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Abstract. In Part I (see [2]) a new model for the evolution of a system of droplets dispersed in an
agitated liquid was presented. Our aim was to extend a previous version (see [4]) in order to describe
the influence of each breakage mode. Here we complete the mathematical analysis to ensure the well
posedness (in the sense of Hadamard) of the Cauchy problem for the main evolution equation.

1. Introduction

In Part I of this paper (see [2] this same volume) we presented a very general model for
spatially homogeneous liquid dispersions in which any possible rupture mode is considered
and the corresponding breakage frequencies are allowed to blow up as the droplet volume
approaches a critical finite upper bound. Namely we allow a parent droplet to break in at
most N pieces where N can be any finite positive integer greater or equal than two. The
breakage frequency αk of the k−th mode is allowed to tend to infinity as v tends to vm (as in
[1]). The main purpose of Part I was to show how to deal with the probability functions for
each breakage mode and to verify the physical consistency of the whole model. Such a model
generalized the one proposed in [4] (limited to binary breakage and with bounded breakage
frequency), where the so–called volume scattering operator was introduced, preventing the
appearance of droplets beyond a critical size (depending on the agitation speed).

Here we prove the well posedness (in the sense of Hadamard) of the Cauchy problem for the
evolution equation derived in Part I.



In the final section of the paper we work out the specific example in which N = 3, in order to
show that it is indeed possible to construct a probability density function which meets all the
requirements that the mathematics and the physics suggest.

2. Mathematical model

The reader should refer to Part I of this paper (see [2]) for all symbols and functions. For the
reader’s convenience we rewrite the main operators and the evolution equation: these are

Lcf(v, t) =

∫ v/2

0

τc(w, v − w)f(w, t)f(v − w, t) dw

− f(v, t)

∫ vm−v

0

τc(w, v)f(w, t) dw, (2.1)

Lbf(v, t) =

∫ vm

v

α2(s)β2(s, v)f(s, t) ds

+

N∑

k=3

∫ vm

v

αk(s)f(s, t) ds

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

−
N∑

k=2

αk(v)f(v, t), (2.2)

Lsf(v, t) =

∫ vm+v

vm

λ2(s)β2(s, s− v) ds

∫ s/2

s−vm

τc(s− w,w)f(w, t)f(s − w, t) dw

+

N∑

k=3

[∫ vm+v

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)f(w, t)f(s − w, t) dw

×
∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

]

− f(v, t)

∫ vm+v

vm

τc(v, s− v)f(s− v, t) ds, (2.3)

and

∂f

∂t
= φ(t) (Lcf + Lbf + Lsf) . (2.4)
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As in [4] we look for a solution– in a suitable class of regular functions f to be specified later
– to both the original Cauchy problem





∂f

∂t
= φ(t)(Lcf + Lbf + Lsf),

f(v, 0) = fo(v),

(2.5)

and the so–called modified Cauchy problem





∂ψ

∂t
= φ(t)(L+

c ψ + L+
b ψ + L+

sψ),

ψ(v, 0) = fo(v),

(2.6)

where the L+–operators have been defined in Part I.

The reader should now bear in mind hypotheses (H1) to (H5) we stated in Part I.

Lemma 2.1. Under assumptions from (H1) to (H5), all bounded solutions to problem (2.6)
satisfy the following conditions

ψ(vm, t) = lim
v→v−

m

ψ(v, t) = 0, (2.7)

ψ(0, t) = lim
v→0+

ψ(v, t) = 0. (2.8)

Proof. Let us write problem (2.6) as follows

∂ψ

∂t
(v, t) + φ(t)

N∑

k=2

αk(v)ψ(v, t) = A(v, t) (2.9)
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where, because of Theorem 6.1 in Part I,

A(v, t) = φ(t)

{∫ v/2

0

τc(w, v − w)ψ+(w, t)ψ+(v − w, t) dw − ψ(v, t)

∫ vm−v

0

τc(w, v)|ψ(w, t)| dw

+

∫ vm

v

α2(s)β2(s, v)ψ(s, t) ds

+

N∑

k=3

∫ vm

v

αk(s)ψ+(s, t) ds

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

+

∫ vm+v

vm

λ2(s)β2(s, s− v) ds

∫ s/2

s−vm

τc(s− w,w)ψ+(w, t)ψ+(s− w, t) dw

+

N∑

k=3

[∫ vm+v

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)ψ+(w, t)ψ+(s− w, t) dw

×
∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

]
− ψ(v, t)

∫ vm

vm−v

τc(v, w)|ψ(w, t)| ds

}

If we put F (t) =

∫ t

0

φ(u) du, then (2.9) implies

ψ(v, t) = fo(v) exp

(
−

N∑

k=2

αk(v)F (t)

)

+

∫ t

0

A(v, τ) exp

[
−

N∑

k=2

αk(v)(F (t) − F (τ))

]
dτ, v ∈ [0, vm).

(2.10)

If C is an upper bound for φ · τc · ψ2, then
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lim
v→v−

m

A(v, t) = φ(t)

{∫ vm/2

0

τc(w, vm − w)ψ+(w, t)ψ+(vm − w, t) dw

+

∫ 2vm

vm

λ2(s)β2(s, s− v) ds

∫ s/2

s−vm

τc(s− w,w)ψ+(w, t)ψ+(s− w, t) dw

+
N∑

k=3

[∫ 2vm

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)ψ+(w, t)ψ+(s− w, t) dw

×
∫

Dk(s,vm)

βk (s, u1, . . . , uk−2, s− vm − Uk−2) dσk−2

]

−ψ(vm, t)

∫ vm

0

τc(v, w)|ψ(w, t)| ds

}

≤ C

(
vm

2
+ vm

∫ 2vm

vm

λ2(s)β2(s, v) ds

+vm

N∑

k=3

∫ 2vm

vm

λk(s) ds

∫

Dk(s,vm)

βk (s, u1, . . . , uk−2, s− vm − Uk−2) dσk−2

)

Recalling hypotheses (ii)-(a) and (iii)-(a) of (H5), we have, after a redefinition of C, that

lim
v→v−

m

A(v, t) ≤ C (2.11)

Thus from(2.10), being also fo(vm) = 0, it follows

ψ(vm, t) ≤ C lim
v→v−

m

∫ t

0

exp

[
−

N∑

k=2

αk(v)(F (t) − F (τ))

]
dτ. (2.12)

Recall now that, because of (H1),

F (t) − F (τ) =

∫ t

τ

φ(u) du > Ψ̂(t− τ),

and so

ψ(vm, t) ≤ C lim
v→v−

m

∫ t

0

exp

[
−Ψ̂

N∑

k=2

αk(v)(t− τ)

]
dτ. (2.13)

If we put Λ(v) = Ψ̂
N∑

k=2

αk(v), we have
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ψ(vm, t) ≤ C lim
v→v−

m

1 − exp [−Λ(v)t]

Λ(v)
= 0. (2.14)

since (recall hypothesis (H3)-(a)) Λ(v) goes to infinity as v → v−m.

To prove (2.8) we proceed similarly: notice that

lim
v→0+

A(v, t) = φ(t)

[
−ψ(0, t)

∫ vm

0

τc(0, w)|ψ(w, t)| ds+

∫ vm

0

α2(s)β2(s, 0) ds

+

N∑

k=3

∫ vm

0

αk(s)ψ+(s, t) ds

∫

Dk(s,0)

βk (s, u1, . . . , uk−2, s− Uk−2) dσk−2

]
.

(2.15)

Hypothesis (i) of (H5) and Theorem 6.1in Part I imply that lim
v→0+

A(v, t) ≤ 0; consequently,

recalling once more Theorem 6.1, relation (2.10) and that fo(0) = 0, we get (2.8).

3. Well posedness of the Cauchy problem

In this section we prove that the Cauchy problem (2.5) is well posed and that the unique
solution exists at any time.

Theorem 3.1. (UNIQUENESS) Under assumptions from (H1) to (H5), problem (2.5) has at
most one bounded solution.

Proof. Let f1, f2 be two bounded solutions to (2.5) such that f1(v, 0) = f2(v, 0) = fo(v) and let
us define

γ(v, t) = f1(v, t) − f2(v, t)

γM (t) = ||γ(v, t)|| (where ||•|| ≡ sup
(0,vm)

| • |)

φi = Ψ

[∫ vm

0

fi(v, t) dv,

∫ vm

0

v(2/3)fi(v, t) dv

]
, i = 1, 2.

The difference function γ obeys the equation

∂γ

∂t
= Hc(v, t) +Hs(v, t) + φ1(t)Lbf1(v, t) − φ2(t)Lbf2(v, t) (3.1)
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where Hc and Hs can be written as

Hξ(v, t) = φ1(t) [Lξf1(v, t) − Lξf2(v, t)] + [φ1(t) − φ2(t)]Lξf2(v, t), ξ = c, s.

The last two terms on the right hand side of (3.1) rewrite as follows

φ1(t)Lbf1(v, t) − φ2(t)Lbf2(v, t) = −φ2(t)

N∑

k=2

αk(v)γ(v, t) +Hb(v, t),

where

Hb(v, t) = −
N∑

k=2

αk(v) [φ1(t) − φ2(t)] f1(v, t)

+φ1(t)

∫ vm

v

α2(s)β2(s, v)f1(s, t) ds− φ2(t)

∫ vm

v

α2(s)β2(s, v)f2(s, t) ds

+φ1(t)
N∑

k=3

∫ vm

v

αk(s)f1(s, t) ds

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

−φ2(t)

N∑

k=3

∫ vm

v

αk(s)f2(s, t) ds

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2.

Thus equation (3.1) rewrites

∂γ

∂t
+ φ2(t)

N∑

k=2

αk(v)γ(v, t) = Hc(v, t) +Hb(v, t) +Hs(v, t). (3.2)

Because of our hypotheses, the following estimates can immediately be proved

|Hc(v, t)| ≤ A1γM (t) +B1|φ1(t) − φ2(t)|,

|Hs(v, t)| ≤ A3γM (t) +B3|φ1(t) − φ2(t)|,

Because of (H1) we have

|Ψ(ξ1, η1) − Ψ(ξ2, η2)| ≤ L |||(ξ1, η1) − (ξ2, η2)|||

where |||•||| denotes the Euclidean length in IR2 and L > 0 is a suitable constant. Conse-
quently we have
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|φ2 − φ1|

≤ L

∣∣∣∣
∣∣∣∣
∣∣∣∣
(∫ vm

0

f1(v, t) dv,

∫ vm

0

v2/3f1(v, t) dv

)
−
(∫ vm

0

f2(v, t) dv,

∫ vm

0

v2/3f2(v, t) dv

)∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ L

∣∣∣∣
∣∣∣∣
∣∣∣∣
(∫ vm

0

(f1(v, t) − f2(v, t)) dv,

∫ vm

0

v2/3(f1(v, t) − f2(v, t)) dv

)∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ L̂γM (t)

(3.3)

Recalling Lemma 3.1 and hypotheses (H5), we have

|Hb(v, t)| ≤ A2γM (t) +B2|φ1(t) − φ2(t)|

and, consequently, the estimate (3.3) finally implies

|H(v, t)| ≡ |Hc(v, t) +Hb(v, t) +Hs(v, t)| ≤ CγM (t)

for a suitable positive constant C (which evidently depends also upon sup
[0,vm]

f ). Now, by inte-

grating (3.2) and recalling that γ(v, 0) = 0, we get

γ(v, t) =

∫ t

0

H(v, τ) exp

(
−

N∑

k=2

αk(v)

∫ t

τ

φ2(u) du

)
dτ

which in turn implies

|γ(v, t)| ≤
∫ t

0

|H(v, τ)| dτ ≤ C

∫ t

0

γM (τ) dτ, ∀v ∈ [0, vm].

Thus

0 ≤ γM (t) ≤ C

∫ t

0

γM (τ) dτ

which, by Gronwall’s Lemma, implies γM (t) ≡ 0.

We now prove that problem (2.6) has a local bounded solution provided that the initial data
go to zero sufficiently fast as v goes to vm. Because of positivity (see Theorem 6.1 in Part I), all
bounded solutions to problem (2.6) with initial data fo(v) also satisfy problem (2.5) with the
same data. Moreover, because of the uniqueness theorem, to achieve the existence of solutions
to problem (2.5), it suffices to prove it for problem (2.6).
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Theorem 3.2. (LOCAL EXISTENCE) Assume that hypotheses from (H1) to (H5) be satisfied
and that fo(v) obeys both conditions

fo(v) is piecewise continuously differentiable in [0, vm],

fo(v) is non–negative in [0, vm],

fo(0) = fo(vm) = 0.

(3.4)

and

||α′
k(v)fo(v)|| < +∞, ∀k = 2, . . . , N. (3.5)

Then problem (2.6) has at least one Lipschitz continuous solution in [0, vm]×[0, T ) for a suitable
finite T > 0.

Proof. Let 0 = ϑ0 < ϑ1 < . . . < ϑn be a monotone increasing finite sequence of time steps. In
each interval (ϑi, ϑi+1) we consider the problem





∂ψ(n)

∂t
(v, t) = −φiψ

(n)(v, t)

{
N∑

k=2

αk(v) +

∫ vm

0

τc(w, v)
∣∣∣ψ(n)

+,i(w)
∣∣∣ dw

}

+φi

{∫ v/2

0

τc(w, v − w)ψ
(n)
+,i(w)ψ

(n)
+,i(v − w) dw

+

∫ vm

v

α2(s)β2(s, v)ψ
(n)
+,i(s) ds

+

N∑

k=3

∫ vm

v

αk(s)ψ
(n)
+,i(s) ds

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

+

∫ vm+v

vm

λ2(s)β2(s, s− v) ds

∫ s/2

s−vm

τc(s− w,w)ψ
(n)
+,i(w)ψ

(n)
+,i(s− w) dw

+
N∑

k=3

∫ vm+v

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)ψ
(n)
+,i(w)ψ

(n)
+,i(s− w) dw

×
∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

}
,

ψ(n)(v, ϑi) = ψ
(n)
+,i(v),

(3.6)
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where the subscript “,i” means that the corresponding function is evaluated in the limit ϑ →
ϑ−i . For i = 0, functions are evaluated in t = 0. At this stage of the proof we suppose that ψ(n)

i

is bounded.

Equation (3.6)–1 can be written as

∂ψ(n)

∂t
(v, t) = −Ai(v)ψ

(n)(v, t) + Bi(v) (3.7)

where Ai(v) = φiÃi(v), Bi(v) = φiB̃i(v), Ãi and B̃i being evident from the context.

Hypotheses from (H1) to (H5) imply, for a suitable positive constant C, that

|Bi(v)| ≤ C

(∣∣∣
∣∣∣ψ(n)

+,i

∣∣∣
∣∣∣
2

+
∣∣∣
∣∣∣ψ(n)

+,i

∣∣∣
∣∣∣
)
, (3.8)

being ||•|| ≡ sup
(0,vm)

(•). By integrating (3.7) we get

ψ(n)(v, t) = ψ
(n)
+,i(v) exp [−Ai(v)(t − ϑi)] +

∫ t

ϑi

Bi(v) exp [−Ai(v)(t− τ)] dτ. (3.9)

Since Ai > 0 we have

∣∣∣ψ(n)(v, t)
∣∣∣ ≤

∣∣∣
∣∣∣ψ(n)

+,i

∣∣∣
∣∣∣+ |Bi(v)| (t− ϑi). (3.10)

From (3.8) and (3.10) we get

∣∣∣ψ(n)(v, t)
∣∣∣ ≤

∣∣∣
∣∣∣ψ(n)

+,i

∣∣∣
∣∣∣
{

1 + (ϑi+1 − ϑi)
(
1 + C

∣∣∣
∣∣∣ψ(n)

+,i

∣∣∣
∣∣∣
)}

, t ∈ (ϑi+1 − ϑi) . (3.11)

We now choose an arbitrary ε > 0 and take

ϑi+1 − ϑi =
ε

1 + C ||fo|| (1 + ε)i
(3.12)

so that, (3.11) gives

∣∣∣
∣∣∣ψ(n)

i+1

∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣ψ(n)

+,i

∣∣∣
∣∣∣
{

1 +
ε

1 + C ||fo|| (1 + ε)i

(
1 + C

∣∣∣
∣∣∣ψ(n)

+,i

∣∣∣
∣∣∣
)}

, t ∈ (ϑi+1, ϑi)

≤
∣∣∣
∣∣∣ψ(n)

i

∣∣∣
∣∣∣
{

1 +
ε

1 + C ||fo|| (1 + ε)i

(
1 + C

∣∣∣
∣∣∣ψ(n)

i

∣∣∣
∣∣∣
)}

, t ∈ (ϑi+1, ϑi)

(3.13)

Recalling that ψ(n)
0 = fo for any n, it is immediate to check, by induction from (3.13), that
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∣∣∣
∣∣∣ψ(n)

i

∣∣∣
∣∣∣ ≤ ||fo|| (1 + ε)i ∀i = 0, . . . , n, ∀n ∈ IN. (3.14)

Assume now ε = 1/n and notice that

(1 + ε)i = (1 + 1/n)i ≤ (1 + 1/n)n ≤ e, ∀i ≤ n, ∀n ∈ IN.

Therefore, from (3.14) and (3.11), it follows that

∣∣∣ψ(n)(v, t)
∣∣∣ ≤ e ||fo|| . (3.15)

As far as the sequence {ϑn}n∈IN is concerned, it is immediately seen that

ϑn =
1

C ||fo||
ε

n−1∑

h=0

(1 + ε)−h =
1

C ||fo|| (1 + ε)

(
1 − 1

(1 + ε)n

)
;

Thus, with the choice made for ε,

lim
n→+∞

ϑn =
1

C ||fo||

(
e− 1

e

)
≡ T. (3.16)

In conclusion the sequence
∣∣ψ(n)(v, t)

∣∣ is uniformly bounded in [0, vm] × [0, T ].

We prove that, in the same region of IR2, the two partial derivatives of ψ(n) are uniformly
bounded too. To this aim we first multiply (3.9) by αk(v) to obtain

αk(v)
∣∣∣ψ(n)(v, t)

∣∣∣ ≤ αk(v)ψ
(n)
+,i(v) exp[−Ai(v)(t − ϑi)] + αk(v)

∫ t

ϑi

Bi(v) exp[−Ai(v)(t− τ)] dτ.

(3.17)

Because of (3.15), estimate (3.8) can also be written as

|Bi(v)| ≤ C̃
∣∣∣
∣∣∣ψ(n)

+,i

∣∣∣
∣∣∣ ≤ C̃e ||fo|| . (3.18)

Let us now define

d
(k)
n,j =

∣∣∣
∣∣∣αk

∣∣∣ψ(n)
j

∣∣∣
∣∣∣
∣∣∣ (3.19)

Notice that d(k)
n,0 is bounded for all k. Indeed it suffices to recall that ψ(n)

0 = fo and to proceed
as in Lemma 3.1: evaluating (3.17) in ϑi+1 we get
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d
(k)
n,i+1 ≤ d

(k)
n,i(1 + C̃(t− ϑi))

≤ d
(k)
n,i(1 + C̃(ϑi+1 − ϑi)) ≤ d

(k)
n,i(1 + C

ε

(1 + ε)i
)

≤ d
(k)
n,i(1 + Cε).

Thus

d
(k)
n,i ≤ d

(k)
n,0(1 + Cε)i.

For ε = 1/n, the sequence
{
d
(k)
n,i

}
i

with i = 0, . . . , n− 1 turns out to be bounded for all n ∈ IN.

If v goes to v−m, being in that case αk unbounded for all k, (3.9) also implies lim
v→v−

m

ψ(n)(v, t) =

ψ(n)(vm, t) = 0. From (3.7) and the boundedness of ψ(n)(v, t) it also follows that
∣∣∣∣
∂ψ(n)

∂t

∣∣∣∣ is

uniformly bounded in the same region of IR2.

To estimate
∣∣∣∣
∂ψ(n)

∂v

∣∣∣∣we first proceed formally, the correctness of this approach being justifiable

a posteriori. Let us define

S
(i,n)
1 (v) = φi

∫ vm

0

τc(v, w)
∣∣∣ψ(n)

i (w)
∣∣∣ dw,

S
(i,n)
2 (v) = φi

{∫ v/2

0

τc(w, v − w)ψ
(n)
+,i(w)ψ

(n)
+,i(v − w) dw

+

∫ vm+v

vm

λ2(s)β2(s, v) ds

∫ s/2

s−vm

τc(s− w,w)ψ
(n)
+,i(w)ψ

(n)
+,i(s− w) dw

+
N∑

k=3

∫ vm+v

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)ψ
(n)
+,i(w)ψ

(n)
+,i(s− w) dw

×
∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

}
,

S
(i,n)
3 (v) = φi

{∫ vm

v

α2(s)β2(s, v)ψ
(n)
+,i(s) ds

+
N∑

k=3

∫ vm

v

αk(s)ψ
(n)
+,i(s) ds

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

}
,

12



so that the first of (3.6) rewrites

∂ψ(n)

∂t
= −φiψ

(n)(v, t)

N∑

k=2

αk(v) − S
(i,n)
1 (v)ψ(n)(v, t) +

(
S

(i,n)
2 (v) + S

(i,n)
3 (v)

)
, (3.20)

for each t in the interval (ϑi, ϑi+1). Because of the second of (3.6) we also have

dψ(n)(v, ϑi)

dv
=

dψ
(n)
+,i(v)

dv
. (3.21)

Differentiate now (3.20) with respect to v to get

∂

∂t

∂ψ(n)(v, t)

∂v
= −φi

N∑

k=2

α′
k(v)ψ(n)(v, t) − φi

N∑

k=2

αk(v)
∂ψ(n)(v, t)

∂v

− dS
(i,n)
1

dv
(v)ψ(n)(v, t) − S

(i,n)
1 (v)

∂ψ(n)(v, t)

∂v

+
dS

(i,n)
2

dv
(v) +

dS
(i,n)
3

dv
(v),

t ∈ (ϑi, ϑi+1), i = 0, . . . , n.

(3.22)

Because of the hypotheses from (H1) to (H5) and of the boundedness of αkψ
(n) (proved above)

it turns out that all terms S
(i,n)
h are uniformly bounded. Also notice that

dS
(i,n)
1

dv
(v) =

∫ vm

0

∂τc
∂v

∣∣∣ψ(n)
i (w)

∣∣∣ dw, (3.23)

13



dS
(i,n)
2

dv
(v) = φi





1

2
τc

(v
2
,
v

2

) [
ψ

(n)
+,i

(v
2

)]2
+

∫ v/2

0

(
∂τc
∂u2

) ∣∣∣∣∣
(u1,u2)=(w,v−w)

ψ
(n)
+,i(w)ψ

(n)
+,i(v − w) dw

+

∫ v/2

0

τc(w, v − w)ψ
(n)
+,i(w)

(
dψ

(n)
+,i

dξ

)∣∣∣∣∣
ξ=v−w

dw

+ λ2(vm + v)β2(vm + v, v)

∫ (vm+v)/2

v

τc(vm + v − w,w)ψ
(n)
+,i(w)ψ

(n)
+,i(vm + v − w) dw

−
∫ vm+v

vm

λ2(s)
∂β2(s, v)

∂v
ds

∫ s/2

s−vm

τc(s− w,w)ψ
(n)
+,i(w)ψ

(n)
+,i(s− w) dw

(3.24)

+
N∑

k=3

λk(vm + v)

∫ (vm+v)/2

v

τc(vm + v − w,w)ψ
(n)
+,i(w)ψ

(n)
+,i(vm + v − w) dw

×
∫

Dk(vm+v,v)

βk (vm + v, u1, . . . , uk−2, vm − Uk−2) dσk−2

+

N∑

k=3

∫ vm+v

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)ψ
(n)
+,i(w)ψ

(n)
+,i(s− w) dw

× ∂

∂v

(∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

)}
,

dS
(i,n)
3

dv
(v) = φi

{
−α2(v)β2(v, v)ψ

(n)
+,i(v) −

∫ vm

v

α2(s)
∂β2(s, v)

∂v
ψ

(n)
+,i(s) ds

−
N∑

k=3

αk(v)ψ
(n)
+,i(v)

∫

Dk(v,v)

βk (v, 0, 0, . . . , 0) dσk−2 (3.25)

+
N∑

k=3

∫ vm

v

αk(s)ψ
(n)
+,i(s)

∂

∂v

(∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

)
ds

}

Both (3.24) and (3.25) contain the term

∂

∂v

(∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

)

which, recalling the “transport theorem”, can be written as

−
∫

Dk(s,v)

(
∂

∂uk−1
βk

) ∣∣∣∣∣
uk−1=s−v−Uk−2

dσk−2 +

∫

∂Dk(s,v)

βk

∣∣∣∣
uk−1=s−v−Uk−2

V · n dσk−3,
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where V is the rate of change of the boundary ∂Dk(s, v) of Dk(s, v) with respect to v and n is
the outward unit normal to ∂Dk(s, v). Notice that ∂Dk(s, v) is the union of the intersections
the hyperplanes Uk−1 = s−v with the boundary of Tk(s). Since these hyperplanes depend lin-
early on v and the boundary of Tk(s) is also made of hyperplanes, the vector V is independent
of v itself. The unit vector n, being normal to ∂Tk(s), does not depend on v either. Therefore
V ·n is a piecewise continuous function on ∂Dk(s, v) independent of v. Since ∂Dk(s, v) is com-
pact, V ·n is bounded. Notice also that Dk(v, v) has zero measure and that β2(v, 0) = 0. Then,
recalling all hypotheses from (H1) to (H5) and the estimate (3.15) we have that

∣∣∣∣∣
dS

(i,n)
1

dv

∣∣∣∣∣ ,
∣∣∣∣∣

dS
(i,n)
3

dv

∣∣∣∣∣ ≤ C1 (3.26)

for a suitable positive constant C1. Furthermore, being

dψ
(n)
+,i

dv
≤
∣∣∣∣∣

dψ
(n)
i

dv

∣∣∣∣∣ , (3.27)

we also get

∣∣∣∣∣
dS

(i,n)
2

dv
(v)

∣∣∣∣∣ ≤ C2

(
1 +

∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i

dv

∣∣∣∣∣

∣∣∣∣∣

)
(3.28)

for a suitable constant C2 > 0.

Let us set

∂ψ(n)

∂v
(v, t) := Un(v, t),

Ω(i,n)(v) := S
(i,n)
1 (v) + φi

N∑
k=2

αk(v),

Λ(i,n)(v, t) :=
dS

(i,n)
2 (v)

dv
+

dS
(i,n)
3 (v)

dv
− dS

(i,n)
1 (v)

dv
ψ(n)(v, t) − φi

N∑
k=2

α′
k(v)ψ(n)(v, t)

so that (3.22) rewrites as

∂Un(v, t)

∂t
+Ω(i,n)(v)Un(v, t) = Λ(i,n)(v, t), t ∈ (ϑi, ϑi+1), i = 0, . . . , n, (3.29)

being Un(v, 0) = f ′
o(v). By integrating (3.29) with respect to time we obtain

Un(v, t) = Un(v, ϑi) exp
[
−Ω(i,n)(v) (t− ϑi)

]
+

∫ t

ϑi

Λ(i,n)(v, τ) exp
[
−Ω(i,n)(v) (t− τ)

]
dτ.

(3.30)
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From estimates (3.26), (3.28), we obtain

|Λ(i,n)(v, τ)| ≤ C3

(
1 + |Un(v, ϑi)| + |ψ(v, τ)| +

N∑

k=2

α′
k(v)|ψ(v, τ)|

)
, (3.31)

for a suitable positive constant C3.

We now prove that the sequence

D
(k)
n,i = sup

(0,vm)

(
α′

k(v)
∣∣∣ψ(n)

i (v)
∣∣∣
)

(3.32)

is bounded. For i = 0 we have D
(k)
n,0 = sup

(0,vm)

(α′
k(v)fo(v)) which is bounded by assumption.

Multiply now (3.9) by α′
k(v) to get

α′
k(v)ψ(n)(v, t) ≤ α′

k(v)ψ
(n)
+,i(v) exp [−Ai(v)(t − ϑi)]

+ |Bi(v)|α′
k(v)

∫ t

ϑi

exp [−Ai(v)(t − τ)] dτ.

(3.33)

Recalling (3.18), inequality (3.33) implies

α′
k(v)ψ(n)(v, t) ≤ α′

k(v)
∣∣∣
∣∣∣ψ(n)

i

∣∣∣
∣∣∣ (1 + C4ε), (3.34)

where, once more, we made use of (3.12), and C4 > 0 is a suitable constant. From (3.34) we
get

D
(k)
n,i+1 ≤ D

(k)
n,0(1 + C4ε)

i+1, (k = 2, . . . , N) (3.35)

for all i = 0, . . . , n − 1. Thus, for ε = 1/n, it follows that, for each k = 2, . . . , N , the sequence
α′

k(v)
∣∣ψ(n)(v, t)

∣∣ with i = 0, . . . , n and n ∈ IN is uniformly bounded.

As a consequence – and recalling once again the boundedness of ψ(v, τ) – we can rewrite
(3.31) as follows

|Λ(i,n)(v, τ)| ≤ C5(1 + |Un(v, ϑi)|), (3.36)

for a suitable constant C5 > 0.

Notice now that, being Ω(i,n) > 0, (3.30) and (3.36) immediately imply

|Un(v, t)| ≤ |Un(v, ϑi)| + C5

∫ t

ϑi

(1 + |Un(v, ϑi)|) dτ, ∀t ∈ [ϑi+1, ϑi]; (3.37)
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therefore
|Un(v, ϑi+1)| ≤ |Un(v, ϑi)| + C5 (1 + |Un(v, ϑi)|) (ϑi+1 − ϑi) (3.38)

Recalling the meaning of Un, estimate (3.38) leads to the following

∣∣∣∣
∂ψ(n)(v, t)

∂v

∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i (v)

dv

∣∣∣∣∣

∣∣∣∣∣+ C5

(
1 +

∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i

dv

∣∣∣∣∣

∣∣∣∣∣

)
(ϑi+1 − ϑi) , ∀t ∈ [ϑi+1, ϑi]. (3.39)

Inequality (3.39) implies

1 +

∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i+1

dv

∣∣∣∣∣

∣∣∣∣∣ ≤
(

1 +

∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i

dv

∣∣∣∣∣

∣∣∣∣∣

)
+ C5

(
1 +

∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i

dv

∣∣∣∣∣

∣∣∣∣∣

)
(ϑi+1 − ϑi) . (3.40)

which, recalling (3.12), in turn implies that

(
1 +

∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i+1

dv

∣∣∣∣∣

∣∣∣∣∣

)
≤
(

1 +

∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i

dv

∣∣∣∣∣

∣∣∣∣∣

)
(1 + C6ε) ≤ . . . ≤

(
1 +

∣∣∣∣
∣∣∣∣

dfo

dv

∣∣∣∣
∣∣∣∣
)

(1 + C6ε)
i+1 .

Since ε = 1/n, being also i ≤ n, the boundedness of

∣∣∣∣∣

∣∣∣∣∣
dψ

(n)
i+1

dv

∣∣∣∣∣

∣∣∣∣∣ follows immediately. From

(3.39) we conclude that all functions
∂ψ(n)(v, t)

∂v
are uniformly bounded over [0, vm] × [0, T ),

which justifies a posteriori the formal procedure applied up to now. Ascoli–Arzelà’s Theorem
finally applies to guarantee that a converging subsequence can be extracted from ψ(n)(v, t)
which is a solution of problem (2.6) in [0, T ) and the proof is complete.

Proposition 3.1. Let f be a bounded solution to problem (2.5); then, under assumptions from
(H1) to (H5), all products

αk(v)f(v, t), k = 2, . . . , N (3.41)

are bounded for all v ∈ [0, vm].

Proof. Write problem (2.5) as follows

∂f

∂t
(v, t) + φ(t)

N∑

k=2

αk(v)f(v, t) = K(v, t) (3.42)
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where

K(v, t) = φ(t)

{∫ v/2

0

τc(w, v − w)f(w, t)f(v − w, t) dw − f(v, t)

∫ vm−v

0

τc(w, v)f(w, t) dw

+

∫ vm

v

α2(s)β2(s, v)f(s, t) ds

+
N∑

k=3

∫ vm

v

αk(s)f(s, t) ds

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

+

∫ vm+v

vm

λ2(s)β2(s, s− v) ds

∫ s/2

s−vm

τc(s− w,w)f(w, t)f(s − w, t) dw

+

N∑

k=3

[∫ vm+v

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)f(w, t)f(s − w, t) dw

×
∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

]
− f(v, t)

∫ vm

vm−v

τc(v, w)f(w, t) ds

}
.

As in the proof of Lemma 6.2 in Part I, the hypotheses we made imply

|K(v, t)| ≤ K < +∞

for a suitable positive constant K.

Now integrate (3.42) and multiply by αk to get

αk(v)f(v, t) = αk(v)fo(v) exp

(
−

N∑

h=2

αh(v)F (t)

)

+αk(v)

∫ t

0

A(v, τ) exp

[
−

N∑

h=2

αh(v)(F (t) − F (τ))

]
dτ, v ∈ [0, vm).

(3.43)

Because of (3.4) we have

0 ≤ αk(v)fo(v) = αk(v) [fo(v) − fo(vm)] ≤ Lαk(v)(vm − v), (3.44)

where L > 0 is a suitable constant. Thus, recalling (H3), we also have

0 ≤ αk(v)fo(v) ≤ L̃(vm − v)1−µ, µ ∈ (0, 1). (3.45)

Moreover, since F (t) ≥ Ψ̂ t ≥ 0, we obtain

18



0 ≤ αk(v)fo(v) exp

(
−

N∑

h=2

αh(v)F (t)

)
≤ L̃v1−µ

m , µ ∈ (0, 1). (3.46)

Therefore

αk(v)f(v, t) ≤ L̃v1−µ
m +Kαk(v)

∫ t

0

exp

[
−

N∑

h=2

αh(v) (F (t) − F (τ))

]
dτ

≤ L̃v1−µ
m +Kαk(v)

∫ t

0

exp

[
−

N∑

h=2

αh(v)Ψ̂ (t− τ)

]
dτ, µ ∈ (0, 1).

(3.47)

If we put y =
N∑

k=2

αk(v)Ψ̂ (t− τ) we obtain

αk(v)f(v, t) ≤
N∑

k=2

αk(v)f(v, t)

≤ (N − 1)L̃v1−µ
m +

K

Ψ̂

∫ +∞

0

exp(−y) dy

= (N − 1)L̃v1−µ
m +

K

Ψ̂
, µ ∈ (0, 1),

(3.48)

which completes the proof.

Remark 1. We notice explicitly that the upper bound on αk(v)f(v, t) depends on the upper
bound on f(v, t).

4. Global existence in time

In [3] we proved that the local solution f to (2.5) can be extended over an arbitrary large
time interval remaining bounded. To this aim we made use of a global time estimate of the
solution N of (the binary version of) equation (4.28) in Part I Indeed, for k = 2, that equation
implies

Ṅ (t) ≤ φ(t)

∫ vm

0

α2(s)f(s, t) ds, (4.1)
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which, for α2 bounded, gives N (t) ≤ N (0) exp

[(
||α2|| sup

t∈[0,+∞]

φ

)
T

]
. Being this estimate in-

dependent of the bound for f in [0, T ], directly from (2.4) one obtains

{f}t ≤ ||fo|| + C(T )

∫ t

0

{f}ϑ dϑ, (4.2)

where {•}t ≡ sup
(0,vm)×(0,t)

| • | and C(T ) depends, besides on T , only on the bounds for α2, β2, τc

and φ. From (4.2) we immediately obtain that

|f(v, t)| ≤ C∗(T ), (4.3)

and from this, with standard arguments, the possibility to make use of f(v, T ) as a new initial
data for (2.4).

This approach however does not work in the present case mainly for two reasons:

(a) the scattering term gives a non–negative (quadratic in f ) contribution to Ṅ (see equation
(4.28) in Part I). Therefore that equation appears unable to provide an estimate of N
independent of the bound for f furnished in the proof of Theorem 3.2.

(b) Being αk unbounded in (0, vm), also the non–negative linear term in (4.28) of Part I cannot
be estimated through N .

To overcome these difficulties and achieve a global existence result we need to follow a differ-
ent approach. Not surprisingly, the right idea is directly suggested by the very physics of the
problem.

A large number of droplets of (possibly) arbitrarily small size appearing because of breakage
from larger droplets are generally observed only in exceptional situations (like the instanta-
neous break–up of a rather long filament of fluid, see for example Fig. 8 in [6]). If we disregard
this and similar cases, it is reasonable to assume, in addition to all previous hypotheses made
for αk, also the following

αk(v) ≡ 0, ∀v ∈ [0, v∗crit], ∀k ≥ 2 (4.4)

where 0 < v∗crit � vm is a (small) threshold value (see Remark 3 in Section 2 of Part I). The
same request is needed for τc: indeed two very small droplets are very unlikely to coalesce
(see figures 4.1 and 4.2 taken from [5]), because of the large energy needed to drain and break
the interposed separating film1.

Therefore we also assume
1 As we already mentioned in Remark 3 in Section 2 of Part I, one should eventually distinguish

among various lower threshold values related to the different existing mechanisms that control evolu-
tion. This further complication has not been considered here although the mathematics involved does
not change very much.
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Fig. 4.1. Coalescence region for colliding drops of equal size (see [5]): very large and very small droplets
do not coalesce regardless of the mutual angle of approach (αapp = 0◦ means “head-on collision”, αapp =
90◦ means “grazing droplets”)

τc ≡ 0, in [0, v∗crit] × [0, v∗crit]. (4.5)

Similarly, considering there is no chance to get a droplet of subcritical size as the final product
of either a breakage or a scattering event, we need to impose

βk ≡ 0, if v ∈ [0, v∗crit]. (4.6)

As a consequence the only physical mechanism remaining active for v ∈ [0, v∗crit] is the loss of
small droplets due to coalescence with ones of ordinary size, i.e. above threshold (see figures
4.1 and 4.2 again).

The additional assumptions (4.4), (4.5) and (4.6) have an immediate consequence on the be-
haviour of f in a right neighbourhood of v = 0. Indeed from (2.1), (2.2), (2.3), we get that
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Fig. 4.2. Coalescence efficiency vs. droplets ratio (see [5]). This graph is in strict agreement that shown
in Figure 4. Indeed the coalescence efficiency reduces to zero as the droplet ratio goes to one only for
relatively “small” and “large” droplets

v ∈ [0, v∗crit] ⇒





Lcf(v, t) = −f(v, t)

∫ vm−v

v∗

crit

τc(w, v)f(w, t) dw,

Lbf(v, t) = 0,

Lsf(v, t) = −f(v, t)

∫ vm

vm−v

τc(w, v)f(w, t) dw,

(4.7)

so that

∂f

∂t
= −φ(t)f(v, t)

∫ vm

v∗

crit

τc(w, v)f(w, t) dw < 0, ∀v ∈ [0, v∗crit]. (4.8)

Consequently

f(v, t) ≤ fo(v), (v, t) ∈ [0, v∗crit] × [0, T ]. (4.9)
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Relation (4.9) implies that, because of the conservation of volume (Theorem 5.1 in Part I), also
the number of droplets cannot go to infinity because of a possible non–integrable singularity
of f near v = 0. Indeed from

∫ v∗

crit

0

vf(v, t) dv +

∫ vm

v∗

crit

vf(v, t) dv ≡ V(t) = V(0), (4.10)

we obtain

v∗crit

∫ vm

v∗

crit

f(v, t) dv ≤ V(0), (4.11)

and also

∫ v∗

crit

0

vf(v, t) dv ≤
∫ v∗

crit

0

vfo(v) dv ≤ v∗crit

∫ v∗

crit

0

fo(v) dv. (4.12)

Therefore

N (t) =

∫ vm

0

f(v, t) dv =

∫ v∗

crit

0

f(v, t) dv +

∫ vm

v∗

crit

f(v, t) dv

≤
∫ v∗

crit

0

fo(v) dv +
V(0)

v∗crit
≤ N (0) +

V(0)

v∗crit
.

(4.13)

Estimate (4.13) for N is a priori, global and independent of any bound for f in the local time
of existence. Now we can go back to (2.4): from (4.13), hypotheses (H1) to (H5) and Lemma
3.1 we easily get that

(
∂f

∂t

)

+

≤ C (1 + {f}t) , (4.14)

where C does not depend on f . We can thus proceed as in [3] to prove that (4.14) implies the
global existence of f . In conclusion we have

Theorem 4.1. (GLOBAL EXISTENCE) If the hypotheses of Theorem 3.2 are supplemented with
(4.4), (4.5) and (4.6), then the solution to problem (2.5) given by Theorem 3.2 can be extended
beyond t = T over any finite time interval with the same regularity properties.
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Fig. 5.1. The domain T2 when v∗

crit > 0. The probability density β2 is identically zero not only in the
black region but also in the gray one (the size of v∗

crit is exaggerated for visualization purposes)

5. The case N = 3: an example of functions β2 and β3

If v∗crit is strictly positive, region T2 modifies as shown in figure 5.1. Recall that for s ∈ (0, vm],
β2 is normalized as follows

∫ s/2

0

β2(s, v) dv = 1, (5.1)

while, for s ∈ (vm, 2vm]
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∫ s/2

s−vm

β2(s, u) du = 1. (5.2)

Also recall that, for k = 3, . . . , N , we have set
∫

Tk,h(s)

βk (s, u1, . . . , uk−1) dσk−1 = 1, ∀h = 1, . . . , k. (5.3)

Moreover

∫ s/2

max{0,s−vm}

β2(s, u) du =

∫ min{s,vm}

s/2

β2(s, u) du = 1, ∀s ∈ (0, 2vm).

Thus, if s → 2vm, both intervals (max{0, s − vm}, s/2) and (s/2,min{s, vm}) degenerate to a
single point and β2 behaves like a Dirac’s δ–function (see Figures 5.2 and 5.3).

We show an example of such a function which meets the whole set of hypotheses we made so
far. Although we could work out most calculations with generic parameters v∗crit and vm some
of them (and even the representation of the involved functions) turn out to be very heavy.
Thus we decided to leave v∗crit and vm unspecified as far as exposition takes advantage from
this choice and to turn to simple numerical values (like v∗crit = 0 and vm = 1) when this is no
longer true.

Let us choose β2 as follows: first notice that T2 (with v∗crit > 0, see Figure 5.1) can be repre-
sented as T2,inf ∪ T2,sup where

T2,inf = {(s, u) | 2v∗crit ≤ s ≤ vm + v∗crit ∧ v∗crit ≤ u ≤ vm},

T2,sup = {(s, u) | vm + v∗crit ≤ s ≤ 2vm ∧ s− vm ≤ u ≤ vm},

Then consider the characteristic functions χT2,inf
, χT2,sup

and put

β2,a(s, u) = A0(s)(u− v∗crit)[(s− u) − v∗crit], (5.4)

β2,b(s, u) = −A1(s)

2

(
u− s

2

)2

+A2(s), (5.5)

β2,c(s, u) = A2(s). (5.6)

Finally put
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β2 =





β2,a χT2,inf
, if s ∈ (2v∗crit, vm + v∗crit),

β2,b χT2,sup
, if s ∈ (vm + v∗crit, s̄),

β2,c χT2,sup
, if s ∈ (s̄, 2vm),

(5.7)

Functions Ai(s) are chosen in such a way to satisfy all the normalization and regularity
hypotheses we made so far. Indeed we found that for s̄ = 3vm/2, v∗crit = 0, vm = 1

A0(s) =
12

s3
, A1(s) = 72 − 48s

A2(s) =
−
(
624− 1248 s+ 1008 s2 − 360 s3 + 48 s4

)

24 (−2 + s)

(5.1) and (5.2) are both satisfied. Let us now check hypotheses (H5) concerning β2: request (i)
of (H5) is obvious from the very definition of β2. Laborious but straightforward calculations
then show that β2 turns out to be of class C2 in

◦

T 2,inf ∪
◦

T 2,sup and in particular across the
line s = vm + v∗crit. Thus (ii) of (H5) is also satisfied. As far the list (ii-a) to (ii-e) of (H5) is
concerned, we now choose

λ2(s) = m2

(
2vm − s

2vm

)ε2

where the coefficients m2, ε2 > 0 are to be chosen conveniently. If N = 3, necessarily λ3(s) =

1 − λ2(s) (remind that
N∑

k=2

λk(s) = 1). By noticing that A2 behaves like (2vm − s)−1 as s →
2, hypothesis (ii–a) is manifestly satisfied if ε2 ≥ 1. Concerning (ii-b), being λ2 a bounded
function, it sufficies to examine the integral

∫ vm+v

vm

∂β2

∂v
ds;

being β2 independent of v in (s̄, 2vm) we have
∣∣∣∣
∫ vm+v

vm

∂β2

∂v
ds =

∣∣∣∣ ≤
∫ s̄

vm

∣∣∣∣
∂β2

∂v

∣∣∣∣ ds.

More specifically
∫ s̄

vm

∂β2

∂v
ds =

∫ 3/2

1

A0(s)
∣∣∣s
2
− v
∣∣∣ ds

which is clearly finite.

Consider now the integral
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∫ vm

v

α2(s)β2(s, v) ds;

recalling hypothesis (H3) in Part I,we assume

α2(s) = ᾱ2(s− v∗crit)
δ2

+ (vm − s)−µ2

+ , (5.8)

where ᾱ2 is a positive constant and δ2 > 0 and µ2 ∈ (0, 1) have to be conveniently chosen.

Thus we have

∣∣∣∣∣

∫ vm

v

α2(s)β2(s, v) ds

∣∣∣∣∣ ≤ C

∫ 1

v

(
vsδ2−2 + v2sδ2−3

)
(1 − s)−µ2 ds

which remains finite for all v ∈ [0, 1], provided that δ2 > 0 and µ2 ∈ (0, 1).

Consider finally the integral

∫ vm

v

α2(s)
∂β2

∂v
(s, v) ds;

specifically we have

∣∣∣∣∣

∫ vm

v

α2(s)
∂β2

∂v
(s, v) ds

∣∣∣∣∣ ≤ C

∫ 1

v

(
sδ2−2 + vsδ2−3

)
(1 − s)−µ2 ds;

which remains finite for all v ∈ [0, 1], provided that δ2 > 1 and µ2 ∈ (0, 1).

Figures 5.2 and 5.3 give, respectively, a two-dimensional and a three-dimensional view of β2.

We now construct an example of function β3 assuming definitely, for simplicity, v∗crit = 0
and vm = 1. First of all let us put f(s, u1, u2) = 720s−5u1u2(s − u1 − u2) and consider the
characteristic functions χT3,h(s) of the sets T3,h(s) (h = 1, 2, 3). Then define





β3,1(s, u1, u2) = f(s, u1, u2) ◦ χT3,1(s)(u1, u2), (u1, u2) ∈ T3,1(s),
β3,2(s, u1, u2) = f(s, u1, s− u1 − u2) ◦ χT3,2(s)(u1, u2), (u1, u2) ∈ T3,2(s),
β3,3(s, u1, u2) = f(s, s− u1 − u2, u1) ◦ χT3,1(s)(u1, u2), (u1, u2) ∈ T3,3(s),

(5.9)

and

β3 = β3,1 + β3,2 + β3,3. (5.10)

Notice that β3 is constructed exactly as described in Sect. 3 of Part I since, for k = 3, the maps
Cj reduces to the following

C1(ξ1, ξ2) =

{
u1 = ξ1,
u2 = s− ξ1 − ξ2,

C2(ξ1, ξ2) =

{
u1 = s− ξ1 − ξ2,
u2 = ξ2,
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Figure 5.4 shows the contour plot of β3 while Figure 5.5 shows a three–dimensional view of
the same function from two different perspectives.
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Fig. 5.2. The contour plot of the function β2(s, u)

It is not difficult to see that
∫

T3,1

β3,1(s, u1, u2) du1 du2 = 1. It is also obvious that (H5)–(i) is

satisfied: indeed over D3(s, v) the function f writes 720s−5u1u2v. As (u1, u2) moves in T3(s)
the droplet of size v just change meaning: in T3,1(s) is the largest among the three, while in
T3,3(s) is the smallest. For v → 0 the line s − v = u1 + u2 identifies with a portion of the
boundary of T3,3(s) where β3 vanishes.

Consider now the integral (hypothesis (iii–a) of (H5))
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Fig. 5.3. The function β2(s, u) from two different viewpoints

∫

D3(vm+v,v)

β3(vm + v, u1, vm − u1) dσ1;

notice that, up to the sign, we have

∫

D3(s,v)

β3(s, u1, s− v − u1) dσ1 =
√

2

∫ s/2

max{0,s−vm}

β3(s, u1, s− v − u1) du1.

Thus

∣∣∣∣∣

∫

D3(vm+v,v)

β3(vm + v, u1, vm − u1) dσ1

∣∣∣∣∣ ≤
√

2

∫ (vm+v)/2

v

β3(vm + v, u1, vm − u1) du1

≤
√

2

∫ (vm+v)/2

v

f(vm + v, u1, vm − u1) =
√

2

∫ (vm+v)/2

v

720vu1(vm − u1)

(vm + v)5
du1

= 30
√

2
v(v − vm)2(7v + 2vm)

(v + vm)5

The right hand side is uniformly bounded over (0, vm) and, for vm = 1, takes a maximum at
v ≈ 0.214 with value ≈ 7.44.

Consider then (iii–b) of (H5): up to a multiplying constant, we have
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Fig. 5.4. Contour plot of the function β3(s, u1, u2) over T3(s) for a given value of s (greater than vm in
this case)

∫ vm

v

α3(s)

∫

D3(s,v)

β3(s, u1, s− v − u1) dσ1 ds

=

∫ vm

v

sδ3

(vm − s)µ3

∫ s/2

max{0,s−vm}

β3(s, u1, s− v − u1) du1 ds

= v

∫ vm

v

sδ3−5

(vm − s)µ3

(
−s3
24

+
s2 (s− v)

8
− (s− v) max{0, s− vm}2

2
+

max{0, s− vm}3

3

)
ds

Also for vm = 1, δ3 = 2 and µ3 = 1/2 the right hand side of the above relation is a rather
complicated function of v. However it is not difficult to check that, for a suitable constant
C > 0

v

∫ 1

v

s−3

√
1 − s

(
−s3
24

+
s2 (s− v)

8
− (s− v) max{0, s− 1}2

2
+

max{0, s− 1}3

3

)
ds ≤ Cv

√
1 − v

and thus it is uniformly bounded over (0, vm) = (0, 1).

Let us notice now that
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Fig. 5.5. Three-dimensional view of the function β3(s, u1, u2) a over T3(s) for a given value of s (greater
than vm in this case) from two opposite perspectives

∫ vm

v

α3(s)

∣∣∣∣∣

∫

∂D3(s,v)

β3(s, u1, s− v − u1) dσ1

∣∣∣∣∣ ds

=

∫ vm

v

α3(s) |β3(s,max{0, s− vm}, s− v − max{0, s− vm}) − β3(s, s/2, s/2− v)| ds

= 180

∫ vm

v

∣∣∣∣
(2v − s) v

s2
√
vm − s

∣∣∣∣ ds ≤ 180 v

∫ vm

v

max{v, vm − 2v}
s2
√
vm − s

ds

= 180

(
v2

∫ max{vm/3,v}

v

ds

s2
√
vm − s

+ v (vm − 2v)

∫ vm

max{vm/3,v}

ds

s2
√
vm − s

)

≤ 180

(∫ max{vm/3,v}

v

ds√
vm − s

+
v (vm − 2v)

max2{vm/3, v}

∫ vm

max{vm/3,v}

ds√
vm − s

)

≤ 360

(√
vm − v +

v (vm − 2v)

max2{vm/3, v}
√
vm − max{v, vm/3}

)

It can be easily checked that the right hand side of the above inequality is uniformly bounded
in (0, vm). This proves that also hypothesis (iii–c) of the list (H5) is satisfied.

We finally come to the integral
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∫ vm

v

α3(s)

∫

D3(s,v)

[
∂β3(s, u1, ξ)

∂ξ

]

ξ=s−v−u1

dσ1 ds;

up to a multiplying constant, this turns out to be equal to

∫ vm

v

s2√
vm − s

∫ s/2

max{0,s−vm}

(
u1v − u1(s− v − u1)

s5

)
du1 ds.

This integral can be calculated exactly and, for vm = 1, turns out to be equal to

−
√

1 − v + 3 v arctanh(
√

1 − v)

6
;

this function is uniformly bounded over (0, 1). Thus also hypothesis (iii-d) of (H5) is satisfied.
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