ 1

2
pT J(xk)T J(xk)p.

This approximation is convenient because usually the portion J(xk)T J(xk) of the
Hessian will already be available since J(xk) must be calculated to get ∇ f (xk) [85,
§10.3]. We can notice also that

mGN
k (xk + p)= 1

2
‖J(xk)p+R(xk)‖2, (2.15)

i.e. f is approximated by the squared norm of an affine model of R. Then, using
just an affine model for R we get a second order model for f , with approximated
Hessian. At each iteration the step pGN

k will be computed minimizing mGN
k , that

is solving a linear least squares problem, as explained in Section 1.1. The normal
equations are, cf. (1.7),

J(xk)T J(xk)p = J(xk)TR(xk). (2.16)

The success of the method clearly depends on the quality of the Hessian ap-
proximation. It depends in particular on whether the term that is discarded is
a large part of the Hessian or not. Anyway, the term J(xk)T J(xk) is often more
important then the other one, especially close to a solution x∗. This happens ei-
ther because the residuals Ri(x∗) are close to affine near the solution x∗, and then
∇2Ri(x∗) is small, or because of small residuals, i.e. Ri(x∗) itself is small [85,
Chapter 10]. ‖S(x∗)‖ indeed, can be viewed as an absolute combined measure of
the nonlinearity and residual size of the problem [27, Chapter 10]. Convergence of
the method actually depends on the relation between ‖S(x∗)‖ and ‖J(x∗)T J(x∗)‖.
It can be proved that if ‖S(x∗)‖ is small relative to ‖J(x∗)T J(x∗)‖, the Gauss-
Newton method is locally q-linearly convergent, but if ‖S(x∗)‖ is too large it may
be not be convergent at all [27, Chapter 10].

Assuming Lipschitz continuity of the Hessian, defining xk+1 = xk + pGN
k , it can

be shown that

‖xk+1 − x∗‖ ' ‖(J(x∗)T J(x∗))−1S(x∗)‖‖xk − x∗‖+O(‖xk − x∗‖2),
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[85, §10.3]. Hence if ‖(J(x∗)T J(x∗))−1S(x∗)‖ << 1 we can expect rapid local con-
vergence and even quadratic convergence if S(x∗) = 0, i.e. for example for zero
residual problems.

We report here more rigorous convergence results, stated in Theorem 10.2.1
and Corollary 10.2.2 in [27].

Theorem 2.10 (Theorem 10.2.1 [27]). Let R :Rn →Rm, f be defined in (1.2) twice
continuously differentiable in an open convex set D ⊆ Rn. Assume that J is Lip-
schitz continuous in D with constant γ and ‖J(x)‖ ≤ α for all x ∈ D. Assume
that it exists x∗ ∈ D such that ∇ f (x∗) = 0 and let λ̃ be the smallest eigenvalue of
J(x∗)T J(x∗). Assume also that it exists σ≥ 0 such that

‖(J(x)− J(x∗))TR(x∗)‖ ≤σ‖x− x∗‖, for all x ∈ D.

If σ < λ̃ (and so J(x∗) has full rank), for any c ∈ (1, λ̃/σ), there exists ε > 0 such
that for all x0 ∈ Bε(x∗) the sequence generated by the Gauss-Newton method is well
defined, converges to x∗ and it holds

‖xk+1 − x∗‖ ≤ cσ
λ̃

‖xk − x∗‖+ cαγ
2λ̃

‖xk − x∗‖2,

‖xk+1 − x∗‖ ≤ cσ+ λ̃
2λ̃

‖xk − x∗‖ < ‖xk − x∗‖.

Theorem 2.11 (Corollary 10.2.2 [27]). Let the assumptions of Theorem 2.10 be sat-
isfied. If R(x∗) = 0 there exists ε> 0 such that for all x0 ∈ Bε(x∗) the sequence gen-
erated by the Gauss-Newton method is well defined and converges q-quadratically
to x∗.

In general Gauss-Newton is not a globally convergent approach but it can be
made so by coupling it with line-search or Trust-Region approaches. In this the-
sis we will focus just on this latter class of globalization strategies, which have
been introduced in Section 2.2. In the next section we report on the Levenberg-
Marquardt method, that can be viewed as the globally convergent extension of
Gauss-Newton method got by coupling it with Trust-Region approaches.

2.4 Levenberg-Marquardt method

Levenberg-Marquardt method was first introduced by Levenberg [76] and Mar-
quardt [78]. It is an algorithm for the solution of nonlinear least squares prob-
lems (1.2). It can be regarded as an improvement over the Gauss-Newton method,
aimed at solving its two main weaknesses: it is not necessarily a globally conver-
gent approach, which is crucial for the practical use when a good starting point is
not known, and it is not well defined when the Jacobian is rank-deficient.

Both weaknesses can be overcome adding a regularization term in the Gauss-
Newton model (2.15). Levenberg-Marquardt method is still an iterative method
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and at each iteration, given a regularization parameter λk > 0, the step is found
solving the following minimization problem:

min
p∈Rn

mLM
k (xk + p)= 1

2
‖J(xk)p+R(xk)‖2 + λk

2
‖p‖2. (2.17)

This can be stated also as a linear least squares problem:

min
p∈Rn

1
2

∥∥∥∥
[

J(xk)√
λkI

]
p+

[
R(xk)

0

]∥∥∥∥2

,

whose normal equations are given by, cf. (1.7),

(J(xk)T J(xk)+λkI)p =−J(xk)TR(xk). (2.18)

Remark 2.12. Notice the strict connection between the Levenberg-Marquardt step
and the Trust-Region step defined in (2.7b). The first one is obtained choosing
B = J(xk)T J(xk) and g = J(xk)TR(xk) in (2.7b). In Levenberg-Marquardt methods
parameter λk is given a-priori, while in Trust-Region approaches it comes from
relation (2.7c), namely it corresponds to the Lagrange multiplier in the KKT con-
ditions (2.7). In this case B is always positive semidefinite and g ∈R(B).

Due to this strong relation, Lemma 2.3 also holds for the Levenberg-Marquardt
step. It shows how the length of the step is influenced by the choice of the free
parameter λk. Particularly the norm of the step is decreasing as λ increases.

The addition of an arbitrary strictly positive regularizing term makes the
method well defined even in case of rank-deficient Jacobian and in case of ill-
conditioned matrix the conditioning of the system is improved. However, a wiser
choice of the parameter can provide additional properties to the method. For ex-
ample, the method can get regularizing properties and become suitable to the so-
lution of ill-posed inverse problems. In this context it is more commonly known as
non-stationary iterated Tikhonov method, that we will describe in Section 2.4.4.

The approach can also be made globally convergent [80, 86, 90]. In Section
2.4.3 it is shown how this can be gained exploiting the strong connection between
Levenberg-Marquardt and Trust-Region methods, that we have highlighted in
Remark 2.12. Indeed, the approach can be implemented through a Trust-Region
strategy and the free parameters λk are indirectly selected from the Trust-Region
radius choice. An alternative, originally proposed in [78, 86], is to update the
parameters directly, with an update that mimics the one of the Trust-Region ra-
dius. The advantage is that the linear system (2.18) is easier to solve than the
Trust-Region subproblem. Based on the reduction of the objective function f , λk

is increased in case of unsuccessful iterations and decreased in case of successful
ones.

Remark 2.13. Note that the Trust-Region radius∆k and the Levenberg-Marquardt
parameters λk are ’inversely related’. Namely, a reduction of ∆k means a reduction
in the norm of the step and conversely an increase in ∆k allows bigger steps. On
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the contrary, if λk is increased the norm of the step is decreased, see (2.8). Then,
the update of λk is ’reversed’ compared to the update of the Trust-Region radius,
i.e. in case of successful steps ∆k is increased and λk is reduced and vice-versa for
the unsuccessful case.

Often, the update of the parameter and the step acceptance are still based on

the ratio ρk(pLM
k ) = f (xk)− f (xk+pLM

k )
mLM

k (xk)−mLM
k (xk+pLM

k )
. Given 0 < η0 < η1 < η2 < 1 and 0 < γ1 <

1< γ0, one set [86, 103, 114]

xk+1 =
xk + pLM

k if ρk(pLM
k )≥ η0,

xk if ρk(pLM
k )< η0,

(2.19)

and

λk+1 =


γ1λk if ρk(pLM

k )> η2,

λk if ρk(pLM
k ) ∈ [η1,η2],

γ0λk if ρk(pLM
k )< η1.

(2.20)

However other updates are possible. For example many papers in the literature
are concerned with the study of parameters update to get fast local convergence
under mild assumptions. The most common choice for zero residual problems
is to relate λk to the magnitude of the nonlinear residual. Possible choices are
λk = ‖R(xk)‖2 [110, 68], λk = ‖R(xk)‖β for β ∈ (0,2] [8, 40], λk = µk‖R(xk)‖β with
0≤β≤ 1 [33, 102] with µk updated adaptively as

µk+1 =


max{γ1µk,m} if ρk(pLM

k )> η2,

µk if ρk(pLM
k ) ∈ [η1,η2],

γ0µk if ρk(pLM
k )< η1,

(2.21)

where m is a small positive constant to prevent the parameter from being too
small. In [37] the parameter is chosen as a combination of ‖R(xk)‖ and ‖J(xk)TR(xk)‖.

2.4.1 Inexact Levenberg-Marquardt method

A Levenberg-Marquardt method is said to be inexact when the subproblem (2.17)
is not solved exactly. Indeed, to get a convergent method it is not necessary to
solve the subproblem with high accuracy and it is sufficient to find an approxi-
mate solution. The study of the inexactness of the method investigates the level
of inexactness that can be allowed in the subproblem solution without affecting
either the global convergence or a given rate of local convergence.

Regarding the global convergence, as for Trust-Region methods it is possible
to define an approximate solution by means of the sufficient Cauchy decrease. In
this case the Cauchy point is defined as [11]

xc
k = xk − tc

k∇ f (xk)= argmin
t≥0

mLM
k (−t∇ f (xk)) (2.22)
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and pc
k =−tc

k∇ f (xk) is again called the Cauchy step. It is possible to see that

tc
k =

‖∇ f (xk)‖2

∇ f (xk)T(Bk +λkI)∇ f (xk)
.

We can then give the following definition:

Definition 2.14. We say that a step p approximately minimizes model mLM
k if it

achieves the sufficient Cauchy decrease, i.e. if it provides at least as much reduction
in mLM

k as that achieved by the Cauchy point (2.22):

mLM
k (xk)−mLM

k (xk + p)≥ θ‖J(xk)TR(xk)‖2

‖J(xk)‖2 +λk
, θ > 0. (2.23)

For the Cauchy step pc
k (2.23) holds with θ = 1

2 . To find a step achieving
the Cauchy decrease it is sufficient to solve the normal equations (2.18) approxi-
mately, i.e. to compute a step p such that

(J(xk)T J(xk)+λkI)p =−J(xk)TR(xk)+ rk, (2.24)

for a residual vector rk such that ‖rk‖ > 0. The resulting step is usually called an
inexact step. It can be computed applying an iterative method to the normal equa-
tions without reaching high accuracy, but rather stopping the iterative process as
soon as the norm of the residual vector goes under a certain threshold. Indeed, if
the norm of the residual vector is small enough, p achieves the Cauchy decrease,
as stated in the next lemma.

Lemma 2.15 ([11], Lemma 4.1.). The inexact Levenberg-Marquardt step pLM
k com-

puted as
(J(xk)T J(xk)+λkI)pLM

k =−J(xk)TR(xk)+ rk

for a residual rk satisfying

‖rk‖ ≤ εk‖J(xk)TR(xk)‖, 0≤ εk ≤
√
θ2

λk

‖J(xk)‖2 +λk
, (2.25)

for some θ2 ∈ (0,1), achieves the Cauchy decrease (2.23), with θ = (1−θ2) ∈ (0,1).

Proof. We can rewrite the predicted reduction as

mLM
k (xk)−mLM

k (xk + pLM
k )=−(J(xk)TR(xk))T pLM

k − 1
2

(−J(xk)TR(xk)+ rk)T pLM
k

=−1
2

(J(xk)TR(xk)+ rk)T pLM
k

= 1
2

(J(xk)TR(xk)+ rk)T(J(xk)T J(xk)+λkI)−1(J(xk)TR(xk)− rk).

Since J(xk)T J(xk) is positive semidefinite,

rT
k (J(xk)T J(xk)+λkI)−1rk ≤

‖rk‖2

λk
≤ ε2‖J(xk)TR(xk)‖2

λk
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and

(J(xk)TR(xk))T(J(xk)T J(xk)+λkI)−1J(xk)TR(xk)≥ ‖J(xk)TR(xk)‖2

‖J(xk)‖2 +λk

Then we conclude that

mLM
k (xk)−mLM

k (xk + pLM
k )≥

(
1

‖J(xk)‖2 +λk
− ε2

λk

)
‖J(xk)TR(xk)‖2

≥ (1−θ2)
‖J(xk)TR(xk)‖2

‖J(xk)‖2 +λk

Thanks to this result, the iterative method can be stopped as soon as (2.25) is
satisfied. Usually few iterations are sufficient to reach this desired accuracy. This
allows considerable computational savings, especially for large scale problems.

It can be investigated also the level of inexactness in the subproblems of Lev-
enberg–Marquardt methods that is possible without loosing a given superlinear
convergence rate. In these results the residual norm of the linear subproblems is
related to the regularization term λk.

A well known theory for the inexactness level in Newton’s method for squared
nonlinear systems exists in case it is assumed that the Jacobian of R at a solution
x∗ has full rank [26]. This theory has been extended for Levenberg-Marquardt
methods also to the rank-deficient case [24, 41, 35]. Rates of convergence have
been proved for inexact methods under assumptions weaker than the nonsingu-
larity of the Jacobian, that we will present in the next section.

2.4.2 Local convergence and complexity

In this section we consider local convergence analysis of the Levenberg-Marquardt
method. We assume that the initial iterate is close to a solution x∗. If the non-
linear residual is zero, and J(x∗) has full column rank, Levenberg-Marquardt
method maintains fast local convergence of Gauss-Newton method [70, Theorem
3.3.4]. The local convergence of the method can however be established also un-
der assumptions weaker than the classical assumption of the nonsingularity of the
Jacobian. A widely assumed condition is the so-called local error bound condition.

Definition 2.16. ‖R(x)‖ is said to provide a local error bound for the system R(x)=
0 if there exist positive constants b, c such that

bdist(x, X∗)≤ ‖R(x)‖ ∀x ∈ Bc(x∗),

for some x∗ ∈ X∗, with X∗ the solution set of R(x)= 0 and dist(x, X∗)=minx∗∈X∗ ‖x−
x∗‖.

This definition is suitable only for zero residual problems, but both square and
rectangular systems are allowed. The error bound condition weakens and gen-
eralizes the classical regularity condition. Indeed, if J(x∗) is nonsingular, ‖R(x)‖
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provides a local error bound for R(x)= 0 on some neighbourhood of x∗ [69, Lemma
4.3.1], while the converse is not necessarily true [110]. Hence a local error bound
condition is weaker than the nonsingularity of J(x∗). Moreover, it allows also the
case of nonisolated solutions. Indeed, while the nonsingularity of the Jacobian
implies that solutions are isolated (i.e. if R(x)= 0 is a square system of equations
and J(x) is invertible at a solution x∗, then x∗ is isolated), the error bound condi-
tion might be fulfilled also at nonisolated solutions. This condition plays a decisive
role in the design and local convergence analysis of other Newton-type methods
as well [32, 42, 49].

Local convergence of Levenberg-Marquardt method under the error bound as-
sumption has been considered in a large number of papers. To cite a few we
mention [24, 34, 36, 40, 41, 68, 110, 112], on this topic see also [7] and references
therein. The first paper in which superlinear rate for the Levenberg-Marquardt
method under the error bound condition is shown is [110]. It is proved that the
generated sequence {xk} converges to a solution and that dist(xk, X∗) tends to
zero quadratically. The result has been extended in [40] where it is shown that
the sequence {xk} converges to a solution quadratically and also in [33] where
both global convergence and local quadratic convergence are proved for singular
square systems of nonlinear equations. Zhang in [112] provides a unifying frame-
work for methods in [24, 40, 110], considering an update for the parameter such
that c2dist(xk, X∗)β ≤λk ≤ c3dist(xk, X∗)β for constants c2, c3 > 0 and 0<β≤ 2.
He proves that the sequence generated by the method converges to the solution
of the original equation system superlinearly and the exact order of convergence
rate is min{1+β,2} if ‖R(x)‖ provides a local error bound for the system of nonlin-
ear equations. The results are generalized to nonlinear equations systems with
nonnegative constraints.

The above results have been then extended also to inexact methods. In this
context the choice of the regularization parameter plays an important role for the
goal of obtaining large inexactness levels while maintaining a given superlinear
rate of convergence. A contribution on this topic is given by [41], where a ro-
bust Levenberg-Marquardt method is studied, i.e. a method based on a choice
of regularization parameters of magnitude as large as possible, without decreas-
ing the quadratic convergence rate of the exact case. It is shown that the choice
λk = ‖R(xk)‖ enables inexactness levels of the order of ‖R(xk)‖2, showing that for
robust Levenberg-Marquardt method the level of inexactness allowed in the sub-
problems can be increased significantly, for example compared to the results in
[24, 35].

The notion of error bound condition can be extended also to the case of con-
strained problems, simply considering in Definition 2.16 the intersection between
the feasible set and the considered neighbourhood of the solution.

The constrained case has been considered in [68], where the quadratic conver-
gence is proved. This result has been then extended also to inexact constrained
Levenberg-Marquardt methods in [8, 68]. Inexact constrained methods are con-
sidered also in [32], where a new family of methods is introduced, that comprises
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also the Levenberg-Marquardt method in [8, 68]. Quadratic convergence rate is
proved under assumptions weaker than those in [8, 68], that include neither dif-
ferentiability of R nor the local uniqueness of the solutions.

The nonzero residual case is less studied. It has been considered in [63], for
rank-deficient problems, where it is proved that the method converges q-linearly
if the residual is small enough, under assumptions somewhat stronger than the
standard assumptions for convergence of the Levenberg- Marquardt algorithm
for full-rank problems, motivated by the considered applications. Recently the
nonzero residual case has been studied also in [10], where the global and local
convergence of a novel Levenberg-Marquardt method is studied under the as-
sumption that ‖R(x)−R(x∗)‖ provides a local error bound condition for (1.2).

A topic that is strictly related to the study of rates of convergence of a method is
the complexity analysis. Providing a global complexity bound for a method means
providing an upper bound to the number of iterations required to get an approx-
imate solution such that ‖∇ f (x)‖ ≤ ε, where ε is a given positive constant. For
Levenberg-Marquardt methods this has been considered for example in [102, 103,
114], where it is shown that the complexity bound of the Levenberg-Marquardt
method is O(ε−2), that is also the complexity bound for Newton, gradient and
Trust-Region methods.

2.4.3 Trust-Region method for least squares

As least squares are a special case of unconstrained minimization, the Trust-
Region scheme can also be used to solve those problems. This can be achieved
choosing the model at step 1 of Algorithm 2.1 as the Gauss-Newton model (2.15)
and letting the rest of the procedure unmodified, as it is described in Section 2.2.
Then, in this case subproblem (2.6) takes the following form:

min
p∈Rn

mTR
k (xk + p)= ‖J(xk)p+R(xk)‖2

= 1
2‖R(xk)‖2 + (J(xk)TR(xk))T p+ 1

2 pT J(xk)T J(xk)p
s.t. ‖p‖ ≤∆k.

(2.26)

From Theorem 2.2 the resulting step satisfies system (2.7b), with B = J(xk)T J(xk),
that is always positive semidefinite, and g = J(xk)TR(xk) ∈ R(B). In this case
(2.7b) yields exactly the normal equations (2.18) for Levenberg-Marquardt method.

Then the Trust-Region method can be thought of as a Levenberg-Marquardt
method in which the free parameters are automatically set from the choice of the
Trust-Region radius, as they represent the Lagrangian multipliers of the sub-
problem. In this case λk may also be zero. Then, when the Trust-Region radius
is adjusted through the rules at step 4 of Algorithm 2.1, a sequence of dynami-
cally adjusted parameters {λk} is built. Moré in [80] gave a robust and efficient
implementation of this version of the method.

In the following lemma we restate the result in Lemma 2.3 on the norm of the
step p(λ) solution of (2.26), taking into account the special form of B and g and

31



considering also the norm of the affine model

Mk(p)= J(xk)p+R(xk). (2.27)

We employ the singular value decomposition of the Jacobian for the proof, see
Section 1.1.1.

Lemma 2.17. [9, Lemma 4.2] Suppose ‖J(xk)TR(xk)‖ 6= 0 and let p(λ) be the min-
imum norm solution of (2.18) with λ ≥ 0. Suppose furthermore that J(xk) is of
rank ` and its singular value decomposition is given by UkΣkV T

k where Σk is the
diagonal matrix with entries ς1, . . . ,ςν on the diagonal, with ν= min{n,m}. Then,
denoting r = [r1, r2, . . . , rm]T =UT

k R(xk), we have that

‖p(λ)‖2 = ∑̀
i=1

ς2
i r2

i

(ς2
i +λ)2

, (2.28)

‖R(xk)+ J(xk)p(λ)‖2 = ∑̀
i=1

λ2r2
i

(ς2
i +λ)2

+
m∑

i=`+1
r2

i . (2.29)

Proof. Taking into account (2.18), the step can be defined as

p(λ)=−(J(xk)T J(xk)+λI)+J(xk)TR(xk).

Using the singular value decomposition of J(xk) it follows

p(λ)=−Vk(ΣT
kΣk +λI)+ΣT

k r. (2.30)

As Vk has orthogonal columns,

‖p(λ)‖ = ‖(ΣT
kΣk +λI)+ΣT

k r‖ =
∥∥∥[ ς1

ς2
1 +λ

r1, . . . ,
ς`

ς2
`
+λ r`,0 . . . ,0

]T∥∥∥
and (2.28) follows. Employing again the singular value decomposition of J(xk) and
considering that UT

k Uk = Im ∈Rm×m, we get

R(xk)+ J(xk)p(λ)= R(xk)−UkΣk(ΣT
kΣk +λI)+Σkr

=Uk(Im −Σk(ΣT
kΣk +λI)+ΣT

k )r.

Then,

‖R(xk)+ J(xk)p(λ)‖ = ‖(Im −Σk(ΣT
kΣk +λI)+ΣT

k )r‖

=
∥∥∥[(

1− ς2
1

ς2
1 +λ

)
r1, . . . ,

(
1− ς2

`

ς2
`
+λ

)
r`,1, . . . ,1

]T∥∥∥,

and also (2.29) holds.

As we have already observed after Lemma 2.3, (2.28) shows that the step-
length is decreasing with λ. On the other hand, taking derivatives in (2.29), we
notice that ‖R(xk)+ J(xk)p(λ)‖ is increasing with λ.

Finally, in the following lemma we show a property of model (2.27), that will
be useful for the analysis in the following sections.
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Lemma 2.18. Let Mk(p) be defined as in (2.27). Then for pk = p(λk) solution to
(2.18) with λk > 0 it holds

pk = p(λk)=−J(xk)T(J(xk)J(xk)T +λkI)−1R(xk), (2.31)

M(pk)=λk(J(xk)J(xk)T +λkI)−1R(xk). (2.32)

Proof. From the singular value decomposition of J(xk) it is possible to verify that
for a positive λk it holds:

(J(xk)T J(xk)+λkI)−1J(xk)T = J(xk)T(J(xk)J(xk)T +λkI)−1.

Then, from (2.18) we get (2.31), that yields also

Mk(pk)=− J(xk)J(xk)T(J(xk)J(xk)T +λkI)−1R(xk)+R(xk)

=− J(xk)J(xk)T(J(xk)J(xk)TλkI)−1R(xk)

+(J(xk)J(xk)T +λkI)(J(xk)J(xk)T +λkI)−1R(xk)

=λk(J(xk)J(xk)T +λkI)−1R(xk).

As for Trust-Region methods for unconstrained minimization, we can prove
global convergence properties also for least squares problems, as stated in the
following theorem.

Theorem 2.19 (Theorem 10.3 [85]). Let η1 < 1
4 in Algorithm 2.1. Suppose that

L = {x ∈ Rn s.t. f (x) ≤ f (x0)} is bounded and that R j, j = 1, . . . ,m are Lipschitz
continuously differentiable in a neighbourhood of the level set L . Suppose also
that the approximate solution pTR

k of (2.26) satisfies for each k the Cauchy decrease

mTR
k (xk)−mTR

k (xk + pTR
k )≥ θ‖JT(xk)R(xk)‖min

[
∆k,

‖JT(xk)R(xk)‖
‖J(xk)T J(xk)‖

]
for some θ > 0. Then we have that the sequence {xk} generated by Algorithm 2.1
satisfies

lim
k→∞

‖∇ f (xk)‖ = lim
k→∞

‖J(xk)TR(xk)‖ = 0. (2.33)

2.4.4 Tikhonov method

With a proper choice of the regularizing parameters the Levenberg-Marquardt
method can also be used to handle ill-posed problems. In the context of ill-posed
inverse problems it is better known as nonstationary iterated Tikhonov method
[53, 64]. Given a sequence of regularizing parameters {λk}, nonstationary iterated
Tikhonov method solves a sequence of regularized problems (2.17). In Tikhonov
method, in addition to the regularization parameter λk a regularizing matrix may
be added too. Given a symmetric and positive definite matrix Lk ∈ Rn×n, at k-th
iteration the following regularized problem is solved:

min
p∈Rn

1
2
‖J(xk)p+R(xk)‖2 + λk

2
‖Lk p‖2 (2.34)
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For Lk = I we get the Levenberg-Marquardt method presented above. It has been
shown that for ill-posed linear problems the choice of a matrix different from the
identity improves the solution approximation [17, 29].

Parameter λk is usually addressed as the regularization parameter. The main
difficulty in employing the Tikhonov method is to set it. It is a crucial choice, at it
affects the qualities of the solution approximation, but it is in general difficult to
make an appropriate a-priori choice. Usually a dynamically adjusted parameter
is then employed. Specifically, in ill-posed inverse problem context the parameter
is often defined to solve a specific condition that guarantees to the method regu-
larizing properties [50, 52]. In next chapter we will provide a rigorous definition
of regularizing properties and introduce possible choices of λk to guarantee them.
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Part II

Ill-posed nonlinear least squares
problems
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CHAPTER

3
Introduction to Part II

In this part of the thesis we consider a particular class of nonlinear inverse prob-
lems, that of ill-posed problems [31, 55]. When using the term inverse problem,
it is implicitly assumed that the considered problem is connected to another one,
and the formulation of the one involves that of the other. Usually the problem that
was studied first or that is simpler is called direct and the other inverse. However,
when there is a real-world problem behind the mathematical problem studied the
distinction is clear. The inverse problem is defined as the one that starts with the
results to calculate the causes, for example the process of calculating from a set of
observations the causal factors that produced them. Possible inverse problems are
the calculation of the evolution of a system backwards in time, or the identification
of physical parameters from observations of the evolution of the system (parame-
ter identification problems). Such problems can be formulated as nonlinear least
squares problems [31].

Here we adopt the following generic formulation. We assume F :Rn →Rm non-
linear and continuously differentiable, m ≥ n and y ∈ Rm. We state the problem
as

min
x∈Rn

f (x)= 1
2
‖F(x)− y‖2, (3.1)

which is a special case of (1.2) with R(x) = F(x)− y. F is usually called forward
or observation operator, which describes the explicit relationship between the
data and the model parameters [31]. We assume (3.1) to be ill-posed [67, 105].
Hadamard was the first to introduce the idea of well-posedness of a problem and
to give a rigorous definition, that can be used as well to define an ill-posed problem
[31]:

Definition 3.1 (Hadamard’s well-posedness). An inverse problem is said to be
well-posed if all the following conditions hold:

• existence: for all admissible data a solution exists;

• uniqueness: for all admissible data the solution is unique;

• stability: the solution depends continuously on the data.
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If just one of these conditions does not hold, the problem is said to be ill-posed.

Many ill-posed problems are typically formulated as continuous operator equa-
tions or least squares problems defined on an infinite dimensional Hilbert space.
For example, all continuous problems with compact operator are ill-posed, as the
inverse of a compact operator cannot be continuous if defined on an infinite di-
mensional space. Typical examples of continuous ill-posed problems are Fred-
holm equations of the first kind or parameter identification problems [21, 48, 109].
Many finite-dimensional ill-posed problems actually arise from the discretization
of those infinite-dimensional problems, and they inherit their ill-posedness.

In practical applications, the main difficulty in the solution of such problems
is the lack of stability. Indeed, one has typically access to some measured data yδ,
which are noisy representations of the true data y such that

‖y− yδ‖ ≤ δ, (3.2)

for some positive δ that is called the noise level. The noise level is assumed to be
known and fixed, as it is the case when it arises from measured data.

One has then to cope with a noisy problem of the form

min
x∈Rn

fδ(x)= 1
2
‖F(x)− yδ‖2. (3.3)

Due to the noise in the data, one does not have access to exact values of the objec-
tive function f , or to its derivatives.

Even if the perturbations on the data are small, they may be severely amplified
if stability property does not hold, leading to a relative error in the solution that
is much higher than the relative error in the data.

To understand better which problems arise in the solution of an ill-posed prob-
lem, let us consider a linear problem as an example [55, p.36]:

Ax = b, A ∈Rm×n, b ∈Rm. (3.4)

In connection with discrete ill-posed systems, a peculiar characteristic of the sin-
gular value decomposition is very often found [55]: the singular values ςi decrease
gradually to zero, without significant gap in the spectrum and an increase in the
size of A increases the number of small singular values. Then, generally the
matrix in a ill-posed system is severely ill-conditioned and the ill-conditioning in-
creases with the size of the problem. Also, as ςi decreases ui and vi become more
oscillatory, i.e. they are vectors with many sign changes.

The decay rate of the singular values is so fundamental for the behaviour of ill-
posed problems that it is usually used to characterize the degree of ill-posedness
of the problem [31, p.40], [55, 61, 62].

If we consider the singular value decomposition of A in (1.8), we can write

x =
n∑

i=1
(vT

i x)vi Ax =
n∑

i=1
ςi(vT

i x)ui
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and the minimum norm solution x∗ of (3.4) is given in (1.10). We notice that high-
frequency components in x are more damped in Ax compared to the low frequency
ones, so that the multiplication by A guarantees a smoothing effect. The inverse
problem on the other hand has the opposite effect, it amplifies the high-frequency
oscillations in the right hand side by a factor ς−1

i , see (1.10), that is usually really
big. Moreover, if we assume that the data are affected by additive noise, the
problem becomes then Ax = b+ ε, with ε ∈Rm being a perturbation on the data b.
Its solution xε is given by

xε = A+(b+ε)=
n∑

i=1

uT
i (b+ε)
ςi

vi = x∗+
n∑

i=1

uT
i ε

ςi
vi. (3.5)

The last term in (3.5) represents the difference between the solution x∗ and that
obtained with noisy data. Due to the presence of tiny singular values ςi at the
denominator, the error in the data is amplified in the solution.

Analogously, if we consider a nonlinear system, the system’s ill-posedness will
be reflected in the Jacobian matrix J, that may be severely ill-conditioned, with
ill-conditioning again due to smallest singular values close to zero. It may also be
potentially singular, or tending to the singularity as approaching the solution.

Similar considerations can be made also when continuous ill-posed problems
are considered, employing the singular values expansion in place of the singular
value decomposition. Indeed, the singular value decomposition of a matrix aris-
ing from the discretization of an operator is closely related to its singular values
expansion [55].

All of this, makes it impossible to seek a solution of (3.1) by solving a problem
of the form (3.3) with classical methods usually employed for well-posed prob-
lems. The sequence generated by such a method would indeed converge to one of
its solutions which, as we said, may be arbitrarily far from those of the original
problem. Moreover, in the analysis of these methods it is usually assumed to have
a finite bound on the norm of the inverse of the Jacobian of F around a solution,
which usually it is not possible to do in the context of ill-posed problems.

Then, specific methods must be devised that attempt to solve (3.1) in a stable
way. These are called regularizing methods. We consider a special class of regular-
izing methods, the iterative regularizing methods. These are iterative approaches
that through both the construction of the iterates xδk and the choice of a suitable
stopping criterion achieve the following regularizing properties [67, 104].

Definition 3.2. An iterative method is said to be an iterative regularizing method
if it provides the following properties, assuming that the iterations are stopped at
index k∗(δ):

• xδk∗(δ) is an approximation to a solution of (3.1);

• xδk∗(δ) converges to a solution of (3.1) as δ tends to zero;

• in the noise-free case, convergence to a solution of (3.1) occurs.
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A great part of the literature on nonlinear ill-posed inverse problems deals
with the solution of ill-posed operator equations in infinite dimensional Hilbert
spaces [31, 67, 104]. Regularizing adaptations of existing procedures classically
used for the solution of well-posed problems are widely studied. Both first [54, 88,
91] and second order methods [50, 51, 65, 66, 92, 101, 104] have been proposed to
cope with them. See [67] for a wide overview of iterative regularizing methods for
nonlinear ill-posed operator equations.

Here, we focus on discrete ill-posed problems and we propose suitable modi-
fications of Levenberg-Marquardt schemes to make them regularizing methods.
The case of zero residual problems has been investigated in the seminal papers
[50, 52, 107, 113]. However, this study deserves further theoretical and numerical
insights as well as an extension to the nonzero residual case.

Indeed, while the zero residual case is well-studied, we are aware only of [3]
that considers convergence rates of Tikhonov method admitting also the nonzero
residual case. However, nonzero residual problems arise in many applications.
Usually indeed, jointly to observation errors also modelling errors are present,
so that it is not realistic to assume that the data are attainable and one must
admit the case y ∉ R(F), even when exact data are considered [3, 6, 21]. This is
the case when a mathematical model approximating a true distribution is fit to
given data [25] or of parameter estimation problems [6, 21]. These problems are
indeed usually formulated as least squares problems. See [3, Example 4.3] for an
example of an ill-posed problem for which a solution of the zero residual problem
cannot exist, but it exists a solution of the problem’s least squares reformulation.

In the linear case it is common to consider the modelling errors as part of the
noise in the data. The same algorithms as for zero residual problems are used,
with a proper a-posteriori parameter choice, based on an estimate on the noise
level that comprises both noise in the data and modelling errors [83]. However, it
is generally difficult to estimate this last contribution. For this reason, we propose
an ad hoc method for ill-posed least squares problems with nonzero residual, that
does not need the estimation of modelling errors in order to choose the regulariza-
tion parameter.

In this part of the thesis we consider then both zero and nonzero residual
problems and methods where the regularization parameter is adaptively selected.
This automatic update is a very desirable property in a regularizing method, as
the choice of the regularization parameters is always difficult and critical.

This part is then divided into two main chapters.
Chapter 4 is devoted to the study of the zero residual case. We consider the

regularizing Levenberg-Marquardt method proposed by M. Hanke in [50] and we
discuss some issues related to its practical implementation, that have not been ad-
dressed in [50] or in related papers. Then, inspired by this procedure, we present
a regularizing Trust-Region approach and we discuss its convergence and regu-
larizing properties. In our approach the regularization parameter is adaptively
chosen thanks to a specific rule for selecting the Trust-Region radius at each it-
eration. The convergence analysis is conducted under assumptions weaker than
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the invertibility of the Jacobian and different from those usually employed in the
literature. Then this study also gives more insight into the study of Trust-Region
methods.

We underline that Trust-Region methods for ill-posed problems are studied in
[107, 113] too. Like our method, these are based on a specific condition for the se-
lection of the regularization parameters that guarantees the desired regularizing
properties. However, while in our approach parameters satisfying such condition
are adaptively chosen via the Trust-Region radius choice, in [107] the satisfaction
of the condition is assumed while in [113] it is explicitly enforced rejecting the
step whenever it does not hold and reducing the trust- region radius.

Numerical tests are performed that show in practice the properties theoreti-
cally studied. In the tests slow convergence of the method is observed. Then in
the numerical results section an adaptive rule for choosing the Trust-Region ra-
dius, different from that theoretically analysed but based on the same ideas, is
presented to improve the rate of convergence. Tests made with this choice of the
radius show the increased robustness of the proposed method compared to that
presented in [50].

In Chapter 5 we consider the more general case of nonzero residual problems.
We devise suitable extensions to this case of the assumptions and conditions em-
ployed in the previous chapter. We propose a nonstationary iterated Tikhonov
procedure and a suitable elliptical Trust-Region reformulation that allows an au-
tomatic setting of the free regularization parameters, that guarantees regulariz-
ing properties to the method. Convergence and regularizing properties are proved
for problems with small residual under mild conditions.

Finally, in Chapter 6 we briefly discuss the extension of our procedure to an
infinite dimensional Hilbert setting. Our analysis is threefold. First we point
out that all the results presented in the first two chapters can easily be extended
to an infinite dimensional Hilbert setting. Then, we consider also a sequence of
solutions of problems got by the projection of an infinite dimensional problem onto
a sequence of finite dimensional spaces of increasing dimension. We discuss the
convergence of such sequence to a solution of the infinite dimensional problem.
Finally we present a model problem for which we show that the assumptions of
our method hold.

Notations. In this chapters both noisy and unperturbed problems will be
considered. Then, for seek of clarity, we will denote with xk the iterates generated
when the unperturbed problem (3.1) is considered and xδk those generated when
the noisy problem (3.3) is taken into account. By xδ0 = x0 we denote an initial
guess which may incorporate a-priori knowledge of an exact solution. We will
denote mLM

k the Levenberg-Marquardt model and pLM
k the corresponding step;

mTR
k the Trust-Region model and simply pk the corresponding step, for ease of

notation. The symbol ‖ · ‖ indicates the Euclidean norm. A closed ball of radius r
around a vector x is denoted as Br(x). The Jacobian matrix of F(x) is denoted as
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J(x). Moreover we will denote ∇ f (x) the gradient of f (x) and

gk =∇ fδ(xk)= J(xδk)T(F(xδk)− yδ) Bk = J(xδk)T J(xδk). (3.6)

Either x∗ or x† will be used to denote a solution of (3.1). We denote with F j(x) and
yδj the j-th component of F(x) and yδ, respectively. We indicate the singular value
decomposition of J(xδk) as UkΣkV T

k and the singular values as ς1, . . . ,ς`, where `
is the rank of J(xδk).
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CHAPTER

4
Zero-residual problems

The content of this chapter has been the object of a publication in [J1]. We consider
a special case of problem (3.1), that in which it can be assumed that a solution x†

exists such that F(x†)= y. As (3.1) has zero residual, the resulting system

F(x)= y (4.1)

will be compatible. Then, we consider the solution of (4.1), that will provide a
global minimum for (3.1).

Assuming to have at disposal just noisy data yδ as in (3.2), in practice it is
necessary to handle a problem of the form

F(x)= yδ. (4.2)

When this problem is considered, the following assumption on F is commonly
made, both in case of first and second order methods [50, 67, 97]:

Assumption 4.1. Given an initial guess x0, there exist positive r and c such that
system (4.1) is solvable in Br(x0), and

‖F(x)−F(x̃)− J(x)(x− x̃)‖ ≤ c‖x− x̃‖‖F(x)−F(x̃)‖, x, x̃ ∈ B2r(x0). (4.3)

Condition (4.3) is known as the tangential cone condition and it is a require-
ment on the Taylor remainder of function F. It is motivated by the following
observations. If F is continuously differentiable and J is Lipschitz continuous in
a neighbourhood of x0, it follows that for x and x̃ in that neighbourhood

F(x̃)−F(x)− J(x)(x̃− x)=
1∫

0

[J(x+ t(x̃− x))− J(x)] (x̃− x) dt.

By Lipschitz continuity of J we obtain

‖F(x̃)−F(x)− J(x)(x̃− x)‖ ≤ L
2
‖x̃− x‖2, (4.4)

where L is the Lipschitz constant of J. However, in the context of ill-posed prob-
lems, this condition is not strong enough to prove regularization properties of
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Figure 4.1: Convex hull of a(x) and b(x), Figure 3.1 in [97].

iterative regularization methods [67, §2.1]. In fact, the left hand side can be much
smaller than the right hand side for certain pairs of points x̃ and x, whatever
close to each other they are, and (4.4) carries too little information about the local
behaviour of F around x to draw conclusions about convergence. For example, in
case of rank-deficient Jacobian, it may happen that x̃− x belongs to the null space
of J(x) and F(x̃) = F(x). In this case, the bound on the right is too rough and we
need to impose the stronger condition (4.3). It has been proved that it holds for
many examples of continuous ill-posed nonlinear operator equations in a Hilbert
setting, see for example [21, 98].

We can also give a geometrical interpretation of condition (4.3) [97]. We con-
sider a slightly more general version of the condition, that is

‖F(x)−F(x̃)− J(x)(x− x̃)‖ ≤ η‖F(x)−F(x̃)‖, x, x̃ ∈ Br(x0),

and we focus on the scalar case, then J is simply the first derivative of the function
that we denote by F ′. We assume F : R→ R and we fix x̃ ∈ R satisfying F ′(x̃) > 0
and η= 0.5. The condition means that the graph of F lies entirely between a(x)=
F(x̃)+ 2

3 F ′(x̃)(x− x̃) and b(x)= F(x̃)+2F ′(x̃)(x− x̃). For fixed x̃ the convex hull of a(x)
and b(x) forms a cone with vertex (x̃,F(x̃)) around the tangent F(x̃)+F ′(x̃)(x− x̃),
see Figure 4.1. We can conclude that for a continuously differentiable function
F :R→R, the condition with η= 0.5 and for fixed x̃ is satisfied if the graph of F is
contained in the convex hull of a(x) and b(x).

Our method takes the step from the regularizing Levenberg-Marquardt method
proposed by M. Hanke in [50, 52]. Indeed, problem (4.1) can be reformulated as
a least squares problem and Levenberg-Marquardt method can be employed for
its solution. The method by Hanke, assuming Assumption 4.1 to hold in a neigh-
bourhood of an initial guess x0 close enough to some solution x† of (4.1), is able to
compute a stable approximation to x† or to some other solution of the unperturbed
problem (4.1) close to x†.

This task is achieved through two key ingredients: an implicit step size control
and an appropriate stopping criterion.

As we have shown in Section 2.4, for Levenberg-Marquardt methods the length
of the step can be controlled through the choice of the regularizing parameter
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λ. Through a specific choice of the parameter many goals can be achieved. For
example, the method can be made globally convergent. However, if problem (4.1)
is ill-posed, and the scalars λk are limited to promote convergence of the procedure
[78, 80] the solution of (4.1) may be significantly misinterpreted [67, 105]. Then,
in [50] a suitable condition has been individuated to compute the regularization
parameters, to make the method regularizing, according to Definition 3.2, under
the assumption that an initial guess x0 in a neighbourhood of x† is available. The
condition is related to Morozov discrepancy principle, [48, p.44]. Let us consider
an ill-posed linear system

Az = b, b ∈R(A ).

Assume that the data are affected by noise, so that just bδ is available such that

‖b−bδ‖ ≤ δ≤ ‖bδ‖,

for a given noise level δ. Notice that the second inequality does not represent
a further restriction, if it does not hold it means that the data are hopelessly
corrupted and any analysis is ill-advised [48]. The problem with noisy data can
be handled by Tikhonov method for linear problems, i.e. given λ> 0, regularizing
the least squares reformulation of the problem as

‖Az−bδ‖2 +λ‖z‖2.

Let define zδ(λ)= (AT A+λI)−1AT bδ, the solution of the regularized problem. Mo-
rozov in [81] asserts that the quality of the results of a computation should be
comparable to the quality of the data. He suggests then to choose the free param-
eter λ to have a residual of the same order of the noise:

‖Azδ(λ)−bδ‖ ∼ δ. (4.5)

In the nonlinear case, at each iteration the nonlinear function is approximated by
a linear model:

F(xδk)− yδ+ J(xδk)p(λ).

Hanke imposes the following condition to define the regularization parameters at
each iteration:

‖F(xδk)− yδ+ J(xδk)p(λ)‖ = q‖F(xδk)− yδ‖, (4.6)

for some fixed q ∈ (0,1). Then, this condition is coupled with a suitable stopping
criterion. Namely, the iterative process is stopped at iteration k∗(δ), satisfying

‖yδ−F(xδk∗(δ))‖ ≤ τδ< ‖yδ−F(xδk)‖, 0≤ k < k∗(δ), (4.7)

with τ> 1 appropriately chosen [50], i.e. as soon as the residual reaches the noise
level.

If we couple (4.6) and (4.7) we obtain that the computed solution approxima-
tion xδk∗(δ) satisfies

‖F(xδk∗(δ))− yδ+ J(xδk∗(δ))pk∗(δ)‖ ' δ,
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as in the linear case. The choice of a good stopping criterion is crucial. The gen-
erated sequence of solution approximations indeed is built considering the noisy
problem (4.2). Then, it is necessary to stop the process before convergence is
reached, to avoid approaching a noisy solution. In the solution of nonlinear ill-
posed problems, a semi-convergence phenomenon is indeed usually observed. At
the beginning of the optimization process the error ‖xδk − x†‖ is decreasing, but
eventually it starts to increase again. This means that, thanks to the regular-
izing properties of the method, at first a solution of the unperturbed problem is
approached. But then, if the procedure is not stopped, the sequence begins to ap-
proach a solution of the noisy problem, and gets far from the sought point. Then it
is crucial to understand when the process should be stopped. If (4.7) is employed
as a stopping criterion, it means that also the residual of the original problem has
reached the noise level. Indeed

‖y−F(xδk∗(δ))‖ ≤ ‖yδ− y‖+‖yδ−F(xδk∗(δ))‖.

As stated by Morozov, one cannot expect to gain a better result.
It is important to notice that while (4.5) always has a solution, [48, Theorem

3.3.1], the same does not hold for condition (4.6), unless a starting guess close
enough to the sought solution is available, as we will show in the following. If
it happens that (4.6) does not have a solution, it is not easy to choose a proper
regularizing parameter. A non ad hoc choice could lead the method to loose its
regularizing properties. Then in this thesis we consider the following variant of
condition (4.6):

‖F(xδk)− yδ+ J(xδk)p(λ)‖ ≥ q‖F(xδk)− yδ‖, (4.8)

that in the following we will address as q-condition. It was first proposed in [50,
Remark p. 6], but it was neither analyzed, nor employed for numerical compu-
tation. We will prove that it always has a solution and enforcing it we obtain
a method that shares its regularizing properties with the method proposed by
Hanke.

In the context of nonlinear problems, conditions such as (4.6) or (4.8) can be
seen as a constraint on the length of the step. Their effect on it is illustrated
in Figure 4.2, where we plot ‖F(xδk)− yδ + J(xδk)p(λ)‖ (top) and ‖p(λ)‖ (bottom)
varying λ. As we will prove in Lemma 4.3, the norm of the model varies between
‖F(xδk)− yδ‖ (dotted line) and the norm of the projection of the residual on the
orthogonal complement of the range of J(xδk) (dash-dot line). By imposing those
conditions, in case (4.6) admits solution, the regularization parameter λ is forced
to be equal or greater then the value λq

k satisfying (4.6), avoiding too small values
that correspond to large steps, as it is shown at the bottom of Figure 4.2. The
underlying idea is that too big steps could lead us too quickly towards a solution
of the noisy problem.

We notice that whereas it is easy to understand how to compute a λ satisfy-
ing (4.6), it is not evident how to enforce (4.8). (4.6) indeed is a nonlinear scalar
equation and it can be solved with Newton’s method, that can perform well if ap-
plied to a suitable reformulation of the equation, as we will see in Section 4.1. On
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Figure 4.2: Effect of q-condition on the step length.

the other hand (4.8) is an inequality, then it is not clear how to select one among
the parameter’s values that satisfy the condition. Therefore, in this thesis we in-
troduce and analyze a Trust-Region implementation of a Levenberg-Marquardt
method, as described in Section 2.4.3. Our approach is based on a peculiar update
of the Trust-Region radius, that guarantees an indirect choice of parameters λ

that satisfy (4.8). The advantage of this approach compared to a ’pure’ Levenberg-
Marquardt method is then that the update of the radius allows us to obtain (4.8)
without the need of selecting λ directly, that would not be a straightforward choice.

The resulting method, as a standard Trust-Region procedure, enforces a mono-
tonic decrease of the value of the function

fδ(x)= 1
2
‖F(x)− yδ‖2, (4.9)

at the iterates xδk, but also shares the same regularizing properties as the method
by Hanke. The analysis is conducted under assumptions analogous to Assumption
4.1 used in [50].

Moreover, this work represents a contribution also in the local convergence
theory for Trust-Region methods. Indeed, in the literature, when Trust-Region
schemes are analyzed, assumptions stronger than (4.3) have been made. Typ-
ically, if squared systems are considered, local convergence properties of Trust-
Region strategies are analyzed under assumptions which involve the inverse of J
in a neighbourhood of a solution x†. It can be shown that condition (4.3) is weaker
than the non singularity of the Jacobian in a neighbourhood of the solution, as we
show in the following Lemma. The proof follows the lines of [69, Lemma 4.3.1].

Lemma 4.2. Let x∗ be a solution to F(x)= y for F :Rn →Rn. Let J be the Jacobian
of F and assume that J is Lipschitz continuous in a neighbourhood of such solution
and let J(x∗) be nonsingular. Then it exists r > 0 such that (4.3) holds for x, x̃ ∈
Br(x∗).

Proof. If J(x∗) is nonsingular, it exists ρ > 0 such that J(x) is nonsingular for all
x ∈ Bρ(x∗). Let r < min

{
ρ, 1

8L‖J(x∗)−1‖
}

for L the Lipschitz constant of J and let
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x, x̃, y ∈ Br(x∗). From Lemma 4.3.1 in [69] ‖J(y)−1‖ ≤ 2‖J(x∗)−1‖ in Br(x∗). From
this and the Lipschitz continuity of J it holds

‖I − J(x̃)−1J(y)‖ = ‖J(x̃)−1(J(x̃)− J(y))‖ ≤ ‖J(x̃)−1‖L‖y− x̃‖ < 4rL‖J(x∗)−1‖ < 1
2

,
(4.10)

where the last inequality follows from the definition of r. Then,

J(x̃)−1(F(x)−F(x̃))= J(x̃)−1
∫ 1

0
J(x̃+ t(x− x̃))(x− x̃)dt

= (x− x̃)−
∫ 1

0
(I − J(x̃)−1J(x̃+ t(x− x̃)))(x− x̃)dt.

Setting y= x̃+ t(x− x̃) in (8.29), because x̃+ t(x− x̃) ∈ Br(x∗) for 0≤ t ≤ 1 it follows

‖J(x̃)−1(F(x)−F(x̃))‖ ≥ ‖x− x̃‖(1−
∫ 1

0
‖I − J(x̃)−1J(x̃+ t(x− x̃)))‖)≥ ‖x− x̃‖

2
.

From (4.4) and the previous result it follows

‖F(x)−F(x̃)− J(x)(x− x̃)‖ ≤ L
2
‖x− x̃‖2 ≤ L‖x− x̃‖‖J(x̃)−1‖‖F(x)−F(x̃)‖

≤ c‖x− x̃‖‖F(x)−F(x̃)‖,

that is (4.3) holds in a neighbourhood of x∗.

More recently (see Section 2.4.2 and references therein) the convergence anal-
ysis has been carried out assuming the so-called local error-bound condition (cf.
Definition (2.16)) and Lipschitz continuity of the Jacobian in a neighbourhood of
x∗, rather than the stronger nonsingularity of the Jacobian at a solution. We can
relate condition (4.3) to the error bound condition if we restrict (4.3) to hold for
x̃ = x∗ and for x in a neighbourhood of x∗. Then, condition (4.3) becomes

‖F(x)−F(x∗)− J(x)(x− x∗)‖ ≤ c‖x− x∗‖‖F(x)−F(x∗)‖, (4.11)

for x in a neighbourhood of x∗. Condition (4.11) is weaker than the error bound
condition. More precisely, if ‖F(xk)− y‖ provides a local error bound condition for
(4.1), it exists γ > 0 such that ‖xk − x∗‖ ≤ γ‖F(xk)− y‖ which from (4.4) implies
(4.11).

Like the error bound condition, our assumption allows the presence of non-
isolated solutions. Then, here local convergence properties are established under
conditions different than the conditions usually used in the literature for the local
analysis.

This chapter is organized as follows. In Section 4.1 we describe the main fea-
tures of the regularizing Levenberg-Marquardt method proposed by M. Hanke
in [50]. We will focus especially on condition (4.6) and address the existence of
a solution and its numerical resolution, that has not been considered in [50] or
in related papers. In Section 4.2 we introduce our regularizing version of Trust-
Region method and in Section 4.3 we study the local convergence properties. A
comparative numerical analysis of all the procedures studied is reported in Sec-
tion 4.4.
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4.1 Regularizing Levenberg-Marquardt method
for ill-posed problems

In the Levenberg-Marquardt method proposed in [50], as in standard Levenberg-
Marquardt approaches, at the k-th iteration given xδk ∈ Rn and λk > 0, the model
is defined as in (2.17). In this case it holds R(x)= F(x)− yδ, then the minimization
problem becomes:

min
p∈Rn

mLM
k (xδk + p)= 1

2
‖J(xδk)p+F(xδk)− yδ‖2 + λk

2
‖p‖2. (4.12)

The step pLM
k taken minimizes mLM

k , and therefore it is the solution of the follow-
ing linear system (cf. (2.18) and (3.6)):

(Bk +λkI)p =−gk. (4.13)

The new iterate is defined as xδk+1 = xδk + pLM
k . To achieve regularizing properties

at each iteration the regularization parameter λk is chosen as the solution λ
q
k, if

it exists, of the nonlinear scalar equation (4.6).
We sketch the k-th iteration of the procedure in Algorithm 4.1, assuming that

a solution of (4.6) exists.

Algorithm 4.1 k-th iteration of the regularizing Levenberg-Marquardt method
for problem (4.2)

Input: xδk, q ∈ (0,1), yδ.
1. Compute Bk = J(xδk)T J(xδk) and gk = J(xδk)T(F(xδk)− yδ).
2. Compute λq

k satisfying (4.6).
3. Compute the solution pLM

k of subproblem (4.12) for λk =λq
k.

4. Set xδk+1 = xδk + pLM
k .

Notice that the step acceptance is not based on the ratio between the actual
and the predicted reduction, since the regularizing term here is not intended to
promote global convergence but to regularize the method. In the following lemma
existence of a solution of (4.6) is discussed. The results reported in the Lemma can
be found in [67, §4.1]. Suitable assumptions for λq

k are provided to be uniquely
determined from the condition and an upper bound for it is derived. All of this
is established recalling the results in Lemma 2.17, that states the behaviour of
‖F(xδk)− yδ+ J(xδk)p(λ)‖ as a function of λ for a Levenberg-Marquardt method.

Lemma 4.3. Suppose ‖gk‖ = ‖∇ fδ(xk)‖ 6= 0. Let p(λ) be the minimum norm so-
lution of (4.13) with λ ≥ 0, R(J(xδk))⊥ be the orthogonal complement of the range
R(J(xδk)) of J(xδk), and PR(J(xδk))⊥ be the orthogonal projector onto R(J(xδk))⊥. Then

(i) Equation (4.6) is solvable if and only if

‖PR(J(xδk))⊥(F(xδk)− yδ)‖ ≤ q‖F(xδk)− yδ‖. (4.14)
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(ii) If
‖F(xδk)− yδ+ J(xδk)(x† − xδk)‖ ≤ q

θk
‖F(xδk)− yδ‖ (4.15)

for some θk > 1, then (4.14) is satisfied and (4.6) has a unique solution λ
q
k

such that
λ

q
k ∈

(
0,

q
1− q

‖Bk‖
]

. (4.16)

Proof. (i) We employ for the proof the results in Lemma 2.17, taking into account
that in this case R(x)= F(x)− yδ and r i = (UT

k (F(xδk)− yδ))i.
First, taking into account that from the singular value expansion of J(xδk)

PR(J(xδk))⊥ = (I − J(xδk)J(xδk)+)(F(xδk)− yδ)=Uk

[
0, 0

0, Im−`

]
UT

k (F(xδk)− yδ),

with Im−` the identity matrix of size m−`, it follows ‖PR(J(xδk))⊥(F(xδk)− yδ)‖2 =∑m
i=`+1 r2

i . Equation (2.29) implies

lim
λ→0

‖F(xδk)− yδ+ J(xδk)p(λ)‖ = ‖PR(J(xδk))⊥(F(xδk)− yδ)‖,

lim
λ→∞

‖F(xδk)− yδ+ J(xδk)p(λ)‖ =
√√√√∑̀

i=1
r2

i +
m∑

i=`+1
r2

i = ‖F(xδk)− yδ‖.

Thus, as from (2.29) ‖F(xδk)− yδ+J(xδk)p(λ)‖ is an increasing function of λ, we con-
clude that (4.6) admits a solution if and only if ‖PR(J(xδk))⊥(F(xδk)− yδ)‖ ≤ q‖F(xδk)−
yδ‖. Also, if the solution exists, it is unique.

(ii) Trivially, as J(xδk)(x− xδk) ∈R(J(xδk)) for any x, it holds

‖PR(J(xδk))⊥(F(xδk)− yδ)‖ = ‖PR(J(xδk))⊥(F(xδk)− yδ+ J(xδk)(x− xδk))‖
≤ ‖F(xδk)− yδ+ J(xδk)(x− xδk)‖.

Hence,

‖PR(J(xδk))⊥(F(xδk)− yδ)‖ ≤ ‖F(xδk)− yδ+ J(xδk)(x† − xδk)‖
≤ q
θk

‖F(xδk)− yδ‖ < q‖F(xδk)− yδ‖,

Then, from (i) (4.6) admits a solution λ
q
k which is positive and unique. Let’s now

bound it. From (2.32) and (4.6)

q‖F(xδk)− yδ‖ = λ
q
k‖(J(xδk)J(xδk)T +λq

k I)−1(F(xδk)− yδ)‖

≥ λ
q
k

‖Bk‖+λq
k
‖F(xδk)− yδ‖

which yields (4.16).

Then, from this lemma we conclude that it is not always guaranteed to have
a solution of (4.6), unless (4.15) holds. In the following we will see that this is
satisfied when a starting guess close enough to the desired solution is available.
Indeed, the analysis in [50] is conducted under the following assumption:
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Assumption 4.4. Let x0, c and r as in Assumption 4.1, x† be a solution of (4.1)
and x0 satisfy

‖x0 − x†‖ < min
{ q

c
, r

}
, if δ= 0, (4.17)

‖x0 − x†‖ < min
{

qτ−1
c(1+τ)

, r
}

, if δ> 0, (4.18)

where τ> 1/q.

It can be proved that whenever xδk belongs to B2r(x0) and ‖xδk − x†‖ < ‖x0 − x†‖,
Assumption 4.1 implies that inequality (4.15) is satisfied for some θk > 1, and
consequently there exists a solution to (4.6), cf. Lemmas 4.14 and 4.17.

Then, under Assumptions 4.1 and 4.4, Hanke proves that the Levenberg-
Marquardt method in Algorithm 4.1 generates an approximation xδk∗(δ) satisfying
the stopping criterion (4.7) and that the sequence {xδk∗(δ)} converges to a solution
of (4.1) as δ tends to zero. This result is stated in the following theorem.

Theorem 4.5. Let Assumptions 4.1 and 4.4 hold and xδk be the Levenberg-Marquardt
iterates generated by Algorithm 4.1. For noisy data, suppose k < k∗(δ) where k∗(δ)
is defined in (4.7). Then, any iterate xδk belongs to B2r(x0). With exact data, the
sequence {xk} converges to a solution of (4.1). With noisy data, the stopping crite-
rion (4.7) is satisfied after a finite number k∗(δ) of iterations and the sequence of
approximations {xδk∗(δ)} converges to a solution of (4.1) as δ tends to zero.

Proof. See [50], Theorem 2.2 and Theorem 2.3.

Let us now focus on a specific issue concerning the implementation of the
method which, to our knowledge, has not been addressed either in [50] or in re-
lated papers. The numerical solution of (4.6) requires the application of a root-
finder method and Newton’s method is the most efficient procedure, though in
general it requires the knowledge of an accurate approximation to the solution.
On the other hand, nonlinear equations which are monotone and convex (or con-
cave) on some interval containing the root are particularly suited to the applica-
tion of Newton’s method, as stated in the following theorem:

Theorem 4.6 (Theorem 4.8 [58]). Let G be defined and twice continuously dif-
ferentiable on the closed finite interval [a,b], and let the following conditions be
satisfied:

1. G(a)G(b)< 0,

2. G′(x) 6= 0, x ∈ [a,b],

3. G′′(x) is either ≥ 0 or ≤ 0 for all x ∈ [a,b],

4.
∣∣∣ G(c)

G′(c)

∣∣∣≤ b−a for c the endpoint of [a,b] at which |G′(x)| is smaller.

Then Newton’s method converges to the (only) solution of G(x)= 0 for any choice of
x ∈ [a,b].

51



Equation (4.6) does not have such properties but we can reformulate it as
an equivalent equation with strictly decreasing and concave function in [λq

k,∞).
Thus, Newton’s method applied to the reformulated equation converges globally
to λq

k whenever the initial guess overestimates such a root.

Lemma 4.7. Suppose ‖F(xδk)− yδ‖ 6= 0, and that (4.6) has positive solution λ
q
k. Let

ψ(λ)= λ

‖F(xδk)− yδ+ J(xδk)p(λ)‖ −
λ

q‖F(xδk)− yδ‖ = 0. (4.19)

Then, Newton’s method applied to (4.19) converges monotonically and globally to
the root λq

k of (4.6) for any initial guess in the interval [λq
k,∞).

Proof. Trivially, solving (4.6) is equivalent to finding the positive root of equation
(4.19). We now show that ψ(λ) is strictly decreasing in [λq

k,∞) and concave on
(0,∞). By (2.29),

λ

‖F(xδk)− yδ+ J(xδk)p(λ)‖ =


√√√√∑̀

i=1

(
r i

ς2
i +λ

)2

+
m∑

i=`+1

( r i

λ

)2


−1

, (4.20)

and this function is concave on (0,∞), cf. [18, Lemma 2.1]. Thus, ψ is concave on
(0,∞) and trivially ψ′(λ) is strictly decreasing.

Now we show that ψ′(λq
k) is negative; thus, using the monotonicity of ψ′(λ), we

obtain that ψ(λ) is strictly decreasing in [λq
k,∞). Differentiation of ψ(λ) and (4.6)

give

ψ′(λq
k) =

(λq
k)3

‖F(xδk)− yδ+ J(xδk)p(λq
k)‖3

(∑̀
i=1

r2
i

(ς2
i +λ

q
k)3

+
m∑

i=`+1

r2
i

(λq
k)3

)
− 1

q‖F(xδk)− yδ‖

=
(λq

k)2

‖F(xδk)− yδ+ J(xδk)p(λq
k)‖3

( ∑̀
i=1

r2
iλ

q
k

(ς2
i +λ

q
k)3

+
m∑

i=`+1

(
r i

λ
q
k

)2

−
‖F(xδk)− yδ+ J(xδk)p(λq

k)‖2

(λq
k)2

)
.

Moreover, using (4.20), it holds

ψ′(λq
k) = (λq

k)2

‖F(xδk)− yδ+ J(xδk)p(λq
k)‖3

( ∑̀
i=1

r2
iλ

q
k

(ς2
i +λ

q
k)3

− ∑̀
i=1

(
r i

ς2
i +λ

q
k

)2 )

= − (λq
k)2

‖F(xδk)− yδ+ J(xδk)p(λq
k)‖3

∑̀
i=1

r2
iς

2
i

(ς2
i +λ

q
k)3

,

i.e. ψ′(λq
k) is negative. The claimed convergence of Newton’s method follows from

the result given in Theorem 4.6. Indeed, the theorem’s assumptions hold in [a,b]
with a = λ

q
k − ε for ε> 0 and b > λ

q
k. The first three items follow directly from the

monotonicity results proved onψ andψ′, while the fourth can be proved as follows.
In our case c = a from the monotonicity of ψ′. From the mean value theorem, it
exists ξ ∈ (a,λq

k) such that

ψ(a)=ψ(λq
k)−ψ′(ξ)(λq

k −a)=ψ′(ξ)(a−λq
k).
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From this relation and again from the monotonicity of ψ′ we obtain

|ψ(a)|
|ψ′(a)| ≤

|ψ(a)|
|ψ′(ξ)| ≤ |a−λq

k| ≤ |a−b|,

and item 4. is proved.

For the practical evaluation of ψ(λ) and ψ′(λ) we refer to Section 2.2.1.1 and
references therein.

In the next section we present our proposal of a regularizing Trust-Region
method such that, differently from the approach sketched in Algorithm 4.1, selects
the step to satisfy the q-condition (4.8) in an adaptive way. We underline that
with this approach λk, which is implicitly defined by the Trust-Region approach,
is well-defined even if xδk is not close to a solution.

4.2 Regularizing Trust-Region method

We propose here a Trust-Region method inspired by the Levenberg-Marquardt
method presented in the previous section. Deviating from what is reported in
Section 2.4.3, the choice of the Trust-Region radius update is not just aimed at
making the process globally convergent. Our main objective will indeed be that
of providing a nonlinear step size control that enforces both the monotonic re-
duction of fδ and the q-condition (4.8), to ensure to the method also regularizing
properties.

The peculiarity of our approach is that, enforcing condition (4.8), it provides
strictly positive parameters λk, as it is needed to regularize the Gauss Newton
system (2.15). From (2.7c) it follows that it must hold, for pk = p(λk), ‖pk‖ =∆k.
Namely the Trust Region is active along all the optimization process, differently
from standard Trust-Region methods. As stated in Remark 2.8, with standard
radius update strategies the Trust Region towards the end of the process results
to be inactive.

At each iteration our method takes a step pk solving the following Trust-
Region subproblem:

min
p

mTR
k (xk + p)= ‖J(xδk)p+F(xδk)− yδ‖2

s.t. ‖p‖ ≤∆k.
(4.21)

with ∆k appropriately chosen to let the step satisfy (4.8). We remind that from
Theorem 2.2 a solution of (4.21) satisfies (4.13) with λk solution of λ(‖p(λ)‖−∆k)=
0.

We first show that (4.8) always has a solution and we characterize the param-
eters λ such that p(λ) satisfies it.

Lemma 4.8. Assume ‖gk‖ = ‖∇ fδ(xk)‖ 6= 0. Let p(λ) be the minimum norm solu-
tion of (4.13) with λ≥ 0 and PR(J(xδk))⊥ be the orthogonal projector onto R(J(xδk))⊥.
Then, equation (4.8) is satisfied for any λ≥ 0 whenever (4.14) does not hold. Oth-
erwise, it is satisfied for any λ≥λq

k where λq
k is the solution to (4.6).
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Proof. If (4.14) does not hold,

q‖F(xδk)− yδ‖ ≤ ‖PR(J(xδk))⊥(F(xδk)− yδ)‖ ≤ ‖F(xδk)− yδ+ J(xδk)p(λ)‖,

and (4.8) is satisfied for all λ≥ 0. If (4.14) holds, from Lemma 4.3 it exists a solu-
tion λ

q
k of (4.6). Then, (4.8) is satisfied for all λ≥ λ

q
k, as ‖F(xδk)− yδ+ J(xδk)p(λq

k)‖
is an increasing function of λ from (2.29).

We are now ready to show that an appropriate bound on the Trust-Region
radius size can be found that ensures the resulting step pk to guarantee (4.8).

Lemma 4.9. Let pk solve the Trust-Region problem (4.21). If

∆k ≤
1− q
‖Bk‖

‖gk‖, (4.22)

then pk satisfies the q-condition (4.8).

Proof. By Lemma 4.8 we know that the q-condition is satisfied either for λ≥ 0, or
for any λ≥ λ

q
k. In the former case, the claim trivially holds. In the latter case, by

(4.13) it follows

‖p(λq
k)‖ ≥ ‖gk‖

‖Bk +λq
k I‖ ,

and by (4.16) it holds

‖Bk +λq
k I‖ ≤ ‖Bk‖+

q
1− q

‖Bk‖ =
‖Bk‖
1− q

.

From Theorem 2.2 it exists λk satisfying conditions 2.7 such that pk = p(λk). By
construction ‖pk‖ ≤∆k, and if (4.22) holds we obtain

‖pk‖ = ‖p(λk)‖ ≤ 1− q
‖Bk‖

‖gk‖ ≤
‖gk‖

‖Bk +λq
k I‖ ≤ ‖p(λq

k)‖.

Since ‖p(λ)‖ is monotonically decreasing from Theorem 2.17, it follows λk ≥λq
k > 0

and condition (4.8) is satisfied.

We stress that the bound (4.22) provides a practical rule for choosing the Trust-
Region radius and enforcing the q-condition (4.8). Conversely, in papers [107,
113], where Trust-Region methods for ill-posed problems are studied, such a con-
dition is respectively assumed to be satisfied, and explicitly enforced rejecting the
step whenever it does not hold. We also notice that from (4.22) we have that
the Trust-Region radius converges to zero as ‖gk‖ goes to zero. Here, the radius
converging to zero helps to maintain an active Trust Region. This feature may
jeopardize a fast local rate of convergence, but a too fast convergence may bring
the sequence too quickly towards a solution of a noisy problem.

The result in Lemma 4.9 suggests the Trust-Region iteration described in Al-
gorithm 4.2.

Algorithm 4.2 is well-defined, provided that the following assumption is met.

54



Algorithm 4.2 k-th iteration of the regularizing Trust-Region method for problem
(4.2)

Input: Given xδk, η ∈ (0,1), γ ∈ (0,1), 0< Cmin < Cmax, q ∈ (0,1), yδ.
1. Compute Bk = J(xδk)T J(xδk) and gk = J(xδk)T(F(xδk)− yδ).

2. Choose ∆k ∈
[
Cmin‖gk‖, min

{
Cmax,

1− q
‖Bk‖

}
‖gk‖

]
.

3. Repeat
3.1 Compute the solution pk of the Trust-Region problem (4.21).
3.2 Compute ρk(pk)= fδ(xk)− fδ(xk+pk)

mTR
k (xk)−mTR

k (xk+pk)
, with fδ defined in (4.9).

3.3 If ρk(pk)< η, then set ∆k = γ∆k.
Until ρk(pk)≥ η.
4. Set xδk+1 = xδk + pk.

Assumption 4.10. There exists a positive constant κJ such that

‖J(x)‖ ≤ κJ ,

for any x belonging to the level set L = {x ∈Rn s.t. fδ(x)≤ fδ(x0)}.

First, step 2 is well defined for suitable choices of Cmin. In fact, as long as

Cmin < 1− q
κ2

J
, it holds Cmin < 1− q

‖Bk‖
for all k. We point out that a suitable choice of

this parameter requires an estimation of the bound κJ . In the numerical results
section we will propose an alternative Trust-Region radius choice that does not
require neither the computation of Bk nor the estimation of κJ , but that is shown
to provide in practice the same regularizing properties of the choice at step 2
of Algorithm 4.2. Parameter Cmax is just a safeguard to prevent the constant
multiplying ‖gk‖ from becoming too big in case ‖Bk‖ is small. However, even in
case Cmax < 1−q

‖Bk‖ , (4.22) holds.
Second, due to well-known properties of Trust-Region methods, Assumption

4.10 guarantees that the step pk is found within a finite number of attempts,
whenever ‖gk‖ 6= 0 [22, Theorem 7.3.4].

Global convergence of the Trust-Region method in Algorithm 4.2 in absence of
noise is stated in the following theorem:

Theorem 4.11. Suppose that δ = 0 and that f is bounded below on the level set
L = {x ∈ Rn s.t. f (x) ≤ f (x0)} and Lipschitz continuously differentiable in a neigh-
bourhood of L . Suppose further that ‖Bk‖ ≤ β for all k. Then we have that the
sequence {xk} generated by Algorithm 4.2 satisfies

lim
k→∞

gk = 0.

Proof. The proof follows from adaptations of the proofs of Theorem 4.5 and 4.6 in
[84]. Specifically, the proof of Theorem 4.5 can be modified as follows. Trivially, as
subproblem (4.21) is solved exactly, the Cauchy decrease (2.13) is achieved. Let us
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assume that it exists ε> 0 and an index K > 0 such that ‖gk‖ ≥ ε for all k ≥ K . We
first notice that from the updating rule at step 2 of Algorithm 4.2

∆k ≥ Cminε (4.23)

for all k ≥ K . Let us assume that it exists an infinite sequence K of iterates such
that ρk(pk)≥ η for all k ≥K . Then, for k ∈K and k ≥K , from (2.13) it follows:

f (xk)− f (xk+1)≥ η(mTR
k (pk)−mTR

k )≥ ηθεmin
[
∆k,

ε

β

]
, (4.24)

with θ defined in (2.13). Since f is bounded below, it follows from this inequality
that

lim
k∈K ,k→∞

∆k = 0,

contradicting (4.23). Hence such a sequence cannot exist, then we must have
ρk(pk) < η for all k sufficiently large. In this case ∆k will eventually be re-
duced at every iteration and again the Trust-Region radius will converge to zero,
which again contradicts (4.23). Hence, the original assertion must be false giv-
ing liminfk→∞ ‖∇ f (xk)‖ = 0. The stronger result limk→∞ ‖∇ f (xk)‖ = 0 follows re-
peating the arguments in Theorem 4.6 and employing the results we have just
proven.

This theorem allows us to establish global convergence of the sequence gener-
ated by Algorithm 4.2 in case of exact data and in case f is Lipschitz continuously
differentiable. By the step acceptance rule at step 3 of Algorithm 4.2, the sequence
{‖F(xδk)− yδ‖} is monotonically decreasing and bounded below by zero; hence it is
convergent. The result in Theorem 4.11 implies that any accumulation point of
the sequence {xδk} is a stationary point of fδ. Then, in case of exact data, we con-
clude that if there exists an accumulation point of {xk} solving (4.1), then any
accumulation point of the sequence solves (4.1). In the case of noisy data, the pro-
cess is stopped before the convergence is reached, to avoid approaching a solution
of the noisy problem. In this case we are not considering the global convergence
issue. If data are affected by noise indeed it is not reasonable to think to be able
to achieve convergence to the noise free solution from an arbitrary starting guess.
In fact, in this context the starting guess must contain some information on the
true solution. Global converge issues to our knowledge have been only faced in
[66], where a multilevel approach is considered. Such an approach allows to first
solve the problem on very coarse grid on which the problem is well-posed and to
get closer to a true solution, so that a regularizing method on finer grids will then
be able to converge.

What we will able to prove in the following section is that if one of the iterates
of the generated sequence gets close enough to the true solution, there exists an
iterate xδk∗(δ) such that the discrepancy principle (4.7) is met.

Then summarizing:
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• Noise free case: we have a globally convergent approach with an adaptive
choice of λk that is well defined even far from the solution. Moreover rank-
deficient Jacobian matrices are allowed and therefore nonisolated solutions.

• Noisy case: We will see in the next sections that we obtain local regularizing
properties as in [50] but with an overall more robust method as the choice
of the scalar q is less crucial (see numerical results section).

4.3 Local behaviour of the Trust-Region method

In this section we analyze the local properties of the Trust-Region method, namely
we show the behaviour of the iterates generated by Algorithm 4.2 when, for some
k, xδk is sufficiently close to a solution x† of (4.1). For instance, this occurs with
exact data when the accumulation points of {xk} solve (4.1) and k is sufficiently
large.

We show that the proposed Trust-Region method shares the same local reg-
ularizing properties as the regularizing Levenberg-Marquardt method. To this
purpose, we analyze the local properties of the method under the same assump-
tions made for the Levenberg-Marquardt method. We suppose that there exists
an iteration index k̄ such that the iterate xδ

k̄
satisfies the following assumptions,

that are the counterpart of Assumptions 4.1 and 4.4.

Assumption 4.12. Suppose that for some iteration index k̄ there exist positive r
and c such that system (4.1) is solvable in Br(xδ

k̄
), and

‖F(x)−F(x̃)− J(x)(x− x̃)‖ ≤ c‖x− x̃‖‖F(x)−F(x̃)‖, x, x̃ ∈ B2r(xδk̄), (4.25)

with k̄ < k∗(δ) if the data are noisy, where k∗(δ) is defined in (4.7). Moreover, letting
x† be a solution of (4.1), suppose that xδ

k̄
satisfies

‖xk̄ − x†‖ < min
{ q

c
, r

}
, if δ= 0, (4.26)

‖xδk̄ − x†‖ < min
{

qτ−1
c(1+τ)

, r
}

, if δ> 0. (4.27)

where τ> 1/q.

Here we report a result that holds both in the noisy and in the noisy free case.
Then, the local behaviour will be analyzed, distinguishing between the noise free
(Section 4.3.1) and the noisy case (Section 4.3.2).

We show that if condition (4.15) is satisfied at iteration k, for that iteration the
error between the current approximation and the solution x† decreases. We will
show in the following sections that both in the noise free and in the noisy case, it
is possible to enforce (4.15) in a neighbourhood of the solution.
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Lemma 4.13. Assume that equation (4.15) is fulfilled for some θk > 1, and let
xδk+1 = xδk + pk with pk = p(λk) satisfying (4.13) and (4.8). Then it holds

‖xδk − x†‖2 −‖xδk+1 − x†‖2 > 2(θk −1)
θkλk

‖F(xδk)− yδ+ J(xδk)pk‖2. (4.28)

Proof. The proof parallels that of [67, Proposition 4.1]. Let Mk(p) = F(xδk)− yδ+
J(xδk)p and ek = x† − xδk. It holds:

‖xδk+1 − x†‖2 −‖xδk − x†‖2 = 2< xδk+1 − xδk, xδk − x† >+‖xδk+1 − xδk‖2

=−2< pk, ek >+‖pk‖2.

From (2.31) and (2.32) with R(x)= F(x)− yδ it follows

< pk, ek >=<−(J(xδk)J(xδk)T +λkI)−1(F(xδk)− yδ), J(xδk)ek >=− 1
λk

< Mk(pk), J(xδk)ek > .

After an easy algebraic manipulation (adding ±(F(xδk)−yδ),±Jδk (xk)pk to J(xδk)ek)
and taking into account the definition of Mk(p), we obtain

< pk, ek >=− 1
λk

< Mk(pk), Mk(ek)>+ 1
λk

< Mk(pk), Mk(pk)>− 1
λk

< Mk(pk), J(xδk)pk > .

Notice that from (2.31) and (2.32) J(xδk)T Mk(pk)=−λk pk. Then,

‖xδk+1 − x†‖2 −‖xδk − x†‖2 ≤ 2
λk

‖Mk(pk)‖‖Mk(ek)‖− 2
λk

‖Mk(pk)‖2 −‖pk‖2.

From (4.15) and (4.8) it follows that

‖Mk(ek)‖ =‖F(xδk)− yδ+ J(xδk)(x† − xδk)‖
≤ 1
θk

‖F(xδk)− yδ+ J(xδk)pk‖ =
1
θk

‖Mk(pk)‖, (4.29)

which yields

‖xδk+1 − x†‖2 −‖xδk − x†‖2 < 2
λk

(
1
θk

−1
)
‖Mk(pk)‖2

and the thesis follows.

4.3.1 Noise free case

In this section we focus on the noise free case. We assume that δ= 0 and we drop
the symbol δ from the generated sequence, the data y and the function. We show
that the norm of the error ‖xk − x†‖ decreases in a monotonic way for k ≥ k̄, the
sequence {xk} remains in a neighbourhood of xk̄ and converges to a solution of
(4.1).

First, we show that it is possible to enforce condition (4.15) if k is big enough.
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Lemma 4.14. Suppose that Assumptions 4.10 and 4.12 hold and let δ= 0. Then,
for k ≥ k̄ it exists θk > 1 such that (4.15) holds.

Proof. From (4.25), choosing x̃ = x† and x = xk̄ it follows that

‖F(xk̄)− y− J(xk̄)(xk̄ − x†)‖ ≤ c‖xk̄ − x†‖‖F(xk̄)− y‖.

Then, condition (4.15) is satisfied at k = k̄ with θk̄ = q
c‖xk̄ − x†‖ > 1 from (4.26).

Since Lemma 4.13 holds for k = k̄, (4.28) implies ‖xk̄+1 − x†‖ < ‖xk̄ − x†‖ and, as
a consequence, xk̄+1 belongs to B2r(xk̄) and to Br(x†). Repeating the above argu-
ments, by induction we can prove that condition (4.15) holds for k > k̄, with

θk =
q

c‖x† − xk‖
> 1. (4.30)

The following results show the local behaviour of the regularizing Trust-Region
method. We prove that the iterates xk with k > k̄ remain into the ball Br(x†) and
the regularizing parameters are bounded above.

Lemma 4.15. Suppose that Assumptions 4.10 and 4.12 hold and let δ= 0. Then,
Algorithm 4.2 generates a sequence {xk} such that, for k ≥ k̄,

(i) xk belongs to B2r(xk̄)∩Br(x†), ‖xk+1 − x†‖ < ‖xk − x†‖ and θk+1 > θk.

(ii) There exists a constant λ̄> 0 such that λk ≤ λ̄.

Proof. (i) From Lemma 4.14 it follows that condition 4.15 is satisfied for all k ≥ k̄.
Consequently, Lemma 4.13 implies that {‖xk − x†‖}∞

k=k̄
is a monotonic decreasing

sequence and, as a consequence, xk belongs to B2r(xk̄)∩Br(x†) for all k ≥ k̄. Notice
also that from this, the sequence {θk}∞

k=k̄
, with θk given in (4.30), is monotonic

increasing.
(ii) From Lemma 4.14 condition (4.15) is satisfied for all k ≥ k̄. Then, from

Lemma 4.8 λk > 0. Then, by (2.7c) the Trust Region must be active. From (4.13)

∆k = ‖pk‖ = ‖(Bk +λkI)−1 gk‖ ≤
‖gk‖
λk

. (4.31)

Thus our claim follows if ∆k/‖gk‖ is larger than a suitable threshold, indepen-
dent from k. Let us provide such a bound, by estimating the value of ∆k which
guarantees condition ρk(pk)≥ η.

If this condition is fulfilled for the value of ∆k fixed in step 2 of Algorithm
4.2, then ∆k/‖gk‖ ≥ Cmin. Otherwise, the Trust-Region radius is progressively
reduced, and we provide a bound for the value of ∆k at termination of step 3 of
Algorithm 4.2 in the case where f (xk + pk)> mTR

k (pk).
This occurrence represents the most adverse case. In fact if f (xk+pk)≤ mTR

k (pk)
then ρk(pk) ≥ 1 > η and the repeat loop terminates for a Trust-Region radius
greater than or equal to the one estimated below. Trivially,

1−ρk(pk)= f (xk + pk)−mTR
k (pk)

f (xk)−mTR
k (pk)

, (4.32)
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and

f (xk + pk)−mTR
k (pk) = 1

2
‖F(xk + pk)− y‖2 − 1

2
‖F(xk)− y+ J(xk)pk‖2 =

= 1
2
‖F(xk + pk)− y±F(xk)± J(xk)pk‖2 − 1

2
‖F(xk)− y+ J(xk)pk‖2

≤ 1
2
‖F(xk + pk)−F(xk)− J(xk)pk‖2 + 1

2
‖F(xk)− y+ J(xk)pk‖2

+‖F(xk + pk)−F(xk)− J(xk)pk‖‖F(xk)− y+ J(xk)pk‖
− 1

2
‖F(xk)− y+ J(xk)pk‖2

= 1
2
‖F(xk + pk)−F(xk)− J(xk)pk‖2

+‖F(xk + pk)−F(xk)− J(xk)pk‖‖F(xk)− y+ J(xk)pk‖.

By (4.25) and the mean value theorem [85, p.630], it holds

‖F(xk + pk)−F(xk)− J(xk)pk‖ ≤ c‖pk‖‖F(xk + pk)−F(xk)‖ ≤ cκJ‖pk‖2.

Consequently, as ∆k ≤ Cmax‖gk‖ and ‖F(xk)− y+J(xk)pk‖ ≤ ‖F(xk)− y‖ ≤ ‖F(x0)−
y‖, it follows

f (xk + pk)−mTR
k (pk)≤ 1

2
c2κ2

J‖pk‖4 + cκJ‖pk‖2‖F(xk)− y+ J(xk)pk‖

≤ 1
2

cκJ‖pk‖2(cκJ‖pk‖2 +2‖F(x0)− y‖)

≤ 1
2

cκJ∆
2
k(cκJ∆

2
k +2‖F(x0)− y‖)

≤ 1
2

cκJ∆
2
k(cκJC2

max‖gk‖2 +2‖F(x0)− y‖)

≤ 1
2

cκJ∆
2
k(cκJC2

maxκ
2
J‖F(x0)− y‖2 +2‖F(x0)− y‖)

≤ 1
2

cκJ∆
2
k‖F(x0)− y‖(cκ3

JC2
max‖F(x0)− y‖+2).

Theorem 6.3.1 in [22] shows that

f (xk)−mTR
k (pk)≥ 1

2
‖gk‖min

{
∆k,

‖gk‖
‖Bk‖

}
.

Then,

f (xk)−mTR
k (pk)≥ 1

2
∆k‖gk‖, (4.33)

whenever ∆k ≤
‖gk‖
κ2

J
and this implies

1−ρk(pk)≤ cκJ∆k‖F(x0)− y‖(cκ3
JC2

max‖F(x0)− y‖+2)

‖gk‖
.

Namely, termination of the repeat loop occurs with

∆k ≤ ‖gk‖ω, ω=min

{
1
κ2

J
,

1−η
cκJ‖F(x0)− y‖(cκ3

JC2
max‖F(x0)− y‖+2)

}
. (4.34)
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Taking into account step 2 and the updating rule at step 3.3, we can conclude that,
at termination of step 3, the Trust-Region radius ∆k satisfies

∆k ≥min
{
Cmin, γω

}‖gk‖.

Finally, by (4.31) λk is bounded above, as

λk ≤
‖gk‖
∆k

≤max
{

1
γω

,
1

Cmin

}
= λ̄. (4.35)

As problem (4.1) is ill-posed, it may have more than one solution. Even if we
have at disposal a starting guess close enough to x† we will not be sure to converge
exactly to that solution, but rather to a solution in its neighbourhood. Then, in
the following theorem we employ the previous results to show convergence of the
generated sequence to a solution x∗ ∈ Br(x†).

Theorem 4.16. Suppose that Assumptions 4.10 and 4.12 hold and δ = 0. Then,
the sequence {xk} generated by Algorithm 4.2 converges to a solution x∗ of (4.1) such
that ‖x∗− x†‖ ≤ r.

Proof. Let k̄ as in Assumption 4.12 and k ≥ k̄. From Lemma 4.13 and Lemma 4.14
condition (4.28) holds with θk given in (4.30) and monotonically increasing. Then,
an adaptation of the proof of Theorem 4.2 in [67] gives that {xk} is convergent. The
proof is repeated for sake of clarity. Using (4.25) we obtain

‖J(xi)(xk − x†)‖ ≤ ‖F(xi)−F(xk)− J(xi)(xi − xk)‖+‖F(xi)−F(xk)+ J(xi)(xi − x†)‖
≤ c‖xi − xk‖‖F(xi)−F(xk)‖+‖F(xk)− y‖+ c‖xi − x†‖‖F(xi)− y‖.

From the monotonicity property of Trust-Region methods, ‖F(xi)− y‖ ≥ ‖F(xk)− y‖
as k ≥ i. Moreover, if we set σ= c‖xk̄−x†‖, from Lemma 4.15 we have σ≥ c‖xi−x†‖
for all i ≥ k̄. Then, for all k ≥ i ≥ k̄ it holds ‖F(xi)− F(xk)‖ ≤ 2‖F(xi)− y‖ and
c‖xi − xk‖ ≤ 2σ, so that

‖J(xi)(xk − x†)‖ ≤ (5σ+1)‖F(xi)− y‖.

Letting ek = xk−x†, using this result and Lemma 2.18, we obtain that for k > j ≥ k̄:

| < e j − ek, ek > | =
∣∣∣∣∣k−1∑

i= j
< pi, ek >

∣∣∣∣∣=
∣∣∣∣∣k−1∑

i= j
< (J(xi)J(xi)T +λi I)−1)(y−F(xi)), J(xi)ek >

∣∣∣∣∣
≤

k−1∑
i= j

‖(J(xi)J(xi)T +λi I)−1(y−F(xi))‖‖J(xi)ek‖

≤ (1+5σ)
k−1∑
i= j

1
λi

‖F(xi)− y+ J(xi)(xi+1 − xi)‖‖F(xi)− y‖.

Thus, (4.8) and (4.28) yield

| < e j − ek, ek > | ≤ (1+5σ)
k−1∑
i= j

1
λi q

‖F(xi)− y+ J(xi)(xi+1 − xi)‖2

≤ αk̄(‖e j‖2 −‖ek‖2), (4.36)
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where αk̄ =
(1+5σ)θk̄

2q(θk̄ −1)
and we have used θk/(θk −1)< θk̄/(θk̄ −1) since the function

θ/(θ−1) is monotonically decreasing, (cf. Lemma 4.15). Then

‖xk − x j‖2 = 2< ek − e j, ek >+‖e j‖2 −‖ek‖2 ≤ (2αk̄ +1)(‖e j‖2 −‖ek‖2).

Since the sequence {‖ek‖} is bounded from below and monotonically decreas-
ing, hence convergent, it follows that {xk} is a Cauchy sequence, i.e. {xk} converges
to a limit point x∗. By xk ∈ Br(x†) for k ≥ k̄, it follows ‖x∗− x†‖ ≤ r.

Finally, from Lemma 4.15 we know that λk ≤ λ̄ and (θk −1)/θk > (θk̄ −1)/θk̄, for
k ≥ k̄ since the function (θ−1)/θ is monotonically increasing. Then, by (4.28) and
(4.8)

‖xk − x†‖2 −‖xk+1 − x†‖2 ≥ 2(θk̄ −1)q2

θk̄λ̄
‖F(xk)− y‖2.

Thus, we conclude that ‖F(xk)− y‖ tends to zero and the limit x∗ of xk solves (4.1).

4.3.2 Noisy case

Results similar to those presented in the previous section for the noise free case
can be given for the noisy case. All these results will hold for k̄ ≤ k < k∗(δ), with
k∗(δ) defined in (4.7).

First we prove that condition (4.15) is satisfied under Assumption 4.12.

Lemma 4.17. Suppose that δ > 0 and Assumptions 4.10 and 4.12 hold. Then,
(4.15) is satisfied for k̄ ≤ k < k∗(δ).

Proof. By (4.25) and (3.2) we obtain

‖yδ−F(xδk̄)− J(xδk̄)(x† − xδk̄)‖ ≤ δ+‖y−F(xδk̄)− J(xδk̄)(x† − xδk̄)‖
≤ δ+ c‖x† − xδk̄‖‖y−F(xδk̄)‖
≤ (1+ c‖x† − xδk̄‖)δ+ c‖x† − xδk̄‖‖yδ−F(xδk̄)‖.

Then, at iteration k̄, condition (4.7) gives

‖yδ−F(xδk̄)− J(xδk̄)(x† − xδk̄)‖ ≤
(

1+ c‖x† − xδ
k̄
‖

τ
+ c‖x† − xδk̄‖

)
‖yδ−F(xδk̄)‖,

so that (4.15) is satisfied at k = k̄ with θk̄ = qτ
1+ c(1+τ)‖x† − xδ

k̄
‖ , and θk̄ > 1 from

(4.27). Further, by Lemma 4.13 condition (4.28) is satisfied with θk = θk̄, and this
implies ‖xδ

k̄+1
− x†‖ < ‖xδ

k̄
− x†‖. Repeating the above arguments, by induction we

can prove that, for k̄ < k < k∗(δ), condition (4.15) holds and (4.28) is satisfied with

θk =
qτ

1+ c(1+τ)‖x† − xδk‖
> 1. (4.37)
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In the following lemma we prove that for k̄ ≤ k < k∗(δ), where k∗(δ) is defined
in (4.7), the error is decreasing and the scalars λk > 0 are bounded above.

Lemma 4.18. Suppose that δ > 0 and Assumptions 4.10 and 4.12 hold. Then,
Algorithm 4.2 generates a sequence xδk such that, for k̄ ≤ k < k∗(δ),

(i) xδk belongs to B2r(xδ
k̄
)∩Br(x†), ‖xδk+1 − x†‖ < ‖xδk − x†‖, θk+1 > θk.

(ii) There exists a constant λ̄> 0 such that λk ≤ λ̄.

Proof. (i) By Lemma 4.17 condition (4.15) is satisfied for k̄ ≤ k ≤ k∗(δ), so (4.28)
also holds for k̄ ≤ k ≤ k∗(δ). Then, {‖xδk − x†‖}k∗(δ)

k=k̄
is monotonically decreasing and

consequently xδk belongs to B2r(xδ
k̄
)∩Br(x†) for all k̄ ≤ k ≤ k∗(δ). Notice also that

as a consequence θk+1 > θk for k̄ ≤ k < k∗(δ), as θk is defined as in (4.37).
(ii) Proceeding as in the proof of point (iii) of Lemma 4.15, just replacing xk

with xδk, we obtain that for k̄ ≤ k < k∗(δ), λk < λ̄ with λ̄ defined in (4.35) in which
ω is obtained replacing y with yδ in (4.34).

In the following theorem we prove the regularizing properties of the method,
showing that the error decreases monotonically and the sequence {xδk∗(δ)} con-
verges to a solution of (4.1) as δ tends to zero.

We underline that the iterates generated by Algorithm 4.2 depend continu-
ously on yδ, as they are obtained by linear operations, if the Trust-Region radius
∆k, and consequently the scalar λk implicitly defined by the Trust-Region prob-
lem, depend continuously on δ. Continuous dependence of ∆k on the noise is
related to ρk(xk+1 − xk), where ρk(pk) is defined at step 3.2 of Algorithm 4.2. To
ensure such continuity we have to assume that ρk(xk+1 − xk) 6= η for all k ≥ 0.
In fact, this represents an adverse case, as in case there exists an index k such
that ρk(xk+1 − xk) = η, we cannot be sure that ρk(xδk+1 − xδk) ≥ η, even for small
δ, and therefore ∆k will not depend continuously on δ. On the other hand if
ρk(xk+1 − xk) 6= η, ρk(xδk+1 − xδk)−η will have the same sign of ρk(xk+1 − xk)−η and
∆k will depend continuously on δ. This feature is crucial for proving that the
sequence {xδk∗(δ)} tends to a solution of (4.1) as δ tends to zero. For this reason
ρk(xk+1 − xk) 6= η is assumed in the following theorem.

Theorem 4.19. Suppose that Assumptions 4.10 and 4.12 hold and let δ≥ 0. Then,

(i) the iterates generated by Algorithm 4.2 satisfy the stopping criterion (4.7)
after a finite number k∗(δ) of iterations.

(ii) Suppose moreover that the sequence {xk} generated with the exact data y
satisfies ρk(xk+1 − xk) 6= η, for all k. Then, the sequence {xδk∗(δ)} converges
to a solution of (4.1) whenever δ tends to zero.

Proof. (i) Summing up from k̄ to k∗(δ)−1, by (4.7), (4.8), (4.28) and Lemma 4.18,
it follows

(k∗(δ)− k̄)τ2δ2 ≤
k∗(δ)−1∑

k=k̄
‖F(xδk)− yδ‖2 ≤ θk̄λ̄

2(θk̄ −1)q2 ‖xδk̄ − x†‖2.
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Thus, k∗(δ) is finite for δ> 0.

(ii) The thesis is obtained by adapting the proof of [50, Theorem 2.3]. Specifi-
cally, let x∗ be the limit of the sequence {xk} corresponding to the exact data y and
let {δn} be a sequence of values of δ converging to zero as n →∞. Denote by yδn a
corresponding sequence of perturbed data, and by kn = k∗(δn) the stopping index
determined from the discrepancy principle (4.7) applied with δ= δn. Assume first
that k̃ is a finite accumulation point of {kn}. Without loss of generality, possibly
considering a subsequence of {δn}, we can assume that kn = k̃ for all n ∈N. Thus,
from the definition of kn it follows that

‖yδn −F(xδn
k̃

)‖ ≤ τδn. (4.38)

By assumption, ρk(xk+1− xk) 6= η, for all k, it follows that for the fixed index k̃, the
iterate xδ

k̃
depends continuously on δ. Then

xδn
k̃

→ xk̃, F(xδn
k̃

)→ F(xk̃) as δn → 0. (4.39)

Therefore, by (4.38), it follows that the k̃-th iterate with exact data y is a
solution of F(x)= y, i.e. x∗ = xk̃, and we can conclude that xδn

kn
→ x∗ as δn → 0.

It remains to consider the case where kn →∞ as n →∞. As {xk} converges to
a solution x∗ of (4.1) by Theorem 4.16, there exists k̃ > 0 such that

‖xk − x∗‖ ≤ 1
2

r̄ for all k ≥ k̃,

where r̄ < min
{

qτ−1
c(1+τ)

, r
}

. Then, as xδk depends continuously on δ, δn tends to

zero and k∗(δn)→∞, there exists δn sufficiently small such that k̃ ≤ k∗(δn) and

‖xδn
k̃

− xk̃‖ ≤
1
2

r̄.

Then, for δn sufficiently small

‖xδn
k̃

− x∗‖ ≤ ‖xδn
k̃

− xk̃‖+‖xk̃ − x∗‖ ≤ r̄. (4.40)

Now, from item (i) of Lemma 4.18, it holds xδn
k̃

∈ B2r(xδn
k̄

), while from (4.27) and

Theorem 4.16 it holds x∗ ∈ B2r(xδn
k̄

) as

‖xδn
k̄

− x∗‖ ≤ ‖xδn
k̄

− x†‖+‖x† − x∗‖ ≤ 2r.

Repeating arguments in Lemma 4.17, we use (4.25), (3.2) and (4.7) and obtain

‖yδn −F(xδn
k̃

)− J(xδn
k̃

)(x∗− xδn
k̃

)‖ ≤ δn +‖y−F(xδn
k̃

)− J(xδn
k̃

)(x∗− xδn
k̃

)‖
≤ δn + c‖x∗− xδn

k̃
‖‖y−F(xδn

k̃
)‖

≤ (1+ c‖x∗− xδn
k̃
‖)δ+ c‖x∗− xδn

k̃
‖‖yδn −F(xδn

k̃
)‖

≤
1+ c‖x∗− xδn

k̃
‖

τ
+ c‖x∗− xδn

k̃
‖
‖yδn −F(xδn

k̃
)‖.
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Thus, by (4.40) and r̄ < min
{

qτ−1
c(1+τ)

, r
}

, it follows that the following counterpart

of (4.15)
‖F(xδk)− yδ+ J(xδk)(x∗− xδk)‖ ≤ q

θk
‖F(xδk)− yδ‖

is satisfied at k = k̃ with θk̃ = qτ
1+ c(1+τ)r̄

> 1. Replacing x† with x∗, (4.28) gives

‖xδn
k̃+1

−x∗‖ < ‖xδn
k̃
−x∗‖ and repeating the above arguments, by induction we obtain

monotonicity of the error ‖xδn
k − x∗‖ for k̃ ≤ k ≤ kn. Then

‖xδn
kn

− x∗‖ < ‖xδn
k̃

− x∗‖ ≤ r̄.

Finally, since the previous arguments can be repeated for any positive ε≤ r̄, pro-
vided that δn is small enough, we obtain that

xδn
kn

→ x∗ as δn → 0.

In the following lemma, we show that, whenever the initial guess x0 is suf-
ficiently close to a solution of (4.1), it holds ρk(xk+1 − xk) > η and therefore the
thesis of Theorem 4.19 holds. Then, the proposed Trust-Region approach shows
the same local regularizing properties of the regularizing Levenberg-Marquardt
method.

Lemma 4.20. Suppose that Assumptions 4.1, 4.10 and 4.4 hold and δ= 0. If x0 is
sufficiently close to a solution of (4.1), then ρk(xk+1 − xk)> η for k ≥ 0.

Proof. Theorem 4.16 implies that {xk} converges to a solution of (4.1). Using
(4.32)–(4.33) and ‖pk‖ ≤∆k, it follows

1−ρk(pk)≤
1
2

cκJ∆
2
k(cκJ∆

2
k +‖F(xk)− y‖)

1
2
∆k‖gk‖

= cκJ∆k(cκJ∆
2
k +‖F(xk)− y‖)

‖gk‖
,

while ∆k ≤ Cmax‖gk‖ ≤ CmaxκJ‖F(xk)− y‖ implies

1−ρk(pk)≤ cκJCmax(cκJ∆
2
k +‖F(xk)− y‖).

By the convergence of {xk} to a solution of (4.1) and Assumption 4.10 the right-
hand side of the above inequality tends to zero. Hence, if x0 is close enough to a
solution of (4.1) it is ensured 1−ρk(pk)< 1−η, for k ≥ 0.

4.4 Numerical results

In this section we report on the numerical performance of the proposed approach,
that we are going to address as the regularizing Trust-Region method. Specifi-
cally, it is compared to the regularizing Levenberg-Marquardt method proposed
by M. Hanke [50], and we show the improved robustness of the Trust-Region im-
plementation. Moreover, we consider also a standard version of the Trust-Region
method. We show that an ad hoc choice of the radius is necessary to gain regular-
izing properties and that the standard update does not provide them.
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4.4.1 Test problems definition

The test problems arise from the discretization of nonlinear Fredholm integral
equations of the first kind:∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0,1], (4.41)

that model inverse problems from groundwater hydrology and geophysics. These
problems are known to be ill-posed in the infinite dimensional setting [105, 109].
The discrete counterparts inherit such feature.

We consider four test problems, for different choices of the kernel k(t, s, x(s)).
Specifically two problems with kernel

k(t, s, x(s))= log
(

(t− s)2 +H2

(t− s)2 + (H− x(s))2

)
, (4.42)

[104, §3], and two problems with kernel

k(t, s, x(s))= 1√
1+ (t− s)2 + x(s)2

, (4.43)

[66, §6] are considered. The problems are built so that solutions (later denoted as
true solutions) are known:

• P1 [104, p. 46]: kernel (4.42) is considered with H = 0.2. Problem (4.41)
admits as true continuous solutions the functions xtrue(s) = c1ed1(s+p1)2 +
c2ed2(s−p2)2 + c3+ c4 and xtrue(s)= 2H− c1ed1(s+p1)2 − c2ed2(s−p2)2 − c3− c4, s ∈
[0,1], where c1 =−0.1, c2 =−0.075,d1 =−40,d2 =−60, p1 = 0.4, p2 = 0.67, c3

and c4 are chosen such that xtrue(0)= xtrue(1)= 0.

• P2 [107, p. 835]: kernel (4.42) is considered with H = 0.1. Problem (4.41) has
true continuous solutions xtrue(s)= 1.3s(1− s)+0.2 and xtrue(s)= 1.3s(s−1),
s ∈ [0,1].

• P3 [66, p. 660]: kernel (4.43) is considered and the solutions are xtrue(s)= 1
and xtrue(s)=−1, s ∈ [0,1].

• P4 [66, p. 662]: kernel (4.43) is considered and the solutions of (4.41) are
given by the discontinuous functions

xtrue(s)=


1 if 0≤ s ≤ 1

2
0 if

1
2
< s ≤ 1

, xtrue(s)=


−1 if 0≤ s ≤ 1

2
0 if

1
2
< s ≤ 1

The case of discontinuous solutions is of interest especially in geophysical
applications.

Problem (4.41) is discretized in the following way. The interval [0,1] is dis-
cretized with m = 100 equidistant grid points ti = (i−1)h, h = 1/(m−1), i = 1, . . . ,m.
Function x(s) is approximated from the n-dimensional subspace of H1

0(0,1) = {u ∈
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L2(0,1) |Dαu ∈ L2(0,1) ∀|α| ≤ 1 and Tu = 0}, where T is the trace operator, spanned
by standard piecewise linear functions. Specifically, we choose n = 64 and let s j =
( j−1)h, h = 1/(n−1), j = 1, . . . ,n, and look for an approximation x̂(s)=∑n

j=1 x̂ jφ j(s)
where

φ1(s)=
{ s2 − s

h
if s1 ≤ s ≤ s2

0 otherwise
, φn(s)=

{ s− sn−1

h
if sn−1 ≤ s ≤ sn

0 otherwise
,

and

φ j(s)=


s− s j−1

h
if s j−1 ≤ s ≤ s j,

s j+1 − s
h

if s j ≤ s ≤ s j+1,

0 otherwise

j = 2, . . .n−1. (4.44)

Finally, the integrals
∫ 1

0 k(ti, s, x̂(s))ds, 1 ≤ i ≤ m, are approximated by the com-
posite rectangular rule on the points s j, 1≤ j ≤ n, i.e.∫ 1

0
K(ti, s, x̂(s))ds ∼ h

n∑
j=1

K(ti, s j, x̂(s j)) i = 1, . . . ,m.

The resulting discrete problems are nonlinear systems (4.1) of m equations with
unknown x = (x̂1, . . . , x̂n)T . We observe that x̂(s j) = x̂ j; thus, the j-th component of
x approximates a solution of (4.41) at s j.

In the following, with P1, P2, P3 and P4 we will denote the nonlinear systems
arising from the discretization of the above presented test problems. We will de-
note with x† ∈Rn a solution of the discretized problems, computed with noise level
δ= 0.

4.4.2 Implementation of Algorithm 4.2

Let’s now discuss the implementation of Algorithm 4.2. All procedures are imple-
mented in MATLAB and run using MATLAB 2014b on an Intel Core(TM) i7-4510U
2.6 GHz, 8 GB RAM; the machine precision is εm ≈ 2 ·10−16.

Regarding the parameters setting, in Algorithm 4.2 it is set η = 1
4

, γ = 1
6

, q =
1.1/τ, where τ = 1.5 is the parameter in the discrepancy principle (4.7), that is
used as the stopping criterion. Noisy data yδ are considered. Given the noise
level δ, they are obtained perturbing the exact data y by normally distributed
values with mean 0 and variance δ2, using the MATLAB function randn. The
Algorithm is run setting ∆k = 1−q

‖Bk‖‖gk‖.
The exact Jacobian of the nonlinear function F obtained by the discretization

of (4.41) is used. A maximum number of 300 iterations is allowed and a failure is
declared if this limit is exceeded.

Numerically it emerged that the updating rule at step 2 of Algorithm 4.2, in
accordance with the theory, provides the desired regularizing properties. As an
example, in the upper part of Figure 4.3 we consider problem P1 with δ = 10−2.
On the left we can see that the computed solution (dotted line) is a good approx-
imation of the true solution approached (solid line). On the right the monotonic
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Figure 4.3: Problem P1, x0 = 0e, δ = 10−2. Upper part: Solution approximation computed with
∆k = 1−q

‖Bk‖‖gk‖ (dotted line) and true solution (solid line) (left) and monotonic decrease of the error

‖xδk − x†‖ (right). Bottom part: Decrease of the residual ‖F(xk)− yδ‖, for ∆k = 1−q
‖Bk‖‖gk‖ (left) and

adaptive choice of the Trust-Region radius (4.45) (right).

reduction of the error is reported. However, the method results to be slow in prac-
tice. Then, for the numerical tests we employed an adaptive Trust-Region radius
update. Namely we choose the starting Trust-Region radius as

∆0 =µ0‖F(x0)− yδ‖, µ0 = 10−1.

Then, at step 2 of Algorithm 4.2 the radius is updated for the next iteration as
follows:

∆k+1 =µk+1‖F(xδk+1)− yδ‖, µk+1 =


1
6
µk if qk < q

2µk if qk > νq

µk otherwise

(4.45)

with qk =
‖F(xδk)− yδ+ J(xδk)pk‖

||F(xδk)− yδ|| , and ν= 1.1. Maximum and minimum values for

∆k are considered, and set to ∆max = 104 and ∆min = 10−12. This updating strategy
mimics the adaptive strategy used for well-posed problems (cf. Section 2.2), but
the quantity that is adaptively updated is parameter µk rather than the radius
∆k itself. Also, the decision of enlarging or shrinking the Trust Region is based
on the fulfilment of the q-condition, rather than on the ratio between the actual
and the predicted reduction. Indeed, with update (4.45) it is not guaranteed to
have the q-condition satisfied, unlike in the case where ∆k is chosen as in step
2 of Algorithm 4.2. Then, ∆k is adjusted taking into account the q-condition by
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monitoring the value qk. If the q-condition was not satisfied at the last computed
iterate xδk (i.e. if qk < q) parameter µk is decreased to take a smaller radius, in the
case where the q-condition was fulfilled (i.e. if qk ≥ q) parameter µk is increased
or kept fixed. Moreover, the radius definition relates it to the norm of the residual,
so that convergence to zero as the residual tends to zero is preserved. Notice also
that ∆k is cheaper to compute than the upper bound in (4.22), as one can spare
the computation of ‖Bk‖ and the estimation of the bound κJ .

We compare as an example in the bottom part of Figure 4.3 the decrease of
the residual ‖F(xk)− yδ‖ for the two choices of Trust-Radius radius strategy. We
notice that in both cases the stopping criterion is satisfied, but with the adaptive
choice the decrease is much faster. Then in all the tests presented in the following
sections this updating strategy is used. We will see that it turns out to be efficient
in practice.

At step 3 the KKT conditions (2.7) of the Trust-Region subproblem (4.21) are
solved. Then, a couple (λk, p(λk)) satisfying (2.7) is looked for. As from the theory
we know that λk > 0, we don’t need to try the Newton step and we can directly
solve ‖p(λ)‖ =∆k. Then, as illustrated in Section 2.2.1, we apply Newton’s method
to equation (2.10). Each Newton’s iteration requires the Cholesky factorization of
a shifted matrix of the form Bk +λI, see Section 2.2.1.1 and Algorithm 2.2. As we
know that λ> 0, we are sure that the Cholesky factorizations will be reliable.

Typically high accuracy in the solution of the above scalar equations is not
needed [9, 22] and this fact was experimentally verified also for our test prob-
lems. Hence, after extensive numerical experience, we decided to terminate the
Newton’s process as soon as |∆k −‖p(λ)‖| ≤ 10−2∆k [22, §7.3.10].

4.4.3 Validation of the regularizing properties of the
Trust-Region method

Our experiments are made varying the noise level δ on the data yδ. Tables
4.1 and 4.2 display the results obtained by the regularizing Trust-Region algo-
rithm with noise δ = 10−4 and δ = 10−2 respectively. Runs for four different ini-
tial guesses x0 are reported in the tables. For problems P1 and P2 the initial
guesses are x0 = 0e,−0.5e,−e,−2e and x0 = 0e,0.5e, e,2e respectively, where e de-
notes the vector e = (1, . . . ,1)T . For problem P3 the initial guess was chosen as
the vector x0(α) with j-th component given by (x0(α)) j = gα(s j) for j = 1, . . . ,n,
where gα(s) = (−4α+ 4)s2 + (4α− 4)s+ 1, and s j being the grid points in [0,1].
We have chosen α = 1.25,1.5,1.75,2. For problem P4 the initial guess x0(β,χ)
has components (x0(β,χ)) j = gβ,χ(s j) for j = 1, . . . ,n with gβ,χ = β−χs and (β,χ) =
(1,1), (0.5,0), (1.5,1), (1.5,0). In the tables we report: the initial guesses (for in-
creasing distance from the true solutions) the number of outer iterations it per-
formed by the Trust-Region method; the residual at the solution ‖F(xδk∗(δ))− yδ‖;
the number of function evaluations nf performed; the average number cf of
Cholesky factorizations per nonlinear iteration. To assess the quality of the re-
sults obtained, we measured the distance between the final iterate xδk∗(δ) and the
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Problem RTR RLM
x0 it ‖F(xδk∗(δ))− yδ‖ nf cf eT eT

P1 0 e 47 1.5e−4 48 4.7 5.2e−3 4.3e−3
−0.5 e 55 1.2e−4 56 4.9 6.1e−2 6.3e−3
−1 e 58 1.4e−4 59 4.8 1.0e−2 1.1e−2
−2 e 63 1.5e−4 64 4.7 1.8e−2 1.5e−2

P2 0 e 54 1.5e−4 55 5.1 1.4e−3 *
0.5 e 48 1.2e−4 49 5.1 3.2e−3 *

1 e 53 1.3e−4 54 4.9 6.3e−3 8.3e−3
2 e 59 1.2e−4 60 4.7 8.9e−3 4.8e−3

P3 x0(1.25) 44 1.4e−4 45 3.4 9.1e−3 3.1e−3
x0(1.5) 47 1.4e−4 48 3.3 5.1e−2 6.2e−2

x0(1.75) 48 1.4e−4 49 3.3 3.2e−1 3.1e−1
x0(2) 66 1.4e−4 75 3.4 4.3e−1 3.8e−1

P4 x0(1,1) 74 1.5e−4 86 3.2 4.6e−1 *
x0(0.5,0) 70 1.5e−4 84 3.3 4.8e−1 4.7e−1
x0(1.5,1) 78 1.4e−4 93 3.5 4.9e−1 4.8e−1
x0(1.5,0) 81 1.5e−4 93 3.6 6.6e−1 6.3e−1

Table 4.1: Results obtained by the regularizing Trust-Region (RTR) method and the regularizing
Levenberg-Marquardt (RLM) method with noise δ= 10−4 and different initial guesses.

true solution approached. In particular eT=max1≤ j≤n|xtrue(s j)− (xδk∗(δ)) j| is the
maximum absolute value of the difference between the components associated to
points s j.

Tables 4.1 and 4.2 show that the regularizing Trust-Region method solves all
the tests. By step 3 of Algorithm 4.2, the difference between the number of func-
tion evaluations and the number of Trust-Region iterations, if greater than one,
indicates the number of trial iterates that were rejected because a sufficient reduc-
tion on fδ was not achieved. We observe that in 27 out of 32 runs, all the iterates
generated were accepted. This occurrence seems to indicate that the Trust-Region
updating rule works well in practice.
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Problem RTR RLM
x0 it ‖F(xδk∗(δ))− yδ‖ nf cf eT eT

P1 0 e 23 1.5e−2 24 5.7 1.8e−2 1.8e−2
−0.5 e 33 1.5e−2 34 5.4 3.9e−2 3.6e−2
−1 e 34 1.2e−2 35 5.4 5.5e−2 5.5e−2
−2 e 37 1.3e−2 38 5.3 8.4e−2 6.7e−2

P2 0 e 28 1.4e−2 29 5.5 7.1e−3 *
0.5 e 25 1.4e−2 26 5.6 3.1e−2 *

1 e 31 1.5e−2 32 5.6 6.7e−2 4.6e−2
2 e 36 1.4e−2 37 5.4 8.9e−2 6.7e−2

P3 x0(1.25) 19 1.0e−2 20 4.5 1.5e−1 1.5e−1
x0(1.5) 22 1.1e−2 23 4.0 3.2e−1 3.2e−1

x0(1.75) 20 1.4e−2 21 4.5 5.0e−1 5.1e−1
x0(2) 22 1.3e−2 23 4.4 6.9e−1 7.0e−1

P4 x0(1,1) 17 1.5e−2 18 4.5 5.6e−1 5.4e−1
x0(0.5,0) 18 1.4e−2 19 4.2 5.5e−1 *
x0(1.5,1) 24 1.2e−2 25 4.6 5.0e−1 5.0e−1
x0(1.5,0) 31 1.3e−2 32 4.4 8.4e−1 *

Table 4.2: Results obtained by the regularizing Trust-Region (RTR) method and the regularizing
Levenberg-Marquardt (RLM) method with noise δ= 10−2 and different initial guesses.

Further insight on the Trust-Region updating rule (4.45) can be gained analyz-
ing the regularizing properties of the implemented Trust-Region strategy. First,
we verified numerically that, though not explicitly enforced, the q-condition is sat-
isfied in most of the iterations. As an illustrative example, we consider problem
P2 with δ= 10−4 and x0 = 0e. In the left plot in Figure 4.4, we display the values

qk =
||F(xδk)− yδ+ J(xδk)pk||

||F(xδk)− yδ|| versus the Trust-Region iterations, marked by an as-

terisk, and the fixed value q = 1.1/τ≈ 0.733, depicted by a solid line. To have the
q-condition satisfied the points qk should stay above the solid line. We observe
that this holds at most of the iterations.

The plot on the right of Figure 4.4 shows that the error between xδk and the so-
lution approached with exact data x† decays monotonically through the iterations,
which results to be in accordance with the theoretical results in Lemma 4.18. The
regularizing properties of the implemented Trust-Region scheme are also shown
in Figure 4.5 where, for each test problem we plot the error ||xδk∗(δ) − x†|| for de-
creasing noise levels. It is evident that, in accordance with the theory, the error
decays as the noise level decreases.

4.4.4 Comparison with Levenberg-Marquardt method

Let us now compare the regularizing Trust-Region and Levenberg-Marquardt pro-
cedures. The Levenberg-Marquardt approach was implemented imposing condi-
tion (4.6) and solving (4.19) by Newton’s method. The process is stopped as soon
as |‖F(xδk)− yδ+ J(xδk)p(λ)‖− q‖F(xδk)− yδ‖| ≤ 10−5. If a solution of (4.6) does not
exist, it is not clear in this approach how to choose λk. Then, we decided to take
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Figure 4.4: Regularizing Trust-Region applied to P2, x0 = 0e, δ = 10−4. Left: values qk =
||F(xδk)−yδ+J(xδk)pk ||

||F(xδk)−yδ|| (marked by an asterisk) and value of q = 1.1/τ (solid line) versus the iterations.

Right: semilog plot of the error ||xδk − x†|| versus the iterations (on the right).
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Figure 4.6: Regularizing Trust-Region (left) and regularizing Levenberg-Marquardt (right), true
solution (solid line) and approximate solutions (dotted line). Upper part: P1, δ = 10−2, x0 = 0e.
Lower part: P3, δ= 10−2, x0 = x0(α)= x0(1.25).

the last approximation computed by the Newton’s method before a failure of the
root-finding method is declared.

On runs that are successful for both methods, the two approaches show quite
similar performance. The accuracy in the solution approximation increases when
initial guesses close to the true solution are chosen. For all runs, the resulting
error eT for Levenberg-Marquardt method is reported in the last column of Ta-
bles 4.1, 4.2. As an example, Figure 4.6 compares the solutions computed by the
two methods for problems P1 and P3 for δ = 10−2. It is evident that the two
approaches provide solutions of similar accuracy.

On the other hand, symbols "∗ " in the Tables, denote that in 7 runs out of
32 the Levenberg-Marquardt algorithm does not act as a regularizing method,
as it is not able to provide a parameter ensuring regularizing properties. The
implemented version of the method generates a sequence that approaches a so-
lution of the noisy problem. In Figure 4.7 we show two unsuccessful runs of the
Levenberg-Marquardt method. Approximated solutions computed by the regular-
izing Trust-Region and Levenberg-Marquardt procedures are compared for runs
on problems P2 and P4. While the Trust-Region method approximates solutions
of the original problems in a stable way, the Levenberg-Marquardt converges to a
noisy solution, that indeed presents the typical highly oscillatory behaviour.

The overall experience on the Levenberg-Marquardt algorithm seems to indi-
cate that a method based on the q-condition is more robust than one based on
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Figure 4.7: True solution (solid line) and approximate solutions (dotted line) computed by the
regularizing Trust-Region method (on the left) and the regularizing Levenberg-Marquardt method
(on the right). Upper part: problem P2, δ = 10−2, x0 = 0e; lower part: problem P4, δ = 10−2, x0 =
x0(β,χ)= x0(0.5,0).

condition (4.6). The use of (4.8) also makes the method less dependent on pa-
rameter q, making its choice less important. In order to support this claim, in
Figure 4.8 we report for problem P4 and δ = 10−2 four solution approximations
computed by the Levenberg-Marquardt algorithm for varying values of q, i.e.
q = 0.67,0.70,0.73,0.87. It is evident that the method is highly sensitive to the
choice of the parameter q and the quality of the solution approximation does not
steadily improve as q increases.

4.4.5 Comparison with standard Trust-Region method

We conclude this section considering the standard Trust-Region strategy. It is
well-known that the standard updating rule promotes the use of inactive Trust
Regions, at least in the latest stages of the procedure, cf. Remark 2.8. Clearly,
this can adversely affect the solution of ill-posed problems as the fast convergence
of Newton’s method pushes the sequence to the noisy solution. Our experiments
confirmed this fact.

In our implementation of the standard Trust-Region method, we chose the
Trust-Region radius accordingly to technicalities well-known in the literature, see
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Figure 4.8: Problem P4, δ= 10−2, x0 = x0(β,χ) = x0(1.5,0). True solution (solid line) and approx-
imate solution (dotted line) computed by the regularizing Levenberg-Marquardt method for values
of q = 0.67, 0.70, 0.73, 0.87.

Section 2.2 or [22, §6.1] and [85, Chapter 4]. In particular, we set ∆0 = 1,

∆k+1 =


min{2∆k,∆max} if ρk(pk)> 3

4
,

∆k if
1
4
≤ ρk(pk)≤ 3

4
,

‖pk‖
4

if ρk(pk)< 1
4

,

(4.46)

with ∆max = 104 and we chose ∆min = 10−12 as the minimum values for ∆k.
For δ = 10−2 and problems P1 and P2, the sequences computed by the stan-

dard Trust-Region method approach solutions of the noisy problem. The same
behaviour occurs in most of the runs with P1 and P2 and noise level δ= 10−4. Con-
versely, the approximations provided by the regularizing Trust-Region procedure
are accurate approximations of true solutions in all the tests. The approximations
computed by the standard Trust-Region method applied to problems P3 and P4

are less accurate than those computed by the regularizing Trust-Region method
although they do not show the strong oscillatory behaviour arising in problems
P1 and P2. In problem P4, this behaviour is evident when the second, third
and fourth starting guesses are used, while the approximation computed starting
from the first initial guess is as accurate as the one computed by the regularizing
Trust-Region method. This good result of the standard Trust-Region approach on
problem P4 with x0 = x0(1,1) is due to the fact that the Trust Region is active
in all iterations and therefore a regularizing behaviour is implicitly provided. As
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Figure 4.9: True solution (solid line) and approximate solutions (dotted line) computed by the regu-
larizing Trust-Region method (on the left) and the standard Trust-Region method (on the right). (a)-
(b) problem P1, δ= 10−2, x0 = 0e; (c)-(d) problem P2, δ= 10−2, x0 = 0e; (e)-(f) problem P3, δ= 10−2,
x0 = x0(1.25); (g)-(h) problem P4, δ= 10−2, x0 = x0(0.5,0).
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an example in Figure 4.9 we compare some solution approximations computed by
the regularizing Trust-Region (left) and by the standard Trust-Region (right) ap-
proaches with δ= 10−2 applied to problem P1 (figures (a)-(b)), P2 (figures (c)-(d)),
P3 (figures (e)-(f)) and P4 (figures (g)-(h)).

4.4.6 Choice of the quadrature formula

In this section we motivate the choice we made for the quadrature formula to
approximate the integrals. In the numerical experimentation we noticed that
choosing a quadrature formula different from the rectangular rule, both the regu-
larizing Trust-Region and Levenberg-Marquardt methods compute solutions that
are good approximations of true solutions inside the interval, but they are mis-
interpreted at the end-points of the interval. The computed solution approxi-
mations present peaks at the end-points, that become higher and higher as the
starting point moves away from the desired solution. In [77] the authors ascribe
this behaviour to the quadrature formula, and assert that "it can be shown that
with quadrature methods some of the singular vectors reflect the patterns in the
weights, explaining why the solution has half its true value at the end points".
In the numerical tests there are evidences of this behaviour. Using composite
trapezoidal rule the first and the last components of the singular vectors of the
Jacobian matrix associated to the largest singular values are about half the oth-
ers, that have instead more or less the same magnitude. The same behaviour is
reflected in the components of the resulting step. On the other hand, this does not
happen if the rectangular rule is used.

With noisy data this behaviour is evident in all the iterations and causes
higher and higher peaks as the noise increases or the starting guess moves far-
ther from the sought solution. In the noise free case it is evident only in the firsts
iterations, so that the solution approximations computed at the beginning of the
process show peaks at the and points, which are then softened toward the end of
the process.

In Figure 4.10 we report numerical evidence of this behaviour. We consider
the noise free case in the upper part and δ = 10−2 in the lower part. Plots on
the left refer to the rectangular rule and plots on the right to the trapezoidal
rule. We report e I = max2≤ j≤n−1|xtrue(s j)− (xδk∗(δ)) j| the error corresponding to
points inside the interval and eE =max{|xtrue(s1)− (xδk∗(δ))1|, |xtrue(sn)− (xδk∗(δ))n, |}
the error corresponding to the end-points of the interval. Let’s consider first the
trapezoidal rule. When noise is not present, at the beginning of the process the
two error are different and there are peaks at the end points of the interval, but
after few iterations eE starts to decrease and toward the end of the process the
solution approximation is good also at the end points of the interval. With noisy
data it remains bigger than e I for all the optimization process and the solution
approximation shows peaks. With the rectangular rule both in case of noisy and
exact data e I and eE have the same magnitude along all the optimization process.

Then, a quadrature formula with the same weights for all the nodes should
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be used. However, with the mid-point rule the resulting behaviour is the same
as that of the trapezoidal rule, even if the weights satisfy the desired condition.
This can be explained by the following analysis, that is done in the linear case for
simplicity. We consider problem ∫ 1

0
K(t, s)x(s)ds.

We consider the same setting as in Section 4.4.1, i.e for fixed n we define s j =
( j −1)h, h = 1/(n−1), j = 1, . . . ,n and we approximate x(s) with a piecewise lin-

ear function with nodes s j: x̂(s) =
n∑

l=1
x̂lφl(s). If, for fixed t, we approximate the

resulting integral with the mid-point rule we obtain:∫ 1

0
K(t, s)x̂(s)ds ' h

n−1∑
j=1

K
(
t,

s j+1 + s j

2

)
x̂
( s j+1 + s j

2

)
.

Taking into account that for all j, Φ j(s) 6= 0 in (s j−1, s j+1), we obtain

x̂
( s j+1 + s j

2

)
=

n∑
l=1

x̂lφl

( s j+1 + s j

2

)
= s j+1 − s j

2h
(x̂ j + x̂ j+1)= (x̂ j + x̂ j+1)

2
.

Then, ∫ 1

0
K(t, s)x̂(s)ds ' h

n−1∑
j=1

K
(
t,

s j+1 + s j

2

) (x̂ j + x̂ j+1)
2

.

This implies that even if the weights are all the same, the coefficient of x̂ j varies
with j and in particular the first and the last components of x have coefficients
that are half the coefficients of the other components. This generates the same
problem observed with the trapezoidal rule. This is due to the fact that nodes
of the piecewise linear function do not coincide with the nodes of the quadrature
formula. To avoid this, the rectangle rule should be used:∫ 1

0
K(t, s)x(s)ds ' h

n∑
j=1

K(t, s j)x̂ j, (4.47)

so that all the components of x have the same weight. As we have seen in previous
sections, with this rule the computed solution has indeed no peaks. We compare
the solution approximations computed with the rectangle rule with those com-
puted with the trapezoidal rule in Figure 4.11 for problems P2 (upper part) and
P4 (lower part). In all the plots δ= 10−2. As expected, left plots (that correspond
to the rectangular rule) do not show peaks, while evident peaks are present in
solution approximations on the right (corresponding to the trapezoidal rule).

4.5 Chapter conclusion

In this section we have presented a Trust-Region method for nonlinear ill-posed
systems with noisy data. A suitable Trust-Region radius choice is designed to
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provide a regularizing behaviour to the method. The proposed approach shares
the same local convergence properties as the regularizing Levenberg-Marquardt
method proposed in [50]. Convergence properties are enhanced with respect to
the regularizing Levenberg-Marquardt procedure in the following respects. With
exact data, if there exists an accumulation point of the iterates which solves (4.1),
then any accumulation point of the sequence solves (4.1). With noisy data it is
more likely to satisfy the discrepancy principle irrespective of the closeness of the
initial guess to a solution of (4.1). Indeed, condition (4.8) is well-defined even for
initial guesses not close to a solution. Moreover, remarkably the new approach is
shown to be less sensitive than the regularizing Levenberg-Marquardt method to
the choice of the parameter q involved in the regularizations (4.6) and (4.8).

Our contribution covers theoretical and practical aspects of the method pro-
posed. From a theoretical point of view, we propose the use of a Trust-Region
radius converging to zero as k tends to zero. Trust-region methods with this dis-
tinguishing feature have been proposed in several papers, see [34, 36, 38, 113], but
none of such works was either devised for ill-posed problems or applied to them.
Thus, our study offers new insights on the potential of this choice. Finally, local
convergence analysis has been carried out without assuming the invertibility of
the Jacobian J of F or the boundedness of the inverse, which will commonly not
hold in the presence of ill-posedness, but rather under weaker conditions, differ-
ent form the local error-bound condition. Therefore, our results may represent a
progress in the theoretical investigation of convergence of Trust-Region methods.

Concerning numerical aspects, we discussed an implementation of the regular-
izing Trust-Region method, and tested its ability to approximate a solution of (4.1)
in presence of noise on four problems arising from the discretization of Fredholm
integral equations of the first kind. Comparison with a standard Trust-Region
scheme highlights the impact of the proposed Trust-Region radius choice on regu-
larization, and confirms that the solution of noisy problems may be misinterpreted
by the standard Trust-Region method. The numerical experience presented con-
firms the effectiveness of the Trust-Region radius adopted and the regularizing
properties of the resulting Trust-Region method.

80



CHAPTER

5
Non-zero residual problems

In this chapter we consider nonlinear least squares problems of the form (3.1).
Particularly, we focus on the general case in which it is not possible to assume the
existence of x such that F(x)= y, so that the problem residual will be strictly pos-
itive, but we assume that a local minimum x† exists. As in the previous chapter,
we suppose to have only noisy data yδ at disposal, such that (3.2) holds. Then, we
have to deal with the noisy problem (3.3).

The aim of this chapter is to present a method for small residual problems that
has the same regularizing properties as the methods we described in Chapter 4.
More precisely, we look for a method that guarantees the following. In case of
exact data, the sequence of gradients {‖J(xk)T(F(xk)− y)‖} should go to zero and
the sequence of generated solution approximations should converge to a solution
of (3.1). In case of noisy data, if an initial guess close to x† is given, the method
should have the potential to approach a solution of the unperturbed problem.

We are not aware of other methods, specially designed for nonzero residual ill-
posed nonlinear least squares problems. We are aware only of [3], where conver-
gence rates of Tikhonov methods are considered allowing also the case of nonzero
residual. However the focus of that paper is on the study of the role of weak closed-
ness of the operator in regularization theory. The method is studied only theoret-
ically and a practical implementation is not discussed. Conditions on the regu-
larization parameters are given to achieve regularizing properties, but a practical
rule for selecting them is not provided. In [21] the authors study the properties
of parameter identification problems formulated as least squares problems, like
stability and the characterization of solutions, but they are not concerned with
their numerical solution.

We consider a non-stationary iterated Tikhonov procedure [31, Chapter 10],
[28], cf. also Section 2.4.4. At each iteration, given a positive parameter λk and a
symmetric and positive definite regularization matrix Lk ∈ Rn×n the step is com-
puted solving the following regularized subproblem, given xδk the current iterate:

min
p∈Rn

1
2
‖F(xδk)− yδ+ J(xδk)p‖2 + λk

2
‖L

1
2
k p‖2. (5.1)

As already explained in Section 2.4.4, the addition of matrix Lk in the Levenberg-
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Marquardt model helps to improve the solution approximation [17, 29]. Here, we
need it to provide regularizing properties also in presence of strictly positive resid-
ual. Then, with respect to the Levenberg-Marquardt described in the previous
section, here we have to set the matrix along with the parameter λk.

Regularizing properties are ensured by the procedures described in the previ-
ous chapter thanks to two key ingredients:

1. the employment of a proper stopping criterion to avoid semiconvergence
phenomenon, i.e. the method must be stopped before convergence is reached,
to be sure that the generated sequence is not approaching a solution of the
noisy problem,

2. a mechanism to control the step length, that needs to be not too large.

Regarding the first item, in the context of nonzero residual problems it not
possible to use the discrepancy principle given in (4.7) and employed for the zero
residual case, as ‖F(xδk)− y‖ is not converging to zero anymore. This is not the
quantity that we should look at to decide when we are close enough to a solution
of (3.3). Then, inspiring by methods used for well-posed problems, we will rather
control the gradient ∇ fδ of function fδ as, if ∇ f is the gradient of f , from (3.2) it
holds:

‖∇ f (x)‖ =‖J(x)T(F(x)− y)‖ = ‖J(x)T(F(x)− y± yδ)‖ ≤
‖J(x)T(y− yδ)‖+‖∇ fδ(x)‖ ≤ ‖J(x)‖δ+‖∇ fδ(x)‖.

Assuming the norm of the Jacobian to be bounded, if we check that the norm of
the noisy gradient is less than the noise level, we can reasonably assume to have
the same accuracy on the exact gradient. Then, in case of noisy data the process
is stopped at iteration k∗(δ) satisfying the following discrepancy principle:

‖gk∗(δ)‖ ≤ τδ< ‖gk‖, 0≤ k < k∗(δ), (5.2)

where we have used notation (3.6) and τ> 0 is appropriately chosen.
Regarding item 2, in the methods described in the previous chapter, condition

(4.6) or its improvement (4.8) were used to set the free regularization parameter λ,
that determines the length of the step. Condition (4.8) relates the model for F(x)−
y at the current iterate to the norm of the residual. Here, we use an analogous
condition, obtained considering the gradient and its model. Note that in case f is
twice continuously differentiable, its Hessian matrix is given by:

∇2 f (x)= J(x)T J(x)+S(x)= J(x)T J(x)+
m∑

j=1
(F(x)− y) j∇2F j(x). (5.3)

Then, a first order model for the gradient in x would be given by

∇ f (x)+∇2 f (x)p =∇ f (x)+ (J(x)T J(x)+S(x))p.

As we are employing a Gauss-Newton model for f we are actually omitting the
second derivatives of F, as we do not want to compute them. Then, we will omit
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their contribution also in the gradient model and given the current iterate xδk we
will define

Mg
k (p)= J(xδk)T(F(xδk)− yδ)+ J(xδk)T J(xδk)p = gk +Bk p. (5.4)

Notice also that Mg
k (p) is the gradient of

1
2
‖F(xδk)− yδ+ J(xδk)p‖2,

i.e. of the approximation of the function fδ around the current iterate xδk adopted
in (5.1). Then, condition (4.8) will be replaced by

‖Mg
k (p(λ))‖ ≥ q‖gk‖, q ∈ (0,1), (5.5)

which we will refer to as the generalized q-condition.
The employment of Gauss-newton model has several implications on our method.

First, it is well known that if x† is a solution of (3.1) and ‖S(x†)‖ is too large,
the Gauss-Newton method may not be locally convergent (see Section 2.3 or [27,
§10.2]). ‖S(x†)‖ is a combined measure of the nonlinearity and residual size of
the problem. Then, with the proposed method we can handle only small residual
or mildly nonlinear problems. Moreover, the fact that we are omitting the second
order derivatives of F affects also the Assumptions we have to make to analyze lo-
cal convergence of the method. Assumption 4.12 that is made in the zero residual
case will be replaced by the following.

Assumption 5.1. Given a solution x† of problem (3.1), there exist r > 0, c > 0 and
σ ∈ (0, q) such that

‖∇ f (x̃)−∇ f (x)− J(x)T J(x)(x̃− x)‖ ≤ (c‖x̃− x‖+σ)‖∇ f (x)−∇ f (x̃)‖, (5.6)

for all x, x̃ ∈ Br(x†).

This inequality is motivated by the following observations. If ∇ f is continu-
ously differentiable, it follows from (5.3)

∇ f (x+ p)−∇ f (x)− J(x)T J(x)p =

=
1∫

0

[
J(x+ tp)T J(x+ tp)− J(x)T J(x)

]
p dt+

1∫
0

S(x+ tp)p dt

=
1∫

0

J(x+ tp)T[J(x+ tp)− J(x)]p dt+
1∫

0

[J(x+ tp)− J(x)]T J(x)p dt+
1∫

0

S(x+ tp)p dt.

Then, letting σ satisfying
‖S(x)‖ ≤σ (5.7)

for x in the considered neighbourhood of x†, if J is Lipschitz continuous, with
Lipschitz constant L, and it holds ‖J(x)‖ ≤ K , we obtain

‖∇ f (x+ p)−∇ f (x)− J(x)T J(x)p‖ ≤ KL‖p‖2 +σ‖p‖.
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Setting x̃ = x+ p we obtain that the following inequality holds with c = KL and σ

satisfying (5.7):

‖∇ f (x̃)−∇ f (x)− J(x)T J(x)(x̃− x)‖ ≤ c‖x̃− x‖2 +σ‖x̃− x‖. (5.8)

This condition is analogous to (4.4), that holds for zero residual problems in case
J is Lipschitz continuous. We have seen that (4.4) is not strong enough to prove
regularizing properties for zero residual problems and has then to be replaced by
the tangential cone condition (4.3) (cf. Chapter 4). Here, in the same way, we need
a stronger condition than (5.8). In case of rank-deficient Jacobian indeed, it may
happen that x̃−x belongs to the null space of J(x)T J(x) and ∇ f (x̃)=∇ f (x). In this
case, the bound on the right of (5.8) is too rough. Writing down the tangential
cone condition for ∇ f (x)= 0 yields:

‖∇ f (x̃)−∇ f (x)−∇2 f (x)(x̃− x)‖ ≤ c‖x̃− x‖‖∇ f (x̃)−∇ f (x)‖.

Then condition (5.6) can be seen as a tangential cone condition for ∇ f (x) where
the term S(x) containing the second derivatives of F has been dropped from ∇2 f (x)
and the term σ‖∇ f (x)−∇ f (x̃)‖ appears on the right to take into account this omit-
ted contribution, as well as σ‖x̃− x‖ appears in (5.8). As a consequence of the
fact that the second derivatives are approximated, the right hand side in (5.6)
is O(‖∇ f (x)−∇ f (x̃)‖) rather than O(‖x− x̃‖‖∇ f (x)−∇ f (x̃)‖), as it would be if the
tangential cone condition for ∇ f (x) was used. Notice also that in Assumption 5.1,
σ is assumed to be in (0, q). As it represents a bound for ‖S(x)‖, this restriction
implies that our analysis is focused on small residual problems.

In order to support our Assumption 5.1, we will present in Section 6.3 a model
problem for which it is shown to hold and we will provide numerical evidence for
it in Section 5.5 for the test problems we consider.

The rest of this chapter is organized as follows. For the zero residual case, it
was crucial to have monotonic decrease of the norm of the error to prove the regu-
larizing properties of the method. We need the same property here, and therefore
Section 5.1 is devoted to the description of the conditions that allows us to prove
the desired monotonicity also in the nonzero residual case. This section is needed
to motivate our subsequent choices. In Section 5.2 the method proposed is pre-
sented and it is described how to enforce the conditions previously introduced.
Section 5.3 is devoted to the theoretical analysis of the method, both in the noise
free and in the noisy case. In Section 5.4 we adapt the proposed approach to con-
strained problems. The numerical performance of the method is studied in Section
5.5.

The method and the theory presented in this section, parallel those presented
in [S2]. In [S2] a generic Hilbert space H is considered, while here we focus
on the finite dimensional case H = Rn, for sake of homogeneity with the rest of
the thesis. All the results presented in this chapter indeed are valid in a generic
Hilbert space setting, as we briefly remark in Chapter 6.
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5.1 Monotonic error decrease

In order to properly choose parameter λk and matrix Lk in (5.1) we have to
take into account that non-stationary iterated Tikhonov procedures for zero resid-
ual problems [28, 50] provide regularizing properties thanks to the fact that the
method achieves monotone decrease of the norm of the error ek = x† − xδk between
the true solution and the current iterate, even when noisy problems are solved.

Given the step pk = p(λk) solution of (5.1), the desired property can be gained
thanks to the following two key relations:

‖Mg
k (ek)‖ ≤ 1

θk
‖Mg

k (pk)‖, θk > 1, (5.9)

B+
k pk =− 1

λk
Mg

k (pk), (5.10)

where Mg
k (p) is defined in (5.4). The first relation parallels that established in the

zero residual case (4.29) between the zero residual model Mk(p)= F(xδk)+J(xδk)p in
the error and that in the step, that is enforced through the q-condition (4.8). For
nonzero residual problems we use the analogous condition (5.9), employing the
nonzero residual model (5.4). The second condition can be enforced by a suitable
choice of the matrix Lk. We will discuss this in next section.

In the following lemma we show that if the two relations (5.9) and (5.10) hold
and pk = p(λk) ∈ R(Bk), we can obtain the same results as in Lemma 4.13, that
holds in the zero residual case, and prove the monotonic decrease of the error.

Lemma 5.2. Assume that x† is a solution of (3.1). Let ek = x† − xδk, Mg
k (p) defined

in (5.4). Assume that (5.10) is satisfied and there exists θk > 1 such that condition
(5.9) holds. Suppose furthermore that J(xδk) is of rank `≤ n and let xδk+1 = xδk + pk

with pk = p(λk) ∈R(Bk). Then it holds

‖xδk+1 − x†‖2 −‖xδk − x†‖2 ≤ 2
λk

(
1
θk

−1
)
‖Mg

k (pk)‖2. (5.11)

Proof. Since pk belongs to the range space of Bk it follows that (pk) j = 0 for j =
`+1, . . . ,n, where (pk) j is the j-th component of pk. Then,

< B+
k pk,Bk pk >= ‖pk‖2, < B+

k pk,Bkek >=< pk, ek > . (5.12)

Then, taking into account (5.10)

‖xδk+1 − x†‖2 −‖xδk − x†‖2 = 2< xδk+1 − xδk, xδk − x† >+‖xδk+1 − xδk‖2

= 2< pk,−ek >+‖pk‖2 = 2< B+
k pk,−Bkek >+‖pk‖2

= 2< B+
k pk,−gk −Bkek >−2< B+

k pk,−gk −Bk pk >
−2< B+

k pk,Bk pk >+‖pk‖2 =
= 2
λk

<−Mg
k (pk),−Mg

k (ek)>− 2
λk

<−Mg
k (pk),−Mg

k (pk)>−‖pk‖2

≤ 2
λk

‖Mg
k (pk)‖‖Mg

k (ek)‖− 2
λk

‖Mg
k (pk)‖2 −‖pk‖2.
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From condition (5.9)

‖xδk+1 − x†‖2 −‖xδk − x†‖2 ≤ 2
λk

1
θk

‖Mg
k (pk)‖2 − 2

λk
‖Mg

k (pk)‖2 −‖pk‖2

≤ 2
λk

(
1
θk

−1
)
‖Mg

k (pk)‖2.

Then, in order to obtain the desired monotone decrease of the error, we need
to ensure (5.9) and (5.10) to hold and the step to be in the range of Bk.

5.2 The method

Motivated by the previous considerations, we present a non-stationary iterated
Tikhonov procedure for least squares problems employing a step satisfying both
conditions (5.9) and (5.10). Let us first focus on the case in which J(xδk) is full
rank.

A step pk is the solution of (5.1) if and only if it satisfies the following linear
system:

(J(xδk)T J(xδk)+λkLk)p =−J(xδk)T(F(xδk)− yδ). (5.13)

Relation (5.10) can be obtained with a suitable choice of matrix Lk. From (5.4) and
(5.13) indeed, it follows that − 1

λk
Mg

k (pk)= Lk pk. This suggests to choose Lk = B−1
k .

As in Chapter 4, we look for a method in which the parameter λk is set in
an automatic way and such that (5.9) holds. Then, we adopt a reformulation of
problem (5.1) and we consider the following elliptical Trust-Region problem:

min
p∈Rn

1
2
‖F(xδk)− yδ+ J(xδk)p‖2

s.t. ‖B−1/2
k p‖ ≤∆k.

(5.14)

Its solution [22] is a step p = p(λ) satisfying

(Bk +λB−1
k )p = gk, (5.15a)

λ≥ 0 (5.15b)

λ(‖B−1/2
k p‖−∆k)= 0, (5.15c)

‖B−1/2
k p‖ ≤∆k. (5.15d)

Then, given the couple (λk, p(λk)) ∈ R+×Rn solution of (5.15), if λk > 0, the step
pk = p(λk) solves (5.1) with Lk = B−1

k . With this reformulation of the problem,
instead of choosing λk in order to obtain a step p(λk) satisfying (5.9), we need
to properly select the Trust-Region radius ∆k to obtain a couple (λk, p(λk)) with
λk > 0 and p(λk) satisfying (5.9). We will show in Lemma 5.6 how to make such a
suitable choice of ∆k.

Let us focus on how to compute p(λk). As usual, we reformulate the problem
as a spherical Trust-Region problem. Letting z = B−1/2

k p, problem (5.14) reduces
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to
min
z∈Rn

1
2

zTB2
kz+ (B1/2

k gk)T z+ fδ(xδk),

s.t. ‖z‖ ≤∆k.
(5.16)

The solution to (5.16) is given by zk = z(λk) where the couple (λk, z(λk)) is the
solution of

(B2
k +λI)z(λ)=−B1/2

k gk, (5.17a)

λ≥ 0, (5.17b)

λ(‖z(λ)‖−∆k)= 0, (5.17c)

‖z(λ)‖ ≤∆k. (5.17d)

If we let
p(λ)= B1/2

k z(λ), (5.18)

pk = p(λk) solves (5.14). Then, the step can be computed solving (5.17) and em-
ploying (5.18). Note that, in order to compute z(λk) the linear system (5.17a) has
to be solved in which matrix B2

k appears. In the applications we consider, the ill-
conditioning of matrix Bk arises from the smallest singular values close to zero.
We will prove that in our approach λk is ensured to be strictly positive. Then,
the conditioning of the linear system is not deteriorated by the fact that Bk is
squared. Moreover, we assume to be able to compute the SVD decomposition of
Bk to evaluate the right-hand side in (5.17a).

In case J(xδk) is not full rank, problem (5.14) is not well-defined. However we
can still compute the vector z(λk) solution of the Trust-Region subproblem (5.16)
and define the step through (5.18). In this way, we still have a step p(λ) satisfying
(5.10), as we show in the following lemma. Notice also that pk ∈ R(Bk), then
Lemma 5.2 holds.

Lemma 5.3. Suppose ‖gk‖ 6= 0 and that J(xδk) is of rank ` ≤ n. Let z(λ) be the
minimum norm solution of (5.17a) with λ ≥ 0 and p(λ) given in (5.18). Then it
holds

B+
k p(λ)=−1

λ
Mg

k (p(λ)). (5.19)

Proof. Let Σ̄k ∈ Rn×n be the diagonal matrix with entries ς1, . . . ,ς`,0, . . . ,0 on the
diagonal and r = UT

k (F(xδk)− yδ). Then, Bk = VkΣ
T
kΣkV T

k = VkΣ̄
2
kV T

k and from
(5.17a) it follows

z(λ)=−VkΣ̄k(Σ̄4
k +λI)+ΣT

k r (5.20)

and (5.18) yields
p(λ)=−VkΣ̄

2
k(Σ̄4

k +λI)+ΣT
k r. (5.21)

Then, from (5.4)

Mg
k (p(λ))=−VkΣ̄

4
k(Σ̄4

k +λI)+ΣT
k r+VkΣ

T
k r =Vkλ(Σ̄4

k +λI)+ΣT
k r. (5.22)

Taking into account that
B+

k =VkΣ̄
2
k
+

V T
k ,

and comparing the expression of Mg
k (p(λ)) with (5.21) we obtain the thesis.
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Figure 5.1: Effect of the generalized q-condition 5.5 on the step length.

Then, both in case the Jacobian is full-rank or rank deficient we can obtain
(5.10).

Regarding condition (5.9), we will see in the next section (cf. Lemmas 5.9
and 5.14) that this relation between the model evaluated in the step and that
evaluated in the error can be granted, provided that the step pk = p(λk) satisfies
the generalized q-condition (5.5). Here, we show how (5.5) can be enforced by a
suitable Trust-Region radius choice.

5.2.1 Choice of the Trust-Region radius

Condition (5.5) controls the value of the norm of the gradient model that has to be
greater than a fixed fraction of the norm of the gradient and it provides a criterion
to choose the free parameter λk in (5.1). As (4.8), the generalized q-condition is
a constraint on the length of the step, its effect on it is illustrated in Figure 5.1
where we plot ‖Mg

k (p(λ))‖ (top) and ‖p(λ)‖ (bottom) varying λ. By imposing (5.5)
the regularization parameter λ is forced to be greater then the value λq

k satisfying

‖Mg
k (p(λq

k))‖ = q‖gk‖, (5.23)

avoiding too small values that correspond to large steps, as it is shown at the
bottom of Figure 5.1.

We are going to show that differently from (4.6), a λ
q
k satisfying (5.23) always

exists and that a step pk of the form (5.18) satisfying (5.5) can be provided by
an appropriate Trust-Region radius choice. To this end we need the following
preliminary results.

Lemma 5.4. Suppose ‖gk‖ 6= 0 and that J(xδk) is of rank ` ≤ n. Let z(λ) be the
minimum norm solution of (5.17a) with λ ≥ 0 and p(λ) given in (5.18). Then,
denoting r =UT

k (F(xδk)− yδ)= [r1, . . . , rm], we have that

‖z(λ)‖2 = ∑̀
i=1

(
ς2

i r i

ς4
i +λ

)2

. (5.24)
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Moreover, ‖Mg
k (p(λ))‖ is a monotone increasing function for λ≥ 0 and

lim
λ→0

‖Mg
k (p(λ))‖ = 0,

lim
λ→∞

‖Mg
k (p(λ))‖ = ‖J(xδk)T(F(xδk)− yδ)‖.

Proof. Note that (5.20) yields (5.24). Moreover, from (5.22) it follows

‖Mg
k (p(λ))‖2 = ∑̀

i=1

(
ςiλr i

ς4
i +λ

)2

. (5.25)

Taking derivatives it is possible to show that the function ‖Mg
k (p(λ))‖ is monotonic

increasing. Then, taking into account that

‖J(xδk)T(F(xδk)− yδ)‖2 = ∑̀
i=1

(ςir i)2, (5.26)

the thesis easily follows.

Now, we are in the position of proving that condition (5.5) can be satisfied.

Lemma 5.5. Let z(λ) be the minimum norm solution of (5.17a) with λ ≥ 0 and
p(λ) be given in (5.18). It exists λq

k > 0 such that if λk ≥λq
k then pk = p(λk) satisfies

condition (5.5).

Proof. From Lemma 5.4 if follows that ‖Mg
k (p(λ))‖ is a monotonic increasing func-

tion for λ ≥ 0. As 0 ≤ ‖Mg
k (p(λ))‖ ≤ ‖gk‖ for all λ ≥ 0, there exists λq

k such that
(5.23) holds. Then, condition (5.5) is satisfied for any λk ≥ λ

q
k and λ

q
k = 0 if and

only if ‖J(xδk)T(yδ−F(xδk))‖ = 0.

We now provide a suitable choice of the Trust-Region radius that guarantees
that the resulting regularization parameter λk is big enough to ensure that the
step pk = p(λk) satisfies condition (5.5).

Lemma 5.6. Let zk = z(λk) be the minimum norm solution of (5.17a) with λk ≥ 0
and pk = p(λk) be given in (5.18). If

∆k ≤
1− q
‖Bk‖2 ‖B1/2

k gk‖ (5.27)

the step pk satisfies (5.5).

Proof. From (5.25) and (5.26) it follows

‖Mg
k (p(λ))‖2 = λ2 ∑̀

i=1

(
ςir i

ς4
i +λ

)2

≥λ2

∑̀
i=1

(ςir i)2

(‖Bk‖2 +λ)2

= λ2 1
(‖Bk‖2 +λ)2 ‖J(xδk)T(F(xδk)− yδ)‖2.
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Then, we can obtain an upper bound for λq
k defined in (5.23) proceeding as follows:

q‖J(xδk)T(F(xδk)− yδ)‖ = ‖Mg
k (p(λq

k)))‖

≥ λ
q
k

‖Bk‖2 +λq
k
‖J(xδk)T(F(xδk)− yδ)‖,

so

λ
q
k ≤ q‖Bk‖2

1− q
. (5.28)

By (5.17a) one has

‖z(λq
k)‖ ≥ ‖B1/2

k gk‖
‖B2

k +λ
q
k I‖ , (5.29)

and by (5.28) it holds

‖B2
k +λq

k I‖ ≤ ‖Bk‖2 + q
1− q

‖Bk‖2 = 1
1− q

‖Bk‖2.

By construction ‖zk‖ ≤∆k. If (5.27) holds, using (5.29), we obtain

‖zk‖ = ‖z(λk)‖ ≤ 1− q
‖Bk‖2 ‖B1/2

k gk‖ ≤
‖B1/2

k gk‖
‖B2

k +λ
q
k I‖ ≤ ‖z(λq

k)‖.

Since by (5.24) it follows that ‖z(λ)‖ is monotonically decreasing, the previous
inequality yields λk ≥λq

k and by Lemma 5.5 the thesis holds.

With this choice of ∆k it is not necessary to check if condition (5.5) is satisfied.
Notice also that the Trust-Region radius goes to zero whenever ‖gk‖ converges to
zero.

From Lemma 5.3 and Lemma 5.6 we can conclude that a step pk of the form
(5.18), satisfying both (5.10) and (5.5) exists. We will show in the next section that
if condition (5.5) is met, then also condition (5.9) holds, so our method provides
the desired monotone decrease of the norm of the error, as stated in Lemma 5.2.

These results suggest the Trust-Region iteration described in Algorithm 5.1.
Once pk has been computed, the classical ratio between the actual and the pre-
dicted reduction is computed. As in classical Trust-Region approaches, if there
is a good agreement between the function and the model the step is accepted,
otherwise the step is rejected and the Trust Region is reduced.

Regarding the well-definiteness and the choice of constants in Algorithm 5.1,
the same reasoning as for Algorithm 4.2 applies, cf. Section 4.2. In case of noisy
data the process is stopped whenever the norm of the gradient goes under the
noise level, i.e. at iteration k∗(δ) satisfying the discrepancy principle (5.2).

5.3 Convergence analysis

The convergence analysis is carried out under Assumption 5.1 and under the fol-
lowing additional assumption.

90



Algorithm 5.1 k-th iteration of the elliptical regularizing Trust-Region method
for problem (3.1)

Input: xδk, η ∈ (0,1), γ ∈ (0,1), 0< Cmin < Cmax, q ∈ (0,1), yδ.

1. Choose ∆k ∈
[
Cmin‖B1/2

k gk‖, min
{

Cmax,
1− q
‖Bk‖2

}
‖B1/2

k gk‖
]

.

2. Repeat
2.1 Compute the solution zk of Trust-Region subproblem (5.16).
2.2 Set pk = B1/2

k zk.
2.3 Compute

ρk(pk)= fδ(xδk)− fδ(xδk + pk)

fδ(xδk)− 1
2‖F(xδk)− yδ+ J(xδk)pk‖2

.

2.4 If ρk(pk)< η,set ∆k = γ∆k.
Until ρk(pk)≥ η.
3. Set xδk+1 = xδk + pk.

Assumption 5.7. J(x) is Lipschitz continuous in a neighbourhood of the level set
L = {x ∈Rn s.t. fδ(x)≤ fδ(x0)} with Lipschitz constant L.

Notice that this assumption is commonly made in ill-posed problem context,
cf. [67]. We will consider first the noise free case and then the noisy case.

5.3.1 Noise free case

In this section we consider noise free problems, we assume that δ= 0 and we drop
the symbol δ from the generated sequence, the data y and the function.

We prove the local convergence properties of the method. As in the zero resid-
ual case, we assume that there exists a specific iterate k̄ such that xk̄ is sufficiently
close to a solution of (3.1) and inequality (5.6) holds in a neighbourhood of such
iterate.

Assumption 5.8. Let δ = 0 and x† be a solution of (3.1). Suppose that for some
iteration index k̄ there exist r > 0, c > 0 and σ ∈ (0, q) such that inequality (5.6)
holds for any x, x̃ ∈ B2r(xk̄) and

‖xk̄ − x†‖ <min
{ q−σ

c
, r

}
. (5.30)

In the following Lemma we show that, under the previous assumptions, (5.9)
holds for all k ≥ k̄ and therefore by Lemma 5.2 the error decreases monotonically
for k ≥ k̄.

Lemma 5.9. Assume that Assumption 5.8 holds. Let ek = x†−xk and pk computed
at step 2.2 of Algorithm 5.1. Then, it exists θk > 1 such that condition (5.9) holds
for all k ≥ k̄.
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Proof. From the choice of ∆k at step 1 of Algorithm 5.1 and Lemma 5.6 it follows
that the step pk satisfies condition (5.5). From (5.5) and (5.6) we obtain

‖Mg
k̄
(e k̄)‖ ≤ (

c‖e k̄‖+σ
)‖J(xk̄)T(F(xk̄)− y)‖ ≤

≤
( c‖e k̄‖+σ

q

)
‖Mg

k̄
(pk̄)‖,

so that condition (5.9) is satisfied for k = k̄ with θk̄ = q
c‖e k̄‖+σ > 1 from Assump-

tion 5.8. From Lemma 5.2 it follows ‖e k̄+1‖ < ‖e k̄‖ so that xk̄+1 ∈ B2r(xk̄)∩Br(x†)
and Assumption 5.8 holds also for k = k̄+1. Repeating the above arguments, by
induction it is possible to prove that condition (5.9) holds for all k ≥ k̄, with

θk =
q

c‖ek‖+σ
> 1. (5.31)

In the next Lemma some important features of the procedure are shown.

Lemma 5.10. Suppose that Assumption 5.8 holds and g(xk) 6= 0. Then, Algorithm
5.1 generates a sequence {xk} such that, for k ≥ k̄,

(i) λk > 0, and xk belongs to B2r(xk̄)∩Br(x†);

(ii) ‖xk+1 − x†‖ < ‖xk − x†‖, θk+1 > θk.

Proof. From the choice of ∆k at step 1 of Algorithm 5.1 and Lemma 5.6 it follows
that the step pk computed at step 2.2 satisfies condition (5.5), so λk ≥λq

k > 0.
From Lemma 5.9, Lemma 5.2 holds for all k ≥ k̄ and (5.11) implies that the

sequence {‖xk − x†‖}∞
k=k̄

is monotonic decreasing. As a consequence, xk belongs to
B2r(xk̄)∩Br(x†) for all k ≥ k̄ and from (5.31), θk+1 > θk for all k ≥ k̄.

Remark 5.11. Lemma 5.10 shows that λk is strictly positive, then from (5.17c) it
follows that ‖zk‖ = ∆k, i.e. the Trust Region is active, to produce a regularizing
effect. This feature is shared also by the Trust-Region method proposed for the zero
residual case.

In the next theorem we prove convergence of the sequence {xk} to a point be-
longing to S ∩ B̄r(x†) where

S = {x | J(x)T(y−F(x))= 0}. (5.32)

Theorem 5.12. Suppose that Assumption 5.8 holds. Then, the sequence {xk} gen-
erated by Algorithm 5.1 converges to a solution x∗ of (3.1) such that ‖x∗− x†‖ ≤ r.

Proof. Let k̄ as in Assumption 5.8. Lemma 5.9 and 5.10 show that (5.11) holds for
all k ≥ k̄ with θk given in (5.31). Let ek = x† − xk, k̄ ≤ j < k and l between j and k
such that

‖J(xl)T(y−F(xl))‖ = min
j≤i<k

‖J(xi)T(y−F(xi))‖.
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Let γ̄ = c‖x† − xk̄‖ ≥ c‖x† − xi‖ for all i ≥ k̄. Using (5.6) and the definition of l we
obtain for all j ≤ i < k

‖Bi e l‖ ≤‖− g i −Bi(x† − xi)‖+‖gl − g i −Bi(xl − xi)‖+‖gl‖
≤(c‖x† − xi‖+σ)‖g i‖+ (c‖xl − xi‖+σ)‖gl − g i‖+‖gl‖
≤(c‖x† − xi‖+2σ+ c‖xl − xi‖)‖g i‖+ (c‖xl − xi‖+σ+1)‖gl‖
≤(3c‖x† − xi‖+2c‖x† − xl‖+3σ+1)‖g i‖
≤(5γ̄+3σ+1)‖g i‖ = c̃‖g i‖

where c̃ = 5γ̄+3σ+1, so that

‖Bi e l‖ ≤ c̃‖g i‖, (5.33)

for all j ≤ i < k. Taking into account that pk belongs to the range space of B1/2
k ,

from (5.10) and (5.33) we obtain that for k > j ≥ k̄:

| < e l − ek, e l > | =
∣∣∣∣∣k−1∑

i=l
< pi, e l >

∣∣∣∣∣=
∣∣∣∣∣k−1∑

i=l
< B+

i pi,Bi e l >
∣∣∣∣∣=

∣∣∣∣∣k−1∑
i=l

1
λi

< Mg
i (pi),Bi e l >

∣∣∣∣∣
≤

k−1∑
i=l

1
λi

‖Mg
i (pi)‖‖Bi e l‖ ≤

k−1∑
i=l

c̃
λi

‖Mg
i (pi)‖‖g i‖.

From (5.5)

| < e l − ek, e l > | ≤
k−1∑
i=l

c̃
qλi

‖Mg
i (pi)‖2.

Thus (5.11) yields

| < e l − ek, e l > | ≤
k−1∑
i=l

c̃
2q

θi

θi −1
(‖e i‖2 −‖e i+1‖2)≤βk̄(‖e l‖2 −‖ek‖2), (5.34)

where βk̄ =
c̃

2q
θk̄

θk̄ −1
and we have used θi/(θi−1)< θk̄/(θk̄−1) since function θ/(θ−1)

is monotonic decreasing and sequence θk is monotonic increasing (see Lemma
5.10). Similarly, it is possible to show that

| < e l − e j, e l > | ≤βk̄(‖e j‖2 −‖e l‖2). (5.35)

Then from (5.34) and (5.35) it follows

‖ek − e l‖2 = 2< e l − ek, e l >+‖ek‖2 −‖e l‖2 ≤ (2βk̄ +1)(‖e l‖2 −‖ek‖2),

‖e l − e j‖2 = 2< e l − e j, e l >+‖e j‖2 −‖e l‖2 ≤ (2βk̄ +1)(‖e j‖2 −‖e l‖2),

‖xk − x j‖2 = ‖ek − e j‖2 ≤ ‖ek − e l‖2 +‖e l − e j‖2.

Since the sequence {‖ek‖} is bounded from below and monotonic decreasing, hence
convergent, it follows that {xk} is a Cauchy sequence, i.e. {xk} converges to a limit
point x∗. As xk ∈ Br(x†) for k ≥ k̄, it follows ‖x∗− x†‖ ≤ r.
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5.3.2 Noisy case

Here, we assume δ> 0 and we show the regularizing properties of the method in
case of noisy data. We assume that there exists a specific iterate xδ

k̄
sufficiently

close to a solution x† of (3.1) and that inequality (5.6) holds in a neighbourhood of
such iterate. The proofs of some results are similar to those of their counterpart,
stated in the zero residual case. Then, for ease of readability of the thesis, these
proofs are reported in the Appendix.

Assumption 5.13. Let δ > 0 and x† be a solution of (3.1). Suppose that for some
iteration index k̄ < k∗(δ), with k∗(δ) defined in (5.2), there exist r > 0, c > 0 and
σ ∈ (0, q) such that inequality (5.6) holds for any x, x̃ ∈ B2r(xδ

k̄
). Moreover assume

that it exists a positive constant KJ such that

‖J(x)‖ ≤ KJ

for any x belonging to the level set L = {x ∈ Rn s.t. fδ(x) ≤ fδ(x0)} and that xδ
k̄

satisfies

‖xδk̄ − x†‖ <min
{

(q−σ)τ−KJ(σ+1)
c(KJ +τ)

, r
}

, with τ> KJ(σ+1)
q−σ . (5.36)

Notice that in problems we are dealing with, bound KJ is generally not large,
typically of the order of the unit. Moreover, in the numerical results section we
will show that the behaviour of our procedure does not depend strongly on the
choice of q. Then, it is possible to ensure q−σ to be positive and reasonably far
from zero without affecting the method performance.

Lemma 5.14. Assume that Assumption 5.13 holds and let ek = x† − xδk and pk

computed at step 2.2 of Algorithm 5.1. Then, it exists θk > 1 such that condition
(5.9) holds for all k̄ ≤ k < k∗(δ).

Proof. By (5.6) and (3.2) we obtain

‖Mg
k̄
(e k̄)‖ = ‖J(xδk̄)T(F(xδk̄)− yδ+ J(xδk̄)(x† − xδk̄))‖

≤ ‖J(xδk̄)T(yδ− y)‖+‖J(xδk̄)T(F(xδk̄)− y+ J(xδk̄)(x† − xδk̄))‖
≤ KJδ+ (c‖x† − xδk̄‖+σ)‖J(xδk̄)T(y−F(xδk̄))‖
≤ (1+ c‖x† − xδk̄‖+σ)KJδ+ (c‖x† − xδk̄‖+σ)‖J(xδk̄)T(yδ−F(xδk̄))‖.

From the choice of ∆k at step 1 of Algorithm 5.1 and Lemma 5.6 it follows that
the step pk satisfies condition (5.5). Then, at iteration k̄, conditions (5.2) and (5.5)
give

‖Mg
k̄
(e k̄)‖ ≤

(
KJ

1+ c‖x† − xδ
k̄
‖+σ

τ
+ (c‖x† − xδk̄‖+σ)

)
‖J(xδk̄)T(yδ−F(xδk̄))‖

≤
(
KJ

1+ c‖x† − xδ
k̄
‖+σ

qτ
+

c‖x† − xδ
k̄
‖+σ

q

)
‖Mg

k̄
(pk̄)‖,
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which yields (5.9) at k = k̄ with θk̄ = qτ
KJ + c(KJ +τ)‖x† − xδ

k̄
‖+σ(KJ +τ)

> 1 from

(5.36). Then, Lemma 5.2 holds for k = k̄ and ‖xk̄+1 − x†‖ < ‖xk̄ − x†‖, so that (5.36)
also holds for k = k̄+1. Repeating the above arguments, by induction we can prove
that, for k̄ < k < k∗(δ), condition (5.9) holds, with θk =

qτ
KJ + c(KJ +τ)‖x† − xδk‖+σ(KJ +τ)

>
1.

Next Lemma shows key properties of Algorithm 5.1. The proof follows the
lines of Lemma 4.18 and it is reported in the Appendix.

Lemma 5.15. Suppose that Assumptions 5.7 and 5.13 hold. Then, Algorithm 5.1
generates a sequence {xδk} such that, for k̄ ≤ k < k∗(δ),

(i) λk > 0 and xδk belongs to B2r(xδ
k̄
)∩Br(x†);

(ii) ‖xδk+1 − x†‖ < ‖xδk − x†‖, θk+1 > θk;

(iii) there exists a constant λ̄> 0 such that λk ≤ λ̄.

Finally, exploiting the previous results, in Theorem 5.16 we show that, given
a sequence {δn} of noise levels, under suitable assumptions, the sequence of com-
puted approximations {xδn

k∗(δn)} converges to a stationary point of (3.1) whenever δn

tends to zero. As in Theorem 4.19 we assume that ρk(xk+1 − xk) 6= η, for all k ≥ 0.
Under this assumption the Trust-Region radius ∆k selected in Algorithm 5.1, and
the scalar λk, implicitly defined by the Trust-Region problem, depend continu-
ously on δ in a right interval of the origin. Indeed, the same considerations on the
continuous dependence of the iterates on the noise, reported just before Theorem
4.19, also hold in this case. The proof of the Theorem is reported in the Appendix.

Theorem 5.16. Suppose that Assumptions 5.7 and 5.13 hold.

(i) The iterates generated by Algorithm 5.1 satisfy the stopping criterion (5.2)
after a finite number k∗(δ) of iterations.

(ii) Suppose further that the sequence {xk} generated with the exact data y satis-
fies ρk(xk+1− xk) 6= η, for all k. Then the sequence {xδk∗(δ)} converges to a point
belonging to S ∩ B̄r(x†), where S is defined in (5.32), whenever δ tends to
zero.

5.4 Constrained case

In many practical applications one has to deal with problems with constraints on
the variables. Non-stationary iterated Tikhonov methods for linear least squares
problems with convex constraints have been considered in [17]. Let Ω ∈ Rn be a
closed and convex set and consider the following problem:

min
x∈Ω

fδ(x)= 1
2
‖F(x)− yδ‖2. (5.37)
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Let PΩ :Rn →Ω be the metric projection of Rn on Ω:

PΩ(x)= argmin
y∈Ω

1
2
‖x− y‖2,

for all x in Rn. We assume that a solution x† ∈Ω exists and the computation of the
projection PΩ is not computationally expensive.

The procedure described in Section 5.2 can be modified as outlined in Algo-
rithm 5.2 in order to handle the constraints and preserve its local properties. In
what follows we consider the noisy case.

Algorithm 5.2 k-th iteration of the elliptical regularizing Trust-Region method
for problem (5.37)

Input: xδk, η ∈ (0,1), γ ∈ (0,1), 0< Cmin < Cmax, q ∈ (0,1), yδ.

1. Choose ∆k ∈
[
Cmin‖B1/2

k gk‖, min
{

Cmax,
1− q
‖Bk‖2

}
‖B1/2

k gk‖
]

.

2. Compute the solution zk of Trust-Region problem (5.16) and set pk = B1/2
k zk.

3. Set xδk+1 = PΩ(xδk + pk).

In Algorithm 5.2 we do not enforce the decrease of the objective function, as
our aim here is just to sketch a local procedure for the constrained problem. A
global convergent procedure for the noise free case would require more sophis-
ticated strategies for handling the constraints and at the same time providing
regularization properties. Then the role of the Trust Region is just that of provid-
ing a step satisfying (5.5). This step is used to compute the updated point xδk + pk

that is then projected on the feasible set, so that the new solution approximation
is computed as xδk+1 = PΩ(xδk + pk). This way the generated sequence xδk belongs
to Ω. All the local properties of the procedure are maintained, in particular the
monotone decrease of the error thanks to the following remark:

Remark 5.17. Since x† ∈Ω, ‖PΩ(xδk + pk)− x†‖ ≤ ‖xδk + pk − x†‖.

Lemma 5.18. Assume that x† is a solution of (5.37). Assume that there exists
θk > 1 such that condition (5.9) holds. Let xδk+1 = PΩ(xδk + pk) with pk computed at
step 2 of Algorithm 5.2. Then (5.11) holds.

Proof.

‖xδk+1 − x†‖2 −‖xk − x†‖2 =‖PΩ(xδk + pk)− x†‖2 −‖xk − x†‖2 ≤
≤ ‖xδk + pk − x†‖2 −‖xk − x†‖2,

and the thesis can be obtained repeating the proof of Lemma 5.2 since the step
computed in step 2 of Algorithm 5.2 satisfies (5.10).

Thanks to this key result, proofs of Lemmas 5.14-5.15 and Theorem 5.16 can
be repeated. In this regard we underline that the proof of point (iii) of Lemma
5.15 (see the Appendix) simplifies as the upper bound on λk is given by inequality
(A.1) as ∆k is chosen at step 1 of Algorithm 5.2 and it is not further reduced.
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5.5 Numerical results

In this section, we report on the numerical behaviour of our procedure, that we
are going to address as elliptical regularizing Trust-Region, in case of noisy data.
We have selected four nonlinear ill-posed least squares problems. Problems R1,
R2 arise from the discretization of two parameter identification problems, while
R3, R4 are originally formulated as discrete problems. In the following we are
going to denote with ‖ ·‖ the Euclidean norm.

• R1: A 1D parameter identification problem. We consider the
following problem [21, 75]. We want to reconstruct c in the 1D-elliptic prob-
lem

−auxx + cu =ϕ in (0,1) (5.38a)

u′(0)= 0, u′(1)= 0, (5.38b)

given u,ϕ ∈ L2(0,1). Identifying c reduces to solve for a given approximation
ū of a solution of (5.38) the following nonlinear least squares problem:

min
c

‖F(x)− ū‖2
L2 ,

for F the operator mapping c to the corresponding solution of (5.38). We
choose a = 4, ϕ given by (5.38a) with

c(x)=
p

2cos(2πx)+2, (5.39)

u(x)= cos(2πx)+2. (5.40)

We assume the realistic situation in which both the solution u given in
(5.40) of the partial differential equation and the function ϕ are known just
in n points, {t1, . . . , tn} ⊂ (0,1). We define then ϕ̃ and ũ the piecewise lin-
ear functions built interpolating respectively {(ti,ϕ(ti))} and {(ti,u(ti))} for
i = 1, . . . ,n. We point out ũ cannot be an attainable solution, since all the
solutions u(c) of (5.40) are such that u(c) ∈ H2(0,1) = { f ∈ L2(0,1) |Dα f ∈
L2(0,1)∀α : |α| ≤ 2} for all c ∈ L2(0,1). We look for a piecewise linear approxi-
mation to c. We discretize the problem using finite differences. Let us denote
with L the matrix arising from the discretization of the differential operator
−auxx on the grid xi = (i−1)h, h = 1/(N −1), i = 1, . . . , N. We choose N = 113
and n = 39. Let ϕ̄, ū ∈ RN be such that ϕ̄i = ϕ̃(xi), ūi = ũ(xi), i = 1, . . . , N and
define for c ∈RN F(c)= (L+ diag(c))−1ϕ̄, with diag(c) ∈Rn×n and we solve

min
c∈RN

1
2
‖F(c)− ū‖2. (5.41)

If we denote with c∗ the solution approximation found with exact data, it
holds ‖F(c∗)− ū‖ ∼ 1.e−3. For this test problem the exact form of the the
Jacobian matrix of F is given by:

J(c)=−(L+diag(c))−1(diag(F(c))). (5.42)
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• R2: A 2D parameter identification problem. We consider the
2D version of problem R1 with a = 1. Namely we want to reconstruct c in
the 2D-elliptic problem

−∆u+ cu =ϕ in Ω (5.43a)

u = ζ on ∂Ω (5.43b)

from the knowledge of u in Ω = (0,1)× (0,1), ϕ ∈ L2(Ω) and ζ the trace of a
function in H2(Ω). This problem has been widely studied, see for example
[92, 98].

We consider the discretized version of the arising nonlinear least squares
problem, obtained as described in [92]. Namely problem (5.43a)-(5.43b) was
discretized using finite differences choosing as grid points xi = yi = i−1

n−1 ,
for i = 1, . . . ,n and n = 50, and using lexicographical ordering, denoted by
l : {1, . . . ,n2}→ {1, . . . ,n2}. Let us denote by A the matrix arising from the dis-
cretization of the Laplacian operator, with ϕ̄= [ϕ̄1, . . . , ϕ̄n2]T , where ϕ̄l(i, j) =
ϕ(xi, yj). Moreover for c ∈ Rn2

we define F(c) = (A + diag(c))−1ϕ̄. Then,
F :Rn2 →Rn2

, and the resulting discrete problem is a nonlinear least squares
problem of size n2 = 2500:

min
c∈Rn2

1
2
‖F(c)− ū‖2,

for a given ū ∈ Rn2
. For further details see [92]. Our experiments were

conducted choosing as a parameter to be identified

c(x, y)= 1.5sin(4πx)sin(6πy)+3((x−0.5)2 + (y−0.5)2)+2.

The solution u(x, y) of (5.43) corresponding to this choice of c(x, y) is u(x, y)=
16x(1− x)y(y− 1)+ 1. Function ϕ in (5.43) has been defined from (5.43a)
and the data ū are artificially set as a perturbation of [u1, . . . ,un2] with
ul(i, j) = u(xi, yj), to let c† = [c†

1, . . . , c†
n2]T , where c†

l(i, j) = c(xi, yj), be a station-
ary point with strictly positive residual. Specifically ‖J(c†)T(F(c†)− ū)‖ = 0
and ‖F(c†)− ū‖ ' 0.1, for J the Jacobian matrix of F.

For this test problem the exact form of the the Jacobian matrix of F is given
by:

J(c)=−(A+diag(c))−1(diag(F(c))). (5.44)

• R3: A test problem arising in geophysics [25]. Starting
from electromagnetic data collected by a ground conductivity meter (GCM),
the aim is to reconstruct the electrical conductivity x of the soil with respect
to depth z. The GCM contains two small coils, a transmitter and a receiver,
whose axes can be aligned either vertically or horizontally with respect to
the ground surface. An alternating sinusoidal current in the transmitter
produces a primary magnetic field , which induces small eddy currents in
the subsurface. These currents, in turn, produce a secondary magnetic field,
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which is measured, together with the primary field, at the receiver. The ra-
tio of the secondary to the primary magnetic fields is then used to estimate
the conductivity of the subsurface. Starting from this ratio, one can obtain
the predicted values of the apparent conductivity measurement mV (x,h)
(vertical orientation of coils) and mH(x,h) (horizontal orientation of coils)
at height h above the ground, which depend on the value x of the conduc-
tivity. The nonlinear model employed is the one described in [106, 108], and
further analyzed and adapted to the case of a GCM in [57], which is de-
rived from Maxwell’s equations, keeping in mind the cylindrical symmetry
of the problem, [25]. See [25, §2] for a more detailed description. We as-
sume the soil to be divided in n layers, so that xi is the conductivity in each
layer and x = (x1, . . . , xn)T . Multiple measurements are needed to recover
the distribution of conductivity with respect to depth. In order to obtain
such measurements, we assume to use the two admissible loop orientations
and to record apparent conductivity at height hi, i = 1, . . . ,m. This generates
2 sets of m values: bV = (bV

1 , . . . ,bV
m) and bH = (bH

1 , . . . ,bH
m). Let us denote by

r(x) the error in the model prediction:

r(x)= b−mC(x), b =
[

bV

bH

]
, mC(x)=

[
mV (x,h)
mH(x,h)

]
.

The problem of data inversion consists of computing the conductivity x solv-
ing

min
x

1
2
‖r(x)‖2.

We assume that the conductivity distribution is a function of the depth, x =
φ(z). In our experiments we used the piecewise linear function

φ(z)=
8z+1

5 if z ≤ 0.5,
−2z+6

5 if z > 0.5,

expressed in Siemens/meter, with respect to the depth z, measured in me-
ters. This implies the presence of a strongly conductive material at a given
depth. We assume the measurements to be taken at different heights hi =
(i−1)h̄ above the ground, i = 1, . . . ,m, for a chosen height step h̄. We divide
the soil into n = 60 layers, up to the depth of 2.5 meters, each of thickness
d̄ = 2.5/(n−1), selecting different depths under the ground level, [z1, . . . , zn],
where we let z j = ( j−1)/d̄, j = 1, . . . ,n. We apply our method to synthetic data
sets. We generate synthetic measurements at m = 40 equispaced heights up
to 1.9 meters to let x† = (φ(z1), . . . ,φ(zn)) be a stationary point such that
‖mC(x†)−b‖ ' 0.48. Note that we are approximating the true electrical con-
ductivity with a mathematical model, so it is reasonable to expect it to fit
the data with a nonzero residual, even in the case of exact data. On this
test problem also bound constraints are present, as the solution must be
positive. Then, we employ the projection strategy described in Section 5.4.
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• R4: A fitting of a sum of two exponentials. Given the model

y(t)= x1e−x2t + x3e−x4t, (5.45)

we would like to recover the set of parameters x† solving the following dis-
crete least squares problem:

min
x=[x1,x2,x3,x4]T

1
2
‖F(x)− y‖2, y=


y1
...

ym

 , F(x)=


x1e−x2t1 + x3e−x4t1

...
x1e−x2tm + x3e−x4tm

 ,

where the observations (ti, yi) i = 1, . . . ,m, are given as follows. The points ti

are equispaced in [0,10] and yi have been chosen to let x† = [0.2,−5,0.4,−100]T

be a minimum of the problem with nonlinear residual ‖F(x†)− y‖ of the or-
der of 0.54, when we fit the data with model (5.45). The experiments were
conducted choosing m = 1000.

In the following, for uniformity of notation, for all the tests we assume that the
minimization problem to be solved is

min
x

1
2
‖F(x)− y‖2

and we will denote with x∗ the solution approached when the minimization prob-
lem is solved with exact data.

First of all, our method relies on Assumption 5.6 for the proof of the regulariz-
ing properties. In Chapter 6 we will prove that it holds for a slightly more general
version of problem (5.38). Here, we report numerical evidence for the assump-
tion, on all the test problems. Specifically, in Figure 5.2 we plot ‖∇ f (x̃)−∇ f (xk)−
J(xk)T J(xk)(x̃− xk)‖ (dashed line) and (c‖x̃− xk‖+σ)‖∇ f (x̃)−∇ f (xk)‖ (solid line),
where x̃ ∈ Bρ(xk). We have chosen c = 0.1, ρ = 0.3 and σ equal to the residual
‖F(x∗)− y‖. We notice that condition

‖∇ f (x̃)−∇ f (xk)− J(xk)T J(xk)(x̃− xk)‖ ≤ (c‖x̃− xk‖+σ)‖∇ f (x̃)−∇ f (xk)‖,

is satisfied for xk approaching x∗. We repeated these tests varying x̃ ∈ Bρ(xk) and
we obtained qualitatively the same results.

We are then ready to describe the practical implementation of the method.
All procedures were implemented in MATLAB and run using MATLAB 2015A on
an Intel Core(TM) i5-2467M 1.6 GHz, 4 GB RAM; the machine precision is εm ∼
2 ·10−16. The Trust-Region procedure was implemented according to Algorithm
5.1.

The major implementation issues are as follows. Regarding the Jacobian ma-
trix of F the analytical expression was used for all test problems. Specifically for
problems R1, R2 the exact Jacobian matrices are given in (5.42) and (5.44), for
problem R3 the exact analytical formulae is developed in [25] and for problem R4

it is easily computable.
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Figure 5.2: Numerical evidence for Assumption 5.6: plot of ‖∇ f (x̃)−∇ f (xk)− J(xk)T J(xk)(x̃− xk)‖
(dashed line) and (0.1‖x̃− xk‖+σ)‖∇ f (x̃)−∇ f (xk)‖ (solid line) for x̃ randomly chosen in Bρ(xk),
ρ = 0.3, for problem R1 (top left, σ= 4 ·10−3), R2 (top right, σ= 0.1), R3 (bottom left, σ= 0.48), R4
(bottom right, σ= 0.54).

To compute the square root of matrix Bk we use the singular value decomposi-
tion of the Jacobian provided by MATLAB function svd.

In case of noisy problems, given the error level δ, the exact data y was per-
turbed by normally distributed values with mean 0 and variance δ2 using the
MATLAB function randn.

To compute the KKT point (zk,λk) at Step 2 we need to solve (5.17). To com-
pute the square root of Bk we need to know its singular value decomposition, that
we compute with the Matlab function svd. The computation of λk can be accom-
plished solving the following nonlinear scalar equation:

ψ(λ)= 1
‖z(λ)‖ −

1
∆k

,

since the Trust Region is ensured to be active, see Section 2.2.1.1. Typically high
accuracy in the solution of the above scalar equations is not needed, hence we
terminated the Newton process as soon as |∆k −‖z(λ)‖| ≤ 10−2∆k [22, §7.3.10].
The linear systems we have to deal with in the Newton method take the form
B2

k +λkI. Taking into account that λk is always bounded away from zero, this
allows to overcome the ill-conditioning of B2

k that arises from the smallest singular
values close to zero.

Algorithms 5.1 and 5.2 were run setting η= 10−1. In Step 1 the Trust-Region
radius was updated as follows

∆0 = µ0‖B1/2
k gk‖ µ0 = 10−1

∆k+1 = µk+1‖B1/2
k+1 gk+1‖, µk+1 =


1
6
µk if qk < q or ρk < η2

2µk if qk > νq and ρk > η2

µk otherwise

,
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Figure 5.3: (a): Test problem R1, δ= 10−2. Obtained values of qk. (b): Test problem R4, δ= 10−2.
Dependence of the relative error between computed solution xδk∗(δ) and x∗ on the parameter q.

with qk = ‖Bk pk+gk‖
‖gk‖ , ν = 1.1 and η2 = 0.25. The maximum and minimum values

for ∆k were set to ∆max = 104 and ∆min = 10−12 and the maximum value for µk

was set to 105. This updating strategy is analogous to the one used in Chapter
4 and it is based on the same considerations, with the only exception that the
Trust-Region radius is proportional to ‖B1/2

k gk‖ rather than to the norm of the
residual, see Section 4.4. This updating strategy turned out to be efficient in
practice. As an example we report in Figure 5.3 (a) the obtained values of qk for
problem R1 for δ = 10−2. We can see that for almost all the iterations the values
qk are greater than the chosen value q = 0.8, marked by the horizontal solid line,
so the generalized q-condition is fulfilled.

The free parameter q was set equal to 0.8, but this choice is not critical. Ac-
tually, the behaviour of the procedure does not seem to be deeply affected by the
value of q. As an example we show in Figure 5.3 (b) for the test problem R4 the

value of the relative error
‖x∗−xδk∗(δ)‖

‖x∗‖ between the solution x∗ approached with ex-
act data and that computed with δ= 10−2, for different values of parameter q. We
notice that the error does not vary significantly depending on q.

The scalar τ in the discrepancy principle (4.7) was chosen adaptively as τk =
τ̄‖J(xδk)‖, with τ̄= 0.1. The value of τ̄ is not in agreement with Assumption 5.13,
but in practice σ is not known and the numerical tests provide an evidence of the
effectiveness of this stopping rule. As τk depends on k, the stopping rule changes
at each iteration. However, τk varies only slightly along the iterations as ‖J(xδk)‖
is almost constant. Values of τk used in our tests, for δ= 10−2, are as follows:

• R1: ‖J(xδk)‖ ' 0.04 and τk ' 4 ·10−3,

• R2: ‖J(xδk)‖ ' 10−2 and τk ' 10−3,

• R3: ‖J(xδk)‖ ' 10−1 and τk ' 10−2,

• R4: ‖J(xδk)‖ ' 5 and τk ' 0.5.

In agreement with the theory, the error is monotonically decreasing as long as
the discrepancy principle is not satisfied, as we show for example in Figure 5.4 (a),
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Figure 5.4: Test R2, δ= 10−2. Upper part: The procedure is stopped when the discrepancy principle
is satisfied, the norm of the error decreases monotonically (a). Lower part: The procedure is not
stopped when the discrepancy principle is satisfied, the norm of the relative error increases (b) and
a solution of the noisy problem is approached (c).

in which we report the decrease of the relative error
‖x∗−xδk‖
‖x∗‖ between the solution

approached with exact data and the current iterate xδk, varying k for problem
R2 with δ = 10−2. Iterating further is not useful and it can also lead to a new
increase in the norm of the error, as it is shown at the bottom of Figure 5.4. The
procedure was not stopped when the discrepancy principle was satisfied and the
error started to increase (b), as the sequence approaches a solution of the noisy
problem (c).

The stopping criterion alone is not sufficient to obtain a regularizing method.
To show this, we implemented a standard Trust-Region procedure, analogously to
Section 4.4, see (4.46).

In Figure 5.5 we compare for problem R2 with δ = 10−2 the solution x∗ ap-
proached with exact data (a), and the solution approximations computed by the
standard (b) and the regularizing Trust-Region (c) approaches. It is clear that
while the elliptical regularizing Trust-Region method manages to handle the noise
in the data, the sequence generated by the standard Trust-Region method con-
verges to a solution of the noisy problem.

In Figures 5.6 and 5.7 we study the behaviour of the method depending on
the noise level. In Figure 5.6 we report the contour plots of the computed solution
approximations for problem R2 with δ= 0,10−2,10−4. We can see that as the noise
level decreases, according to the theory, the computed solution approaches a min-
imum of the problem. In fact, as δ decreases, the contour plots become more and

103



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

 

 

(a)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

 

 

(b)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

 

 

(c)

Figure 5.5: Test R2. Upper part: solution approximation x∗ obtained with exact data (a). Lower
part: solution approximations obtained with standard Trust-Region (b) and elliptical regularizing
Trust-Region (c) for δ= 10−2.
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Figure 5.6: Contour plots of solution approximations of problem R2 for different noise levels, δ =
0,10−2,10−4.
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Figure 5.8: Test problem R3 with δ= 10−2: plot of the true solution x† and of the computed solution
xδk∗(δ) for δ= 10−2 (a), regularization parameters λk (b).

more similar to that obtained for δ= 0. In Figure 5.7 (a) we consider problem R1.
We compare the solution approximations computed with δ = 0 (x∗, dashed line),
δ = 10−3 (dotted line) and δ = 10−2 (dash-dotted line), and x† = [c(x1), . . . , c(xN)]T

with c in (5.39) (solid line). We notice that the solution approximation improves
with decreasing noise and that x∗, which is computed with exact data, is a good
approximation to x†. In Figure 5.7 (b) we observe for problem R4 the reduction of

the relative error
‖x∗−xδk∗(δ)‖

‖x∗‖ with the noise level δ.
In Figure 5.8 we consider test problem R3 with δ= 10−2. We report the plot of

the true solution x† and that of the computed solution xδk∗(δ) for δ = 10−2 (a), and
the plot of the computed regularization parameters λk (b). We can see that the
regularized solution is a good approximation of x† and that, in accordance to the
theory, the regularization parameters are strictly positive and bounded above.

5.6 Chapter conclusion

In this chapter we considered a wider class of problems than that considered in
the previous one. We addressed the solution of problems of the form (3.1) for which
a solution of the associated nonlinear system may not exist, so that the residual
at any local minimum x† will be ‖F(x†)− y‖ ≥ 0. We proposed a non-stationary

105



iterated Tikhonov procedure to solve nonlinear ill-posed least squares problems
with small residual. This represents an improvement in the study of ill-posed
nonlinear problems, as we are not aware of other methods specifically designed for
this class of problems. As for the zero residual case we provided a Trust-Region
reformulation of the method that allows us to set the regularization parameters
λk in an automatic way. Along with a suitable choice of matrix Lk this ensures
regularizing properties of the method and gives rise to a procedure able to find
a stable approximation of a solution of the unperturbed problem, even in case of
noisy data. We provided a theoretical analysis and a reliable implementation of
the proposed method that has been validated on different problems. The obtained
numerical results highlight the effectiveness of the procedure and its regularizing
properties.

We point out that the method proposed in this chapter is suitable also for zero
residual problems. However, if the problem is known to have zero residual it is
more advisable to use the method presented in Chapter 4, as it based on conditions
on the residual norm rather than on the norm on the gradient. Also, this method
does not require the computation of the SVD of the Jacobian and it is then cheaper.

Acknowledgments We thank the authors of [25] for providing us the Matlab
code for test problem R3.
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CHAPTER

6
Infinite dimensional setting

Many inverse problems are naturally formulated as infinite dimensional prob-
lems. This is the case for example for Fredholm integral equations or parameter
identification problems [21, 48, 98]. A large part of the literature on ill-posed in-
verse problems deals indeed with solution methods designed in Hilbert spaces.
The following is the setting that is typically considered. Given Hilbert spaces
X ,Y with inner products < ·, · > and norm ‖ · ‖, F : D(F )⊆X →Y is a nonlinear
map defined on D(F), which is assumed to be an infinite dimensional set. The
following problem is considered:

min
x∈D(F)

f (x)= 1
2
‖F(x)− y‖2, (6.1)

that is assumed to be ill-posed, in the sense that the solutions do not depend con-
tinuously on the data. This is the case for example when F has compact Fréchet
derivative F ′.

Many different possibilities arise in the solution of such problem. Many au-
thors propose procedures to deal directly with the infinite dimensional problem
[31, 50, 54, 67], others are concerned with the solution of projected version of the
continuous problem into finite dimensional subsets of the considered Hilbert space
[47, 72, 83]. In this latter case it is still possible to choose whether to consider fi-
nite approximations of just one between X ,Y [66, 96] or to discretize both spaces
[47, 48, 104]. In this cases usually a sequence of nested subspaces is considered,
and convergence of the sequence of solutions of the finite dimensional problems to
a solution of the infinite dimensional problem is studied.

In the following sections we consider then these two possible scenarios applied
to the approaches presented in this thesis. More precisely, in Section 6.1 we show
that the procedures that we have presented in the finite dimensional setting can
be easily adapted to an infinite dimensional setting. In Section 6.2 we consider
a sequence of solutions of finite dimensional problems, got projecting the infinite
dimensional one onto a sequence of nested finite dimensional subspaces. We prove
convergence of such a sequence to a solution of the infinite dimensional problem.

Finally, in Section 6.3 we consider Assumption 5.6. The methods in Chapters
4 and 5 rely respectively on Assumption 4.12 and Assumption 5.6 for the proof
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of their regularizing properties. While Assumption 4.12 is widely assumed in the
literature and it has been proved for many infinite dimensional problems, see
for example [31, Example 11.1] or [54], we introduced Assumption 5.6 in [S2].
We consider then a continuous model problem and we prove that Assumption 5.6
holds for it.

6.1 Procedures in the Hilbert setting

In this section we briefly point out how the procedures presented in a finite dimen-
sional setting in the previous chapters can be extended to a infinite dimensional
Hilbert setting. We particularly focus on what differs from the finite dimensional
case. Theoretical results analogous to those established in the finite dimensional
case can be proved, we do not repeat the proofs as their adaptation is straightfor-
ward. See for example [S2] for the extension of the method presented in Chapter
5 to an infinite dimensional Hilbert setting.

The underlying method is the same as in the finite dimensional case. The
step is found solving a minimization problem, that for zero and nonzero residual
problems would respectively be:

min
p

1
2
‖F(xδk)− yδ+F ′(xδk)p‖2 + λk

2
‖p‖2,

min
p

1
2
‖F(xδk)− yδ+F ′(xδk)p‖2 + λk

2
‖L

1
2
k p‖2,

for F ′ the Fréchet derivative of F and Lk : X →X a symmetric and positive defi-
nite regularizing operator.

Notations (3.6) are replaced by

Bk = F ′(xδk)∗F ′(xδk), f ′k = F ′(xδk)∗(F(xδk)− yδ),

where F ′∗ denotes the adjoint operator of F ′.
Given the Trust-Region radius ∆k > 0 and the current iterate xδk, the Trust-

Region subproblems (4.21) and (5.16), solved at generic iteration k become respec-
tively:

min
p

‖F(xδk)− yδ+F ′(xδk)p‖2,

s.t. ‖p‖ ≤∆k,

and

min
1
2
< z,B2

kz >+< B1/2
k f ′k, z >+ fδ(xδk),

s.t. ‖z‖ ≤∆k.

Both problems have a unique solution from [1, Theorems 9.2.7, 10.2.15, 10.3.4],
which is not as straightforward as in the finite dimensional case, as the closed ball
in a infinite dimensional Hilbert space will not be compact. They can be solved
respectively looking for a couple (λk, p(λk)) ∈R+×X solution of the KKT conditions
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(F ′(xδk)∗F ′(xδk)+λI)p(λ)=−F ′(xδk)∗(F(xδk)− yδ),

λ(‖p(λ)‖−∆k)= 0,

λ≥ 0,

‖p‖ ≤∆k,

and for a couple (λk, z(λk)) ∈R+×X solution of the KKT conditions

(F ′(xδk)∗F ′(xδk)+λI)z(λ)=−B
1
2
k f ′k,

λ(‖z(λ)‖−∆k)= 0,

λ≥ 0,

‖z(λ)‖ ≤∆k,

which is used to set p(λk)= B
1
2
k z(λk).

As in the finite dimensional setting, with the same choice of the Trust-Region
radius, the step guarantees monotonic decrease of the norm of the error and the
above proved regularizing properties. Indeed, all the results previously presented
are easily extensible to this setting. For example, all the theoretical results ob-
tained through the singular-value decomposition of the Jacobian matrix J(xδk)
can be repeated employing the singular value expansion of F ′(xδk). We indicate
with (σn; en, fn), n ∈N, the singular value expansion of F ′(xδk), where {en}n∈N and
{ fn}n∈N are a complete orthonormal system of eigenvectors for F ′(xδk)∗F ′(xδk) and
F ′(xδk)F ′(xδk)∗ respectively, and σn > 0 are written down in decreasing order with
multiplicity, with 0 being the only accumulating point for the sequence {σn}n∈N
when dimR(F ′(xδk))=∞. Then the following equalities hold:

F ′(xδk)h =
∞∑

n=1
σn < h, en > fn, h ∈X , F ′(xδk)∗h =

∞∑
n=1

σn < h, fn > en, h ∈Y .

Moreover, as F ′(xδk) is compact, its Moore-Penrose pseudoinverse can be defined
as [31, §2.1]

F ′(xδk)†h =
∞∑

n=1
σ−1

n < h, fn > en, h ∈D(F ′(xδk)†),

D(F ′(xδk)†)= {h ∈Y |
∞∑

n=1
σ−2

n | < h, fn > |2 <∞}.

Because for h ∈X , Bkh =∑∞
n=1σ

2
n < h, en > en, then also

B†
kh =

∞∑
n=1

σ−2
n < h, en > en, h ∈D(B†

k),

D(B†
k)= {h ∈X |

∞∑
n=1

σ−2
n | < h, fn > |2 <∞},

With these results we can repeat all the proofs in the finite dimensional setting,
that employ the singular value decomposition. All the other theoretical results
follow as straightforward adaptations of the presented proofs.
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6.2 Convergence to a solution of the infinite
dimensional problem

When an inverse problem is considered, even if it is originally formulated in a
Hilbert setting, for numerical computation one has to approximate the considered
space by a sequence of finite dimensional subspaces. Then, another interesting
topic is to consider the sequence of solutions of the finite dimensional problems got
projecting the original problem onto a sequence of finite dimensional subspaces of
increasing dimension. It is interesting to investigate if such sequence converges
to a solution of the infinite dimensional problem, when the dimension of the sub-
spaces tends to infinity.

Usually indeed, one assumes to consider two sequences of finite dimensional
subspaces, {Xn}⊆X and {Ym}⊆Y such that

Xn+1 ⊆Xn, |Xn| = n,

Ym+1 ⊆Ym, |Ym| = m,

where |·| denotes the space dimension. Then, defined Pn : X →Xn and Qm : Y →
Ym the projection operators, one considers a sequence of such problems:

min
x

1
2
‖Qm(F(Pnx)− y)‖2

Y . (6.4)

In general the sequence of projection operators {Qm}, {Pn} are assumed to point-
wise converge to the identity:

∀ f ∈Y Qm f → f as m →∞, ∀ f ∈X Pn f → f as n →∞.

This latter condition implies uniform boundedness of the two operators.
For example, if X ,Y = L2([a,b]) we can choose as finite dimensional subspaces

those of piecewise linear functions. Assume the nodes {z j}l
j=1 to partition interval

[a,b] into l−1 subintervals I j = [z j, z j+1] for j = 1, . . . , l−1. The space of piecewise
linear functions arising from this partition is defined as:

P l = { f ∈ C0([a,b]) | f is linear in I j for each j = 1, . . . , l−1}.

The dimension of such space is l. We define then as Qm,Pn the projection opera-
tor onto Pm,Pn respectively. We assume then to use the procedure presented in
Section 6.1 choosing X =Pn and Y =Pn.

We want to study the convergence of the sequence of solutions found solving
the projected problems to a solution of the infinite dimensional one when both
n,m go to infinity.

We denote with x̂∗n,m the solution found of problem (6.4) with X = P\ and
Y =Pm.

We assume F to be compact and weakly sequentially closed and we consider
the noise free case.
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We perform a local convergence analysis and we assume to have a starting
guess x̂0 ∈ Pn close enough to a solution of (6.4). Boundedness of the sequence
{x̂∗n,m} follows from the equivalent version of Theorem 5.12 stated in a Hilbert
setting (see for example Theorem 4.4 in [S2]) that states that for fixed n,m, pro-
vided that x̂0 is close to a solution of (6.4), it exists ε > 0 such that x̂∗n,m ∈ Bε(x̂0),
i.e. it holds ‖x̂∗n,m − x̂0‖L2 ≤ ε. Then ‖x̂∗n,m − x̂0‖L2 is bounded for all n and {x̂∗n,m}
has a weakly convergent subsequence {x̂∗n,m}k = wk. By compactness of F and
boundedness of ‖wk− x̂0‖L2 , there exists a subsequence wm of wk such that F(wm)
converges strongly to some f ∈Y . We want to show that the weak limit x∗∞ of wm

is a solution of the original problem. It holds:

‖F ′∗(F(wm)− y)‖L2 ≤ ‖PnF ′∗(F(wm)− y)‖L2 +‖(I −Pn)F ′∗(F(wm)− y)‖L2

≤ ‖PnF ′∗Qm(F(wm)− y)‖L2 +‖PnF ′∗(I −Qm)(F(wm)− y)‖L2

+‖(I −Pn)F ′∗Qm(F(wm)− y))‖L2 +‖(I −Pn)F ′∗(I −Qm)(F(wm)− y)‖L2 .

It holds

‖PnF ′∗(I −Qm)(F(wm)− y)‖L2 +‖(I −Pn)(I −Qm)F ′∗(F(wm)− y)‖L2

≤ (‖PnF ′∗‖+‖(I −Pn)F ′∗‖)‖I −Qm‖(‖F(wm)− f ‖L2 +‖ f − y‖L2) m→∞−−−−→ 0

from the pointwise convergence of Qm to the identity, the strong convergence of
F(wm) and the boundedness of ‖PnF ′∗‖+‖(I −Pn)F ′∗‖. With the same reasoning
also ‖(I−Pn)F ′∗(I−Qm)(F(wm)− y)‖L2 tends to zero as m tends to infinity. Finally,
as x̂∗n,m is the solution to (6.4), ‖PnF ′∗Qm(F(wm)− y)‖L2 = 0 for fixed n,m. Then
‖F ′∗(F(wm)− y)‖L2 tends to zero as n,m tend to infinity. Due to the weak sequen-
tial closedness of F, x∗∞ ∈ D(F) and F ′∗(F(x∗∞)− y)= 0 so that x∗∞ is a solution of th
infinite dimensional problem.

The proof is the same in case we consider a sequence of data {yl} such that
‖yl − y‖ ≤ δl for {δl} a sequence of noise levels tending to zero.

6.3 A model problem

In this section we consider a slightly more general version of the parameter iden-
tification problem (5.38) introduced in Section 5.5 and we prove that Assumption
5.6 holds for it.

Where not differently specified ‖·‖ indicates the L2 norm. We drop the domain
from all the spaces, as it is assumed to be (0,1), for example L2 = L2(0,1). We
remind that H2 = H2(0,1)= { f ∈ L2(0,1) |Dα f ∈ L2(0,1)∀α : |α| ≤ 2}.

Let us consider the following problem [21]. We want to reconstruct c in the
1D-elliptic problem

−(aux)x + cu =ϕ in (0,1) (6.5a)

Riu = 0, i = 1,2, (6.5b)
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given u,ϕ ∈ L2, a ∈ C1, a(x) ≥ ā > 0, Riu = αi1u(0)+αi2u′(0)+αi3u(1)+αi4u′(1),
αi j ∈R. Let A (c) be the differential operator in L2 associated with (6.5), i.e.

A (c)u =−(aux)x + cu, D(A )= {u ∈ L2 : u ∈ H2 , Riu = 0, i = 1,2}.

Throughout we make the following assumptions:

(H1) There exist constants α≥ 0 and ξ> 0 such that <A (c)u,u >≥ ξ‖u‖2
H1 , for all

u ∈ D(A ) and c ∈Q = {c ∈ L2 | c(x)≥α a.e.}.

(H2) The boundary conditions Ri i = 1,2 in (6.5b) are such that A (c) is self-
adjoint.

Let
U = {c ∈ L2 | c(x)≥α a.e., ‖c‖ ≤ γ},

for γ> α and F : D(F) → L2 be the operator mapping parameter c to the solution
u of (6.5), with

D(F)= {c ∈ L2 | ‖c− c̃‖ ≤ ε, for some c̃ ∈U }⊇U .

The following result will be useful in the analysis.

Lemma 6.1. [21, Lemma 2.1] Let (H1) hold. Then there exist constants κ1 > 0 and
κ2 = ‖a‖C1 +ε+γ such that

κ1‖u‖H2 ≤ ‖A(c)u‖ ≤ κ2‖u‖H2

holds for all c ∈ D(F) and u ∈ D(A ).

We allow c to vary in a finite dimensional subspace of U , as it is the case
in numerical practice. Let HN ⊂ L∞ be a finite dimensional subspace of L2, and
define UN = U ∩ HN . Identifying c reduces to solving the following nonlinear
problem

min
c∈UN

f (c)= 1
2
‖F(c)− ũ‖2, (6.6)

for ũ the actual observation. We define the set of attainable observations VN as
VN = {F(c) : c ∈ UN } ⊂ H2. Considering modelling errors, it is not reasonable in
general to assume that ũ ∈ VN , [21, p.2].

It can be proven that F is twice continuously Fréchet differentiable (cf. Lemma
2.4 and Lemma 2.5 in [21]). The first Fréchet derivative of F ′ and its adjoint, for
h ∈ L2, are given by [21]

F ′(c)h =−A (c)−1(hu(c)), F ′(c)∗w =−u(c)A (c)−1w.

The second Fréchet derivative F ′′(c)(h,k) = ξ(h,k) = ξ is the unique solution of
A (c)ξ=−kF ′(c)h−hF ′(c)k for h,k ∈ L2 [21].
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Let us consider a solution c∗ ∈ UN of (6.6). From the Taylor expansion of f ′

and (5.3) it holds

‖ f ′(c∗+ p)− f ′(c∗)−F ′(c∗)∗F ′(c∗)p‖ ≤∥∥∥∥∫ 1

0
[F ′(c∗+ tp)∗F ′(c∗+ tp)−F ′(c∗)∗F ′(c∗)]p dt

∥∥∥∥+∥∥∥∥∫ 1

0
S(c∗+ tp) p dt

∥∥∥∥
If the residual is small enough, it exists σ < 1 such that ‖S(c)‖ ≤ σ for all c in a
neighbourhood of the solution, c ∈U(c∗)∩D(F). Then,

‖ f ′(c∗+ p)− f ′(c∗)−F ′(c∗)∗F ′(c∗)p‖

≤
∫ 1

0
‖F ′(c∗+ tp)∗−F ′(c∗)∗]F ′(c∗)p dt‖

+
∫ 1

0
‖F ′(c∗+ tp)∗[F ′(c∗+ tp)−F ′(c∗)]p dt‖+σ‖p‖.

(6.7)

The proof of the following Lemma follows the lines of [98, Lemma 2.4], which
is concerned with the 2D version of problem (6.5) with a(x)≡ 1.

Lemma 6.2. Let H1 and H2 hold. Then, there exist K0,K1 such that for every c
and d in a neighbourhood of the solution U(c∗)∩D(F) and h ∈ L2

‖F ′(c)h−F ′(d)h‖ ≤ K0‖h‖‖c−d‖,

‖F ′(c)∗h−F ′(d)∗h‖ ≤ K1‖h‖‖c−d‖.
(6.8)

Proof. Let c,d ∈U(c∗)∩D(F). It holds

(A (c)−A (d))F ′(c)h+A (d)(F ′(c)−F ′(d))h = (u(d)−u(c))h,

so that

(F ′(c)−F ′(d))h =A (d)−1[(A (d)−A (c))F ′(c)h+ (u(d)−u(c))h]=A (d)−1w

with w = (c−d)A (c)−1hu(c)+ (u(d)−u(c))h. Notice that u(c) and u(d) satisfy

−(a(u(c)−u(d))x)x + c(u(c)−u(d))= (d− c)u(d)

with u(c)− u(d) ∈ D(A ). Thus, A (c)(u(c)− u(d)) = (d − c)u(d). From Lemma 6.1
and the fact that u(d) ∈ L∞, we find

‖u(c)−u(d)‖L∞ = ‖A (c)−1(d− c)u(d)‖L∞ ≤ C‖c−d‖,

for a positive constant C > 0. Then,

‖w‖ ≤ ‖A (c)−1hu(c)‖L∞‖c−d‖+‖(u(d)−u(c))h‖
≤ 2C‖c−d‖‖h‖.

For the second result in (6.8) we consider that

F ′(c)∗h−F ′(d)∗h =−[u(c)(A (c)−1h−A (d)−1h)+ (u(c)−u(d))A (d)−1h]

and we can proceed analogously as before.
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From (6.8) we obtain∫ 1

0
‖[F ′(c∗+ tp)∗−F ′(c∗)∗]F ′(c∗) p‖dt ≤ K(K1/2)‖p‖2,∫ 1

0
‖F ′(c∗+ tp)∗[F ′(c∗+ tp)−F ′(c∗)] p dt‖ ≤ K(K0/2)‖p‖2,

for a positive constant K > 0. Then, from (6.7) it follows

‖ f ′(c∗+ p)− f ′(c∗)−F ′(c∗)∗F ′(c∗)(p)‖ ≤ γ̃‖p‖2 +σ‖p‖. (6.9)

with γ̃> 0.
In [21] it is proved that, both in case of attainable data and in case of small

enough residual, it holds
f ′′(c∗)(h,h)≥β‖h‖2, (6.10)

for an appropriately defined constant β > 0 independent of h ∈ HN . This comes
from Lemma 2.6, Theorem 5.1, Lemma 5.1, Theorem 5.2 in [21]. Let V = {v ∈
C∞ |Riv = 0, i = 1,2}, and define H̃−2 the completion of C∞ with respect to the
‖ ·‖H̃−2 norm defined for u ∈ C∞ as [21, p.6]

‖u‖H̃−2 = sup
v∈V

| < u,v > |
‖v‖H2

.

Theorem 6.3. Let H1 and H2 hold.

• Then, κ1‖u‖ ≤ ‖A(c)u‖H̃−2 ≤ κ2‖u‖ holds for all c ∈ D(F) and u ∈ D(A ), for
κ1, κ2 defined in Lemma 6.1.

• Moreover, let c∗ ∈ UN be a local solution for (6.6) and suppose u(c∗)(x) > 0
or u(c∗)(x) < 0 on [0,1]. If u(c∗) ∉ VN let κ > 0 be such that ‖hu(c∗)‖L∞ ≤
κ‖hu(c∗)‖H̃−2 and assume further that

‖F(c∗)− ũ‖ ≤ 1
2
κ1κ

−1
2 κ−1 min

x
‖F(c∗)(x)‖.

Then, (6.10) holds for β> 0 independent of h.

From this result it follows that f is strongly convex in a neighbourhood of the
solution, leading to

β‖c− c∗‖2 ≤< f ′(c)− f ′(c∗), c− c∗ > .

Taking into account also that

< f ′(c)− f ′(c∗), c− c∗ >≤ ‖ f ′(c)− f ′(c∗)‖‖c− c∗‖

it follows β‖c− c∗‖ ≤ ‖ f ′(c)− f ′(c∗)‖. This can be used in (6.9) to prove condition
(5.6).
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Part III

Large scale noisy nonlinear least
squares problems
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CHAPTER

7
Introduction to Part III

In this part we consider large scale nonlinear least squares problems of the form
(1.2). Let x∗ be a solution of (1.2).

We are interested in problems for which the exact values of the objective func-
tion and of its gradient cannot be employed along all the optimization process.
This framework includes various situations. One is the case in which the exact
objective function is unknown, and just noisy approximations are available. An-
other case is that where the objective function evaluation is the result of a com-
putation whose accuracy can vary and must be specified in advance. For instance
the evaluation of the objective may involve the solution of a nonlinear equation
or an inversion process. These are performed through an iterative process that
can be stopped when a certain accuracy level is reached. Varying the accuracy
level clearly affects the computational cost of the procedure. More generally, we
consider also all those problems for which an exact evaluation of the function is
computationally demanding and can be replaced by cheaper approximations. In
all these cases one may wonder if it could be possible to exploit this feature by
asking the lowest possible accuracy in the value of the objective, but sufficient to
guarantee progress of the minimization, with the ultimate goal of saving comput-
ing time [22, §10.6].

In the literature several methods dealing with problems with noisy functions
and gradients have been proposed. In [22, Section 10.6] a trust-region approach
has been proposed to deal with dynamic accuracy levels. Classical methods for
noisy functions are Simplex Gradient and Implicit Filtering, Direct Search [70,
§6-8], but also evolutionary techniques have been considered [4]. In [74] mini-
mization problems with convex objective function, whose exact evaluation is not
possible, are considered. They are reformulated in terms of constrained optimiza-
tion and handled with an Inexact Restoration technique. The approach is ex-
tended in [12] to stochastic optimization. Recently an intensive study has focused
on stochastic methods, that employ random models of the objective function, that
may result from a sampling procedure [5, 13, 23]. This kind of techniques have
been widely employed in the last years to solve data-fitting problems arising in
machine learning and in data assimilation [16, 45]. This applications usually
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involve objective functions given by a sum over a large number of terms, whose
evaluation is expensive or prohibitive if a huge amount of data is available. Also,
there is often an approximate form of redundancy in the measurements, which
means that a full evaluation of the function or the gradient may be unnecessary to
make progress in solving (1.2) [16, 43]. This motivates the derivation of methods
that approximate the function and/or the gradient and even the Hessian through
subsampling techniques. Both first order and second order methods have been
proposed, see [16] for a recent review on the topic and references therein.

Here, we are interested in problems for which it is convenient to rely on ap-
proximations fδ to f to recover x∗. It is assumed that the accuracy level of the
function approximations can be evaluated and improved when judged to be too
low to proceed successfully with the optimization process. This is not the case of
ill-posed problems presented in Part II, as the noise arises from measurements
and it cannot be modified without repeating new measurements. Then, if further
measurements are not possible, the noise is a fixed quantity. Moreover as opposed
to Part II, here the noise is not assumed to be limited to the data, so that also the
Jacobian matrix of R is assumed to be affected by noise.

We propose a Levenberg-Marquardt method able to take into account the pres-
ence of noise in the objective function, in its gradient and in the Jacobian matrix
of R. It is aimed at finding a solution of problem (1.2) considering a sequence
of approximations fδk of known and increasing accuracy, and we assume that we
have access to approximate function and gradient values at any accuracy level.
What we consider at each iteration k is then a noisy problem of the form:

fδk (x)= 1
2
‖Rδk (x)‖2, (7.1)

where Rδk is the approximation of R at iteration k. We denote by Jδk (x) ∈Rm×n the
approximation to the Jacobian matrix of R(x) and with ∇ fδk (x) = Jδk (x)TRδk (x) ∈
Rn the gradient approximation. Notice that in this part we use a different nota-
tion from the previous ones. Specifically, the subscripts referring to the noise are
iteration dependent, as the noise can vary from iteration to iteration.

Having in mind large scale problems, the linear algebra operations will be
handled by an iterative solver and inexact solutions of the subproblems will be
sought for, cf. Section 2.4.1.

Let us outline briefly our solution method. We start the optimization process
with a given noise level δ = δ0. We rely during the iterative process on a noise
control that allows us to judge whether the noise is too large, and needs to be
reduced. In this case the accuracy is changed, making possible the use of more
accurate approximations of function, gradient and Jacobian in further iterations.
Our method is also based on an update of the regularization parameters that is
different from the standard ones presented in Section 2.4. This is used to prevent
the sequence from being attracted by one of the solution of the noisy problems.
Drawing upon the Trust-Region radius ∆k updates that drive the radius to zero
(as those presented in Part II and in the references in Section 2.4) and taking into
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account the relation between ∆k and λk we focused on in Section 2.4, we generate
a non-decreasing sequence of regularization parameters.

We assume that given an accuracy level δk ≥ 0 it is possible to compute an
approximation fδk to f such that:∣∣ fδk (x)− f (x)

∣∣≤ δk, (7.2)

for x ∈L = {x | f (x) ≤ f (x0)}. We will refer to δk as the accuracy or noise level. We
also assume that it is possible to compute an approximation to the gradient of the
same level of accuracy. Namely we assume that it exists K̄ ≥ 0 such that:

‖∇ fδk (x)−∇ f (x)‖ ≤ K̄δk. (7.3)

It is reasonable to ask for an approximation to the gradient of the same accu-
racy as the function, as the quality of both approximations of f and ∇ f depend on
the distance max{‖Rδk (x)−R(x)‖,‖Jδk (x)− J(x)‖}, as follows:

∣∣ fδk (x)− f (x)
∣∣ ≤ 1

2
‖Rδk (x)−R(x)‖

m∑
j=1

|R j(x)+ (Rδk ) j(x))|,

‖∇ f (x)−∇ fδk (x)‖ ≤ ‖Jδk (x)− J(x)‖‖R(x)‖+‖Jδk (x)‖‖Rδk (x)−R(x)‖.

Our intention is to rely on less accurate (and hopefully cheaper quantities)
whenever possible in earlier stages of the algorithm, increasing only gradually
the demanded accuracy, to obtain a reduced computational time for the overall
solution process.

We prove both global and local convergence of the method. We are not aware
of Levenberg-Marquardt methods specially designed for nonzero residual noisy
nonlinear least squares problems, for which both local and global convergence
is proved. Contributions on this topic are given by [11], where a Levenberg-
Marquardt method is proposed that deals with exact functions and the noise is
limited to the gradient of f and to the Jacobian matrix of R. There only global
convergence is proved. In the problems considered in Part II the Jacobian matrix
is not affected by noise and only local convergence of the methods is considered.

Importantly enough, the method and the related theory also apply to the sit-
uation where the output space of Rδk has smaller dimension than that of R, i.e.
Rδk :Rn →RKk with Kk ≤ m for some k. This is the case for example when approx-
imations to f stem from a subsampling technique and Rδk is obtained by selecting
some components of R. In this case it is possible to obtain a better approximation
to f , and so to reduce the noise, by adding more observations to the considered
subset, i.e. increasing Kk, until the maximum value m is reached. We denote
accordingly by Jδk (x) ∈RKk×n the Jacobian matrix of Rδk (x).

This part is organized as follows. We describe the proposed Levenberg-Marquardt
approach in Chapter 8, focusing on the strategy to control the noise level. We an-
alyze also the asymptotic behaviour of the sequence of regularization parameters
generated. In Section 8.1 global convergence to first-order critical points is proved.
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In Section 8.2 we analyze the asymptotic local behaviour of the procedure. In Sec-
tion 8.3 we provide a global complexity bound for the proposed method showing
that it shares its complexity properties with the steepest descent and trust-region
methods. Then, in Chapter 9 we consider the numerical behaviour of the method.
We numerically illustrate the approach on test problems arising in data assimi-
lation (Section 9.1) and in machine learning (Section 9.2), one of which is a real
life problem, arising in the design of turbomachinery components. We show that
our procedure is able to handle the noise and find a solution of the unperturbed
problem. Moreover we show that when the unperturbed function is available, but
it is expensive to optimize, the use of our noise control strategy allows us to obtain
large computational savings.

Notations As previously stated, we will denote with fδk (x) = 1
2‖Rδk (x)‖2 the

approximation of f at iteration k corresponding to noise level δk, Rδk : Rn → RKk ,
Kk ≤ m is the approximation of R at iteration k. We denote by Jδk (x) ∈ RKk×n the
approximation to the Jacobian matrix of R(x) and with ∇ fδk (x) = Jδk (x)TRδk (x) ∈
Rn the gradient approximation. Here, for ease of notation, all the iterates are
denoted as {xk}, even if noisy functions are considered. In this chapter indeed, just
noisy problems are considered and there is not possibility of misunderstanding as
in the previous ones.
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CHAPTER

8
Levenberg-Marquardt method
for problems with dynamic
noise

We consider an inexact Levenberg-Marquardt approach for problem (1.2), cf. Sec-
tion 2.4. At each iteration, given an appropriately chosen regularization parame-
ter λk, we consider a subproblem of the form:

min
p∈Rn

mLM
k (xk + p)= 1

2
‖Rδk (xk)+ Jδk (xk)p‖2 + 1

2
λk‖p‖2, (8.1)

and we seek for an approximate solution, according to Definition 2.14. Namely,
our step has to provide at least as much reduction in mLM

k as that achieved by the
Cauchy step (2.22):

mLM
k (xk)−mLM

k (xk + p)≥ θ

2
‖Jδk (xk)TRδk (xk)‖2

‖Jδk (xk)‖2 +λk
, θ > 0. (8.2)

To achieve this, we solve approximately the normal equations, as in (2.24) and we
make the following assumption on the step:

Assumption 8.1. Assume to compute a step pLM
k satisfying

(Jδk (xk)T Jδk (xk)+λkI)pLM
k =−Jδk (xk)TRδk (xk)+ rk (8.3)

for a residual rk satisfying

‖rk‖ ≤ εk‖Jδk (xk)TRδk (xk)‖, 0≤ εk ≤
√
θ2

λk

‖Jδk (xk)‖2 +λk
, (8.4)

for some θ2 ∈
(
0, 1

2

]
.

Remark 8.2. From Lemma 2.15 such a step achieves the Cauchy decrease (8.2)
with θ = 2(1−θ2) ∈ [1,2).

This key result will be used to prove the global convergence of the method we
propose. To compute pLM

k we can then use an iterative method to solve the normal
equations

(Jδk (xk)T Jδk (xk)+λkI)p =−Jδk (xk)TRδk (xk), (8.5)
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that will be stopped as soon as the desired accuracy is reached, i.e. as soon as (8.4)
is satisfied.

Let us now describe in details the way the noise level is controlled along the
iterations. In classical globally convergent Levenberg-Marquardt methods, as de-
scribed in Section 2.4, at each iteration the acceptance of the trial step and the
update of the parameter are based on the reduction gained in the objective func-
tion. Here, we deal with objective functions affected by noise. Then, we need a
condition to check if the noise level is small enough to ensure that the decrease in
function values observed after a successful iteration, is not merely an effect of the
inaccuracy in these values, but corresponds to a true decrease also in the exact
objective function. In [22, Section 10.6], it is proved that this is achieved if the
noise level δk is smaller than a multiple of the reduction in the model:

δk ≤ η0[mLM
k (xk)−mLM

k (xk + pLM
k )],

with η0 > 0.
We will prove in Remark 8.7 and numerically illustrate in Section 9, that for

our approach
mLM

k (xk)−mLM
k (xk + pLM

k )=O(λk‖pLM
k ‖2). (8.6)

According to this and following [22], we control the noise level asking that

δk ≤ κdλ
α
k‖pLM

k ‖2, (8.7)

for constants κd > 0 and α ∈ [1
2 ,1

)
. Parameter α in (8.7) is introduced to guarantee

global convergence of the procedure, as shown in Section 8.1. Notice also that
(8.7) is an implicit relation, as pLM

k depends on the noise. If condition (8.7) is not
satisfied at iteration k, the uncertainty in the function values is considered too
high and the noise level is decreased. We will prove in Lemma 8.4 that after a
finite number of reductions condition (8.7) is met.

Our approach is sketched in Algorithm 8.1. At each iteration k a trial step pLM
k

is computed using the noise level of the previous successful iteration. The norm
of the trial step is then used to check condition (8.7). In case it is not satisfied
the noise is reduced in the loop at steps 1-2 until (8.7) is met. On the other hand,
when the condition is satisfied the function approximation is not changed for next
iteration and it is not necessary to estimate the noise again. The value δk obtained
at the end of the loop is used to compute fδk (xk + pLM

k ). Then, the ratio between
the actual and the predicted reduction

ρk(pLM
k )= fδk−1(xk)− fδk (xk + pLM

k )

mLM
k (xk)−mLM

k (xk + pLM
k )

(8.8)

is computed to decide whether to accept the step or not. Practically, notice that if
at iteration k the noise level is changed, i.e. δk 6= δk−1, the function is not eval-
uated again in xk to compute ρk(pLM

k ), and the ratio is evaluated computing the
difference between fδk−1(xk) (evaluated at the previous step), and the new com-
puted value fδk (xk + pLM

k ). The step acceptance and the updating of the regular-
ization parameter are based on this ratio. As in standard Levenberg-Marquardt
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Algorithm 8.1 Levenberg-Marquardt method for problem (1.2) using dynamic
noise

Input: x0, δ0, κd ≥ 0, α ∈ [1
2 ,1

)
, β> 1, η1 ∈ (0,1), η2 > 0, λmax ≥λ0 > 0, γ> 1.

Compute fδ0(x0) and set δ−1 = δ0.
for k = 0,1,2, . . . do

1. Compute an approximate solution of (8.1) satisfying (8.3) and let pLM
k

denote such a solution.
2. If δk ≤ κdλ

α
k‖pLM

k ‖2

Compute fδk (xk + pLM
k ), and set δk+1 = δk.

Else
Reduce δk: δk = δk

β
and go back to 1.

3. Compute ρk(pLM
k )= fδk−1 (xk)− fδk (xk+pLM

k )

mLM
k (xk)−mLM

k (xk+pLM
k )

.

4. If ρk(pLM
k )≥ η1

4.1 Set xk+1 = xk + pLM
k and

λk+1 =
{ min{γλk,λmax} if ‖∇ fδk (xk)‖ < η2/λk,
λk if ‖∇ fδk (xk)‖ ≥ η2/λk.

Else
4.2 Set xk+1 = xk, λk+1 = γλk and δk+1 = δk−1.

end for

methods, the step is successful if ρk(pLM
k )≥ η1, and is unsuccessful otherwise. De-

viating from classical Levenberg-Marquardt and following [5, 11], λk is increased
not only in case of unsuccessful iterations, but also if the inverse of the regular-
ization parameter is big compared to the norm of the gradient model (condition
‖∇ fδk (xk)‖ < η2/λk in Algorithm 8.1), otherwise it is left unchanged. The logic be-
hind this update is the same as in [5, 11] and it is intended to generate a sequence
of increasing parameters, that would not be generated by a standard update like
(2.20), to produce a regularizing effect and prevent the generated sequence to con-
verge to solutions of the noisy problems. This allows also to control the noise level
through (8.7) and to decrease it especially in the last stage of the procedure. It
represents a counterpart of the update of the trust-region radius in Part II.

Notice that in case the step is unsuccessful λk is increased and noise reduc-
tions performed at steps 1-2 are not taken into account. That is, the subsequent
iteration k+1 is started with the same starting noise level of iteration k (see step
4.2).

First we prove the well-definition of Algorithm 8.1. Specifically, in Lemma 8.4
we prove that the loop at steps 1-2 of Algorithm 8.1 terminates in a finite number
of steps. To this aim we need the following assumption:

Assumption 8.3. Let {xk} be the sequence generated by Algorithm 8.1. It exists a
positive constant κJ such that, for all k ≥ 0 and all x ∈ [xk, xk+pLM

k ], ‖Jδk (x)‖ ≤ κJ .
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Lemma 8.4. Let Assumption 8.3 hold and let pLM
k be defined as in Assumption

8.1. If xk is not a stationary point of f , the loop at steps 1-2 of Algorithm 8.1
terminates in a finite number of steps.

Proof. If δk tends to zero, ∇ fδk (xk) tends to ∇ f (xk) from (7.3). Also, (8.4) yields
εk ≤

p
θ2, and from (8.3) it follows

‖pLM
k ‖ =‖(Jδk (xk)T Jδk (xk)+λkI)−1(−∇ fδk (xk)+ rk)‖ ≥

≥ (1−εk)‖∇ fδk (xk)‖
‖Jδk (xk)‖2 +λk

≥ (1−p
θ2)‖∇ fδk (xk)‖
κ2

J +λk
. (8.9)

Then,

liminf
δk→0

‖pLM
k ‖ ≥ (1−p

θ2)
κ2

J +λk
‖∇ f (xk)‖ > 0

as ∇ f (xk) 6= 0, so for δk small enough (8.7) is satisfied.

As far as the sequence of regularization parameters is concerned, we notice
that it is bounded from below, as λmin = λ0 ≤ λk for all k. Moreover an upper
bound λmax is provided for successful iterations in step 4.1, so that the procedure
gives rise to a sequence of regularization parameters with different behaviour
than the one generated in [11], where the upper bound is not present and λk is
free to go to infinity. It is possible to prove that the bound is reached and for k
large enough λk = λmax on the subsequence of successful iterations, while in [11]
the sequence is shown to diverge. The result is proved in the following lemma.

Lemma 8.5. Let Assumption 8.3 hold and let pLM
k be defined as in Assumption 8.1.

It exists k̄ ≥ 0 such that the regularization parameters {λk} generated by Algorithm
8.1 satisfy λk =λmax for any successful iteration k, with k ≥ k̄.

Proof. If the result is not true, there exists a bound 0 < B < λmax such that the
number of times that λk < B happens is infinite. Because of the way λk is updated
one must have an infinity of iterations for which λk+1 = λk, and for them one has
ρk(pLM

k )≥ η1 and ‖∇ fδk (xk)‖ ≥ η2/B. Thus, from Lemma 2.15 and relation (8.2)

fδk−1(xk)− fδk (xk + pLM
k )≥ η1(mLM

k (xk)−mLM
k (xk + pLM

k ))

≥ η1

2
θ‖∇ fδk (xk)‖2

‖Jδk (xk)‖2 +λk

≥ η1

2
θ

κ2
J +B

(η2

B

)2
.

Since fδk is bounded below by zero and the sequence { fδk (xk+1)} is decreasing and
hence convergent, the number of such iterations cannot be infinite, hence we de-
rive a contradiction. Then, for an infinite number of iterations λk+1 is set as in
steps 4.1 or 4.2, so that λk+1 > λk. For the subsequence of successful iterations it
exists k̄ large enough for which λk =λmax for all k ≥ k̄.
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Remark 8.6. The regularization parameters form a non decreasing sequence. As
we have noticed that the reciprocal of λk plays the role of the radius in a trust-
region scheme, a Levenberg-Marquardt method with non decreasing sequence of
parameters is equivalent to a trust-region scheme with trust-region radius con-
verging to zero, as the ones we have employed in the previous chapter or as the
ones presented for example in [5, 23] and references in Section 2.4. As we have pre-
viously noticed indeed, having a radius converging to zero, ensures regularizing
properties to the method.

Remark 8.7. Lemma 8.5 enables us to prove (8.6) and to motivate condition (8.7).
From the model definition and (8.3) it holds

mLM
k (xk)−mLM

k (xk + pLM
k )=−1

2
(pLM

k )T(Jδk (xk)T Jδk (xk)+λkI)pLM
k − (pLM

k )T∇ fδk (xk)

= 1
2
‖Jδk (xk)pLM

k ‖2 + 1
2
λk‖pLM

k ‖2 − (pLM
k )T rk.

Considering that from (8.4) and (8.9)

(pLM
k )T rk ≤ εk‖pLM

k ‖‖∇ fδk (xk)‖ ≤
p
θ2

1−p
θ2

(κ2
J +λk)‖pLM

k ‖2,

and that parameters λk form a non decreasing sequence, we can conclude that (8.6)
holds.

In the following section, we will prove that the sequence generated by Algo-
rithm 8.1 converges globally to a solution of (1.2).

8.1 Global convergence

In this section we prove the global convergence of the sequence generated by Al-
gorithm 8.1. We still assume to compute an inexact Levenberg-Marquardt step
according to Definition 2.14, but we need to make a slightly stronger assumption
on the residual of the normal equations (8.5) than in Assumption 8.1, to prove the
global convergence.

Assumption 8.8. Let pLM
k satisfy

(Jδk (xk)T Jδk (xk)+λkI)pLM
k =−∇ fδk (xk)+ rk

for a residual rk satisfying ‖rk‖ ≤ εk‖∇ fδk‖, with

0≤ εk ≤min
{
θ1

λαk
,

√
θ2

λk

‖Jδk (xk)‖2 +λk

}
(8.10)

where θ1 > 0, θ2 ∈
(
0, 1

2

]
and α ∈ [1

2 ,1
)

is defined in (8.7).

As stated in Lemma 2.15, this step achieves the Cauchy decrease. The new
bound in (8.10) will be used in the convergence analysis.

We now report a result relating the step length and the norm of the noisy
gradient at each iteration, that is going to be useful in the following analysis.
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Lemma 8.9. Let Assumptions 8.3 and 8.8 hold. Then

‖pLM
k ‖ ≤ 2‖∇ fδk (xk)‖

λk
. (8.11)

Proof. Taking into account that from Assumption 8.8 ‖rk‖ ≤ εk‖∇ fδk‖ ≤ ‖∇ fδk‖, it
follows

‖pLM
k ‖ = ‖(JT

δk
Jδk +λkI)−1(−∇ fδk (xk)+ rk)‖ ≤ 2‖∇ fδk (xk)‖

λk
.

In the following lemma we establish a relationship between the exact and the
noisy gradient which holds for λk large enough. Notice that by (8.7) the noise
level depends on λk. Specifically, employing (8.7), Lemma 8.9 and the following
Lemma 8.10, we can see that δk decreases as λk gets larger. Then, relation (8.13)
shows that our noise level control strategy, combined with the updating rule of
λk, imposes to gradually reduce the noise level in order to obtain a small relative
error on the gradient’s norm, whenever λk is sufficiently large.

Lemma 8.10. Let Assumptions 8.3 and 8.8 hold. For λk sufficiently large, i.e. for

λk ≥ νλ∗ := ν
(
2
√
δ0κdK̄

) 2
2−α

ν> 1, (8.12)

it exists ck ∈ (0,1) such that the following relation between the exact and the per-
turbed gradient holds:

‖∇ f (xk)‖
(1+ ck)

≤ ‖∇ fδk (xk)‖ ≤ ‖∇ f (xk)‖
(1− ck)

, with ck =
2K̄

√
δ0κd

λ1−α/2
k

=
(
λ∗

λk

)1−α/2
. (8.13)

Proof. From (7.3), (8.7), (8.11) and the fact that δk ≤ δ0 it follows

|‖∇ f (xk)‖−‖∇ fδk (xk)‖| ≤ ‖∇ f (xk)−∇ fδk (xk)‖ ≤ K̄
√
δ0

√
δk ≤ K̄

√
δ0κdλ

α
k‖pLM

k ‖2 =

K̄
√
δ0κdλ

α/2
k ‖pLM

k ‖ ≤ 2K̄
√
δ0κd

‖∇ fδk (xk)‖
λ1−α/2

k

= ck‖∇ fδk (xk)‖

where we have set ck = 2K̄
p
δ0κd

λ1−α/2
k

. Then,

‖∇ f (xk)−∇ fδ(xk)‖ ≤ ck‖∇ fδk (xk)‖, (8.14)

(1− ck)‖∇ fδk (xk)‖ ≤ ‖∇ f (xk)‖ ≤ (1+ ck)‖∇ fδk (xk)‖, (8.15)

and for λk >λ∗, the thesis follows.

From the updating rule of the noise in step 2 of Algorithm 8.1, if δk−1 is the
successful noise level at iteration k−1, the successful noise level at iteration k is

δk =
δk−1

βnk
(8.16)

where nk ≥ 0 counts the number of times the noise is reduced in the loop at steps
1-2, that is finite from Lemma 8.4. We can also prove that the sequence {βnk }
is bounded from above. To this aim, we need the following assumption, which is
standard in Levenberg-Marquardt methods:
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Assumption 8.11. Assume that function f has Lipschitz continuous gradient with
corresponding constant L > 0: ‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖ for all x, y ∈Rn.

Lemma 8.12. Let Assumptions 8.3, 8.8, 8.11, hold and λ∗ be defined in (8.12).
Then, if λk ≥ νλ∗ for ν> 1, there exists a constant β̄> 0 such that βnk ≤ β̄.

Proof. Let δk−1 be the successful noise level at iteration k−1. Then, it holds

δk−1 ≤ κdλ
α
k−1‖pLM

k−1‖2. (8.17)

If in (8.16) nk ≤ 1 there is nothing to prove, so let us assume nk > 1. If nk > 1 it
holds

βδk > κdλ
α
k‖pLM

k ‖2,

for δk the noise level at the end of the loop 1-2 of Algorithm 8.1. From the updating
rule at step 4 of Algorithm 8.1 it follows

λk−1 ≤λk ≤ γλk−1. (8.18)

Using the first inequality in (8.18) and (8.17) we obtain from (8.16) that

βnk−1 = δk−1

βδk
< κdλ

α
k−1‖pLM

k−1‖2

κdλ
α
k‖pLM

k ‖2
≤ ‖pLM

k−1‖2

‖pLM
k ‖2

.

Then, from Assumption 8.8 we have

βnk−1 ≤ ‖(Jδk−1(xk−1)T Jδk−1(xk−1)+λk−1I)−1(−∇ fδk−1(xk−1)+ rk−1)‖2

‖(Jδk (xk)T Jδk (xk)+λkI)−1(−∇ fδk (xk)+ rk)‖2 ≤

≤ ‖Jδk (xk)T Jδk (xk)+λkI‖2

‖−∇ fδk (xk)+ rk‖2 ‖(Jδk−1(xk−1)T Jδk−1(xk−1)+λk−1I)−1‖2‖−∇ fδk−1(xk−1)+ rk−1‖2.

Recalling again Assumption 8.8, the fact that from (8.10) εk <p
θ2 < 1, and (8.13)

we have

‖−∇ fδk−1(xk−1)+ rk−1‖2 < 4‖∇ fδk−1(xk−1)‖2 ≤ 4
(1− ck−1)2 ‖∇ f (xk−1)‖2,

‖−∇ fδk (xk)+ rk‖2 > (1−
√
θ2)2‖∇ fδk (xk)‖2 ≥ (1−p

θ2)2

(1+ ck)2 ‖∇ f (xk)‖2.

Then, recalling also Assumption 8.3 we obtain

βnk−1 ≤ 4
(1−p

θ2)2

(
κ2

J +λk

λk−1

)2
(1+ ck)2

(1− ck−1)2
‖∇ f (xk−1)‖2

‖∇ f (xk)‖2 .

By (8.18) and the fact that λk ≥λmin =λ0 for all k, it follows(
κ2

J +λk

λk−1

)2

≤
(
κ2

J

λmin
+γ

)2

.

From (8.13)

ck =
(
λ∗

λk

)1−α/2
≤ να/2−1 < 1. (8.19)
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Then, from this and the first inequality in (8.18) it follows:

1+ ck < 2,

1− ck−1 = 1−
(
λ∗

λk−1

)1−α/2
≥ 1−γ1−α/2.

Then,

βnk−1 ≤ 16
(1−p

θ2)2

(
κ2

J

λmin
+γ

)2 (
1

1−γ1−α/2

)2 (‖∇ f (xk−1)‖
‖∇ f (xk)‖

)2
.

Let us now consider the term ‖∇ f (xk−1)‖
‖∇ f (xk)‖ . By the Lipschitz continuity of the gradient,

(8.11) and (8.19) we obtain:

‖∇ f (xk−1)‖
‖∇ f (xk)‖ ≤1+ ‖∇ f (xk−1)−∇ f (xk)‖

‖∇ f (xk)‖ ≤ 1+ L‖pLM
k ‖

‖∇ f (xk)‖
≤1+ 2L‖∇ fδk (xk)‖

λk‖∇ f (xk)‖ ≤ 1+ 2L
(1− ck)λk

≤1+ 2L

(1−να
2 −1)λmin

.

We can then conclude that sequence βnk is bounded from above by a constant
for λk sufficiently large:

βnk ≤β 16
(1−p

θ2)2

(
κ2

J

λmin
+γ

)2 (
1

1−γ1−α/2

)2 (
1+ 2L

(1−να
2 −1)λmin

)

The result in Lemma 8.12 can be employed in the following Lemma, to prove
that for sufficiently large values of the parameter λk the iterations are successful.

Lemma 8.13. Let Assumptions 8.3, 8.8 and 8.11 hold. Assume that

λk >max{νλ∗, λ̄} (8.20)

with λ∗ defined in (8.12) and

λ̄=
(

ϕ

1−η1

) 1
1−α

ϕ=
(
κ2

J /λmin +1

θ

)(
2θ1

λ2α−1
min

+ 2L
λαmin

+4(3+ β̄)κd + 8κd ḡ
λmin

)
, (8.21)

with η1, β̄, θ1, θ, α, L defined respectively in Algorithm 8.1, Lemma 8.12, As-
sumption 8.8, (8.2), (8.7) and Assumption 8.11, and ḡ = κJ

√
2 fδ0(x0). If xk is not

a critical point of f then ρk(pLM
k )≥ η1.

Proof. We consider

1− ρk(pLM
k )

2
=−(pLM

k )T(Jδk (xk)T Jδk (xk)+λkI)pLM
k −2(pLM

k )T∇ fδk (xk)

2(mk(xk)−mk(xk + pLM
k ))

(8.22)

+
1
2‖Rδk (xk + pLM

k )‖2 − 1
2‖Rδk−1(xk)‖2

2(mk(xk)−mk(xk + pLM
k ))

. (8.23)
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Let us consider the numerator in (8.23). Let us rewrite

fδk (xk + pLM
k )− fδk−1(xk)= fδk (xk + pLM

k )− fδk−1(xk)± f (xk + pLM
k )± fδk (xk)± (pLM

k )T∇ fδk (xk).

From the Taylor expansion of f and denoting with π̄ the remainder, we obtain

f (xk + pLM
k )= f (xk)+ (pLM

k )T∇ f (xk)+ π̄.

Then,

fδk (xk + pLM
k )− fδk−1(xk)= fδk (xk)− fδk−1(xk)+ (pLM

k )T∇ fδk (xk)+π,

where

π= ( fδk (xk + pLM
k )− f (xk + pLM

k ))+ ( f (xk)− fδk (xk))+ (pLM
k )T(∇ f (xk)−∇ fδk (xk))+ π̄.

From condition (7.2) it follows

| fδk (xk)− fδk−1(xk)| ≤ δk +δk−1.

From (8.7) and the fact that from Lemma 8.12 δk−1 = βnkδk ≤ β̄δk if λk > λ∗, it
follows

fδk (xk + pLM
k )− fδk−1(xk)≤(1+ β̄)κdλ

α
k‖pLM

k ‖2 + (pLM
k )T∇ fδk (xk)+π.

Moreover, by (7.2), (7.3) and (8.7) we can conclude that

|π| ≤
(
(2+‖pLM

k ‖)κdλ
α
k +

L
2

)
‖pLM

k ‖2.

Then, from Lemma 8.9, Assumption 8.8 it follows that the numerator in (8.22)-
(8.23) can be bounded above by

− (pLM
k )T(−∇ fδk (xk)+ rk)− (pLM

k )T∇ fδk (xk)+π+ (1+ β̄)κdλ
α
k‖pLM

k ‖2 ≤

≤ ‖pLM
k ‖‖rk‖+

(
κdλ

α
k

(
2+‖pLM

k ‖
)
+ L

2

)
‖pLM

k ‖2 + (1+ β̄)κdλ
α
k‖pLM

k ‖2 ≤

≤
(

2θ1

λ1+α
k

+ 2L
λ2

k

+ 4(3+ β̄)κd

λ2−α
k

+ 8κd ḡ
λ3−α

k

)
‖∇ fδk (xk)‖2,

with ḡ = κJ
√

2 fδ0(x0). From (8.2) it follows

1− ρk(pLM
k )

2
≤

(
κ2

J /λmin +1
θ

)(
2θ1

λαk
+ 2L
λk

+ 4(3+ β̄)κd

λ1−α
k

+ 8κd ḡ
λ2−α

k

)
≤ ϕ

λ1−α
k

,

with ϕ defined in (8.21) and from (8.20) ρk(pLM
k )≥ 2η1 > η1.

We can now state the following result, which guarantees that eventually the
iterations are successful, provided that

λmax >max{νλ∗, λ̄}. (8.24)
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Lemma 8.14. Let Assumptions 8.3, 8.8 and 8.11 hold. Assume that λmax is chosen
to satisfy (8.24). Then, there exists an iteration index k̄ such that the iterations
generated by Algorithm 8.1 are successful for k > k̄. Moreover,

λk ≤max
{
γmax{νλ∗, λ̄},λmax

}
k > 0. (8.25)

Proof. Notice that by the updating rules at step 3 of Algorithm 8.1, λk increases in
case of unsuccessful iterations and it is never decreased. Therefore, after a finite
number of unsuccessful iterations it reaches the value max{νλ∗, λ̄}. Moreover, con-
dition (8.24) and the Algorithm’s updating rules guarantee that λk > max{νλ∗, λ̄}
for all the subsequent iterations. Then, by Lemma 8.13 it follows that eventu-
ally the iterations are successful. Finally, the parameter updating rules yield
(8.25).

We are now ready to state and prove the global convergence of Algorithm 8.1
under the following further assumption:

Assumption 8.15. Assume that λmax is chosen large enough to satisfy

λmax > γmax{νλ∗, λ̄}. (8.26)

Notice that under this assumption λk ≤ λmax for all k > 0. Parameters λ∗, λ̄
depend on known algorithm’s parameters, on the gradient Lipschitz constant L,
on the bound κJ and on K̄ in (7.3). Then, to compute a value of λmax satisfying
(8.26) we need to estimate these three latter quantities. However, in numerical
practice the choice of this value is not crucial. If a rather large value is set for this
quantity the stopping criterion is usually satisfied before that value is reached.

Theorem 8.16. Let Assumptions 8.3, 8.8, 8.11 and 8.15 hold. The sequences {δk}
and {xk} generated by Algorithm 8.1 are such that

lim
k→∞

δk = 0, lim
k→∞

‖∇ f (xk)‖ = 0.

Proof. From the updating rule of the noise, {δk} is a decreasing sequence and so
it is converging to some value δ∗. Denoting with ks the first successful iteration
and summing up over all the infinite successful iterations, from Lemma 2.15 and
Assumption 8.15 we obtain

fδks−1(xks)− lim
k→∞

fδk (xk+1)≥ ∑
ksucc

( fδk−1(xk)− fδk (xk+1))≥

η1

2
θ

κ2
J +λmax

∑
ksucc

‖∇ fδk (xk)‖2,

so
∑

ksucc

‖∇ fδk (xk)‖2 is a finite number and ‖∇ fδk (xk)‖ → 0 on the subsequence of

successful iterations, so that limk→∞ ‖∇ fδk (xk)‖ = 0, taking into account that by
Lemma 8.14 the number of unsuccessful iterations is finite. Finally from (8.7)
and (8.11) we have that

δk ≤ κdλ
α
k‖pLM

k ‖2 ≤ 4κd
‖∇ fδk (xk)‖2

λ2−α
min

,
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so we can conclude that the noise level δk converges to zero and by (7.3) it follows
that limk→∞ ‖∇ f (xk)‖ = 0.

8.2 Local convergence

In this section we report on the local convergence of the proposed method. To
this aim, it is useful to study the asymptotic behaviour of the inexact step. We
first establish that, as a consequence of employing a non decreasing sequence of
parameters, the step pLM

k asymptotically tends to assume the direction of the
negative perturbed gradient −∇ fδk (xk). Then, we study the local convergence of
the gradient method with a perturbed gradient step, where the accuracy in the
gradient is driven by (8.13).

Lemma 8.17. Let Assumptions 8.3, 8.8, 8.11 and 8.15 hold. Then

lim
k→∞

(pLM
k )i + θ

κ2
J +λk

(∇ fδk (xk))i = 0 for i = 1, . . . ,n,

where (·)i denotes the i-th vector component.

Proof. From (8.2)

θ

2
‖∇ fδk (xk)‖2

κ2
J +λk

≤mLM
k (xk)−mLM

k (xk + pLM
k )

=− (pLM
k )T∇ fδk (xk)− 1

2
(pLM

k )T(Jδk (xk)T Jδk (xk)+λkI)pLM
k

≤− (pLM
k )T∇ fδk (xk)− 1

2
λk‖pLM

k ‖2.

Therefore, as from Remark 8.2 it holds θ ∈ [1,2), it follows

θ‖∇ fδk (xk)‖2

κ2
J +λk

+2(pLM
k )T∇ fδk (xk) + λk

θ
‖pLM

k ‖2 < 0.

We can rewrite this as∥∥∥∥∥∥
√

θ

κ2
J +λk

∇ fδk (xk)+
√
κ2

J +λk

θ
pLM

k

∥∥∥∥∥∥
2

≤ κ2
J

θ
‖pLM

k ‖2.

Then, from Lemma 8.9∥∥∥∥∥ θ

κ2
J +λk

∇ fδk (xk)+ pLM
k

∥∥∥∥∥
2

≤ κ2
J

κ2
J +λk

‖pLM
k ‖2 ≤ 4κ2

J‖∇ fδk (xk)‖2

κ2
Jλ

2
min

and the thesis follows as the right-hand side goes to zero when k tends to infinity
from Theorem 8.16.
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From Lemma 8.17, if λk is large enough pLM
k tends to assume the direction

of ∇ fδk (xk) with step-length θ

κ2
J+λk

. Then, eventually the method reduces to a

perturbed steepest descent method with step-length and accuracy in the gradient
inherited by the updating parameter and noise control strategies employed. As
we will see in the numerical results section (cf. p.148), overall the procedure
benefits from the use of a genuine Levenberg-Marquardt method till the last stage
of convergence, gaining an overall faster convergence rate compared to a pure
steepest descent method. Moreover this can be gained at a modest cost, as we
solve the normal system (8.5) only to a low accuracy by an iterative solver. Then,
the number of inner iterations is small, specially when the regularization term is
large as Bk +λkI ' λkI. As a result in the last stage of the procedure the cost per
iteration is comparable to that of a first order method.

In the following theorem we prove local convergence for the steepest descent
step resulting from our procedure. The analysis is inspired by the one reported in
[82, §1.2.3] which is extended to allow inaccuracy in gradient values.

Theorem 8.18. Let x∗ be a solution of problem (1.2). Let Assumptions 8.3 and
8.11 hold and let {xk} be a sequence such that

xk+1 = xk + pSD
k , k = 0,1,2, . . .

with
pSD

k =−h(λk)∇ fδk (xk), (8.27)

the perturbed steepest descent step with step-length h(λk) = θ

κ2
J+λk

. Assume that

there exists r > 0 such that f is twice differentiable in Br(x∗) and let H be its
Hessian matrix. Assume that ‖H(x)−H(y)‖ ≤ M‖x− y‖ for all x, y ∈Br(x∗) and let
0< l ≤ L̃ <∞ be such that lI ¹ H(x∗)¹ L̃I. Assume that there exists an index k̄ for
which ‖xk̄ − x∗‖ < r̄ and

λk >max
{
θ(L̃+ l)

2
,λ∗

(
1+ 2L

l

)2/(2−α) }
, (8.28)

where λ∗ is defined in (8.12) and r̄ = min{r, l
M }. Then for all k ≥ k̄ the error is

decreasing, i.e. ‖xk+1 − x∗‖ < ‖xk − x∗‖, and ‖xk − x∗‖ tends to zero.

Proof. We follow the lines of the proof of Theorem 1.2.4 in [82] for an exact gradi-
ent step, taking into account that our step is computed using a noisy gradient. As
∇ f (x∗)= 0,

∇ f (xk)=∇ f (xk)−∇ f (x∗)=
1∫

0

H(x∗+τ(xk − x∗))(xk − x∗) dτ :=Gk(xk − x∗),

where we have defined Gk =
1∫
0

H(x∗+τ(xk − x∗)) dτ. From (8.27),

xk+1 − x∗ = xk − x∗−h(λk)∇ f (xk)+h(λk)(∇ f (xk)−∇ fδk (xk))=
= (I −h(λk)Gk)(xk − x∗)+h(λk)(∇ f (xk)−∇ fδk (xk)).
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From (8.14)

‖∇ fδk (xk)−∇ f (xk)‖ ≤ ck‖∇ fδk (xk)‖ ≤ ck‖∇ fδk (xk)−∇ f (xk)‖+ ck‖∇ f (xk)‖. (8.29)

Notice that ck =
(
λ∗
λk

)1−α
2 (see (8.13)). If we let k ≥ k̄, (8.28) ensures λk > λ∗, and

ck < 1. Then, from (8.29) and the Lipschitz continuity of ∇ f we obtain

(1− ck)‖∇ fδk (xk)−∇ f (xk)‖ ≤ ck‖∇ f (xk)−∇ f (x∗)‖ ≤ Lck‖xk − x∗‖.

Then, as (8.28) also yields λ
1−α

2
k − (λ∗)1−α

2 ≥ 2L
l (λ∗)1−α

2 , it follows

‖∇ fδk (xk)−∇ f (xk)‖ ≤ Lck

1− ck
‖xk − x∗‖ ≤ l

2
‖xk − x∗‖.

Let us denote ek = ‖xk − x∗‖. Then it holds

ek+1 ≤ ‖I −h(λk)Gk‖ek +h(λk)‖∇ f (xk)−∇ fδk (xk)‖ ≤ ‖I −h(λk)Gk‖ek +
h(λk)l

2
ek.

(8.30)
From [82], Corollary 1.2.1

H(x∗)−τMekIn ¹ H(x∗+τ(xk − x∗))¹ H(x∗)+τMekIn.

Then, (
l− ek

2
M

)
In ¹Gk ¹

(
L̃+ ek

2
M

)
In,[

1−h(λk)
(
L̃+ ek

2
M

)]
In ¹ In −h(λk)Gk ¹

[
1−h(λk)

(
l− ek

2
M

)]
In.

If we denote with

ak(h(λk))=
[
1−h(λk)

(
l− ek

2
M

)]
, bk(h(λk))=

[
1−h(λk)

(
L̃+ ek

2
M

)]
,

we obtain ak(h(λk))>−bk(h(λk)) as by (8.28) h(λk)< 2
l+L̃ .

Then it follows

‖In −h(λk)Gk‖ ≤max{ak(h(λk)),−bk(h(λk))}= 1−h(λk)l+ Mh(λk)
2

ek.

From (8.30)

ek+1 ≤
(
1− h(λk)l

2
+ Mh(λk)ek

2

)
ek < ek

if ek < r̄ = l
M .

Let us estimate the rate of convergence. Let us define qk = lh(λk)
2 and m̃k =

Mh(λk)
2 = qk

r̄ . Notice that as ek < r̄ < qk+1
m̃k

= 2
Mh(λk) + l

M , then 1− m̃kek + qk > 0. So

ek+1 ≤ (1− qk)ek + m̃ke2
k = ek

1− (m̃kek − qk)2

1− (m̃kek − qk)
≤ ek

1− m̃kek + qk
1

ek+1
≥ 1+ qk − m̃kek

ek
= 1+ qk

ek
− m̃k =

1+ qk

ek
− qk

r̄
,

1
ek+1

− 1
r̄
≥ (1+ qk)

(
1
ek

− 1
r̄

)
≥ (1+ qM)

(
1
ek

− 1
r̄

)
> 0,
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with qM = lθ
2(κ2

J+λmax)
. Then, we can iterate the procedure obtaining

1
ek

≥
(

1
ek

− 1
r̄

)
≥ (1+ qM)k−k̄

(
1
e k̄

− 1
r̄

)
,

ek ≤
(

1
1+ qM

)k−k̄ r̄e k̄

r̄− e k̄
,

and the convergence of ‖xk − x∗‖ to zero follows.

Note that if we choose λmax > max
{
γλ∗,γλ̄, θ(L̃+l)

2 ,λ∗ (
1+ 2L

l
)2/(2−α) }

we have
that it exists k̄ such that for k ≥ k̄, all the iterations are successful and (8.28) is
satisfied. Then, Theorem 8.18 shows the local behaviour of our procedure.

8.3 Complexity

In this section we provide a global complexity bound for the procedure sketched
in Algorithm 8.1. The analysis is inspired by that reported in [114]. We will prove
that the number of iterations required to obtain an ε-accurate solution, i.e. a
solution such that ‖∇ fδk (xk)‖ ≤ ε, is O(ε−2), as for standard Levenberg-Marquardt
methods, see Section 2.4.2.

Notice that the regularization parameter at the current iteration depends on
the outcome of the previous iteration and consequently let us define the following
sets:

S1 = {k+1 : ρk(pLM
k )≥ η1; ‖∇ fδk (xk)‖ < η2/λk}, (8.31)

S2 = {k+1 : ρk(pLM
k )≥ η1; ‖∇ fδk (xk)‖ ≥ η2/λk}, (8.32)

S3 = {k+1 : ρk(pLM
k )< η1}. (8.33)

Let Ni = |Si| for i = 1,2,3, so that the number of successful iterations is N1 +N2

and the number of unsuccessful iterations is N3. Moreover S1 can be split into
two subsets

S1 = A∪B = {k+1 ∈ S1 : γλk <λmax}∪ {k+1 ∈ S1 : γλk ≥λmax},

taking into account that if k+ 1 ∈ S1 from the updating rule at step 4.1 either
λk+1 = γλk (A), or λk+1 =λmax (B).

The analysis is made under the following Assumption:

Assumption 8.19. Let us assume that the procedure sketched in Algorithm 8.1 is
stopped when ‖∇ fδk (xk)‖ ≤ ε.

In the following Lemma we provide an upper bound for the number of success-
ful iterations.

Lemma 8.20. Let Assumptions 8.3, 8.8, 8.11, 8.15 and 8.19 hold. Let ks be the
index of the first successful iteration.
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1. The number N1 of successful iterations belonging to set S1 is bounded above
by:

N1 ≤ fδks−1(xks)
2
η1

κ2
J +λmax

θε2 =O(ε−2).

2. The number N2 of successful iterations belonging to set S2 is bounded above
by a constant independent of ε:

N2 ≤ fδks−1(xks)
2
η1

κ2
J +λmax

θ

(
λmax

η2

)2
.

Proof. From (8.2), as λk ≤λmax for all k, it follows

mk(xk)−mk(xk + pLM
k )≥ θ

2
‖∇ fδk (xk)‖2

κ2
J +λmax

.

Then, as the iteration is successful

fδk−1(xk)− fδk (xk + pLM
k )≥ η1(mLM

k (xk)−mLM
k (xk + pLM

k ))

≥ η1

2
θ‖∇ fδk (xk)‖2

κ2
J +λmax

.

For all k it holds ‖∇ fδk (xk)‖2 ≥ ε2 and in particular for k ∈ S2

‖∇ fδk (xk)‖2 ≥
(
η2

λmax

)2
.

Then

fδks−1(xks)≥
∑

j∈S1∪S2

( fδ j−1(x j)− fδ j (x j+1))

= ∑
j∈S1

( fδ j−1(x j)− fδ j (x j+1))+ ∑
j∈S2

( fδ j−1(x j)− fδ j (x j+1))

≥ η1N1

2
θ

κ2
J +λmax

ε2 + η1N2

2
θ

κ2
J +λmax

(
η2

λmax

)2
,

and the thesis follows.

In the following Lemma we provide an upper bound for the number of unsuc-
cessful iterations.

Lemma 8.21. Let Assumptions 8.3, 8.8, 8.11, 8.15 and 8.19 hold. The number of
unsuccessful iterations N3 is bounded above by a constant independent of ε:

N3 ≤
log λmax

λ0

logγ
.
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Proof. Notice that from Assumption 8.15 it is not possible to have an iteration
index in B before the last unsuccessful iteration. Then, if we denote with N̄ the
last unsuccessful iteration index, if k < N̄ is a successful iteration, it belongs to A.
Denoting with Na the number of such iterations, it follows

λN̄ = γNa+N3λ0 ≤λmax.

Then

N3 ≤ Na +N3 ≤
log λmax

λ0

logγ
,

and the thesis follows.

Then, taking into account the results proved in the previous lemmas, we can
state the following complexity result, that shows that the proposed method shares
the known complexity properties of the steepest descent and trust-region proce-
dures.

Lemma 8.22. Let Assumptions 8.3, 8.8, 8.11, 8.15 and 8.19 hold, and let NT be
the total number of iterations performed. Then,

NT ≤ fδks−1(xks)
2
η1

κ2
J +λmax

θ

(
1
ε2 +

(
λmax

η2

)2)
+

log λmax
λ0

logγ
=O(ε−2). (8.34)

We underline that λmax and therefore the constant multiplying ε−2 in (8.34)
may be large if κJ is large. On the other hand in next section we will show that in
the applications of our interest κJ ' 1.

8.4 Chapter conclusion

In this chapter, we have proposed an inexact Levenberg-Marquardt approach to
solve large scale nonlinear least squares problems with expensive objective func-
tion. The method relies on the solution of a sequence of problems with noisy
functions and gradients approximating the original problem. We assume to be
able to estimate and reduce the noise, if needed. We propose a rule to decide if
the noise level allows to successfully continue with the optimization process and a
suitable update of the regularization parameters to handle the noise in the func-
tion. Having in mind to work with large scale problems, we handled the linear
algebra phase by an iterative solver.

We proved that the resulting approach guarantees global convergence to a so-
lution of the unperturbed problem and that asymptotically the step tends to the
direction of the negative perturbed gradient. Then, we performed a local analy-
sis for the arising perturbed steepest descent methods. We also provided a global
complexity bound for the proposed method.
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CHAPTER

9
Application to data
assimilation and machine
learning

In this chapter, we analyze the numerical behaviour of the Levenberg-Marquardt
method described in Algorithm 8.1. We will denote it as LMN (Levenberg-Marquardt
method for Noisy problems). We show the results of its application to nonlinear
least squares problems arising in data assimilation and machine learning. These
problems can be written as

min
x∈Rn

f (x)= 1
2
‖R(x)‖2 + 1

2
‖x‖2 = 1

2

m∑
j=1

R j(x)2 + 1
2
‖x‖2, (9.1)

with R j :Rn →R, for j = 1, . . . ,m.
Specifically we consider four test problems:

• We consider two instances of the same data assimilation problem. We want
to reconstruct the initial state of a system whose evolution is governed by
a 1D wave equation, given observations at subsequent time instants. They
are described in Section 9.1.

• We consider two instances of the same machine learning problem. The aim
is to perform a logistic regression on given data samples. One dataset arises
from a real world application in the field of turbomachinery design. They
are described in Section 9.2.

In these test problems the objective function is a sum over a large number
m of terms and it is therefore expensive to evaluate. Our method is suitable for
problems for which m is large but it is not huge, as we need to estimate the noise
in the function approximations. In such cases it is possible to compute the exact
function but it is expensive. Then sporadic computations of the full function are
possible, but using it along all the optimization process would be computationally
heavy. Such situations arise for example in applications where obtaining the la-
bels of the samples is expensive, so one cannot expect to have at disposal a huge
number of samples, but this number is still too large to be efficiently handled by a
standard inexact method. This is the case of the real life application we present in
Section 9.2.2, where the computation of the labels of the training samples is the
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result of the expensive solution of high-dimensional partial differential equations.
It is impossible to obtain too many samples, as for industrial needs the whole
process must be performed quickly.

In some of the test problems the noise in the function arises from the fact
that approximations are built considering not all the terms in the sum. Each
term corresponds to an observed data, that are usually referred to as samples or
observations, and the terms to be considered are selected through the use of sub-
sampling techniques. At each iteration a subset of the available samples indexes
Xk ⊆ {1, . . . ,m} is randomly selected such that |Xk| = Kk for each k. The approx-
imations Rδk to R are built considering just the Kk terms corresponding to the
samples indexed by Xk. Each time condition (8.7) is not verified we increase the
size of the subsampled set adding new samples (randomly selected) to decrease
the noise level. The size increase is performed in a linear way by a factor K∗, so
that if the loop 1-2 of Algorithm 8.1 is performed nk times it holds

|Xk+1| = Knk∗ |Xk|. (9.2)

Notice that other updates, different from linear, could be used affecting the speed
of convergence of the procedure, see for example [15, 43]. Moreover, the subsam-
pling is performed in a random way, even if for some problems, like data assimila-
tion problems, it is possible to devise more efficient strategies. Such strategies,
taking into account the particular structure of the problem, lead to a quicker
decrease in the noise, the number of samples being the same [46]. We will not
consider these aspects here.

The procedure was implemented in MATLAB and run using MATLAB 2015A

on an Intel(R) Core(TM) i7-4510U 2.00GHz, 16 GB RAM; the machine precision is
εm ∼ 2·10−16. We run LMN with η1 = 0.25, η2 = 10−3, γ= 1.001, α= 0.9, λmax = 106,
λmin = 1 for data-assimilation problems and λmin = 0.1 for the machine-learning
problems. In order to compute the step, the linear subproblems (8.5) are solved by
the Matlab function cgls available at [95], that implements conjugate gradient
(CG) method for least squares. We set the stopping tolerance to 10−1, that is we
used εk = 10−1 in (8.4). We set to 20 the maximum number of iterations cgls is
allowed to perform. We will see in the numerical tests that the average number
of cgls iterations per outer iteration is really low, and this maximum number is
never reached.

In the numerical tests, the performance of LMN has been compared to that
of inexact Levenberg-Marquardt methods, for which the linear algebra phase is
handled in the same way, but they employ the unperturbed function and gradient.
In particular, we have considered:

• FLM, the full inexact Levenberg-Marquardt method, i.e. the procedure de-
scribed in Algorithm 8.1, but run computing at each iteration the exact value
of the objective function,

• SLM, an inexact Levenberg-Marquardt method based on a standard update
of the regularization parameters as in (2.20) (with λ0 = 0.1, γ0 = 2,γ1 =
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0.5,η1 = 0.25,η2 = 0.75). It also uses exact values of the objective function.

For problems in which subsampling techniques are employed, using the exact
function amounts to use all the available samples, so that Kk = m for all k and
the noise is zero along all the optimization process. The difference between these
two approaches lies uniquely in the update of the Levenberg-Marquardt parame-
ter. We considered both these inexact methods, as in case noise is not present it is
not necessary to employ the update of the parameters in Algorithm 8.1. We want
to show that the proposed noise control mechanism makes the procedure compu-
tationally less expensive, even compared to a more standard inexact Levenberg-
Marquardt method (that is supposed to converge more quickly), without loss in
solution accuracy.

To evaluate the performance of LMN and compare it to that of the other inex-
act methods, we use two different counters, one for the nonlinear function eval-
uations and one for matrix-vector products involving the Jacobian matrix (trans-
posed or not). This includes both the products necessary to compute the gradient,
to evaluate the model and those performed in the conjugate gradients iterations.
We remind that cgls requires two matrix-vector products per iteration, plus an-
other two in the initialization phase.

Notice that to take into account the use of subsampling techniques, the coun-
ters are intended to be cost counters, i.e. each function evaluation and each prod-
uct is weighted according to the size of the samples set. The cost of a function
evaluation or of a matrix-vector product is considered unitary when the full sam-
ples set is considered, otherwise it is weighted as |Xk|

m . If a sampling technique is
not used, than all the weights will be one and the counters will simply count the
number of function evaluations or of products.

The solution x computed by the LMN is compared to x∗, approximation com-
puted by the FLM, stopped when the norm of the gradient reaches 10−6. The
distance is measured by the Root Mean Square Error (RMSE):

RMSE =
√∑n

i=1(x∗(i)− x(i))2

n
.

In the tables, the column heads have the following meanings: it: counter of outer
iterations of the Levenberg-Marquardt method, CGit: average number of cgls
iterations per outer iteration, costf: function evaluation cost counter, costp: prod-
ucts cost counter, RMSE: root mean square error, savef, savep: savings gained by
LMN compared to FLM respectively in function evaluations and products (com-
puted from costf and costp). In the tables, we report just results referring to
FLM, and not to SLM, as their performance is comparable; for each test problem,
we comment on the difference between FLM and SLM in the text.

When a sampling technique is used also the value |Xit| of the cardinality of the
samples set at the end of the process is reported.
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9.1 Data assimilation problems

In this section we consider the data assimilation problem described in [46]. The
basic purpose of a data assimilation problem is to combine different sources of
information to estimate at best the state of a system. These sources generally
are observations and a numerical model. Usually a model is jointly used with
observations, as they are sparse or partial in geophysics, and the model is used to
interpolate the information from observations to unobserved regions or quantities
[14].

We consider a one-dimensional wave equation system, whose dynamics is gov-
erned by the following nonlinear wave equation:

∂2u(z, t)
∂t2 − ∂2u(z, t)

∂z2 + f̃ (u)= 0, f̃ (u)=µeνu, (9.3a)

u(0, t)= u(1, t)= 0, (9.3b)

u(z,0)= u0(z),
∂u(z,0)
∂t

= 0, (9.3c)

0≤ t ≤ T, 0≤ z ≤ 1. (9.3d)

The system is discretized using a mesh involving n = 360 grid points for the
spatial discretization and Nt = 64 for the temporal one. We assume to have an
observation for each grid point, so that the total number of observations is m =
n · Nt = 23040. We denote with x(t j) the state vector, namely the solution of the
nonlinear model (9.3) at time t j. We assume to have at disposal a priori estimate
xb ∈ Rn that is called the background vector, and a set of observations. With yj ∈
Rm j we denote the vector of observations at time t j and with H j the operator
modelling the observation process at the same time.

We look for the initial state u0(z), which is possible to recover solving the
following data assimilation problem [46]:

min
x∈Rn

1
2
‖x− xb‖2

B−1 +
1
2

Nt∑
j=1

‖H j(x(t j))− yj‖2
O−1

j
(9.4)

where, given a symmetric positive definite matrix M, ‖x‖2
M denote xT Mx. Ma-

trices B ∈ Rn×n and O j ∈ Rm j×m j represent the background-error covariance and
the observation-error covariance at time t j respectively. In our tests we build
the background vector and the observations from a chosen initial true state xT

by adding a noise following the normal distribution N(0,σ2
b) and N(0,σ2

o) respec-
tively. We have chosen σb = 0.2, σo = 0.05. For further details on the test problem
see [46]. We can reformulate (9.4) as a least squares problem (9.1), defining

R(x)=


‖H1(x(t1))− y1‖O−1

1
...

‖HNt(x(tNt))− yNt‖O−1
Nt

 ,

where (H j(x(t j))− yj) ∈ Rm j for j = 1, . . . , Nt. In general high accuracy is not re-
quired in practical applications, so the optimization process is stopped as soon
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as the residuals are detected to be Gaussian. As a normality test we employ
the Anderson-Darling test [2], which tests the hypothesis that a sample has been
drawn from a population with a specified continuous cumulative distribution func-
tion Φ, in this case the Gaussian distribution. Assuming to have a sample of n
ordered data {x1 ≤ x2 ≤ ·· · ≤ xn−1 ≤ xn}, a statistic is built in the following way:

W2
n =−n− 1

n

n∑
i=1

(ln(Φ(xi))+ ln(1−Φ(xn−i+1))).

If W2
n exceeds a given critical value the hypothesis of normality is rejected with

some significance level. We used the critical value for significance level 0.01 which
is 1.092 [100]. This stopping criterion is used for all the considered procedures.

9.1.1 Data assimilation problem with subsampling

In this section we consider the case in which the noise in the function arises from
the fact that not all the available observations are considered along all the op-
timization process. The full problem (9.1) is obtained when all the observations
are considered, in this case m j = 360 for every j, while the approximations Rδk

are obtained selecting randomly Kk observations among the available ones, until
the desired cardinality of the samples sets is reached. In this case the vectors
(H j(x(t j))− yj) have dimension m j ≤ 360, and it may be m j 6= mi if i 6= j.

We consider two different problems of the form (9.4), corresponding to two
different values of µ in (9.3a). We consider a mildly nonlinear problem, choosing
µ= 0.01 because this is usually the case in practical data assimilation applications
and then we increase µ to 0.5 to consider the effect of the nonlinearity on our
procedure.

In these tests we assume the covariances matrices to be diagonal: B = σ2
bIn

and O j =σ2
oIm j for each j.

We denote with x∗ the solution approximation found by FLM, computed stop-
ping the procedure as soon as ‖∇ fδk (xk)‖ < 10−6. If we compare this approximation
to the true state xT we obtain a RMSE ' 5.2e−3. Then, we study the effect of the
presence of noise in the function arising from the use of subsampling techniques
and we compare the solution found by LMN to x∗. Taking into account (7.2) the
noise level δk is approximated in the following way. At the beginning of the itera-
tive process δ0 is set to | fδ0(x0)− f (x0)|. Then, it is left constant and updated only
when condition (8.7) is not satisfied as follows

δk ' | fδk (xk)− f (xk)|. (9.5)

We stress that this computation is not particularly expensive as it does not af-
fect the product counter and marginally contributes to the function evaluations
counter. In fact, the evaluation of the full function is required only when condition
(8.7) is not met and not at each iteration. Remarkably, in this case this evaluation
is performed just once for a fixed iteration index, even in case the noise is reduced
more than once in the loop 1-2 of Algorithm 8.1, as xk is fixed.
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The performance of our procedure is affected by mainly three choices: the car-
dinality of the starting set of observations K0, factor K∗ in (9.2) and the parameter
κd in (8.7). The choice of K∗ determines how much the noise is reduced at each
loop at steps 1-2 of Algorithm 8.1. A too small value could lead to a too low noise
reduction, gaining a noise level that still does not satisfy condition (8.7), so that
the loop should be performed nk > 1 times. Each noise reduction requires the com-
putation of a trial step through the solution of a linear system (8.3) of increasing
size, so it is advisable to consider a reasonable increase in the subsets size. Again
too small values of κd generally lead to a too frequent noise reductions. In this
section we investigate the effect of parameter κd combined with different values
of K0, while K∗ is kept fixed, K∗ = 1.5. Its effect will be studied in Section 9.2.

We run the procedure choosing two different values of K0, combined with dif-
ferent values of κd, Tables 9.1 and 9.2 refer to problem µ = 0.5 for K0 = 2000
and K0 = 5000 respectively, while Table 9.3 refers to test problem µ = 0.01 for
K0 = 2000 and K0 = 7000. In the first column we report the results of the op-
timization process performed by FLM and in the others those corresponding to
LMN with different choices of κd. In the last two rows the savings gained by LMN
in function evaluations savef and products savep are reported. In the tests pre-
sented in this section the number of iterations is quite low, so the rule for updating
the regularization parameter does not have a great impact on the procedure and
the performance of FLM method and of SLM method is quite the same.

We notice that LMN requires on average a higher number of cgls iterations
than FLM and this is due to the need of recomputing the step when (8.7) is not
satisfied. However, notice that each cgls iteration will be less expensive than
those required by the FLM as the systems involved have smaller dimension. This
number is affected by the choice of parameter κd, and generally it decreases with
κd. This is less evident for µ= 0.5, while it is more evident for µ= 0.01. Moreover,
the value of κd does not affect the number of outer iterations performed by LMN,
while it has a deep impact on the procedure cost, as we can see from the significant
variation of function evaluations and matrix-vector products counters.

We notice that in all cases our procedure is much less expensive than FLM,
and consistent savings are provided by higher values of κd. In these cases indeed
the noise is reduced less frequently, as condition (8.7) is more likely satisfied, and
as a result the overall process is performed with less observations and is less
expensive, at the cost however of a less accurate solution.

Indeed, if κd is too large the noise control strategy is not effective, the noise
may be never reduced and the sequence may approach a solution of the noisy
problem, that can be a bad approximation to that of (9.4). In Figure 9.1 we com-
pare solution approximations for µ = 0.5 provided by: FLM (up left), LMN with
K0 = 5000 and κd = 10 (up right), LMN with K0 = 2000 (bottom left) and K0 = 5000
(bottom right) and κd = 10000. In all the plots the solid line represents the true
state xT and the dotted line the computed solution approximation. It is evident
that in the bottom left plot, corresponding to the last column of Table 9.1, the so-
lution found is less accurate. In fact, due to the high value of κd the noise is never
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FLM κd = 1 κd = 10 κd = 100 κd = 1000 κd = 10000
it 9 11 12 12 12 11
CGit 2.4 5.4 4.9 4.2 4.2 3.9
costf 10 9.7 6.1 3.3 3.2 2.0
costp 67 46.1 26.8 14.9 13.5 10.3
|Xit| 23040 15188 6750 3000 3000 2000
RMSE 1.2e-2 3.0e-2 2.8e-2 3.8e-2 4.4e-2 7.8e-2
savef 3% 39% 67% 68% 80%
savep 31% 60% 78% 80% 85%

Table 9.1: Performance of LMN for test problem µ= 0.5 and K0 = 2000.

FLM κd = 1 κd = 10 κd = 100 κd = 1000 κd = 10000
it 9 11 11 12 12 12
CGit 2.4 4.1 3.9 4.0 4.1 3.7
costf 10 9.1 6.5 5.1 4.9 3.6
costp 67 54.8 37.2 34.6 32.9 27.3
|Xit| 23040 16875 11250 7500 7500 5000
RMSE 1.2e-2 2.7e-2 3.0e-2 2.1e-2 2.1e-2 2.7e-2
savef 9% 35% 49% 51% 64%
savep 18% 44% 48% 51% 59%

Table 9.2: Performance of LMN for test problem µ= 0.5 and K0 = 5000.

reduced and the problem is solved considering just the samples in the initial sub-
set, which are not sufficient to obtain the same accuracy gained by the FLM. Then
κd should not be chosen too high, especially if K0 is small.

On the other hand, if K0 is large enough one can expect to gain good solution
accuracy even with a higher κd. For example K0 = 5000 is large enough to obtain
a good solution approximation, so the best performance is obtained with large κd.
Then, κd should be chosen in relation to K0 and according to the desired solution
accuracy.

In Figure 9.2 we relate the savings gained with the corresponding solution
accuracy. The solid lines refer to Table 9.1 while the dotted ones to Table 9.2. In
the left plot we report the savings in function evaluations (lines marked by stars)
and in matrix-vector products (lines marked by circles), while in the right plot the
RMSE, versus κd . If K0 = 5000 the accuracy is almost the same for all choices
of κd but the savings increase with κd, while if K0 = 2000 the most significant
savings are obtained choosing large κd, but at the expense of a lower solution
accuracy.

Notice also that in the tests the final value |X it| is always less than m, which
confirms that it is not necessary to use all the available observations to obtain a
good solution approximation.

In Figure 9.3 we report as an example for problem µ= 0.5 and K0 = 2000,κd =
10 the behaviour of the noise (left plot) and that of the error (right plot) through
iterations. We underline that condition (8.7) is not violated at each iteration, then
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in Tables 9.1 (solid lines), 9.2 (dotted lines). Right plot: corresponding solution accuracy.

the noise is kept fixed for some consecutive iterations, and the evaluation of the
full function, by the computation of the remaining components, is only sporadi-
cally necessary.

Regarding the choice µ = 0.01 we report statistics in Table 9.3. The problem
is almost linear, so it is solved in few iterations. Due to the really low number of
iterations, it is advisable to start with a rather large initial set to avoid converging
to a solution of the noisy problem and to gain the same accuracy as FLM. In this
case the procedure is less sensitive to the choice of parameter κd than in the
other case and only significant changes in κd affect its performance. Also for this
problem the use of LMN provides significant savings compared to FLM.
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K0 = 2000 K0 = 7000
FLM κd = 1 κd = 10,100 κd = 1000 κd = 1,10 κd = 100,1000

it 3 3 4 3 3 3
CGit 3.0 12.3 9.5 6.0 5.7 4.0
costf 4 2.9 3.5 1.3 3.1 1.9
costp 27 12.6 10.8 3.9 15.3 10.0
|Xit| 23040 6750 4500 2000 10500 7000
RMSE 6.8e-3 2.0e-2 1.1e-2 3.4e-2 1.5e-2 1.6e-2
savef 27% 12% 67% 22% 52%
savep 53% 60% 85% 43% 63%

Table 9.3: Performance of LMN for test problem µ= 0.01.

9.1.2 Data assimilation problem with non-diagonal
covariance matrix.

In this section we consider the same problem as in the previous one, but we focus
on the case in which the background-error covariance matrix is not diagonal. Of-
ten the dimension of this matrix is large and it is not even available, and only its
action onto a vector is known. Then it is not straightforward to invert it to eval-
uate the objective function. It is necessary to use an iterative method to evaluate
B−1(xk − xb) solving approximately the system

Bz = xk − xb. (9.6)

The accuracy in the solution of such systems has to be fixed in advance and the
noise in the objective function arises from the fact that it is the result of this
computation, that is performed with a certain accuracy.

To simulate such situation we choose B = σ2
bTb where Tb is a three-diagonal

Toeplitz matrix such that Ti, j = e−|i− j| if i = j, j+1, j−1 [30]. We solve the systems
(9.6) with cgls and we stop the procedure as soon as

‖ρk‖ = ‖Bz− xk + xb‖ ≤ tolk‖xk − xb‖,

where tolk is a positive parameter to be set. We set to 40 the maximum number
of iterations. To make the comparisons easier, we consider as FLM the procedure
that employs an accurate solution of the systems (9.6), i.e. choosing tolk ≡ 10−6
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it CGit costp RMSE savep
FLM 11 42.0 981 4.1e-2
LMN 10 23.4 526 4.9e-2 46%

Table 9.4: Performance of LMN for data assimilation problem with non-diagonal background-
error covariance matrix.
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Figure 9.4: LMN applied to data assimilation problem with non-diagonal matrix. Left: solution
approximation. Right: total number of cgls iterations.

in (8.4). The noisy approximations are built solving the systems with a looser
tolerance.

The error between the exact and the approximated function can be estimated
as

δk ≤
1
2
‖xk − xb‖2‖B−1‖tolk.

The eigenvalues of matrix B are known, so we can bound ‖B−1‖ with the reciprocal
of the smallest eigenvalue of B: 1

σ2
b(1−2

p
e−2)

.

We start the optimization process choosing tol0 = 10−2 and we decrease it by a
factor 10 each time (8.7) is not satisfied, where we choose κd = 1.

In Table 9.4 we compare the performance of FLM and LMN. The number of
function evaluations is not reported, as it is not significant in this case because its
cost depends on tolk and is better measured by the number of cgls iterations. In
this context costp includes all the products performed by cgls both to find the
step and to invert B. As expected, solving the systems with high accuracy requires
far more iteration of the linear solver and the savings provided by our procedures
are considerable. This is obtained without loosing accuracy in the solution approx-
imation. In Figure 9.4 we report the plot of the solution approximation computed
by LMN on the left and the plot of the total number of cgls iterations (including
those required both to find the step and to solve (9.6)) per outer iteration on the
right . The number of cgls iterations required to invert matrix B increases as
δk is decreased by our noise check strategy, tolk is indeed initially set to 10−2 and
brought to 10−4 toward the end of the process. The tight tolerance 10−6 is anyway
never reached.
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9.2 Machine learning problems

In this section we consider the application of our method to problems arising in
machine learning. The aim of machine learning techniques is that of building
models, usually called meta-models, that are able to learn a task, for example to
approximate a function or classify data, from given examples arising from the con-
sidered application. The examples are usually couples given by a n-dimensional
vector called sample and a target value called label that corresponds to the re-
sult of the process that the model is expected to perform. For example in case of
regression problems the target is the value of the function to predict, in classifi-
cation problems the label of the class the sample belongs to. The employment of
machine learning meta-models is based on two different steps, [16]:

• a training phase, in which the model learns the task it has to perform from
some given samples that form the so-called training set. Specifically, in com-
mon practice one selects a class of functions in which the model will be cho-
sen. The candidate models depend on some hyper-parameters that need to
be tuned. Then, during this phase optimization processes are performed for
different values of the hyper-parameters to choose a set of candidate models
in the selected class, to pinpoint a small subset of viable candidates. Then,
a validation set is used in order to estimate the prediction error of each of
these remaining candidates and to select the best performing of them which
is chosen as the selected model.

• an execution phase, in which the trained model is used to perform the learned
task on new samples whose labels are unknown, that form a testing set. The
testing set is used to estimate the generalized performance of this selected
function.

In this section, we will consider the problem of binary classification. It is assumed
that the samples can be divided into two classes, labelled as +1 and −1. The aim
is to learn from given data how to divide them into the two classes and to assign
a new sample to the right one.

We suppose to have at disposal a training set composed of pairs {(zi, yi)} with
zi ∈Rn, yi ∈ {−1,+1} and i = 1, . . . ,m, where yi denotes the correct sample classifi-
cation. We perform a logistic regression, then we consider as a training objective
function the logistic loss with l2 regularization [15]:

f (x)= 1
2m

m∑
i=1

log(1+exp(−yixT zi))+ σ

2
‖x‖2.

Following [15], the regularization term is set to σ= 1
m so that our model becomes:

f (x)= 1
2m

m∑
i=1

log(1+exp(−yixT zi))+ 1
2m

‖x‖2. (9.7)

The training phase in logistic regression consists of minimizing function (9.7). To
this aim we employ the proposed LMN method. Since this is a convex nonlinear
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programming problem, it could potentially be solved also by a subsampled New-
ton method. Here, for sake of gaining more computational experience with our
approach, we reformulate it as a least squares problem (9.1), scaled by m, where
R :Rn →Rm is given by

R(x)=


√

log(1+exp(−y1xT z1))
...√

log(1+exp(−ymxT zm))

 .

We build the approximations fδk as:

fδk (x)= 1
2Kk

∑
i∈Xk

log(1+exp(−yixT zi))+ 1
2Kk

‖x‖2.

We stop the procedure when ‖∇ fδk (xk)‖ ≤ 10−4.
Once the problem is solved, the computed solution x∗ is used to classify the

samples in the testing set. The execution phase indeed consists of computing
labels ŷi that estimate yi for zi in the testing set as follows:

ŷi =
+1 if σ(zi)≥ 0.5

−1 if σ(zi)< 0.5,
σ(z)= 1

1+exp(−zT x∗)
.

If the correct classification of the samples in the testing set is known, the
classification error can be simply computed comparing directly the predicted and
the expected labels. In the other case, following [15], the classification error is
defined as

ete = 1
2m̃

m̃∑
i=1

log(1+exp(− ŷix∗T zi)), (9.8)

which corresponds to f (x∗) in (9.7) omitting the regularization term 1
2m̃‖x‖2 and

setting yi = ŷi.
We consider two different datasets. First, the CINA dataset available from

[19] that is typically used to test methods for machine learning problems [15, 73],
and then a dataset arising from a real life problem, the design of turbomachinery
components.

9.2.1 CINA dataset

For this dataset the number of features is n = 132 and the samples are divided
into a training set of size m = 16033 and a testing set of size m̃ = 10000. The
testing error is computed as in (9.8).

We start the optimization process with K0 = 1000. Parameter κd is set to 100.
The noise level is computed as outlined in Section 9.1.1 (see (9.5)).

We study the effect of the choice of K∗ in (9.2) on the procedure performance.
Then, we fix K0 = 132 and κd = 100.

Notice that in these runs all the available training samples are used during
the optimization process, so that the final value |X it| always reaches the maximum
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FLM K∗ = 1.1 K∗ = 1.5 K∗ = 2 K∗ = 2.5 K∗ = 3 K∗ = 3.5
it 52 82 43 38 39 34 53
CGit 5.7 8.5 8.0 7.5 7.3 7.2 5.5
costf 53 19.8 14.1 15.9 21.2 16.5 37.7
costp 808 671.2 351.3 316.7 400.7 310.4 521.1
|Xit| 16033 16033 16000 16033 16033 16033 16033
RMSE 6.0e-2 1.0e-1 6.6e-2 5.4e-2 4.7e-2 4.1e-2 3.9e-2
ete 0.185 0.180 0.181 0.187 0.184 0.183 0.185
savef 63% 74% 70% 60% 69% 29%
savep 17% 56% 61% 50% 62% 35%

Table 9.5: Performance of LMN for machine learning test problem for different values of K∗.

value m. The results reported in Table 9.5 show that for every choice of K∗ LMN
provides significant savings compared to FLM.

For this test problem, differently from those presented in the previous section,
the number of iterations is quite high. Then, the choice of the updating rule for
the regularization parameter deeply affects the cost of the procedure. When SLM
is considered, the convergence is much faster compared to FLM (the number of
outer iterations performed is half of those required by FLM), but the average
number of cgls iterations per outer iteration is more than the double. Indeed,
the regularization parameters are decreasing and the linear systems to be solved
are less regularized, so that cgls requires more iterations to converge. As a
result, the cost of SLM compared to FLM is lower in terms of function evaluations
(cost f = 23) but it is almost the same in terms of products (costp = 738). Thus,
the proposed procedure is also less expensive compared to SLM.

The savings in function evaluations and products result in reduced compu-
tational time. For example for K∗ = 2 the time is reduced of about 1/3 on the
machine we performed the runs on. The solution accuracy, as it is shown both by
the RMSE and the testing error, is not worsted. The counters anyway are affected
by the choice of κd, both too small and too large values lead to a more expensive
LMN procedure. The effect of small parameter values is clearly shown in Figure
9.5. In each plot the values of nk (dotted line) and the number of cgls iterations
(dashed line) for each outer iteration k are reported, for K∗ = 1.1 (up left), K∗ = 2
(up right) and K∗ = 3.5 (bottom). The values of nk indicate how many times loop
1-2 in Algorithm 8.1 is performed (nk = 1 means that the noise is reduced once at
iteration k, nk = 0 means that the noise is kept constant for that iteration). We no-
tice that the number of cgls iterations performed in an outer iteration in which
the noise is reduced is much higher than that required by iterations in which it
is kept constant, as the linear system (8.3) is solved more than once. When K∗
is small, the noise is reduced of a small amount when condition (8.7) is not satis-
fied, and this lead to more frequent noise reductions and then to perform a higher
number of linear iterations, as it is shown in Table 9.5 and in Figure 9.5. On the
other hand, with large values of K∗ the noise is reduced less often, but a too large
choice leads Kk to quickly reach the maximum value m, so that many expensive
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Figure 9.5: Values of nk (dotted line) and number of linear iterations (dashed line) per outer
iteration, for K∗ = 1.1 (up left), K∗ = 2 (up right) and K∗ = 3.5 (bottom).

iterations are performed and again the computational costs are higher. In the left
plot of Figure 9.6 we report values of |Xk| along the iterations for different val-
ues of K∗. We notice that when K∗ is small the size is often increased of a small
amount while for larger values it raises quickly.

In the right plot of Figure 9.6 we compare the cost of matrix-vector products at
each iteration of LMN for various K∗ and of the FLM (solid line). We can see that
significant savings are obtained at the beginning of the optimization process, due
to the reduced size of the subproblems, which compensate the greater costs in the
final stage, when the samples subsets are of size close to m and additional linear
iterations are required when condition (8.7) is not satisfied.

Notice that in all the tests performed the average number of cgls iterations
is generally low and the maximum number of allowed iterations is never reached.
This is due to the low accuracy we solve the linear systems with, which anyway is
enough to achieve convergence. Moreover our method still gains the benefits of a
quicker convergence compared to first-order methods, and at no great expense, as
the number of linear iterations is extremely low. To show this, we used the Matlab
function steep, available at [71], implementing the steepest descend method to
solve the noise free problem. Its performance can then be compared to that of
FLM. After 1000 iterations the desired accuracy was not yet reached and the norm
of the gradient was of the order of 10−3. Then our procedure results to be much
quicker, despite the fact that asymptotically the step tends to a steepest descent
step.

Finally we want to highlight that the evaluation of the full function is needed
only sporadically (only when condition (8.7) is not satisfied) and that such evalua-
tions do not deeply affect the procedure’s cost. We compare the results provided by
the same procedure, in which however the noise level is not computed from (9.5)
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but it is estimated in the following way:

δk '
√

2(m−Kk)
Kk

, with Kk = |Xk|. (9.9)

This approximation is based on the observation that if the components Ri(x) of
R(x) were Gaussian,

∑
i∉Xk Ri(x)2 would follow a Chi-squared distribution with

standard deviation
√

2(m−Kk). Even if the normality assumption does not hold,
this estimation works well in practice. In the left plot of Figure 9.7 we consider
LMN with K∗ = 2 and we compare the approximation of the noise provided by
(9.5) (solid line) with the noise estimated through (9.9) (dashed line). The noise
estimate is good enough to ensure the procedure run with the estimated noise
(LMNest) to achieve the same performance as that run approximating the noise
via (9.5) (LMNappr), as it is shown in Table 9.6. Comparing the costs for function
evaluations we see that there is not a considerable difference. The approximation
of the noise through (9.5) is affordable, as the noise reduction, and so the evalu-
ation of the full function is needed only sporadically. For example for K∗ = 2 it
is needed just four times along all the optimization process, as it is evident from
Figure 9.5 (up right) or Figure 9.7 (left).

Finally, in the right plot of Figure 9.7 we compare the decrease in the model
mk(xk)−mk(xk+pLM

k ) to that of the term 1
2λk‖pLM

k ‖2 used to approximate it in the
noise control (8.7). As we have claimed in Section 8, the approximation is good,
showing that in practice the assumption we made in (8.6) is verified, as we have
also proved in Remark 8.7.
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Solver it CGit costf costp |Xit| err ete
LMNappr 38 7.5 15.9 316.7 16000 5.4e-2 0.187
LMNest 37 7.4 17.7 318.1 16000 5.7e-2 0.186

Table 9.6: Comparison of LMN with noise approximated by (9.5) (first row, LMNappr) and esti-
mated noise (second row, LMNest).

9.2.2 A real life machine learning problem

In this section we consider a classification problem arising from a real life applica-
tion, i.e. the parametric design of a family of centrifugal pumps. This problem is
described in more details in [J2], here we just give a brief outline, to understand
where the classification problem arises from.

9.2.2.1 Parametric design of a family of centrifugal pumps

This problem consists of parameterizing all the pumps of a family in a continuous
manner, and of finding among them the one representing the best compromise
among all the customers’ requirement. The pumps performance is indeed usually
measured by several functions, such as aerodynamic efficiency, flow rate. To meet
all the customer requirements, it is necessary to accept a compromise between re-
liability, low-cost manufacturing and high aerodynamic efficiency [59]. The design
reduces then to a multi-objective problem.

The design scheme we consider here is described in [20]. That is an extension
of the scheme commonly used for the design of a component of a single pump.
Usually indeed, the customer is provided with a catalogue of sample pumps, and
the one that is closest to his requirements is individuated among them. Then,
starting from this baseline configuration the new pump is built, optimizing the
parameters describing its geometry.

When a whole family of pumps is considered, the designer provides to the
customer the possibility of choosing a pump with characteristics that are inter-
mediate among the ones of the pumps already in the catalogue. Then, a baseline
configuration is not available and the design starts from scratch.

For the design, the evaluation of the objective functions of the different pumps
is crucial. Nowadays, the exponential increase of computational power allows to
do it through CFD (Computational Fluid Dynamics) analysis [89]. Anyway these
calculations are computationally expensive, as they are based on the solution of
partial differential equations. Even if reliability is still the most important aspect
that guides the choice of the final geometry, the competitiveness of the business
requires the design process to be as short as possible.

In [20] a method based on a regression meta-model is used to speed up the
optimization process. In this approach, the regression meta-model is employed
to predict values of the performance functions, to reduce the amount of required
CFD computations. These indeed can be restricted just to the amount necessary
to build a training set for the meta-model. Thus, the challenge is to perform the
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lowest number of computations and to obtain the highest accuracy in the approx-
imation of the functions [93, 94].

The procedure is outlined in Framework 1. It is based on coupling CFD compu-
tations for solving Reynolds Averaged Navier-Stokes (RANS) equations and feed-
forward Artificial Neural Networks as a regression meta-model [56]. It is assumed
that the machine performance is evaluated through h scalar performance func-
tions: f1, . . . , fh and f = [ f1, . . . , fh]. We denote a sample by x = [x1, . . . , xn] ∈ Rn. A
sample in this case is a set of n parameters describing the pump geometry. The
samples are obtained sampling randomly the design space, namely the space that
contains all the parameter combinations that correspond to pumps. It is obtained
as the Cartesian product S of the range of variation of each parameter xi, cf.
(9.10). It is crucial to notice that not all the samples in S correspond to manufac-
turable machines, many combinations will result to be non feasible.

The procedure is composed of two parts: Phase 1 of ANN training and Phase
2 of research of an optimal solutions set. In Phase 1, h ANN models, one for
each performance function, are trained. They will be used in Phase 2 to build
the response surface. In Phase 2 indeed, the meta-models are used to predict
performance functions of new pumps samples, to reduce the amount of CFD com-
putations required for the design. A multi-objective algorithm is then run to find
the set of optimal geometries among those ones.

Framework 1. Parametric design of a family of turbomachinery
components, coupling CFD and ANN.

Phase 1: ANN training

1. Geometry parameterization. Choose n parameters (degrees of free-
dom) to describe the machine geometry, so that each machine will be
identified by a vector x= [x1, . . . , xn] ∈Rn.

2. Sampling of the design space. Taking into account the range of
variation of each parameter, the design space is built. Assuming that
xmin

i ≤ xi ≤ xmax
i for i = 1, . . . ,n, the resulting design space is defined as:

S = [xmin
1 , xmax

1 ]×·· ·× [xmin
n , xmax

n ]⊆Rn. (9.10)

The space is randomly sampled to generate a dataset D0 = {x1, . . . ,xm}.

3. CFD simulations. CFD computations are performed on D0 to divide the
features in the sets F ′ of feasible samples and U ′ of unfeasible samples.
The machine performance functions of feasible samples are evaluated:
f j = [ f1(x j), . . . , fh(x j)]T for x j ∈ F ′ and a performance database DF ′ is
built, DF ′ = {(x j,f j), x j ∈F ′}.
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4. ANN training. The performance database is used to train the ANN
models, that learning from the examples in DF ′ , build their own functions
f̄ i, that are approximations to the true performance functions: f̄ i ' f i,
i = 1, . . . ,h.

Phase 2: Research of an optimal solutions set

1. Sampling of the design space. The design space is sampled again
producing a new dataset D1.

2. ANN execution. ANN models are used to predict function f= [ f1, . . . , fh]
on all the new samples in D1 through function f̄= [ f̄1, . . . , f̄h] built at step
4 of Phase 1.

3. Multi-objective algorithm. A multi-objective algorithm is run to find
the set of optimal solutions Dott.

4. CFD validation of the optimal solutions set. The found solutions set
Dott is validated by CFD computations to discard the unfeasible samples,
arising from the sampling at step 1.

When the optimization procedure starts from a baseline configuration that is
geometrically close to the final one, all the tools (e.g. for geometry parameteri-
zation, mesh generation, CFD solver etc.) involved in the process are automated
and fine tuned for the specific application [59]. Moreover, all the manufacturing
and geometrical constraints can be taken a priori into account during the tuning
of the tools. As a result, almost all the samples in S will result to be feasible and
all the computations performed can be used to form the training set.

The case in which a parametric design has to be faced is different [79]. Gen-
erally, a new design starts from scratch and relies on a quick and flexible design
tool, capable of describing in a continuous manner the whole range of geometrical
variability of a family of components. The design space investigated to meet the
customer requirements becomes really vast and it is impossible to take a priori
into account all the manufacturing or geometrical constraints. Then, as we have
already anticipated, many of the analyzed geometries will result non feasible from
a manufacturing point of view. In the following these geometries will be addressed
as unfeasible, while all the others will be addressed as feasible. As an outcome,
most of the CFD computations performed to build the training set are useless. The
number of computations necessary to generate a suitable performance database,
with enough feasible features, will increase exponentially, and consequently the
time needed to perform computations. Also, in Phase 2 the trained meta-model is
used to predict the objective functions of new geometries randomly selected. The
sampling is performed within the whole design space, and again the most part of
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the geometries provided as meta-model input will result unfeasible. The predicted
performance functions values will then be meaningless and it is possible that step
3 of Phase 2 yields a set of optimal solutions consisting of just unfeasible samples,
leading to the need of repeating the procedure again.

Then, to make the approach described in Framework 1 practical, we propose in
[J2] to include also the use of a classifier with the aim of discarding the unfeasible
parameters combinations in a cheap and fast way.

The classification problem that has to be faced is then that of dividing the
samples into the two classes F , of feasible samples, labelled with +1, and U of
unfeasible samples labelled with −1. The resulting strategy is outlined in Frame-
work 2, where the added classification procedures are highlighted in italic font.

Framework 2. Hybrid approach: Parametric design of a family of
turbomachinery components coupling CFD, ANN, Classifier.

Phase 1: ANN training

1. Geometry parameterization. Choose n parameters (degrees of free-
dom) to describe the machine geometry, so that each machine will be
identified by a vector x= [x1, . . . , xn] ∈Rn.

2. Sampling of the design space. Taking into account the range of
variation of each parameter, the design space is built. Assuming that
xmin

i ≤ xi ≤ xmax
i for i = 1, . . . ,n, the resulting design space is defined as:

S = [xmin
1 , xmax

1 ]×·· ·× [xmin
n , xmax

n ]⊆Rn.

The design space is randomly sampled to generate a dataset D0 =
{x1, . . . ,xm}.

3. Classification. The samples in D0 are given in input to the classifier
which divides them into the two classes F (feasible), U (unfeasible).
Features in U are not taken in further account and just those in F are
considered in the next steps.

4. CFD simulations. CFD computations are performed on the samples
in F . The outliers are eliminated obtaining a subset F ′ of just fea-
sible features for which the machine performance functions are evalu-
ated: f(x j) = [ f1(x j), . . . , fh(x j)] and x j ∈ F ′. The performance database
DF ′ is built, which is a set of pairs: DF ′ = {(x j,f j),x j ∈ F ′}, where
f j = [ f1(x j), . . . , fh(x j)].
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5. ANN training. The performance database is used to train the ANN
models, that learning from the examples in DF ′ , build their own
functions f̄ i that approximate the true performance functions: f̄ i ' f i,
i = 1, . . . ,h.

Phase 2: Research of an optimal solutions set

1. Sampling of the design space. The design space is sampled again
producing a new dataset D1.

2. Classification. Samples in D1 are given in input to th classifier which
divides them into the two classes F ′′,U ′′. Features in U ′′ are not taken
in further account and just those in F ′′ are considered in the next step.

3. ANN execution. The ANN model is used to predict function f of the
samples in F ′′.

4. Multi-objective algorithm. A multi-objective algorithm is run to find
the set of optimal solutions Dott.

5. CFD validation. The optimal solutions set Dott found is validated
trough CFD computations to eliminate possible outliers.

The two classification procedures inserted at step 3 of Phase 1 and step 2 of
Phase 2 are intended to mitigate the drawbacks previously outlined.

Indeed, the first classification allows to restrict the CFD computations per-
formed at step 4 of Phase 1 just to the set F of features classified as feasible by
SVM, with the aim of eliminating outliers. This produces a great saving in CFD
computations, as |F | ¿ |D0| and CFD performed on samples in U would be of no
use.

The second process allows to predict function values just of samples in F ′′

that is mainly composed of feasible features. Some outliers will anyway be still
present in the set, then step 5 of Phase 2 is still necessary, but it will be much less
expensive than the corresponding step 4 of Phase 2 in Framework 1.

9.2.2.2 Classification problem resolution

In [J2] the classification phase is handled by Support Vector Machine, [99]. Three
different datasets are considered, characterized by different number of degree of
freedom and different ratio between feasible and unfeasible samples. Here, we
consider just one dataset as an example. We use a logistic regression and as in
Section 9.2.1 we minimize the likelihood function (9.7) by the LMN method. Sum-
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ming up, in this case a sample is vector x = (x1, . . . , xn) ∈Rn whose components are
the degrees of freedom of the pump and the labels are +1 if x represents a man-
ufacturable pump (this can be understood as a result of the CFD computations)
and −1 otherwise.

We consider a set of data arising from the considered application, with 82000
samples and n = 40 features. We divide the set in a training set of m = 50000
samples and a testing set of m̃ = 32000 samples. We start the optimization process
with K0 = 100 and we stop the procedure when ‖∇ fδk (xk)‖ ≤ 10−4. Parameter κd

is set to 100.
For the testing dataset the exact labels are known, so we can compute the exact

testing error. Let C ∈ Rm be the vector with the correct features classification,
i.e. C (i) = 1 if the i-th feature xi ∈ F and C (i) = −1 if xi ∈ U , i = 1, . . . ,m, and
PC ∈ Rm the result of the classification process, i.e. PC (i) is the predicted value
of C (i), i = 1, . . . ,m. For each feature four different situations can occur:

• TP=true positive: C (i) = 1,PC (i) = 1 the feature is feasible and is correctly
classified,

• FP=false positive: C (i) =−1,PC (i) = 1 the feature is unfeasible but is mis-
interpreted and classified as feasible,

• TN=true negative: C (i) = −1,PC (i) = −1 the feature is unfeasible and is
correctly classified,

• FN= false negative: C (i) = 1,PC (i) = −1 the feature is feasible but is mis-
interpreted and classified as unfeasible.

In the considered dataset the number of unfeasible features is greater than the
number of feasible ones (the ratio is approximatively 3:1). Then, rather than con-
sidering the the fraction of features correctly classified TP+TN

TN+TP+FN+FP as a mea-
sure of accuracy, we will consider the following parameters:

• TPR = TP
TP+FN True Positive Rate or sensitivity or recall, fraction of positive

samples correctly classified over all positive samples available in the test,

• FPR = FP
TN+FP False Positive Rate, fraction of unfeasible features misinter-

preted over all negative samples available in the test.

• PPV = TP
TP+FP Positive Predictive Value, the fraction of true positives in the

set features classified as positive,

• FOR = FN
TN+FN False Omission Rate, the fraction of false negatives in the set

features classified as negative.

Parameter TPR tells us how many feasible samples, that are those that in-
terest the designer, we have found. PPV also interests the designer, as it gives a
measure of the quality of set F , telling how many unfeasible features have been
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Training Testing
it CGit costf costp time (m) TPR FPR PPV FOR

FLM 9 1.2 10.0 58.0 15 76% 20% 36% 5%
LMN 15 3.4 2.7 22.6 5 77% 23% 34% 4%
SAVE 66% 31%

Table 9.7: Parametric design test problem. Left: Comparison of FLM and LMN performance for
the training phase of the logistic regression classifier (i.e. minimization of (9.7)). Right: results of
the execution phase of the classifier on the testing set. Meaning of the labels in explained in the text
below. SAV E in the last line highlights the saving in computational time for the training (left) and
the saving in CFD computations gained by the use of the classification procedure in the parametric
design (right).

mistaken, and that would lead to useless CFD computations and to possible out-
liers in the optimal solutions set.

The results of the training and testing processes are reported in Table 9.7.
The heading time(m) denotes the time required for the optimization process in
minutes. From the training phase we can see that as in previous sections the use
of LMN compared to FLM provides considerable savings both in function evalua-
tions and in products, which lead to a considerable reduction of the training time
(' 66%, last line of Table 9.7, left.).

Regarding the testing phase, we can notice that a high percentage (76%−77%)
of the feasible samples has been correctly classified during the process. This result
is important because it influences the savings in building the ANN training set,
provided by the procedure in Framework 2, compared to that in Framework 1.

In this case we obtain a saving of 31%, i.e. with the procedure in Framework
2 it is possible to obtain the same training set as employing the procedure in
Framework 1, but with 31% CFD computations less (last line of Table 9.7, right).
In [J2] even better results are obtained by the use of Support Vector Machine,
obtaining TPR = 78% and PPV = 50.8% for this dataset, thanks to the possibility
of performing a nonlinear classification and of a careful setting of the method’s
free parameters.

9.3 Chapter conclusion

In this chapter, we have discussed the numerical behaviour of the procedure pre-
sented in Chapter 8. It was tested on problems arising in data assimilation and
machine learning, one of which arises from a real life application, in the domain
of turbomachinery parametric design.

The results show that the implemented procedure (LMN) is able to find a first-
order solution of the unperturbed problem of comparable accuracy with respect to
that found by other inexact Levenberg-Marquardt methods employing the exact
objective function. The LMN approach allows for significant savings, both in func-
tion evaluations and in matrix-vector products, thanks to the proposed strategy
to control the noise.
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The provided numerical results also show that, even though the step is shown
to asymptotically converge to a steepest-descent step, overall the procedure bene-
fits from the use of a genuine Levenberg-Marquardt method till the last stage of
convergence, gaining a faster convergence rate compared to a pure steepest de-
scent method. Moreover, this is achieved at a modest cost, thanks to the use of
iterative methods to solve the arising linear systems. Indeed, a very rough accu-
racy is imposed, that leads to a low number of linear iterations that is however
still enough to achieve convergence.

Acknowledgements We thank the authors of [46] for providing us the Matlab
code for the data assimilation test problem.
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Conclusion

Main contributions

In this thesis, we have investigated the numerical resolution of particular classes
of noisy least squares problems. We designed novel regularizing Levenberg-Marquardt
methods that are suitable to handle problems with noisy function and gradient.
We have devised specialized updates of the regularization parameters that en-
sure that the generated sequences approach a solution of the unperturbed origi-
nal problem. We have then analyzed the theoretical properties of these methods
under mild assumptions, such as local and global convergence, regularizing prop-
erties, and complexity. We also validated their numerical behaviour in practice,
using test problems arising from different fields, such as data assimilation, ma-
chine learning, geophysics, and hydrology.

Our attention has been devoted to two classes of problems. We first considered
ill-posed problems, and then large scale nonlinear least squares problems with
expensive objective function, that can be computed with different levels of accu-
racy. We considered noisy problems in both classes, but of different nature. For
ill-posed problems, the noise is limited to the data and arises from measurements
errors, while in the second class it is identified with the accuracy chosen in the
function approximations and is thus a dynamically adjusted quantity.

In the field of ill-posed problems, our contribution is twofold. We first con-
sidered existing Levenberg-Marquardt procedures for zero-residual problems. We
discussed how to implement them in a reliable way and we proposed a more robust
improvement of the existing methods. Then, we considered the class of nonzero
residual problems. Even though many problems belonging to this class are en-
countered in numerous applications, whenever the model does not fit the data,
they have not been the object of much study in the literature, which is tradition-
ally more focused on the zero residual case. Such problems are usually solved
with methods for zero residual problems, incorporating the modelling errors to
the data errors. Believing however that methods specially designed for this class
of problems are worth to be studied, we proposed a first attempt in this direction.
This represents an original contribution in the field of ill-posed inverse problems.
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Both methods are characterized by novel Trust-Region radius choices, that
provide an automatic setting of the regularization parameters, ensuring a regu-
larizing behaviour of the approaches. This is a highly desirable property for a
regularizing method, since an a priori choice is often difficult. We analyzed the lo-
cal convergence of the proposed methods under mild assumptions, different from
those usually used in the literature for Levenberg-Marquardt methods. In our
numerical experiments, we showed that the method for zero residual problems is
more robust than existing Levenberg-Marquardt methods in the literature, and is
less dependent on the choice of free parameters. Both Trust-Region methods are
shown to outperform standard trust region methods for the solution of ill-posed
problems.

Concerning the the second field of methods, we designed an inexact Levenberg-
Marquardt approach that relies on a sequence of problems with noisy functions
and gradients approximating the original problem. The method manages to pro-
duce a sequence converging to a solution of the unperturbed problem thanks to
two key ingredients: a rule to measure the noise level that can be allowed in
the objective function while successfully continuing with the optimization process,
and a suitable update of the regularization parameters to handle the noise in the
function. In our numerical experiments, we showed the method to be cheaper
than inexact Levenberg-Marquardt methods employing exact function and gradi-
ent, achieving significant savings in function evaluations and matrix-vector prod-
ucts. We also analyzed its performance on a real life machine learning problem
arising in the design of turbomachinery components. This method constitutes
an improvement of the state-of-the-art in the solution of problems with dynamic
noise. Indeed, while unconstrained minimization problems with noisy functions,
gradients, and Hessians with varying accuracy have been the object of an inten-
sive study in the last years, we are not aware of other methods designed to solve
the considered class of least squares problems.

Perspectives

We briefly discuss possible extensions of the work presented in this thesis that
could be the object of further research.

As a first improvement, we could design a variant of the approach presented
in Part III specially designed to solve problems with objective functions given by
sums of squares over a really large number of terms. For such problems it is not
possible to evaluate the exact function, but it possible to devise estimates of the
error when the function approximations are built considering only some terms in
the sum. However, such estimates are usually probabilistic in nature. Then, a
stochastic approach would be more suitable in this context.

A second perspective is to consider the solution of large scale ill-posed prob-
lems. This could be tackled in two different ways.

First, we could design of a variant of the elliptical Trust-Region approach pre-
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sented in Chapter 5, suitable for handling large scale problems. The critical point
here is that the method needs the square root of matrix Bk. The action of the
square root of Bk on a vector can be approximated by an iterative solver, but this
introduces a source of inexactness and consequently the theory should be modi-
fied in order to take this into account. Moreover, the linear systems arising in the
computation of the step should be approximately solved by employing an iterative
solver.

A second possibility is the extension of the method presented in Part III to
allow input spaces of increasing dimensions, to include also multilevel strategies.
The ideas on which the methods presented in Part II and Part III are based could
be coupled to design a method suitable for handling discrete ill-posed problems
arising from a discretization of the input space of an infinite dimensional prob-
lem, such as parameter identification problems or Fredholm equations. For such
problems a mesh size has to be fixed, that affects the ill-posedness, as this worsen
with the size of the discretization. A solution method for such problems could start
the solution process from a coarse grid and then rely on our noise control strategy
to decide when it is necessary to move to a finer grid, so that it is not necessary to
make an a-priori decision on the size of the grid. The idea would then be to end up
with a grid fine enough to have a good approximation (related to the noise on the
data) of the solution of the underlying infinite dimensional problem. This should
be coupled with a regularization method to handle the ill-posedness on finer grids,
possibly able to handle also large scale problems in case really fine discretizations
are needed.

All in all, we hope that the methods designed, developed, and analyzed in this
thesis can pave the way towards a broader class of methods aiming at the numer-
ical resolution of large scale, noisy, ill-posed nonlinear least squares problems.
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Appendix

Here we report the proofs of some of the results in Chapter 5.

Lemma 5.15 Suppose that Assumptions 5.7 and 5.13 hold. Then, Algorithm
5.1 generates a sequence {xδk} such that, for k̄ ≤ k < k∗(δ),

(i) λk > 0 and xδk belongs to B2r(xδ
k̄
)∩Br(x†);

(ii) ‖xδk+1 − x†‖ < ‖xδk − x†‖, θk+1 > θk;

(iii) there exists a constant λ̄> 0 such that λk ≤ λ̄.

Proof. (i)-(ii) From the choice of the trust-region radius in Algorithm 5.1, (5.5)
holds and λk ≥ λ

q
k > 0. From Lemma 5.14 and Lemma 5.6, condition (5.11) is

satisfied for all k̄ ≤ k < k∗(δ), and this implies ‖xδk+1−x†‖ < ‖xδk−x†‖, xδk belongs to
B2r(xδk)∩Br(x†), and θk+1 > θk for all k̄ ≤ k < k∗(δ).

(iii) Since λk > 0, the trust-region is active and from (5.17a) we have that

∆k = ‖z(λk)‖ = ‖(B2
k +λkI)−1B1/2

k gk‖ ≤
‖B1/2

k gk‖
λk

.

Then, if ∆k chosen at step 1 of Algorithm 5.1 guarantees condition ρk(pk)≥ η, the
thesis follows as

λk ≤
‖B1/2

k gk‖
∆k

≤ 1
Cmin

. (A.1)

Otherwise, the trust-region radius is progressively reduced, and we provide a
bound for the value of ∆k at termination of step 2 of Algorithm 5.1. Let us consider
the case fδ(xδk + pk)> 1

2‖F(xδk)− yδ+ J(xδk)pk‖2. Trivially,

1−ρk(pk)= fδ(xδk + pk)− 1
2‖F(xδk)− yδ+ J(xδk)pk‖2

fδ(xδk)− 1
2‖F(xδk)− yδ+ J(xδk)pk‖2

,

and

fδ(xδk + pk)− 1
2
‖F(xδk)− yδ+ J(xδk)pk‖2 ≤ 1

2
‖F(xδk + pk)−F(xδk)− J(xδk)pk‖2

+‖F(xδk + pk)−F(xδk)− J(xδk)pk‖
‖F(xδk)− yδ+ J(xδk)pk‖
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By the Lipschitz continuity of J it holds

‖F(xδk + pk)−F(xδk)− J(xδk)pk‖ ≤
L
2
‖pk‖2.

Moreover, using (5.21)

‖F(xδk)− yδ+ J(xδk)p(λ)‖ < ‖F(xδk)− yδ‖

for any λ≥ 0. Consequently, as ‖pk‖ ≤ ‖B1/2
k ‖∆k and ∆k ≤ Cmax‖B1/2

k gk‖,

fδ(xδk + pk)−1
2
‖F(xδk)− yδ+ J(xδk)pk‖2 ≤

L
2

K2
J∆

2
k‖F(x0)− y‖

(
L
4

K6
JC2

max‖F(x0)− y‖+1
)
.

Theorem 6.3.1 in [22] shows that

fδ(xδk)−
(
1
2

zT
k B2

kzk + (B1/2
k gk)T zk + fδ(xδk)

)
≥ 1

2
‖B1/2

k gk‖min

{
∆k,

‖B1/2
k gk‖
‖B2

k‖

}
.

Then, (5.18) yields

fδ(xδk)− 1
2
‖F(xδk)− yδ+ J(xδk)pk‖2 ≥ 1

2
∆k‖B1/2

k gk‖,

whenever ∆k ≤
‖B1/2

k gk‖
K4

J
and this implies

1−ρk(pk)≤ LK2
J∆k‖F(x0)− y‖(1

4 LK6
JC2

max‖F(x0)− y‖+1)

‖B1/2
k gk‖

.

Namely, termination of the repeat loop occurs with

∆k ≤ω‖B1/2
k gk‖,

and

ω=min

{
1

K4
J

,
1−η

LK2
J‖F(x0)− y‖(1

4 LK6
JC2

max‖F(x0)− y‖+1)

}
.

Taking into account step 1 and the updating rule at step 2.4, we can conclude that,
at termination of step 2, the trust-region radius ∆k satisfies

∆k ≥min
{
Cmin, γω

}‖B1/2
k gk‖.

In fact, in case for a smaller value of ∆k it happens fδ(xδk + pk) ≤ 1
2‖F(xδk)− yδ+

J(xδk)pk‖2, then ρk(pk) ≥ 1 > η and the loop at step 2 terminates. Then, it termi-
nates for a trust-region radius greater than or equal to the one estimated above.
Then,

λk ≤
‖B1/2

k gk‖
∆k

≤max
{

1
γω

,
1

Cmin

}
= λ̄.
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Theorem 5.16 Suppose that Assumptions 5.7 and 5.13 hold. Then,

(i) The iterates generated by Algorithm 5.1 satisfy the stopping criterion (5.2)
after a finite number k∗(δ) of iterations.

(ii) Suppose further that the sequence {xk} generated with the exact data y sat-
isfies ρk(xk+1 − xk) 6= η, for all k. Then the sequence {xδk∗(δ)} converges to a
point belonging to S ∩B̄r(x†), where S is defined in (5.32), whenever δ tends
to zero.

Proof. (i) Summing up from k̄ to k∗(δ)−1, by (5.2), (5.5), (5.11) and Lemma 5.15
it follows

(k∗(δ)− k̄)τ2δ2 ≤
k∗(δ)−1∑

k=k̄
‖J(xδk)T(F(xδk))‖2 ≤ θk̄λ̄

2(θk̄ −1)q2 ‖xδk̄ − x†‖2.

Thus, k∗(δ) is finite for δ> 0.
(ii) Convergence of xδk∗(δ) to a solution of (3.1) as δ tends to zero is obtained by

adapting the proof of Theorem 4.19. Specifically, let x∗ be the limit of the sequence
{xk} corresponding to the exact data y and let {δn} be a sequence of values of δ
converging to zero as n →∞. Denote by yδn a corresponding sequence of perturbed
data, and by kn = k∗(δn) the stopping index determined from the discrepancy
principle (5.2) applied with δ = δn. Assume first that k̃ is a finite accumulation
point of {kn}. Without loss of generality, we can assume that kn = k̃ for all n ∈N.
Thus, from the definition of kn it follows that

‖J(xδn
k̃

)T(yδn −F(xδn
k̃

))‖ ≤ τδn. (A.2)

As, by assumption, ρk(xk+1 − xk) 6= η, for all k, it follows that for the fixed index k̃,
the iterate xδ

k̃
depends continuously on δ. Then

xδn
k̃

→ xk̃, J(xδn
k̃

)→ J(xk̃), F(xδn
k̃

)→ F(xk̃) as δn → 0.

Therefore, by (A.2), it follows that J(xk̃)T(y−F(xk̃)) = 0, and the k̃-th iterate
with exact data y is a solution of (3.1), i.e. x∗ = xk̃, and we can conclude that
xδn

kn
→ x∗ as δn → 0.
It remains to consider the case where kn →∞ as n →∞. As {xk} converges to

a solution x∗ of (3.1) by Theorem 5.12, there exists k̃ > 0 such that

‖xk − x∗‖ ≤ 1
2

r̄ for all k ≥ k̃,

where r̄ < min
{

(q−σ)τ−KJ(σ+1)
c(KJ +τ)

, r
}

. Then, as xδk depends continuously on δ,

δn tends to zero and k∗(δn) →∞, there exists δn sufficiently small such that k̃ ≤
k∗(δn) and

‖xδn
k̃

− xk̃‖ ≤
1
2

r̄.
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Then, for δn sufficiently small

‖xδn
k̃

− x∗‖ ≤ ‖xδn
k̃

− xk̃‖+‖xk̃ − x∗‖ ≤ r̄. (A.3)

Now, from item (i) of Lemma 5.15, it holds xδn
k̃

∈ B2r(xδn
k̄

), while from (5.36) and

Theorem 5.12 it holds x∗ ∈ B2r(xδn
k̄

) as

‖xδn
k̄

− x∗‖ ≤ ‖xδn
k̄

− x†‖+‖x† − x∗‖ ≤ 2r.

Letting e∗k = x∗− xδn
k , repeating arguments in Lemma 5.14 and using (5.6), (3.2)

we get

‖Mg
k̃
(e∗k̃)‖ ≤ KJδn +‖J(xδn

k̃
)T(y−F(xδn

k̃
)+ J(xδn

k̃
)(x∗− xδn

k̃
))‖

≤ KJδn + (c‖x∗− xδn
k̃
‖+σ)‖J(xδn

k̃
)T(y−F(xδn

k̃
))‖

≤ (1+ c‖x∗− xδn
k̃
‖+σ)KJδn + (c‖x∗− xδn

k̃
‖+σ)‖J(xδn

k̃
)T(yδn −F(xδn

k̃
))‖.

Then, at iteration k̃, conditions (5.2) and (5.5) give

‖Mg
k̃
(e∗k̃)‖ ≤

KJ
1+ c‖x∗− xδn

k̃
‖+σ

τ
+ (c‖x∗− xδn

k̃
‖+σ)

‖J(xδn
k̃

)T(yδn −F(xδn
k̃

)‖

≤
KJ

1+ c‖x∗− xδn
k̃
‖+σ

qτ
+

c‖x∗− xδn
k̃
‖+σ

q

‖Mg
k̃
(pk̃)‖.

Thus, by (A.3) and r̄ <min
{

(q−σ)τ−KJ(σ+1)
c(KJ +τ)

, r
}

, it follows that

‖Mg
k̃
(e∗k̃)‖ ≤ 1

θk̃
‖Mg

k̃
(pk̃)‖

is satisfied with θk̃ = qτ
1+ c(1+τ)r̄+σ(1+τ)

> 1. Replacing x† with x∗, (5.11) gives

‖xδn
k̃+1

−x∗‖ < ‖xδn
k̃
−x∗‖ and repeating the above arguments, by induction we obtain

monotonicity of the error ‖xδn
k − x∗‖ for k̃ ≤ k ≤ kn. Then

‖xδn
kn

− x∗‖ < ‖xδn
k̃

− x∗‖ ≤ r̄.

Finally, since the previous arguments can be repeated for any positive ε≤ r̄, pro-
vided that δn is small enough, we obtain that

xδn
kn

→ x∗ as δn → 0.
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Some of the work presented in this thesis has been the object of communications
to the scientific community, as reported below.
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[S2] S. Bellavia and E. Riccietti. “On an elliptic trust-region procedure for ill-
posed nonlinear least squares problems”. In: submitted (2017).
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[J1] S. Bellavia, B. Morini, and E. Riccietti. “On an adaptive regularization
for ill-posed nonlinear systems and its trust-region implementation”. In:
Computational Optimization and Applications 64.1 (2016), pp. 1–30.

[J2] E. Riccietti, J. Bellucci, M. Checcucci, M. Marconcini, and A. Arnone. “Sup-
port Vector Machine classification applied to the parametric design of cen-
trifugal pumps”. In: Engineering Optimization (2017).

Conference talks

[C1] S. Bellavia, S. Gratton, and E. Riccietti. “A Levenberg-Marquardt method
for large scale noisy nonlinear least squares problems”. In: SIAM Confer-
ence on Optimization (SIOPT’17). Vancouver, Canada, May 2017.
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2016.
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[74] N. Krejić and J. Martínez. “Inexact Restoration approach for minimiza-
tion with inexact evaluation of the objective function”. In: Mathematics of
Computation 85.300 (2016), pp. 1775–1791.

[75] K. Kunisch and L. White. “Parameter estimation, regularity and the penalty
method for a class of two point boundary value problems”. In: SIAM Jour-
nal of Control and Optimization 25 (1 1987).

[76] K. Levenberg. “A method for the solution of certain nonlinear problems in
least-squares”. In: Quarterly Applied Mathematics 2 (1944), pp. 164–168.

[77] P. Linz and R. Wang. Exploring Numerical Methods: An Introduction To
Scientific Computing Using MATLAB. Jones & Bartlett Learning, 2002.

[78] D. Marquardt. “An algorithm for least-squares estimation of nonlinear pa-
rameters”. In: SIAM Journal Applied Mathematics 11 (1963), pp. 431–441.

[79] J. Monedero. “Parametric design: a review and some experiences”. In: Au-
tomation in Construction 9.4 (2000), pp. 369–377.

[80] J. Moré. “The Levenberg-Marquardt algorithm: implementation and the-
ory”. In: Numerical analysis (Watson, ed). Springer Lecture Notes in Math-
ematics 630, Berlin. 1978, pp. 105–116.

[81] V. Morozov. “On the solution of functional equations by the method of reg-
ularization”. In: Soviet Mathematics Doklady 7 (1996), pp. 414–417.

[82] Y. Nesterov. Introductory lectures on convex optimization: a basic course.
Vol. 87. Springer Science & Business Media, 2013.

176



[83] A. Neubauer. “An a posteriori parameter choice for Tikhonov regulariza-
tion in the presence of modeling error”. In: Applied Numerical Mathemat-
ics 4.6 (1988), pp. 507–519.

[84] J. Nocedal and S. Wright. Numerical Optimization. Springer Science &
Business Media, 1999.

[85] J. Nocedal and S. Wright. Numerical Optimization. Springer Science &
Business Media, 2006.

[86] M. Osborne. “Nonlinear least squares - the Levenberg algorithm revisited”.
In: The Journal of the Australian Mathematical Society. Series B. Applied
Mathematics 19.03 (1976), pp. 343–357.

[87] C. C. Paige and M. A. Saunders. “LSQR: An algorithm for sparse linear
equations and sparse least squares”. In: ACM Transactions on Mathemat-
ical Software 8.1 (1982), pp. 43–71.

[88] M. Piana and M. Bertero. “Projected Landweber method and precondition-
ing”. In: Inverse Problems 13.2 (1997), p. 441.

[89] S. Pierret. “Turbomachinery blade design using a Navier-Stokes solver and
Artificial Neural Network”. In: ASME Journal of Turbomachinery 121.3
(1999), pp. 326–332.

[90] M. Powell. “Convergence properties of a class of minimization algorithms”.
In: Nonlinear Programming 2.0 (1975), pp. 1–27.

[91] R. Ramlau. “A modified Landweber method for inverse problems”. In: Nu-
merical Functional Analysis and Optimization 20.1-2 (1999), pp. 79–98.

[92] A. Rieder. “On the regularization of nonlinear ill-posed problems via inex-
act Newton iterations”. In: Inverse Problems 15.1 (1999), p. 309.

[93] F. Rubechini, A. Schneider, A. Arnone, S. Cecchi, and F. A. Malavasi. “A
redesign strategy to improve the efficiency of a 17-stage steam turbine”. In:
Proceedings of ASME Turbo Expo 2009, 8–12 June 2009, Orlando, Florida.
2009, pp. 1463–1470.

[94] F. Rubechini, A. Schneider, A. Arnone, F. Daccá, C. Canelli, and P. Garibaldi.
“Aerodynamic redesigning of an industrial gas turbine”. In: Proceedings of
ASME Turbo Expo 2011, 6-10 June 2011, Vancouver, BC. 2011, pp. 1387–
1394.

[95] M. Saunders. Systems Optimization Laboratory. http://web.stanford.
edu/group/SOL/software/cgls/.

[96] O. Scherzer. “An iterative multi level algorithm for solving nonlinear ill-
posed problems”. In: Numerische Mathematik 80 (1998), pp. 579–600.

[97] O. Scherzer. “Convergence Criteria of Iterative Methods Based on Landwe-
ber Iteration for Solving Nonlinear Problems”. In: Journal of Mathemati-
cal Analysis and Applications 194.3 (1995), pp. 911–933.

177

http://web.stanford.edu/group/SOL/software/cgls/
http://web.stanford.edu/group/SOL/software/cgls/


[98] O. Scherzer, H. W. Engl, and K. Kunisch. “Optimal a posteriori parame-
ter choice for Tikhonov regularization for solving nonlinear ill-posed prob-
lems”. In: SIAM Journal on Numerical Analysis 30.6 (1993), pp. 1796–
1838.

[99] B. Schölkopf and A. J. Smola. Learning with kernels: Support Vector Ma-
chines, regularization, optimization, and beyond. MIT Press, 2001.

[100] M. Stephens. “EDF statistics for goodness of fit and some comparisons”.
In: Journal of the American Statistical Association 69.347 (1974), pp. 730–
737.

[101] E. Sturler and M. Kilmer. “A regularized Gauss-Newton trust-region ap-
proach to imaging in diffuse optical tomography”. In: SIAM Journal on
Scientific Computing 34 (2011), pp. 3057–3086.

[102] K. Ueda and N. Yamashita. “Global complexity bound analysis of the Levenberg-
Marquardt method for nonsmooth equations and its application to the non-
linear complementarity problem”. In: Journal of Optimization Theory and
Applications 152.2 (2012), pp. 450–467.

[103] K. Ueda and N. Yamashita. “On a global complexity bound of the Levenberg-
Marquardt method”. In: Journal of Optimization Theory and Applications
147 (2010), pp. 443–453.

[104] C. Vogel. “A constrained least squares regularization method for nonlinear
ill-posed problems”. In: SIAM Journal on Control and Optimization 28.1
(1990), pp. 34–49.

[105] C. Vogel. Computational methods for inverse problems. SIAM, Frontiers in
Applied Mathematics, Providence, 2002.

[106] J. Wait. “Geo-Electromagnetism”. In: (1982).

[107] Y. Wang and Y. Yuan. “Convergence and regularity of trust region methods
for nonlinear ill-posed problems”. In: Inverse Problems 21 (2005), pp. 821–
838.

[108] S. Ward and G. Hohmann. “Electromagnetic theory for geophysical ap-
plications”. In: Electromagnetic Methods in Applied Geophysics. Vol. 1. 3.
1988, pp. 131–311.

[109] A. Wazwaz. Linear and nonlinear integral equations. Vol. 639. Springer,
2011.

[110] N. Yamashita and M. Fukushima. “On the Rate of Convergence of the
Levenberg-Marquardt Method”. In: Computing 15 (2001), pp. 239–249.

[111] Y. Yuan. “Recent advances in trust region algorithms”. In: Mathematical
Programming 151.1 (June 2015), pp. 249–281.

[112] J. Zhang. “On the convergence properties of the Levenberg-Marquardt method”.
In: Optimization 52.6 (2003), pp. 739–756.

178



[113] J. Zhang and Y. Wang. “A new trust region method for nonlinear equa-
tions”. In: Mathematical Methods of Operations Research 58 (2003), pp. 283–
298.

[114] R. Zhao and J. Fan. “Global complexity bound of the Levenberg–Marquardt
method”. In: Optimization Methods and Software 31.4 (2016), pp. 805–814.

179


	Acknowledgments / Ringraziamenti
	Abstract
	Contents
	List of Algorithms
	List of Tables
	List of Figures
	Introduction
	General background
	Least squares problems
	Linear least squares problems
	Singular value decomposition and least squares problems
	Solution techniques


	Numerical methods
	Newton's method
	Trust-Region methods
	Solution of the Trust-Region subproblem
	Exact solution
	Approximate solution


	Gauss-Newton method
	Levenberg-Marquardt method
	Inexact Levenberg-Marquardt method
	Local convergence and complexity
	Trust-Region method for least squares
	Tikhonov  method



	Ill-posed nonlinear least squares problems
	Introduction to Part II
	Zero-residual problems
	Regularizing Levenberg-Marquardt method for ill-posed problems
	Regularizing Trust-Region method
	Local behaviour of the Trust-Region method
	Noise free case
	Noisy case

	Numerical results
	Test problems definition
	Implementation of Algorithm 4.2
	Validation of the regularizing properties of the Trust-Region method
	Comparison with Levenberg-Marquardt method
	Comparison with standard Trust-Region method
	Choice of the quadrature formula

	Chapter conclusion

	Non-zero residual problems
	Monotonic error decrease
	The method
	Choice of the Trust-Region radius

	Convergence analysis
	Noise free case
	Noisy case

	Constrained case
	Numerical results
	Chapter conclusion

	Infinite dimensional setting
	Procedures in the Hilbert setting
	Convergence to a solution of the infinite dimensional problem
	A model problem


	 Large scale noisy nonlinear least squares problems
	Introduction to Part III
	Levenberg-Marquardt method for problems with dynamic noise
	Global convergence
	Local convergence
	Complexity
	Chapter conclusion

	Application to data assimilation and machine learning
	Data assimilation problems
	Data assimilation problem with subsampling
	Data assimilation problem with non-diagonal covariance matrix.

	Machine learning problems
	CINA dataset
	A real life machine learning problem
	Parametric design of a family of centrifugal pumps
	Classification problem resolution


	Chapter conclusion


	Conclusion
	Appendix
	Publications related to the thesis
	References

