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Abstract

In this paper we present an overview of recent investigations on the problem of sedimentation related to the pipelin-
ing of a Coal-Water Slurry. The main aspects of the problem are both the determination of the sedimentation velocity,
and the understanding and modelling of the dynamics of the sedimentation bed which accumulates on the bottom of
the pipe. The analysis is carried out using a combination of suggestions dictated by experimental evidence and suitable
mathematical techniques. The result is a model which appears to be both easily manageable and flexible. Predictions
of the model are compared with experiments finding a remarkable agreement with the available data.

1



1 Slurry handling and pipeline transport: a brief outlook on hydro-
transport
Besides intuitive, the idea of transporting solids using a carrier fluid is rather old. Indeed according with Apollodorus
and Pausanias (1st century B.C.) this transportation technique, nowadays known with the name of Hydrotransport,
was first utilized by Herakles, who in one day cleaned up the thirty years’ accumulated filth left by thousands of cattle
in King Augeas’ stables by diverting two rivers to form an open-channel hydrotransport system [42]. Despite of the
mythological nature of this tale, known as the fifth Herakles’ task, in principle any kind of solid can be moved from a
place to another hundreds of miles away using a liquid as transportation tool.

The modern stages of slurry pipeline technology dates back, more or less, to forty years ago. A “slurry”essentially
is a suspension of solid particles in a carrier fluid; the interest within these suspensions is that, by using an appropriate
technology, they can be pipelined very far away from their production site. Generally the required technology is rather
specialized depending on the chemical and physical nature of the suspended particles. This area of investigation is so
important that scientists and industries involved within this field meet regularly almost every year at highly specialized
international meetings as the Hydrotransport Conferences (thirteen up to now) or the numerous International Confer-
ences on Slurry Technology. The underlying idea is that hydrotransport may be, in many cases, an attractive alternative
to other modes of transport (tracks, ships and so on). It also has several advantages like a moderate environmental
impact, a relatively little infrastructure work needed and possible low operation and maintenance costs.

For a long time, especially at the early stage of the development of this technology, it was generally thought that
the only operational regime to prevent particle settling was the turbulent one; indeed the primary duty when designing
a slurry pipeline is to ensure that it will not block because of sediments accumulation on pipe lower wall. However also
the cost of maintaining a turbulent regime has to be considered. For this reason recent studies on slurries are addressed
towards the possibility to control settling remaining within the laminar regime (which requires less pumping power and
is therefore less expensive). If the sediment build-up process could be modeled accurately, then designers would be
able to predict the conditions that lead to blockage, and thereby design systems so that the possibility of a blockage is
avoided.

The engineering approach to the problem of designing a slurry pipeline is a remarkable combination of basic fluid
mechanics and chemical concepts, phenomenological laws, empirical laws, and intuitions guided by specific pilot plant
data. The blockage problem is certainly the most focussed one but many others are related with it: the interested reader
may take a look to the papers published on this subject in the proceedings of the last Hydrotransport Conferences
(see the bibliography at the end). However it is not easy for people not specifically trained in this area to read those
contributions and to find out, when looking over a specific problem, a common point of view among different writers.
For these reasons, we tried to present an approach to the problem of sediment build-up and evolution of the growing
bed which is to a reasonable extent the most self-consistent and readable as possible even for people not expert in this
area.

In this paper we report the main results of a research work on the problem of sedimentation in the pipelining of con-
centrated coal-water slurry (C.W.S.). This subject has involved our group in Industrial Mathematics at the University
of Florence for several years. The problem was performed in cooperation with the engineering team of Snamprogetti,
an Italian Company well-known among those designing and selling technology for fuel energy production and trans-
portation. In particular Snamprogetti has fully investigated all problems related with C.W.S. technology (see the paper
by Terenzi [36] in this same volume) both at their pilot plant in Fano (Italy) and on field , using an industrially operating
pipeline1. The pilot plant is equipped with sophisticated measuring devices ( like, for example ,a gamma-densimeter)
which provide direct evidence and sufficiently clear data on the growth of the bed with time.

Although the model and the approach presented here is dependent on the particular type of slurry under investiga-
tion, we believe that the basic ideas can be easily adapted to other similar physical systems.

The C.W.S. mixture considered here enters into the category of concentrated slurries since consists of about 70%(
by weight) of ground coal such that the size distribution has two peaks around 10 µm and 100 µm. The remaining
30% is water with a small percentage (0.5%) of chemical additive needed to fluidize the suspension. This fluid is
perfectly stable at rest even after years, i.e. particle concentration remains everywhere constant in time. This stability
is completely to be ascribed to the action of the chemical agent: indeed additive molecules, being highly polar, coat the
coal particles with positive charges so that mutual repulsive forces prevent natural sedimentation.

The rheological behaviour of concentrated C.W.S. at low shear rates can be reasonably described by the Bingham
model, that is (in laminar flows with simple geometry)

(τ − τ0)+ = ηB γ̇, (1)

1Snamprogetti built a 250Km−long operating pipeline connecting Belovo to Novosibinsk (Siberia).

2



where τ , τ0, ηB , γ̇ denote the shear stress, the yield stress, the plastic viscosity and the shear rate respectively, and (•)+
means the positive part of (•). Of course more complicated models can be used but (1) is sufficient for our purposes.

When a C.W.S. is stirred in a vessel or pumped through a pipeline, the action of shear dramatically modifies this pic-
ture through a phenomenon called rheological degradation which has also been deeply investigated and fully explained
(see, for example, [9],[10],[11],[15],[21], [22],[23], [24], [26], [32]). However the time scale of this phenomenon is
many orders of magnitude larger than that of sedimentation, so that if we focus on the latter problem, the time depen-
dency of rheological parameters can be neglected. Therefore we can consider a C.W.S. as a time-independent Bingham
fluid.

The solid fraction does not generally consist only of pure coal and even after a suitable treatment (beneficiation),
ground coal from the mill hardly contains less than about 6% of other micronized minerals and steel residues due to
beneficiation itself.

Impurities have generally a size comparable with or higher than that of the top size of coal particles; the inner
structure of a C.W.S. provided by the residual adhesion forces among the coal particles (which is responsible for the
yield stress) is sufficient to prevent settling at rest. This is no longer true when a CWS experiences a shear rate, as
if it is stirred in a viscometer of pumped in a pipeline. Indeed while the tendency to settle of the pure coal particles
is prevented by the action of the chemical stabilizer, this is not true for impurities which, having a different chemical
structure, do not react with the additive. Therefore the settling of these particles cannot be controlled, leading to a
sediment build-up at the bottom of the pipe when the CWS is pipelined at long distances. This phenomenon can also
be observed if the CWS is placed in a rotating bob-cup viscometer. In the pipe flow the reduction of the hydraulic
diameter due to the sediment build-up leads either to increase the pressure gradient (assuming that we can) in order to
maintain constant the discharge or to decrease the latter if we can not increase the former. Both cases are either unsafe
or economically disadvantgeous. Therefore what is needed is a model to predict the evolution of the growing bed in
order to choose the optimal discharge and to plan the periodical (unavoidable) shut-down of the pumps and cleaning of
the first portion of the pipeline (the only one interested to the settling phenomenon).

The aim if this article is just to describe the work of investigation during last years about the above problem using
the facilities of Snamprogetti, and the results of this effort.

2 Some general facts about sedimentation
Consider a single spherical rigid particle settling with constant velocity vs in a Newtonian viscous liquid at rest and
which extends to infinity in all directions. The uniform motion of the falling particle results from the equilibrium of
three forces: the particle’s own weight 4

3
πδ3ρsg, Archimedes’ lifting force − 4

3
πδ3ρlg, and the viscous force exerted

by the fluid on the sphere. For small Reynolds numbers (say Re � 1) Stokes [35] proved that the viscous force exerted
by the fluid (drag force) is parallel (and opposite in direction) to vs and of magnitude 6πδηvs. Then a force balance
immediately yields the well known formula

vs =
2g(ρs − ρl)

9η
δ2. (2)

It is a common practice to express the forces exerted on moving bodies by the fluid in terms of a dimensionless
parameter CD called drag coefficient obtained by dividing the drag force 6πδηvs by (1/2)ρsv

2
s and by the area of the

body projected on a plane normal to vs; thus the drag coefficient is here

CD =
24

Re
, with Re = 2δvsρs

η
(3)

For a particle of sand falling through water at room temperature, the hypothesis Re � 1 is satisfied provided that
δ � 0.006 cm. From the mathematical point of view, the Stokes’s hypothesis (Re � 1) is equivalent to a suitable
linear approximation of the nonlinear Navier-Stokes equation. This approximation (and consequently the Stokes’s
solution) contains various drawbacks and physical inconsistencies (the most famous one is probably the so-called
Stokes Paradox, see for example [25]). Oseen [30][31] proposed a different linearization which yields, instead of (3),
the following expression

CD =
24

Re

(
1 +

3

16
Re

)
. (4)

However, in many cases of practical interest, both (3) and (4) are not in agreement with measured values. On the base
of experimental evidence, a variety of “ad hoc”formulas for the terminal velocity of the particle have been suggested;
a relatively recent state of art can be found in [13] and [14]. Research in this field, being based almost exclusively on
sophisticated experiments and numerical simulations, is still very active.
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In a typical sedimentation problem we have a situation rather different from that considered theorically: the host
fluid may be non-newtonian and may be sheared, particle settles within a dense population of similar particles, par-
ticles’ shape and volume are are irregular and randomly distributed, particle surface may change its electrical charge
distribution interacting with chemical additives present in the host fluid, wall effects on falling particles may not be
negligible, and so on.

Cases in which the host fluid is non-Newtonian have been extensively studied in recent years. Several theoretical
and/or experimental approaches have been used and suggestions have been made to correct the correlation (3) for the
different rheological behaviours. For fluids without yield stress ( in particular the Power Law fluids), one can refer to
Acharya et al.[1], Leal [27] and to the review papers of Chhabra [12] and [13], where an rather complete bibliographical
information can be found.

For Bingham fluids the situation is more complicated; here we give a short account of the previous investigation,
referring to [13] for further information and details.

First of all the yield stress τ0 can prevent settling of particles up to a critical radius which, if ∆ρ := ρs − ρl, is
given by

δ0 = α
τ0
g∆ρ

, (5)

as it can be seen, simply assuming that the force due to the yield stress is proportional to it and that to the area of the
spherical particle.

Concerning the numerical value of the proportionality constant α there is no agreement among different authors, α
ranging from 1.5 to 10; these differences however can be mainly ascribed to possible different (being experimentally
very delicate) determinations of τ0.

The study of the motion of a spherical particle in a Bingham plastic fluid has also been investigated both from a
theoretical and experimental point of view; we recall the papers by Tyabin [38] and Andres [3] where the drag force is
expressed as

FD = αδ2τ0 + βηBvsδ, (6)

where the coefficients α and β are either experimentally fitted or theoretically calculated in terms of the quantity
k := (3τ0/(δg∆ρ))

1/2. In subsequent papers a correlation between CD and a modified Reynolds number, was
outlined (the interested reader may consult the papers of Ansley and Smith [4], and Dedegil[19]). Other interesting
contributions on this subject are due to [39], [40], and [41].

A very good fit with the above experimental results was obtained by Beris et al. [6] integrating the equation of
motion by finite elements, thus also recovering the lower and upper estimates previously obtained by Yoshioka et al.
[43].

In all the above papers the motion of a single sphere with a sufficiently large radius in an unsheared environment
was considered. We also mention the paper by Thomas [37] where an experiment of sedimentation in a sheared fluid
was described.

As we have seen, the general picture concerning sedimentation is rather involved and there is no conclusive theory
flexible enough to be adapted to a variety of settling phenomena in pipeline flows.

In [15] and [17] we presented some new ideas about the problem of determining vs in a sheared fluid (not nec-
essarily Newtonian), when the particle belongs to a large settling population. Of course in a sheared environment the
particle velocity is now expected to depend on the local value of the shear rate. The novelty of our approach consists
mainly in looking at the problem of finding the effective viscosity experienced by a population P of particles as an
inverse problem.

Indeed a possible alternative approach to the problem of finding the correct form of vs could be be the following:
to collect data (generally a discrete set) from some suitably designed experiment on the base of some formula of type

data = F(vs), (7)

where F is determined by the geometry and the type of experiment. If we don’t make any a priori assumption about the
form of vs, (7) is an inverse problem with discrete data to which we could apply the technique developed by Bertero,
De Mohl and Pike some years ago (see [7] and [8]). In the Appendix we give a short presentation of this functional
method. We tested this approach against available experimental data and we found encouraging conclusions. However
the method is specifically designed for laboratory tests and cannot be directly applied to a Bingham flow in a pipeline.
Nevertheless, we can derive useful indications to deduce the settling velocity of a particle as a function of the radial
coordinate of the pipe, if the flow is stationary.

In the next section we present the derivation of vs with particular reference to C.W.S.
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3 Sedimentation in a CWS sheared in a rotating viscometer
The CWS used in the experiments considered to collect our data was prepared with a Polish coal according to SP
REOCARB process (a Snamprogetti patent)2

The geometry we considered is that of a rotational bob-cup viscometer (designed on purpose with a widened
gap), where the settling of particles is transverse to the direction of shearing (exactly as in the pipeline flow). The
viscometer was filled up with CWS in which a population P of sand particles with density ρs > ρCWS has been
initially homogeneously dispersed.

Then we pointed our attention over a cross-sectional cell Cz of the viscometer of thickness h, with top and bottom
bases placed respectively at z−h and z, the z−axis being directed as the gravity vector g. The quantity to be measured
is the net mass variation in Cz due to the settling of P .

Let us first notice that there may be a fraction of P which does not settle, depending on the steady laminar shearing
motion generated by a uniform rotation of the inner cylinder. This circumstance has to be ascribed to the internal
structure of the CWS (responsible for the yield stress), which is partially or totally modified by the shearing conditions.
Indeed in Bingham fluids at rest the yield stress may be able to sustain suspended particles (see, for example, the article
[36] in this book).

For a fluid in laminar motion in a rotational viscometer, γ̇ denotes the absolute value of the only significant com-

ponent
du

dr
(with u = (0, u(r), 0)) of the strain rate tensor.

We do not postulate the existence of a relationship of the type (5) nor enter the debate about the dimension and
shape of the unsheared envelope surrounding the particles hypothized by some Authors (see [4],[2][6] and [14] for a
review on this topic).

Better references for experiment details concerning the theory we are going to illustrate, are [15] and [36]. We
confine ourselves to report only the main conclusions.

In a Bingham plastic there can be, in principle, a fraction of P which does not settle, depending on the particle
size, on τ0, and on γ̇. If we call δ0 the critical value of δ below which particles do not settle, the critical radius - shear
rate curve can be evaluated from experimental data by measuring the fraction of P which remains in the upper cell of
observation at the latest shearing time. The function δ0(γ̇) can be determined using the law

M∞ = M0

∫ δ0(γ̇)

0

Ω(δ) dδ

∫ ∞

0

Ω(δ)dδ

, (8)

where M∞ is the mass of particles retained in C1 (the highest observation cell) for t→ ∞, Ω(δ) is the particle radius
distribution function per unit mass of P and M0 is the mass of particles present in C1 at t = 0.

Dimensional analysis shows that particles starting with zero velocity reach the stationary settling regime almost
instantaneously. Thus each cell Cz will experience an emptying wave starting from the moment in which the heaviest
particle, which left the level z = 0 at t = 0, has reached the level z − h.

The settling velocity of a particle of radius δ is assumed to be of the form

vs(α; δ, δ0) = αf(δ, δ0),

where f(δ, δ0) is an increasing function of δ (δ ≥ δ0), such that f(δ0, δ0) = 0, and the parameter α has to be
determined as a function of γ̇.

In the spirit of Stokes’s formula (2), we can introduce an effective viscosity for sedimentation

ηeff :=
1

α
.

In the classical Newtonian case we would have δ0 = 0, f(δ) = δ2, and ηeff is just, up to a proportionality
constant, the fluid bulk viscosity η .

As far as the choice of the function f is concerned, we follow Dedegil [19] who proposed

f(δ, δ0) = δ(δ − δ0)+; (9)

however we think of δ0 as given by the experimental formula (8), better than (5).

2All laboratory experiments concerning the settling of particles in a rotating viscometer were performed and monitored by Snamprogetti.
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Via an elementary mass balance it easy to see that the mass variation experienced by Cz is given explicitly by

M(α; t, γ̇) = M0 + ρsΣK

∫ ∞

δ0

Ω(δ)Φ[vs(δ); t] dδ, (10)

where Σ is the cross sectional area of Cz, K is the volume fraction of P to the mixture (CWS plus P) 3, and

Φ[vs(δ); t] = min{vs(δ)t, z − h} −min{vs(δ)t, z}. (11)

For every cell C and for every fixed pair shear rate γ̇ - shearing time t, the left hand side of (10) is a number
given by the experimental data and the right hand side of (10) is just an implicit function of α. Solving numerically
such equation we obtain the corresponding values of the parameter α. We expect, within the limits of the experimental
errors, that such parameter α does not depend on the cell of observation as well as on the shearing time t. Therefore
we can define a function ηeff = η(γ̇). Using equation (9), we can compare the experimental data with the emptying
wave (10) and we obtain the corresponding values of α as a function of γ̇ (see figure 1). In all experiments worked
out at Snamprogetti laboratories δ0(γ̇) turned out to be practically zero. Therefore we definitely set f(δ) = δ2 and
consequently

vs(γ̇, δ) = α(γ̇)δ2. (12)

The knowledge of the function α(γ̇) is crucial to develop the model for the evolution of the sedimentation bed in a
pipeline, which will be presented in the next section.
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Figure 1: Experimentally determined values of α(γ̇) for γ̇ = {0.001, 1.35, 2.51, 4.64, 11.}; the solid line is the graph of 12.4103−

12.3487e−x/2 , a nonlinear fit of these data via the Least Square Method.

4 Build-up and evolution of the sedimentation bed in a pipeline
The argument of this Section is largely based on the ideas presented in [16],[20], [28], and [29]. Let us first specify the
geometry (see figure 2 and symbols.

3By definition K = 4π
3

∫ ∞

0
δ3N(δ) dδ where N denotes the size distribution function of P per unit volume of mixture (P +CWS). Therefore

N(δ) = ρsKΩ(δ).

6



�

�

������� 	�
� ���������������

��

�

�

��� � �

!

"
#

$
%'&)(+*

,.-0/

,.-0/ 1�2�354�6

1�2�374�6

8#

9;:=<?>A@7BDCFEGBIHJ>LK):NMO@PMO:RQS@TC):

Figure 2: Longitudinal and transversal cross-sections of the pipe; the function h(x, t, φ) describes the bed profile (the indicated
profile is only for illustration purposes)

If dp
dx

denotes the constant pressure gradient (< 0) and Vx(r) the velocity profile of the main flow, γ̇ = γ̇(r) =

| dVx

dr
| is the shear rate; as we said in Section 1 the C.W.S. behaves as a Bingham fluid, therefore we still assume
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(τ − τ0)+ = ηB γ̇ . Then, by coupling the Navier-Stokes equations with boundary conditions, one easily gets

Vx(r) =





−
R2

4ηB

dp

dx
(1 −

r2

R2
) −

τ0R

ηB
(1 −

r

R
), for r ≥ R̂,

−
1

4ηB

dp

dx
(R− R̂), for r ≤ R̂,

(13)

where r = R̂ is the interface bounding the rigid core. The momentum balance equation implies τ = r
2
| dp
dx

|, so that

R̂ =
2τ0

|dp/dx|
; (14)

moreover

γ̇(r) =
1

2ηB
|
dp

dx
|(r − R̂)+. (15)

A key assumption of the present model is that the sediment thickness h is sufficiently small compared to the pipe
radius R so that the flow geometry will never be significantly affected by the sedimentation bed growing at the bottom
of the pipe. Bearing in mind that for values of h close to 2% of the pipe diameter a precautional shut down and cleaning
operation is mandatory, the above assumption does not sound as a limitation.

The trajectory of a particle P = P (δ, ρs, [0, y0, z0]) of radius δ, density ρs entering the pipe at the initial position
(0, y0, z0) is fully described by the system





ẋ = Vx(r),
ż = −vs(δ, r),

r =
√
z2 + y2

0 .

(16)

Recalling the analysis of Section 3, we assume the settling velocity vs to be vs(δ, r) = α(γ̇(r))δ2. The function
α(γ̇), determined experimentally4, is that shown in figure 1.

It is quite evident from the above system that particle motion remains confined in the vertical plane y = y0.
Moreover experiments definitely show that α(0) = 0 and α̇ ≥ 0. As a consequence only particles incoming the pipe
through the gray-shaded region shown in figure 3 do contribute to the growing sediment.

4We have a numerical code which gives α(γ̇) on the base of laboratory tests in which the settling phenomenon is suitably monitored in a bob-cup
viscometer as described in Section 3.
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Figure 3: Transverse cross section of the pipe with contributing and noncontributing regions to the dynamics of the bed. In the
darker central region particles do not settle since γ̇ = 0 while in the white region above they settle but never reach the bed; only
particles settling in the shaded reagion contribute to the growing of the bed.

Any particle P incoming through the gray-shaded region of the initial cross-section {x = 0} ends its trajectory at
the point (x?, y0, z

?) defined via





z? = −
√
R2 − y2

0 ,

x? =

∫ z0

z

Vx(r̃)

vs(r̃, δ)
dz̃,

with r̃ =
√
z̃2 + y2

0 .

(17)

From (17) it can be easily proved that, for any fixed x?, the locus Γ(x?, δ) of points on {x = 0} formed by those
particles with radius δ, ending their trajectories on the pipe wall at x = x?, is actually a graph (see figure 4) which we
denote by

z0 = Z(y0;x
?, δ).
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Figure 4: Some Γ(x?, δ) graphs for Q = 250 m3/h, δ = 0.0067 cm.The slopes of the U-shaped curves increase with x?. The
steepest U-shaped curve corresponds to x? = +∞

The settling rate per unit length at distance x from the initial cross-section due to particle with radii between δ and
δ + dδ is given by

S(x; δ)dδ =
4

3
πδ3ρsN(δ)dδ

∫ +yM

−yM

vs(
√
y2
0 + (Z)2, δ)dy0, (18)

where Z = Z(y0;x, δ), N(δ)dδ is the number of settling particles with radii between δ and δ + dδ per unit volume
of mixture (P + CWS), and the endpoints ±yM of Γ(x, δ) are implicitly defined by

y2
M (x, δ) + Z2(x?, yM (x, δ)) = R2.

Since N vanishes outside [δmin, δmax], the overall settling rate (per unit length of the pipeline) will be given by

ST (x) =

∫ δM

δm

S(x; δ)dδ. (19)

Analysis shows that ST is a rapidly decreasing function of x and is practically zero if x is sufficiently large5.

5In our simulations with a known population of sand particles (δmin = 0.0035 cm, δmax = 0.0113 cm, see figure 5), ρs = 2.67 g/cm3 and
with a CWS with known rheological characteristic parameters (τ0 = 8.89 P , ηB = 0.16 Ps we found ST ' 0 at x = 10 Km for a flow rate Q
of ' 100 m3h−1 and at x = 60 Km for a flow rate Q of ' 450 m3h−1 (pipe radius R = 25 cm.

10



20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

1/cm

µm

Figure 5: Size distribution of sand particles used for experiments: the continuous line is a spline fit of data points
(
δ, δ3N(δ)

)

(units are (µm, 1/cm)).

Equation (19) provides the source term balancing the rate of change of the cross-sectional area a(x, t) of the bed.
However a precise and complete description of the actual dynamics of the bed appears to be rather complex. Indeed
there are infinitely many different profiles h(φ, x, t) which correspond to the same function a(x, t) and there is no
“natural”equation to describe the evolution of h. However such level of sophistication is absolutely not needed in our
case, since for the particular nature of the problem, experimental observations cannot be that accurate. Indeed the best
equipment available (a gamma-densimeter) provides only a reasonable measure of the average thickness of the bed as
a function of time where the monitoring device is placed. The only clear experimental indication is that pure settling
cannot be the only driving mechanism in the dynamics of the bed. Indeed, were this the case, the bed should grow
continuously, filling the pipe in a finite time. Therefore pure settling (fully described by ST (x)) needs to be coupled
with a transport action, which consists in a partial mass removal in the horizontal direction due to the action of the
main flow. The idea is that, during a first stage, the whole bed flows in the pipe; then, when the bed has reached a
critical thickness ∆, a static layer begins to grow just below the dynamic one (see figure 6). The value of ∆ depends
on the main volumetric flow rate Q.
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Figure 6: The settling and transport actions driving the dynamics of the bed; when the dynamic layer has reached the critical
thickness ∆, the static sublayer begins to develop below it.

To be more precise, the model is based on the following hypotheses:

(i) the radial thickness h(φ, x, t) of the bed (see figure 7) is proportional to its cross-sectional area a(x, t) via

h(φ, x, t) = C(φ)a(x, t);

(ii) the cross-sectional area of the bed remains always small enough so that the flow geometry of the main flow is
not significantly modified (in [33] is partially relaxed); in other words

12



a(x, t) � πR2.

(iii) The cross-sectional profile is sufficiently regular and physically consistent in the sense that C(φ) must satisfy the
following constraints:

1. C(0) = C(π) = 0,

2. C′(φ) > 0, for all φ ∈ [0, π/2),

3. C(φ) = C(π − φ), for all φ ∈ [0, π/2),

4. C′(φ) ≤
[

R
a(x,t)

− C(φ)
]
cot(φ), for all φ ∈ (0, π/2),

(iv) The volumetric flow rate in the x direction due to the moving layer of the bed is described by the function

q(x, t) = 2

∫ π
2

0

q̃(x, t, φ) dφ, (20)

where

q̃(x, t, φ) =

{
λ1Rh(x, t, φ), for h(x, t, φ) < ∆,
λ2(a(x, t))R∆, for h(x, t, φ) ≥ ∆,

(21)

in such a way that q̃(x, t, φ)dφ is just the volume of sediment passing through a section of width dφ per unit
time consistently with the hypotheses h� R and ∆ � R. The parameter λ1 as well as the function λ2(a) have
to be chosen so that q̃(x, t, φ) be continuous.

ObviouslyC(φ) takes its maximum at φ = π/2; therefore (4) is satisfied, for example, ifC ′(φ) ≤
[

R
a(x,t)

− C(π/2)
]

cot(φ)

provided that a(x, t) < R/C(π/2). Condition (4) can be easily interpreted: the z-coordinate of a point on the bed
profile is given by

z(φ, x, t) = −(R −C(φ)a(x, t)) sin φ.

Provided that a(x, t) is sufficiently small, condition (4) is equivalent to saying that ∂z/∂φ < 0 for all φ ∈ [0, π/2).

z

y

,x,t)φh(

φ

Figure 7: Function h(φ, x, t) describes the radial thickness of the bed; φ is the azimuthal coordinate.

Assumptions on h are justified by the fact that in absence of experimental information it is convenient to choose
working hypotheses which are both simple and meaningful.
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Let us define g(2φ/π) = C(φ)/C(π/2) with φ ∈ [0, π/2]. Because of the hypotheses made on C, g is invertible
on [0, 1]; let us also set G(s) =

∫ s

0
g(u) du. The cross-sectional area a(x, t) is described by

∫ ∫
A
r drdφ, where

A = {(r, φ)/φ ∈ [0, π], R −C(φ)a(x, t) ≤ r ≤ R};

neglecting higher order terms (recall (ii)), this yields C(π/2) = 1/[πRG(1)]. Moreover, for given a(x, t), we have
0 ≤ h(φ, x, t) ≤ C(π/2)a(x, t); thus if a ≤ ao := ∆/C(π/2) then h(φ, x, t) ≤ ∆ for all φ ∈ [0, π/2]. In this case,

by recalling the definition of q(x, t) in hypothesis (iv), we immediately obtain q(x, t) = 2λ1R
∫ π/2

0
h(φ, x, t) dφ =

λ1a(x, t), being 2R
∫ π/2

0
C(φ) dφ = 1. If, instead, a(x, t) > a0, then there exists φ̂(a) ∈ [0, π/2] such that

h(φ̂, x, t) = ∆. Notice that φ̂(a) = (π/2)g−1(a/a0), and that φ̂′ < 0. Therefore, for all cross-sections x and instants
t for which a(x, t) > a0, we have

q(x, t) = 2

[∫ φ̂(a)

0

λ1Rh(φ, x, t) dφ+

∫ π/2

φ̂(a)

λ2(a)R∆ dφ

]

= πR∆
[
λ1

a

a0
G(

2

π
φ̂(a)) + λ2(a)(1 −

2

π
φ̂(a))

]
.

Notice that q(a+
0 ) = q(a−0 ); indeed φ̂(a0) = π/2 and

q(a+
0 ) = πR∆λ1G(1) = (πRG(1)C(π/2))λ1a0 = λ1a0.

The simplest choice for λ2(a) is the linear one: λ2(a) = λ1 + λ̂1(a− a0), with λ̂1 > 0.
The above analysis shows that we can write q(x, t) as an explicit function of a(x, t): in particular we have

q′(a) =





λ1, for a < a0,

πR∆{λ1

a0
G( 2

π
φ̂(a))

+λ̂1(1 − 2
π
φ̂(a)) − ( 2

π
λ̂1(a− a0)φ̂

′(a)}, for a ≥ a0,

(22)

It is not difficult to check that q′(a) > 0; thus q(a) is invertible in [0, q∞) being q∞ = lima→∞ q. If lim
a→a+

0

(a −

a0)
d
da
g−1(a0/a) = 0, then q′(a) is also continuous for all a > 0. For future purpose it is also useful to notice that

q′′(a) =

{
0, for a < a0,

πR∆[(λ1

a
− 2λ̂1)φ̂

′(a) − λ̂1(a− a0)φ̂
′′(a)], for a ≥ a0.

(23)

We are now ready to write down the dynamic equation for the evolution of the bed: a simple mass balance over a
portion of the pipe of unit length yields

∂a

∂t
+ q′(a)

∂a

∂x
= S̃T (x), (24)

where we set S̃T (x) := 1
ρs(1−ε)

ST (x), ρs and ε being the density of the settled material and the porosity of the bed
respectively. The conversion factor (1 − ε) is needed since the rate of change of the cross-sectional area due to the
settled material depends on its degree of porosity.

We complete equation (24) with the following initial-boundary conditions

a(x, 0) = a(0, t) = 0. (25)

System (24)-(25) can be solved by the Method of Characteristics. Within the class of regular solutions, condition
(25) imply that a(x, t) ≤ a0 in a neighbourhood A = A1 ∪A2 of the initial lines x = 0 and t = 0. If

1

λ1

∫ ∞

0

S̃T (u) du < a0, (26)

then this neighbourhood covers the whole region A = {(x, t)/x ≥ 0, t ≥ 0}, equation (24) is linear everywhere in
A and solution writes

a(x, t) =

{
1

λ1

∫ x

0
S̃T (u) du, for (x, t) ∈ A1 := {(x, t)/0 < x < λ1t},

1
λ1

∫ x

x−λ1t
S̃T (u) du, for (x, t) ∈ A2 := {(x, t)/0 < λ1t < x}.

(27)
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Thus the solution is globally defined, grows below the line t = 1
λ1
x, takes its maximum along t = 1

λ1
x, and remains

stationary for t > 1
λ1
x. (see figure 8).

� �������	��
�������
������

� �����	��
��������

�� �

�

��

�� �

����� �"! #%$&�('*)
+-,
. /0�13246587"4:9 ;=<?> .

Figure 8: The region A1 ∪A2 in the simplest case: the balance equation is linear and the characteristics are straight lines. At any
instant t̂, a(x, t) takes its maximum at x̂ = λ1 t̂.

If (26) does not hold, the situation is much more complicated: besides regions A1 and A2 we have two further
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regions, A3, and A4 to consider. Indeed let us define x0 > 0 such that

1

λ1

∫ x0

0

S̃T (u) du = a0. (28)

We now have
A1 = {(x, t)/0 ≤ x ≤ x0, t ≥

x
λ1

},

A2 = {(x, t)/0 ≤ x, 0 ≤ t ≤ tγ(ξ), ξ ≥ 0},

where the line γ(ξ) := (xγ(ξ), tγ(ξ)) is defined by





a0 = 1
λ1

∫ xγ(ξ)

ξ
S̃T (u) du,

tγ(ξ) = 1
λ1

(xγ(ξ) − ξ) ,

ξ ≥ 0, xγ(0) = x0, tγ(0) = 1
λ1
x0.

(29)

Region A3 is covered by all characteristics coming out from the line {x = x0, t ≥ x0

λ1
}. These characteristics

never intersect each other; the line

tσ(x) =
x0

λ1
+

∫ x

x0

du

q′
(
q−1

(∫ η

0
S̃T (u) du

)) , x ≥ x0, (30)

bounds region A3 from below. Region A4 is finally defined as follows

A4 := {(x, t)/x ≥ x0, tγ(ξ) ≤ t ≤ tσ(x), ξ ≥ 0}.

In region A1 ∪ A2 system(24) is still linear and solution writes as before. In region A3 ∪ A4 system(24) is fully
nonlinear. In A3 solution is stationary (as in A1) and writes

a(x) = q−1

(∫ x

0

S̃T (u) du

)
;

being ∂a
∂x

> 0, a(x, t) is increasing in A1 ∪ A3. In region A4 the analysis is more complicated since characteristics
may intersect each other. (see figure 9). Global existence of a solution in this case is guaranteed only if q′′(a) < 0 and
q∞ >

∫ ∞

0
S̃T (u) du. If q′′(a) > 0 the existence is guaranteed only for t < t̂, where t̂ can be explicitly determined as

a function of S̃T and ∆ (see [28] for details).
For q∞ ≤

∫ ∞

0
S̃T (u) du the above conclusion continues to be true but the definition of q(a) needs to be slightly

modified: indeed the model is physically significant only as long as a(x, t) remains small. Therefore we can always
think of q(a) as defined by (20) until a exceeds some upper bound and then extend q(a) (for example linearly) in order
to get q∞ = +∞. After that, condition q∞ >

∫ ∞

0
S̃T (u) du can be considered always satisfied.

Actually q′′(a) > 0 means that the transport mechanism is rather efficient: this could lead to the formation of
a shock front along the bed profile. Thus a classical solution does no longer exist and weak solutions should be
considered, although it seems unrealistic that the moving bed can really exhibit any jump, owing to its incoherence.
In region A4 we have ∂a

∂x
< 0; moreover ∂a

∂x
is continuous except along the curve t = tσ(x) where a(x, t) takes its

maximum for each t. For a given t̄ > 0, let x̄(t̄) be defined by tσ(x̄(t̄)) = t̄. Then we can write

max
t<t̄

a(x, t) = a(x̄(t̄), t̄),

and prove that the estimate

a(x, t) ≤ q−1(

∫ ∞

0

S̃T (u) du),

holds everywhere in the existence domain of a(x, t).
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Figure 9: The region A1 ∪A2 ∪A3 ∪A4 when the balance equation is nonlinear. In this case the characteristic lines may intersect
in region A4. As long as t ≤ x0/λ1 the picture is the same as in figure 8. For t > x0/λ1, a(x, t) takes its maximum along tσ(x); at
x1, a(x, t) decreases below the value a0 again

5 Numerical simulations
The function g(ψ) assigns a pre-defined geometry to the cross-sectional profile of the bed. We choose g(u) = u(2−u)
but more general choices are possible such as g(u) = uk(2 − u)k: for k > 1 the bed shows thinner edges (see figure
10).
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Figure 10: Axdmissible and non-admissible bed profiles: the forbidden profiles violate the hypotheses (iii,4) we made on function
C(φ).

For k = 1 we get φ̂(a) = π
2
(1 −

√
1 − a0

a
), and so

q′′(a) = ω(φ) :=
πR2a0(3λ̂1a0 − 2λ1)

8a3
√

1 − a0

a

; (31)

moreover condition (iii,4) reads

a(x, t) ≤
π3R2

6(π − 2φ) tanφ+ φ(π − φ)
,

18



which is satisfied for any φ ∈ [0, π] if a(x, t) ≤ minφ∈[0,π] ω(φ) = 2π2

24+3π2 πR
2.

The parameter λ1 has the physical meaning of a “velocity ”, namely the mean velocity of the dynamic layer of
sediment. We decided to set λ1 = Vx(R − ∆

2
) (though other choices are possible) so identifying the velocity of the

moving layer with that of the main flow of CWS at ∆
2

units far from the bottom pipe wall.

If we choose λ̂1 = 0, then λ2(a) = λ1 and (20) yields a finite value of q∞; thus we need to modify the definition
of q(a) as explained before in order to avoid critical conditions in the existence proof. Because of (31), λ̂1 = 0 implies
q′′ < 0 and the solution is globally defined.

In the case λ̂1 6= 0, the dynamic layer moves with mean velocity λ1 for h < ∆ and grows linearly as a − a0

for h > ∆. This case is more complicated because, as we said before, the existence of a classical solution cannot be
guaranteed for all times. All simulations to be shown next have been carried out (for simplicity) for λ̂1 = 0. Therefore,
from now on, we definitely assume λ2(a) = λ1.

The analysis developed in Section 4 shows that the value of the quantity S∞ =
∫ ∞

0
S̃T (u) du (which we assume to

be finite, consistently with the real situation) plays a central role in discriminating two distinct situations. IfS∞ < λ1a0

then the bed never reaches the level ∆; therefore it remains fully dynamic never developing a static sub-layer. If, on
the contrary, S∞ > λ1a0 a static layer definitely develops which keeps growing below the dynamic one as shown in
figure 6.

Given a point at distance x from the origin, a(x, t) reaches its maximum value amax(x) at that point, at time tσ(x);
it turns out that

amax(x) = a(x, tσ(x)) = q−1(

∫ x

0

S̃T (u) du). (32)

Once a(x, t) has reached its maximum value at a given point, the graph of a for x̂ < x remains stationary, i.e.
independent of t, for all t ≥ tσ(x) ; in other words the bed “crest” moves ahead towards infinity just like a wave,
leaving a stationary “frozen” profile behind.

The choice of ∆ is a very delicate matter. This is truly the key parameter of the model (as it is quite evident from the
above choice for λ1). On the other hand direct experimental indications about ∆ seem actually inaccessible for several
reasons. First of all ∆ is essentially a dynamical parameter, i. e. it cannot be measured at rest. Secondly, accurate
dynamical measurements are not actually available even with sophisticated instruments. Last but not least CWS is an
opaque substance and direct optical measurements are out of discussion.

For all these reasons we were forced to identify ∆ indirectly as follows: we focussed upon the richest set of
experimental data available, namely those obtained at the flow rate Q? = 250 m3/h−1. Once these are fixed as
“reference”data, we select ∆ in such a way that numerical simulation based on our model, have to fit the experimentally
observed behaviour. Then we assume that ∆ depends linearly on Q with ∆(0) = 0. This approach led us to set
∆ = 1.8 Q

Q? cm and so to the following values

Q (m3/h) 100 150 250 450
∆ (cm) 0.7 1.0 1.8 3.2

Table 1

for the other flow rates used in our simulations.
Let us now define tcr as the time instant at which the thickness h of the bed reaches a given critical level hcr. We

know that t = tσ(x) is the steady curve “drawn”by the maxima of a(x, t) as long as time elapses and the bed keeps
growing. If (x, tσ(x)) is a point on this curve in the (x, t)-plane then, bearing in mind (i) in Section 4, (32), and the
fact that tσ(x) is invertible (see [28]), we get

hcr = q−1(

∫ t−1
σ (tcr)

0

S̃T (u) du) max
φ∈[0,π/2]

C(φ).

Let us come now to numerical simulations. The rheological parameters of CWS are just those already mentioned
at the end of Section 2. The size distribution of the settling material is described in [15] and [18].

The pipe radius R and length L are set equal to 25 cm and 100 km respectively. Figure 11 shows the curves S̃T (x)
at all flow rates we considered.
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Figure 11: Function ST (x) at various flow rates.

Table 2 shows critical times and distances needed by the static sediment to reach 2%(= 1 cm) of the pipe diameter.

Q (m3/h) ∆ (cm) Gap (cm) tcr(days) xcr (Km)

100 0.7 3.5 0.4 0.48
150 1.0 4.2 0.5 1.24
250 1.8 5.4 ∞ ≥ 100
450 3.2 7.1 ∞ ≥ 100

Table 2

For Q = 250 and = 450 m3/h, tcr and xcr are out of the computational range. Next table shows, just for these
flow rates, both time and distances for which the dynamic layer rises up to 1.5 cm (no static layer develops in these
cases).

Q (m3/h) ∆ (cm) t (days) x (Km)
250 1.8 0.39 4.3
450 3.2 0.38 10.1

Table 3

However 100m3/h is generally considered a very low regime (forR = 25 cm) from the point of view of econom-
ical convenience, since industrial pumps actually allow much higher regimes. For high values of Q the gap between
the rigid core and the pipe wall is large enough in order hcr = 2R/100 continue to be a very significant parameter. A
more interesting choice might be the time Tcr needed by the whole system to reach a state in which the thickness of the
static layer is above hcr = 2R/100 over a longitudinal section of the pipe with length Lcr ' L/100(= 1Km) (L =
total length of the pipeline). From the industrial point of view (at flow rates ≥ 250m3/h) this may be just the time
after which a pipe shut-down and cleaning for sediment removal is highly recommended. Table 4 shows tcr, xcr,and
Tcr for Q = 250m3/h and L = 100 Km for various values of ∆. It was just this analysis to suggest the value 1.8 cm
as the one for which our simulations fit better available data.
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∆ (cm ) tcr (days) xcr (Km) Tcr (days)
1.4 0.71 3.57 1.01
1.5 0.97 4.99 1.35
1.6 1.51 7.5 2.08
1.7 3.20 14.2 3.85
1.8 ∞ ∞ ∞
1.9 ∞ ∞ ∞
2.0 ∞ ∞ ∞

Table 4

Figures 12, 13, 14 below show the static and dynamic bed profiles for Q = 250m3/h and ∆ = 1.8 cm when
t = 1 day, t = 5 days, and t = 10 days. As it can be seen, the static sediment is still below the critical level of 1 cm
even after 10 days.
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Figure 12: Static and mobile sediment profile after one day at 250 m3/h
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Figure 13: Static and mobile sediment profile after five days at 250 m3/h
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Figure 14: Static and mobile sediment profile after ten days at 250 m3/h

6 Conclusions and open problems
In this review article we tried to report some of the results obtained in modelling the problem of particle sedimentation
in a sheared slurry. Among other things, we developed a functional method to determine vs (described in the Appendix).
However this approach has been applied only to the simple Newtonian case. For a Bingham fluid this method appears
rather complicated and has not been developed yet. This forced us to follow the more traditional approach based on
the assumption that vs has some pre-assigned dependence on the radius of the particle.

As far as we know the model for the evolution of the bed is totally new and, despite its simplicity, seems capable to
predict the critical values to operate an industrial pipeline under safe conditions. The numerical code developed by A.
Mancini is property of Snamprogetti.

While for the purposes of industrial designers the assumptions we made are rather reasonable and make the model
easy to handle, there still are some side questions which would deserve further investigations. We list some of them.

The model presented here does not consider the sliding motion of particles once they have touched the wall. This
would add a better information about the cross sectional profile of the bed which in the model is assigned a priori. This
is certainly a very difficult problem also because very few experimental information is available.

The existence proof for equation (24) guarantees global existence in time if q′′ < 0. If this condition is not fulfilled,
a shock develops and it seems more reasonable to switch to a different transport model. This analysis is not expected
to be very hard but is still missing.
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7 Appendix: A functional approach to settling velocity of particles
in a finite container
We considered a liquid container V that can be either a cylinder or a rotational viscometer. The container is filled up
with a liquid L whose constitutive law we do not need to specify at present. Therefore V is characterized by its height
l and by the radii R1 ≥ 0 and R2 > R1 of the inner and outer cylinder respectively. Indeed our approach bypasses
not only the rheological nature of L but also a detailed description of some intricate aspects of sedimentation such
as fluid−particle and/or particle−particle interactions, wall−effects, particle shape effects, etc. . . (see [12],[15],[34]).
Let us suppose that a population P of particles is uniformly distributed in L at time t = 0. If the particle density
ρP is greater than the liquid density ρL, P is expected to settle toward the bottom of V . If L has a yield stress there
may be a fraction of P which never settles, although the unsettled fraction generally changes according to the shearing
conditions.

The family P is supposed to be represented by a rather large number N (say ≥ 105) of particles with random shape
and very small size.

Let us point our attention over a cross−sectional cell C of the container V of thickness h with the top and the
bottom bases placed respectively at z − h (z > h) and z ≥ 0, the z-axis being directed as the gravity vector (z = 0
denotes the top of V ). The quantity to be measured is the net mass−variation in C due to the settling of P .

As we already said in section 2, the stationary settling regime is generally reached almost instantaneously and the
observation cell C will experience an emptying wave starting from the moment in which the heaviest particle which
left z = 0 at t = 0 has reached the level z − h.

Let us recall equation (10): for given γ̇, M measures the mass due to P present in C at time t.
It is more convenient to write (10) as follows

M?(v; t, γ̇) = λ

∫

U

Ω(δ)Φ[v(δ); t] dδ, (33)

where

M? = 1 −M/Mo, λ = −ρPΣK/Mo, U = supp Ω ∩ [δo(γ̇),∞),

and δo is a possible critical radius defined by (8).
For {z, h, γ̇} given 6, the right hand side of (33) defines a (formal) nonlinear operator N which maps v(δ) into the

function

Nv(t) = λ

∫

U

Ω(δ)Φ[v(δ); t]dδ. (34)

The function 1 −M?(t) measures the percentage of P present in C at time t. Since M?(t) is a measurable data,
the functional equation

Nv = M?, (35)

can be used, in principle, to determine v.
As emphasized in [34] the fully nonlinear problem is rather complicated. In this case it is possible and reasonable,

on the basis of a suitable physical approximation, to linearize the problem. This leads to the functional equation

Aw = g, (36)

where A is a linear operator. In particular, (36) turns out to be a Fredholm equation of the first kind, which, as it is well
known, is ill-posed in the sense of Hadamard.

The choice of the solution (which will be called ”reference” solution) nearby which to linearize (35) depends mainly
on the physical situation. For example if the fluid L is almost Newtonian it may be reasonable to linearize (35) around
(2), while for a Bingham plastic other choices are more suitable.

Let us decompose the unknown u into the ”reference” solution v plus a ”perturbation”w due to all effects mentioned
at the beginning of Section 2. Then

Nu ≈ (N ′[v], w) +Nv, (37)

where N ′[v] is the Frechét derivative of N calculated in v and (., .) is a scalar product to be specified. To calculate
N ′[v] explicitly we shall make some assumptions on the class of reference solutions v. It is quite natural to ask that

6From the experimental point of view this means to have definitely fixed C and the shearing condition for L.
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v > 0 in (δo,+∞), v = 0 in [0, δo], and that dv/dδ > 0 in (δo,+∞). Here δo ≥ 0 as a function of γ̇ is supposed to
be known. Consequently there exists the inverse ṽ of v defined over [0,+∞) and we can write

Φ =

{
0, δ ≤ ṽ(c1(t)),
z − h − v(δ)t, ṽ(c1(t)) ≤ δ ≤ ṽ(c2(t)),
−h, δ ≥ ṽ(c2(t)).

(38)

where c1(t) =
z − h

t
and c2(t) =

z

t
. Then an elementary calculation shows that

(N ′[v], w) = −λ

∫

A

tΩ(δ)XI(t)(δ)w(δ) dδ, (39)

where XI(t)(δ) is the characteristic function of I(t) = [δ1(t), δ2(t)] and δi(t) = ṽ(ci(t)). The formal structure of our
problem is thus the following

Aw := (N ′[v], w) = M? − λNv. (40)

In other words, the right hand side of (39) denotes the difference between the effective emptying wave S (observable)
and a reference emptying wave corresponding to v. If v is assigned, equation (40) is the explicit form of equation
(36) in the unknown w we were looking for. However in a typical experiment S is available only over a finite set of
time values ti=1,...,n. Thus g := M? − λNv is a vector in Rn rather than a function of t and so equation (40) is
actually a Fredholm equation of first kind with discrete data. It is quite natural therefore to discretize also the kernel
k(δ, t) := λtΩ(δ)XI(t)(δ)w(δ) by putting ki(δ) := k(δ, ti), the operator A by putting Aiw :=

∫
U
ki(δ)w(δ) dδ,

and to consider just the discretized problem

Aiw = gi, (i = 1, ..., n). (41)

It is easy to see that each Ai is bounded in L2(U) being

|Aiw2 −Aiw1| ≤ Ci||w2 − w1||, (42)

where Ci = λti(maxUΩ)
√

(measU), and ||.|| =
√

(., .) denotes the usual L2− norm . By the Riesz theorem there
exists a set of functions {φi}i=,...,n in L2(U) such that

Aiw = (w, φi), i = 1, ..., n. (43)

The precise formulation of the problem is thus the following:
given the set {φi}i=1,...,n in L2(U) and the data g ∈ Rn, find a function w ∈ L2(U) such that

(φi, w) = gi, i = 1, ..., n. (44)

Problems like these have been deeply investigated by Bertero et al. in [7],[8], where the concept of solution is
generalized in such a way to overcome the following intrinsic difficulty of (44): this equation provides information
only about a finite number of components of w which in turn implies a lack of uniqueness and, if n is large, also that of
numerical stability. These unpleasant features have to be related to the ill-posedness of the original infinite-dimensional
problem (40) as it is known from the theory of Fredholm equations of first kind.

To proceed further let us denote by A : w ∈ L2(U) → g ∈ Rn the mapping defined according to the rule

(Aw)i = (w, φi), i = 1, ..., n, (45)

where (Aw)i denotes the i-th component of Aw; of course (Aw)i = Aiw. The mapping A is onto when the φi

are linearly independent (a circumstance which is hard -if not impossible- to check in practice); otherwise the range
of A has dimension n′ < n. Let us denote by X the subspace of L2(U) spanned by the φi. Regardless of the
φi being independent or not, the orthogonal complement X⊥ of X is just the null space N (A) of A. The adjoint
A∗ of A, defined by (Aw, g)Rn = (w,A∗g)L2(U) transforms g into an element of X since if w ∈ X⊥ then
(w,A∗g)L2(U) = 0. Evidently A∗g =

∑n

i=1
giφi. Therefore it is clear that, given g ∈ Rn, the problem of finding a

w ∈ L2(U) such that
Aw = g, (46)

when the φi are not linearly independent, has a solution if and only if g ∈ X . If g 6∈ X one defines a pseudo-solution
of equation (46) as any w̃ ∈ X such that

||Aw̃ − g||Rn = minimum. (47)
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This definition is well-motivated from the physical point of view: the minimum (47) is just the norm of the component
of g orthogonal to Rn′

and this component is purely an effect of the experimental errors (see [7]). Since the set of
pseudo - solutions is closed and convex there exists a unique pseudo-solution of minimal norm called generalized
solution and denoted by w†. This solution always depends continuously upon the data.

To obtain an explicit representation of w† ∈ X we need to construct the set {λi, εi, ei} (called the singular system
of A) by solving the problem Aεi = λiei, A∗ei = λiεi. This set can be computed with standard techniques (see [7]
for more details); in particular it turns out that the numbers λ2

i are the eigenvalues of the Gram matrix associated with
the functions φi, that are all positive, and that their number is equal to the number n′ ≤ n of linearly independent φi.
This bearing in mind, the representation formula for w† is the following:

w† =

n∑

i=1

1

λi
(g, ei)εi. (48)

Clearly, if there are only n′ < n linearly independent φi, we have only n′ terms in equation (48).
The maximum eigenvalue λM and the minimum eigenvalue λm have an important meaning: the ratio c(A) =

λM/λm is called the ”condition number” of A. If c(A) � 1, the problem of computing w†, although well-posed, is
”ill-conditioned”. This circumstance is due to the ill-posedness of the related infinite-dimensional problem and could
lead to large numerical errors. The situation does not improve by increasing the number n of available data gi, since in
this case the finite-dimensional problem becomes ”closer” to the infinite-dimensional one.

The above method was applied to a a population of sand particles uniformly dispersed in glycerine 7: sand is 12%
by weight and 9% by volume, with density of 2.67 g/cm3 and ”diameter” distribution between 100 and 150µm. The
container is just a static cylinder with diameter 2.64 cm and height of 14 cm held at a temperature of 4C0. At this
temperature the glycerine viscosity is ≈ 6.13Pa × s and the calculated coefficient 2g(ρs−ρl)

9η
in (2) turns out to be

≈ 5.0 cm−1 × s−1 . The chosen observation cell lies between z = 4.5 cm and z + h = 5.88 cm. Measures are taken
every hour starting at time T1 = 6h for seven times. We found

g = − (.524, .429, .345, .264, .195, .181, .168) . (49)

We solved the singular system and found in particular that c(A) = λM/λm ≈ 4.932 which is quite acceptable. The
generalized solution w† of the inverse problem (the solid line in the figure 15looks rather irregular, being essentially a
linear combinations of characteristic functions. The dashed curve is obtained by “smoothing” w† around a βδ2 -type
curve with β ≈ 2.2 cm−1 × s−1; a comparison between the latter and (2) (the dotted line) reveals the presence of
retarding effects (due for instance to the non-spherical shape of particles, mutual interactions etc.).
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Figure 15: The generalized solution of the inverse problem compared with the Stokes’s solution and a δ2 -type curve fitting the
available data points

7All experiments to collect the necessary data were worked out at Snamprogetti research facility at Fano (Italy)
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LIST OF SYMBOLS:

vs: sedimentation velocity

δ: particle radius

δ0: particle critical settling radius

g: gravity acceleration

ρs: particle density

ρl: liquid density

T: Cauchy stress tensor

n: outward unit normal to a regular surface

η: Newtonian fluid viscosity

Re: Reynolds number

τ : shear stress

γ̇: shear rate

τ0: yield stress (Bingham model)

ηB : plastic viscosity (Bingham model)

S:the mass of settling particles present (at given time) in a observation cell of a rotational viscometer
dp
dx

: the constant pressure gradient (< 0) i a pipeline

Vx(r): fluid velocity profile in a pipeline,

R: pipeline inner radius
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